曲面积分对称性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 对称性在曲线积分计算中的应用
2.1 对称性在第一类曲线积分计算中的应用
结论1 若积分曲线L关于x轴(或y轴)对称,记L1为曲线L被坐标轴所分割的两个对称区域之一,则有:
①∫Lf(x,y)ds=0,f(x,y)为关于y(或x)的奇函数;
②∫Lf(x,y)ds=2∫L1f(x,y)ds,f(x,y)为关于y(或x)的偶函数。
结论2 若积分曲线L关于直线y=x对称,则当点(x,y)∈L时,有(y,x)∈L,即L关于x,y具有轮换对称性,这时有:
∫Lf(x,y)ds=∫Lf(y,x)ds=12∫L[f(x,y)+f(y,x)]ds
若f(x,y)=-f(y,x),即f(x,y)关于直线y=x奇对称,则∫Lf(x,y)ds=0;
若f(x,y)=(y,x),即f(x,y)关于直线y=x偶对称,则∫Lf(x,y)ds=2∫L1f(y,x)ds。
其中L1为曲线L被直线y=x所分割的两个对称区域之一。
2.2 对称性在第二类曲线积分计算中的应用
设有曲线积分I=∫L P(x,y)dx,其中L为光滑的有向曲线弧,如果L关于某条直线(包括坐标轴)对称,这时利用对称性计算上述曲线积分时,不仅要考虑P(x,y)的大小和符号,还要考虑投影元素dx的符号。当积分方向和坐标轴正向之夹角小于π2时,投影元素为正,否则为负。一般地,我们有:
结论若积分曲线L关于某直线对称,记L1为曲线L被这条直线所分割的两个对称区域之一,则有:
①∫Lf(x,y)ds=0,P(x,y)dx在对称点上取相反的符号;
②∫Lf(x,y)ds=2∫L1f(x,y)ds,P(x,y)dx 在对称点上取相同的符号。
对于积分∫L Q(x,y)dy也有类似地结论。上述结论都可推广到空间曲线的情形。
3 对称性在曲面积分计算中的应用
3.1 对称性在第一类曲面积分计算中的应用
结论1 若积分曲 面关于某平面(或某点)对称,记 1为曲面 被某平面(或某点)所分割的两个对称曲面之一,则有:
① f(x,y,z)dS=0,在对称点上f(x,y,z)取相反的符号;
② f(x,y,z)dS=2 1f(x,y,z)dS,在对称点上f(x,y,z)取相同的符号。
结论2 若积分曲面 关于x,y,z具有轮换对称性,则有:
f(x,y,z)dS= f(y,z,x)dS= f(z,x,y)dS
=13 [f(x,y,z)+f(y,z,x)+f(z,x,y)]dS
3.2 对称性在第二类曲面积分计算中的应用
利用对称性计算第二类曲面积分同样需要注意投影元素的符号。现以曲面积分
f(x,y,z)dxdy为例来讨论。当曲面指定侧上动点的法线方向与z轴正向成锐角时,面积元素dS在xoy面上的投影dxdy为正;成钝角时为负。一般地,我们有:
结论若积分曲面 可分成对称的两部分 1、 2( = 1+ 2),在对称点上|f|的值相等,则有
① f(x,y,z)dxdy=0,在对称点上fdxdy取相反的符号;
② f(x,y,z)dxdy=2 f(x,y,z)dxdy,在对称点上fdxdy的符号相同。
对于积分 f(x,y,z)dydz, f(x,y,z)dzdx也有类似的结论。
总之,应用对称性计算积分时应注意以下几点:
①必须兼顾被积函数和积分区域两个方面,只有当两个方面都具有某种对称性时才能
利用。如果只有积分区域具有某种对称性,这时根据具体情况,我们可以把被积函数经过恒等变形使之具有某种对称性,再考虑利用上述结论。
②对第二类曲线积分和第二类曲面积分,在利用对称性时,尚需考虑积分路线的方向和曲面的侧,确定投影元素的符号,需慎重。
③有些问题利用轮换对称性可得到简便的解答。