人教版-初一数学上册应用题精选
人教版数学七年级上册应用题专项(附答案)
人教版数学七上应用题专项练习一、相遇问题对应数量关系式:速度×时间=路程快者路程+慢者路程=总路程(快者速度+慢者速度)×相遇时间=相遇路程1.AB两地相距75千米,甲车速度50千米每小时从A地出发,乙车速度40千米每小时从B地出发。
同时出发相对而行,几小时后相距30千米?2.甲乙两车从相距300千米的AB两地同时出发,甲速度是乙速度的1.5倍,4小时后相遇,乙速度是多少?3.甲乙两地相距600千米,慢车速度40千米每小时从甲地出发,快车速度60千米每小时从乙地出发;如果让慢车先走55分钟后,快车再出发,求快车开出多少小时后两车相遇?二、追及问题数量关系式:两者的路程差=追及路程/以追及时间为等量关系式1.同时不同地:快者时间=慢者时间快者路程—慢者路程=原来相距路程①甲车在乙车前方600米处,甲速度40千米每小时,乙车速度60千米每小时,同时出发,乙车几小时能追上甲车?②AB两地相距62千米,甲从A出发,每小时行14千米,乙从B出发每小时行18千米,若甲在前乙在后,两人同时同方向出发,几小时后乙超过甲10千米?2.同地不同时:先走者的时间=后走者的时间+时间差先走者的路程=慢走者的路程①慢车从车站开出,每小时行48千米,45分钟后,一快车从同车站同向开出,1.5小时追上了慢车,快车的速度是多少?②古代一队士兵去城外进行训练,以每小时5千米的速度行进,走了18分钟,城内要将一个重要信息传给队长,通讯员骑马以每小时14千米的速度按原路追赶。
通讯员多久能追上?三、环形跑道相遇追及问题同地反向:两者路程和=一圈的路程同地同向:两者路程差=一圈的路程1.一条环形跑道长400米,甲每分钟行450米,乙每分钟行250米;甲乙两人同时同地反向出发,几分钟后再相遇?甲乙两人同时同地同向出发,几分钟后再相遇?2.甲乙两人在400米的环形跑道上跑步,若同时同地同向跑则3分20秒相遇一次;若同时同地反向跑则40秒相遇,求甲的速度是每秒多少米?四、年龄问题等量关系式:大小年龄差永远不会变,一年一岁,人人平等1.现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,几年后父亲年龄是儿子年龄的3倍?3.父亲和女儿的年龄和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿的年龄是父亲现在年龄的三分之一,求女儿现在的年龄?4.现在甲的年龄是乙的2倍,8年后两人年龄和是76岁,现在甲比乙大几岁?五、行船问题顺流航速=船的静水速度+水流速度逆流速度=船的静水速度-水流速度顺流速度×顺流时间=顺流路程逆流速度×逆流时间=逆流路程顺程+逆程=总路程1.一艘船航行于A,B两个码头之间,顺水航行需要2个小时,逆水航行需要4个小时,已知水流速度是4千米/时,求这两个码头之间的距离?2.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?六、飞行问题顺风速=飞机无风速+风速逆风速=飞机无风速-风速顺风速×顺风时间=顺风路程逆风速×逆风时间=逆风路程顺程+逆程=总路程1.一架飞机在两地之间飞行风速为16千米/小时,顺飞飞行需要3小时,逆风飞行需要5小时,求无风时飞机的航速和两地之间的航程?七、利润率问题利润率=(利润÷进价)×100%进价(成本价)+利润=售价利润=进价(成本价)×利润率1.某商品进价500元,按标价的九折销售,利润率为15.2%,求商品的标价是多少元?2.某商品进价2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员可以打几折出售此商品?3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利利润相等,该工艺品每件的进4.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件扔获利15元,这种服装的进价是多少?八、和差倍分的问题问题的特点:已知两个量之间存在和倍差关系,可以求这两个量的多少。
人教版七年级上册数学期末实际问题应用题-配套问题提升训练
人教版七年级上册数学期末实际问题应用题-配套问题提升训练1.机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天可以生产多少套这样成套的产品?2.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?3.劳作课上,王老师组织七年级5班的学生用硬纸制作圆柱形笔筒.七年级5班共有学生55人,其中男生人数比女生人数少3人,每名学生每小时能剪筒身30个或剪筒底90个.(1)七年级5班有男生,女生各多少人;(2)原计划女生负责剪筒身,男生负责剪筒底,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,男生应向女生支援多少人,才能使每小时剪出的筒身与筒底配套.4.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件,几个工人加工乙种零件?5.机械厂加工车间有90名工人,平均每人每天加工大齿轮8个或小齿轮14个,已知1个大齿轮与2个小齿轮配成一6.某车间有27个工人,生产甲、乙两种零件,已知每人每天平均能生产甲种零件22个或乙种零件16个,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?(每2个甲种零件和1个乙种零件配成一套)7.某丝巾厂家70名工人义务承接了第十六届亚运会上中国志愿者手上、脖子上的丝巾的制作任务.已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,1条脖子上的丝巾要配2条手上的丝巾.(1)为了使每天生产的丝巾刚好配套,应分配多少名工人生产手上的丝巾,多少名工人生产脖子上的丝巾?(2)在(1)的方案中,能配成______套.8.制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用31m木材可制作15个桌面或300个桌腿,公司现有318m的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)一共可制作多少张桌子?9.某车间每天能制作甲种零件300只,或者制作乙种零件200只,1只甲种零件需要配2只乙种零件.(1)若制作甲种零件2天,则需要制作乙种零件____只,才能刚好配成套.(2)现要在20天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?10.在甲处劳动的工人有29人,在乙处劳动的工人有17人,现在为了赶工期,总公司另调20名工人去支援甲乙两处,使在甲处劳动的工人为在乙处劳动的工人的2倍还多3人,应分别调往甲乙两处各多少名工人?11.某体育用品商场销售某品牌自行车,已知1名熟练工与1名新工人每天共能装配好8辆自行车,3名熟练工与5名新工人每天共能装配好28辆自行车.①1名新工人每天可以装配好多少辆自行车?②根据销售经验,该商场预计元旦期间每天可以售出20辆该品牌自行车,商场现只有2名熟练工,那么至少还需要招多少名新工人?12.在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底?13.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成. 工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品. (1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置. 请问至少需要补充多少名新工人?14.(1)把一批图书分给初一某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则差25本.这个班有多少名学生?(2)读书周,这个班级的学生去图书馆整理图书,已知平均每个学生单独整理这个图书馆的图书需要235小时,上午男生先整理了4个小时,下午女生加入,一起又干了3个小时完成了全部工作,问这个班级男生有多少人?15.制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用1m3木材可制作15个桌面或300个桌腿,公司现有18m3的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)家具公司欲将制作餐桌全部出售,为尽快回收资金,决定以标价的八折出售,一张餐桌仍可获利28%,这样全部出售后总获利31500元.求每张餐桌的标价是多少?16.公园计划在园内的坡地上栽种树苗和花圃,树苗和花苗的比例是1:25,已知每人每天种植树苗3棵或种植花苗50棵,现有15人参与种植劳动.(1)怎样分配种植树苗和花苗的人数,才能使得种植任务同时完成?(2)现计划种植树苗60棵,花苗1500棵,要求在3天内完成,原有人数能完成吗?如果完成,请说明理由;如不能完成,请问至少派多少人去支援才能保证3天内完成任务?参考答案1.解:设生产大齿轮的为x人,则生产小齿轮的为(90-x)人,由题意得:20x×3=15(90-x)×2,解得:x=30,20×30÷2=300(套).∴一天可以生产300套这样成套的产品.2.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,故调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22-y),解得:y=10,22-y=22-10=12(人),则10名工人生产螺柱,12名工人生产螺母.3.解:(1)设七年级5班有男生x人,则有女生(x+3)人,由题意得:x+x+3=55,解得x=26,女生:26+3=29(人).答:七年级5班有男生26人,女生29人;(2)男生剪筒底的数量:26×90=2340(个),女生剪筒身的数量:29×30=870(个),∵一个筒身配两个筒底,2340:870≠2:1,∴原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不配套.设男生应向女生支援y人,由题意得:90×(26﹣y)=(29+y)×30×2,解得y=4.答:男生应向女生支援4人,才能使每小时剪出的筒身与筒底配套.4.设这一天加工甲种零件的工人人数为x ,加工乙种零件的工人人数为()16x -由题意可得:()165244161440x x ⨯+⨯-=解得:6x =∴这一天加工甲种零件的工人人数为6人,加工乙种零件的工人人数为10人; 5.解:需安排x 名工人加工大齿轮,则安排(90-x )名工人加工小齿轮才能使每天加工的大小齿轮刚好配套,由题意知,8214(90)x x ⋅=-,16x =1260-14x ,30x =1260,x =42,90-42=48(人),答:需安排42名工人加工大齿轮,则安排48名工人加工小齿轮才能使每天加工的大小齿轮刚好配套.6.解:设分配x 人生产甲零件,则有(27-x)人生产乙零件,根据题意可列方程:22x=2×16(27-x), 解得:x=16.则27-x=11人.即分配16人生产甲零件,11人生产乙零件.7.(1)为了使每天生产的丝巾刚好配套,应分配x 名工人生产手上的丝巾,(70)x -名工人生产脖子上的丝巾,根据题意,得:1800(70)12002x x =-⨯⨯,解得:40x =.∴70704030x -=-=.答:为了使每天生产的丝巾刚好配套,应分配40名工人生产手上的丝巾,30名工人生产脖子上的丝巾;(2)301200⨯=36000(套),故答是:36000.8.解:(1)设应计划使用3xm 木料制作桌面,则使用3(18)x m -木料制作桌腿,根据题意得:415300(18)x x ⨯=-,解得:15x =,则1818153x -=-=.答:用15立方米做桌面,用3立方米做桌腿才能使制作的桌面和桌腿配套. (2)31m 木材可制作15个桌面,则315m 木料制作1515225⨯=个桌面.答:一共制作225套.9.解:(1)300×2×2=1200(只). 故答案为:1200.(2)设应制作甲种零件x 天,则应制作乙种零件(20﹣x)天,依题意,得:2×300x =200(20﹣x), 解得:x =5,∴20﹣x =15.答:应制作甲种零件5天,乙种零件15天.10.解:设应调往甲处x 名工人,则应调往乙处(20-x )名工人,()29217203x x +=+-+解得16x =所以204x -=答:应调往甲处16人,乙处4人.11.②解法一:设至少还需要招y 名新工人,由题意得(8﹣2)×2+2y=20, 解得:y=4.答:至少还需要招4名新工人.解法二:[20﹣(8﹣2)×2]÷2=[20﹣6×2]÷2=[20﹣12]÷2=8÷2=4(名).答:至少还需要招4名新工人.12.(1)设七年级(2)班有男生x 人,依题意得()244x x ++=,解得21x =,223x +=所以,七年级(2)班有男生21人,女生23人;(2)设分配剪筒身的学生为y 人,依题意得()50212044y y ⨯=-,解得24y =,4420y -=,所以,应该分配24名学生剪筒身,20名学生剪筒底.13.试题解析:(1)设有x 名工人加工G 型装置,则有(80-x )名工人加工H 型装置,根据题意,,解得x=32,则80-32=48(套),答:每天能组装48套GH 型电子产品;(2)设招聘a 名新工人加工G 型装置仍设x 名工人加工G 型装置,(80-x )名工人加工H 型装置,根据题意,,整理可得,x=,答:至少应招聘30名新工人,14.(1)设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.(2)设男生有y人,则女生有(45﹣y)人,依题意得:(4+3)y+3(45﹣y)=235,解得y=25.答:这个班级男生有25人.15.解:(1)设用x立方米做桌面,则用(18﹣x)立方米做桌腿.根据题意得:4×15x=300(18﹣x),解得:x=15,则18﹣x=18﹣15=3.答:用15立方米做桌面,用3立方米做桌腿才能使制作的桌面和桌腿配套.(2)15×15=225(张),设每张餐桌的标价是y元,根据题意得:225[0.8y﹣0.8y÷(1+28%)]=31500,解得:y=800.故每张餐桌的标价是800元.16.(1)首先设安排x人种植树苗,可得:3x:50(15﹣x)=1:25解得:x=6.答:安排6人种植树苗,安排9人种植花苗;(2)树苗:6020263333==⨯,至少为7人;花苗:1500503⨯=10,至少10人,∴不能完成10+7-15=2(人)答:至少派2人去支援才能保证三天内完成任务.。
【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)
【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)1. 某两市之间,可乘坐普通列车或高铁(路线不同),已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程.2.一名极限运动员在静水中划船的速度为每小时12千米,今往返于某河,逆流时用了10小时,顺流时用了6小时,求水流速度.3. 某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问在一年内累计消费多少元时,买卡与不买卡花费一样多的钱?什么情况下买卡合算?4.某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.如果捐款总数为2750元,那么捐30元的团员有多少人?5. 为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?6.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成剩下的部分?7. 学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,少14棵.问:两类树各种了多少棵?杉树的棵数比总数的138.现有190张铁皮做盒子,每张铁皮可以做8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.如果用完全部的铁皮,那么用多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?9.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,若每3人共乘一车,则最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘.问有多少个人,多少辆车?10.某市多所学校入围“全国青少年校园足球特色学校”,为了积极开展足球活动,某校计划为校足球队购买一批A、B两种品牌的足球.已知购买4个A品牌足球和2个B品牌足球共需360元;A品牌足球的单价比B品牌足球的单价少60元.(1)求A,B两种品牌足球的单价;(2)求该校购买20个A品牌足球和2个B品牌足球的总费用.参考答案1.解:设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米.依题意得x+1.3x=920,解得x=400.所以1.3x=520(千米).答:普通列车的行驶路程是520千米.2. 解:设水流的速度为每小时x千米,依题意有6(x+12)=10(12﹣x),解得x=3.答:水流速度是每小时3千米.3. 解:设购物x元时,买卡与不买卡花费一样,由题意得200+0.8x=x,解得x=1000.当x>1000时,买卡购物合算.答:购物1000元时,买卡与不买卡花费一样;当购物金额超过1000元时,买卡购物合算.4. 解:设捐30元的团员有x人,则捐10元的有(115-x)人.根据题意得30x+10(115-x)=2750.解得x=80.答:捐30元的团员有80人.5. 解:设该班胜了x场,那么负了(8﹣x)场,根据题意得2x+1•(8﹣x)=13,解得x=5.8﹣5=3.答:该班胜、负场数分别是5和3.6.解:设还需x天完成剩下的部分,根据题意得+=1,解得x=10.答:还需10天完成剩下的部分.7.解:设一共植了x棵树,则杨树为(x+56)棵,杉树为(x﹣14)棵.则有x+56+x﹣14=x,解得x=252.故杨树有×252+56=182(棵),杉树有×252﹣14=70(棵).答:种了182棵杨树,70棵杉树.8.解:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据题意得2×8x=22×(190﹣x),解得x=110.190﹣110=80(张).答:用110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.9. 解:设有x辆车,则有(2x+9)人,依题意得3(x-2)=2x+9.解得x=15.∴2x+9=2×15+9=39.答:有39个人,15辆车.10.解:(1)设A品牌足球的单价为x元,则B品牌足球的单价为(x+60)元.根据题意得4x+2(x+60)=360,解得x=40.∴x+60=100.答:A品牌足球的单价为40元,B品牌足球的单价为100元.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.。
人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)
人教版七年级上册数学第一章有理数应用题专项训练1.某出租车沿某南北方向的公路上载客,约定前北为正,向南为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,﹣3,+4,﹣8,+13,﹣2,+12,+8.(1)问收工时距A地多远?(2)若每千米路程耗油0.15升,问从A地出发到收工共耗油多少升?2.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?3.出租车一天下午以家为出发地在东西方向营运,向东为正方向,向西为负方向,行车里程(单位:km)依先后载客次序记录如下:+8,﹣9,﹣7,+6,﹣3,﹣14,+5,+12(1)该出租车师傅将最后一名乘客送达到目的地,出租车离家有多远?(2)该出租车师傅下午离家最远有多少千米?(3)若汽车耗油量为0.2升/千米,这天下午接送乘客,出租车共耗油多少升?(4)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米啊1.2元,问这天下午该出租车师傅的营业额是多少元?4.哈市出租车司机李师傅某天的营运全都是在一条东西方向的大街上运行的,若规定从出发点向东方向为正,向西方向为负,他这天走的里程如下:(单位:千米)-3,+4,-12,-5,+6,-8,-7,+9,-10,+11(1)李师傅第四次运营后的位置在出发点的哪个方向?多少千米处?(2)若每千米耗油0.04升,则这天营运耗油多少升?5.某服装厂一周计划生产2800套运动服,计划平均每天生产400套,超出计划产量的记为“+”,不足计划产量的记为“-”,下表记录的是该厂某一周的生产情况:表中星期六的记录情况被墨水涂污了.(1)根据记录可知,星期六工厂生产多少套运动服?(2)产量最多的一天比产量最少的一天多生产多少套运动服?(3)该服装厂工资结算方式如下:①每人每天基本工资200元.①以每天完成400套为标准,若当天超额完成任务,超额部分每套奖励10元;若当天未完成生产任务,则少生产一套扣掉15元.该服装厂采用流水作业方式生产,当天所得奖金总额按人均分配,若该工厂这一周每天都有20名工人生产,则这一周服装厂实际需要付给该工厂每名工人多少元?6.某市股民小张上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):(1)本周三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)若小张在本周四交易,问他的盈利情况如何?(交易时的手续费忽略不计)7.据新闻报道,渝万高铁于即将通车,为了保证安全,某动车检修小组沿铁路检修,约定前进为正,后退为负,某天自甲地出发到收工时所走路线(单位:km)为+10,-3,+4,-2,-9,+13,-2,+12,+8,+5;问:(1)检修小组第几次回到甲地?(2)收工时距甲地多远?(3)若每千米耗电25度,则从甲地出发到收工共耗电多少度.8.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1.(1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?9.本市图书馆上周借书记录如下(超过100册记为正,不超过100册记为负):(1)上周星期三比星期四多借出多少册书?(2)上周平均每天借出多少册书?10.一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东为正,向西为负,行车里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)将最后一名乘客送到目的地,出租车离该商场有多远?(2)按出租车每行驶100km油耗为10L,1L汽油的售价为7.2元,计算出租车在该上午消耗汽油的金额是多少元?(3)如果不计其它成本,只计消耗的汽油费用,每千米收费3元,计算这名司机挣(或赔)了多少元?11.2020年新冠肺炎疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个.由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小王某周的生产情况(超产记为正,减产记为负).(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据可知,小王本周实际生产口罩数量为______个;(3)若该厂实行每周计件工资制,每生产一个口罩可得0.8元,若超额完成周计划工作量,则超过部分每个另外奖励0.2元;若完不成每周的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.8元.若超额完成每日计划工作量,则超过部分每个另外奖励0.2元;若完不成每天的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?12.有一批试剂,每瓶标准剂量为250毫升,现抽取8瓶样品进行检测,超过或不足标准剂量的部分分别用正、负数表示,记录结果如下(单位:毫升):+6,-2,+3,+10,-6,+5,-15,-8.(1)这8瓶样品试剂的总剂量是多少?(2)若增加或者减少每瓶试剂剂量的人工费为10元/毫升,求将这8瓶样品试剂再加工制作成标准剂量需要多少人工费?13.有6筐白菜,以每筐25千克为标准质量,超过的千克数记作正数,不足的千克数记作负数,称量后的记录如图.请回答下列问题:(1)这6筐白菜中最接近标准质量的这筐白菜为____________千克.(2)与标准质量相比,这6筐白菜总计超过或不足多少千克?14.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:(1)求n的值及这20箱樱桃的总重量;(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.15.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________斤;(2)本周实际销售总量是否达到了计划数量?试说明理由;(3)若冬枣每斤按8元出售,每斤冬枣需要小明支付的平均运费是3元,那么小明本周销售冬枣实际共得多少元?16.出租车司机小李某天下午的运营是在南北走向的大街进行的,假定向南为正,向北为负,他那天下午行驶里程(单位:km)如下:+15,-3,+14,-11,+10,+4,-26(1)小李在送第几位乘客时行驶的路程最远?(2)小李送完最后一位乘客时所处的地点,在他最初出发地的什么方向?距离出发地多远?(3)若汽车耗油量为0.1L/km,这天下午汽车一共耗油多少升?17.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前五天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况,如表所示:(1)这五天中赚钱最多的是第_____天,这天赚钱_____元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?18.某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单位:元)(1)星期三收盘时每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?19.某城市治安巡逻队员乘车沿东西方向的一条主干线进行巡逻.某天早上从A地出发,晚上最后到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣12,﹣4,+12,﹣5,﹣6(1)B地在A地何方,相距多少千米?(2)问巡逻队员在距A地最远时的最远距离是多少千米?(3)每千米耗油0.6升,每升4.5元,这天共耗油费用为多少元?20.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示);(1)这天冷库的冷冻食品的质量相比原来是增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用200元,运出每吨冷冻食品费用400元;方案二:不管运进还是运出每吨冷冻食品费用都是300元.从节约运费的角度考虑,选择哪一种方案比较合算?参考答案:1.(1)34千米(2)9升2.(1)192辆(2)25辆3.(1)在家的西方,离家有2km(2)19千米(3)12.8升(4)128元4.(1)西方,16 千米(2)3升5.(1)星期六生产了448套运动服(2)多生产56套运动服(3)需付给每名工人1435元6.(1)34.5元(2)35.5元,26元(3)盈利5000元7.(1)第五次回到了甲地(2)距离甲地36km(3)从甲地出发到收工共耗电1700度8.(1)这8箱苹果的总重量是75千克(2)苹果的零售价应定为每千克6.4元(3)该水果店在销售这批苹果过程中盈利112元9.(1)上周星期三比星期四多借出39册书(2)上周平均每天借出105册书10.(1)出租车在商场西面,距商场2km处(2)消耗汽油的金额是50.4元(3)这名司机挣了159.6元11.(1)291(2)2111(3)1691元(4)1689.85元12.(1)1993毫升;(2)550元13.(1)24.5(2)总计超过3千克14.(1)5n ,203千克;(2)1075元;(3)是盈利的,盈利466元.15.(1)29(2)达到了计划数量(3)3585元16.(1)小李在送最后一位乘客时行车里程最远;(2)在他最初出发地的正南方向,距离出发地3km;(3)这天下午汽车共耗油8.3升17.(1)4,96(2)360元18.(1)34.5元(2)35.5元;26元(3)赚889.5元19.(1)B地在A地东方,相距1千米处(2)18千米(3)197.1元20.(1)减少了,理由见解析(2)从节约运费的角度考虑,选择方案二比较合算。
人教版七年级上册数学经典题应用题型35道及答案彩色版
人教版七年级上册数学经典题应用题型35道及答案彩色版1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。
若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?2.某大商场家电部送货人员与销售人员人数之比为1:8。
今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。
结果送货人员与销售人数之比为2:5。
求这个商场家电部原来各有多少名送货人员和销售人员?3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。
求原来每个车间的人数。
6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)7.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
1/98.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.9.某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台10.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?]11.跑得快的马每天走240里,跑得慢的马每天走150里。
人教版七年级数学应用题库(附答案)
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。
还要运几次才能完?2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?3、某车间计划四月份生产零件5480个。
已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。
甲每小时行45千米,乙每小时行多少千米?5、某校六年级有两个班,上学期级数学平均成绩是85分。
已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?7、四年级共有学生200人,课外活动时,80名女生都去跳绳。
男生分成5组去踢足球,平均每组多少人?8、食堂运来150千克大米,比运来的面粉的3倍少30千克。
食堂运来面粉多少千克?9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。
平均每行梨树有多少棵?10、一块三角形地的面积是840平方米,底是140米,高是多少米?11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。
每件大人衣服用2.4米,每件儿童衣服用布多少米?12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。
甲几小时到达中点?16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。
如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。
已知甲速度是15千米/时,求乙的速度。
17、两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。
初一上册数学应用题大全及答案新人教版
初一上册数学应用题大全及答案新人教版一、选择题:本大题共12小题,每小题3分,共36分,请你将认为正确答案前面的代号填入括号内1.﹣22=()A. 1 B.﹣1 C. 4 D.﹣4考点:有理数的乘方.分析:﹣22表示2的2次方的相反数.解答:解:﹣22表示2的2次方的相反数,∴﹣22=﹣4.故选:D.点评:本题主要考查的是有理数的乘方,明确﹣22与(﹣2)2的区别是解题的关键.2.若a与5互为倒数,则a=()A. B.﹣ C.﹣5 D. 5考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:由a与5互为倒数,得a= .故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.(3分)(2014 秋•北流市期中)在式子:,m﹣3,﹣13,﹣,2πb2中,单项式有()A. 1个 B. 2个 C. 3个 D. 4个考点:单项式.分析:直接利用单项式的定义得出答案即可.解答:解:,m﹣3,﹣13,﹣,2πb2中,单项式有:﹣13,﹣,2πb2,共3个.故选:C.点评:此题主要考查了单项式,正确把握单项式的定义是解题关键.4.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C. |﹣3|=|3| D.(﹣3)100=3100考点:有理数的乘方;绝对值.分析:根据有理数的乘方分别求出即可得出答案.解答:解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.点评:此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.5.如果2x2y3与x2yn+1是同类项,那么n的值是()A. 1 B. 2 C. 3 D. 4考点:同类项.专题:计算题.分析:根据同类项:所含字母相同,并且相同字母的指数也相同,可得出n的值.解答:解:∵2x2y3与x2yn+1是同类项,∴n+1=3,解得:n=2.故选B.点评:此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键.6.( 3分)(2014秋•北流市期中)经专家估算,整个南海属于我国海疆线以内的油气资源约合1500忆美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()A. 1.5×104美元 B. 1.5×105美元C. 1.5×1012 美元 D. 1.5×1013美元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将15000亿用科学记数法表示为:1.5×1012.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列结论正确的是()A.近似数1.230和1.23精确度相同B.近似数79.0精确到个位C.近似数5万和50000精确度相同D.近似数3.1416精确到万分位考点:近似数和有效数字.分析:近似数的有效数字,就是从左边第一个不是0的数起,后边所有的数字都是这个数的有效数字,并且对一个数精确到哪位,就是对这个位后边的数进行四舍五入进行四舍五入.解答:解:A、近似数1.230有效数字有4个,而1.23的有效数字有3个.故该选项错误;B、近似数79.0精确到十分位,它的有效数字是7,9,0共3个.故该选项错误;C、近似数5万精确到万位,50000精确到个位.故该选项错误;D、近似数3.1416精确到万分位.故该选项正确.故选C.点评:本题考查了近似数与有效数字,主要考查了精确度的问题.8.若|x﹣1|+|y+2|=0,则(x+1)(y﹣2)的值为()A.﹣8 B.﹣2 C. 0 D. 8考点:非负数的性质:绝对值.分析:根据绝对值得出x﹣1=0,y+2=0,求出x、y的值,再代入求出即可.解答:解:∵|x﹣1|+|y+2|=0,∴x﹣1=0, y+2=0,∴x=1,y=﹣2,∴(x+1)(y﹣2)=(1+1)×(﹣2﹣2)=﹣8,故选A.点评:本题考查了绝对值,有理数的加法的应用,能求出x、y的值是解此题的关键,难度不大.9.一种金属棒,当温度是20℃时,长为5厘米,温度每升高或降低1℃,它的长度就随之伸长或缩短0.0005厘米,则温度为10℃时金属棒的长度为()A. 5.005厘米 B. 5厘米 C. 4.995厘米 D. 4.895厘米考点:有理数的混合运算.专题:应用题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:5﹣(20﹣10)×0.0005=5﹣0.005=4.995(厘米).则温度为10℃时金属棒的长度为4.995厘米.故选C.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A. a+b>0 B. a﹣b>0 C. ab>0 D.考点:有理数大小比较;数轴.分析:根据各点在数轴上的位置判断出a,b的取值范围,进而可得出结论.解答:解:∵由图可知,a<﹣1<0<b<1,∴a+b<0,故A错误;a﹣b<0,故B错误;ab<0,故C错误;<0,故D正确.故选D.点评:本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.11.若k是有理数,则(|k|+k)÷k的结果是()A.正数 B. 0 C.负数 D.非负数考点:有理数的混合运算.分析:分k>0,k<0及k=0分别进行计算.解答:解:当k>0时,原式=(k+k)÷k=2;当k<0时,原式=(﹣k+k)÷k=0;当k=0时,原式无意义.综上所述,(|k|+k)÷k的结果是非负数.故选D.点评:本题考查的是有理数的混合运算,在解答此题时要注意进行分类讨论.12.四个互不相等的整数a,b,c,d,它们的积为4,则a+b+c+d=()A. 0 B. 1 C. 2 D. 3考点:有理数的乘法;有理数的加法.分析: a,b,c,d为四个互不相等的整数,它们的积为4,首先求得a、b、c、d的值,然后再求得a+b+c+d.解答:解:∵a,b,c,d为四个互不相等的整数,它们的积为4,∴这四个数为﹣1,﹣2,1,2.∴a+b+c+d=﹣1+(﹣2)+1+2=0.故选;A.点评:本题主要考查的是有理数的乘法和加法,根据题意求得a、b、c、d的值是解题的关键.二、填空题.本大题共8小题,每小题3分,满分24分.请将答案直接写在题中的横线上13.﹣5的相反数是 5 .考点:相反数.分析:根据相反数的定义直接求得结果.解答:解:﹣5的相反数是5.故答案为:5.点评:本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.14.﹣4 = ﹣.考点:有理数的除法;有理数的乘法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=﹣4××=﹣.故答案为:﹣.点评:此题考查了有理数的除法,有理数的乘法,熟练掌握运算法则是解本题的关键.15.请写出一个系数为3,次数为4的单项式3x4 .考点:单项式.专题:开放型.分析:根据单项式的概念求解.解答:解:系数为3,次数为4的单项式为:3x4.故答案为:3x4.点评:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.16.三个连续整数中,n是最小的一个,这三个数的和为3n+3 .考点:整式的加减;列代数式.专题:计算题.分析:根据最小的整数为n,表示出三个连续整数,求出之和即可.解答:解:根据题意三个连续整数为n,n+1,n+2,则三个数之和为n+n+1+n+2=3n+3.故答案为:3n+3点评:此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.17.若a2+2a=1,则2a2+4a﹣1= 1 .考点:因式分解的应用;代数式求值.分析:先计算2(a2+2a)的值,再计算2a2+4a﹣1.解答:解:∵a2+2a=1,∴2a2+4a﹣1=2(a2+2a)﹣1=1.点评:主要考查了分解因式的实际运用,利用整体代入求解是解题的关键.18.一只蜗牛从原点开始,先向左爬行了4个单位,再向右爬了7个单位到达终点,规定向右为正,那么终点表示的数是 3 .考点:数轴.分析:根据数轴的特点进行解答即可.解答:解:终点表示的数=0+7﹣4=3.故答案为:3.点评:本题考查的是数轴,熟知数轴上右边的数总比左边的大是解答此题的关键.19.若多项式a2+2kab与b2﹣6ab的和不含ab项,则k= 3 .考点:整式的加减.专题:计算题.分析:根据题意列出关系式,合并后根据不含ab项,即可确定出k的值.解答:解:根据题意得:a2+2kab+b2﹣6ab=a2+(2k﹣6)ab+b2,由和不含ab项,得到2k﹣6=0,即k=3,故答案为:3点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.一条笔直的公路每隔2米栽一棵树,那么第一棵树与第n棵树之间的间隔有2(n﹣1)米.考点:列代数式.分析:第一棵树与第n棵树之间的间隔有n﹣1个间隔,每个间隔之间是2米,由此求得间隔的米数即可.解答:解:第一棵树与第n棵树之间的间隔有2(n﹣1)米.故答案为:2(n﹣1).点评:此题考查列代数式,求得间隔的个数是解决问题的关键.三、本大题共3小题,每小题4分,满分12分21.计算:22﹣4× +|﹣2|考点:有理数的混合运算.分析:先算乘法,再算加减即可.解答:解:原式=4﹣1+2=5.点评:本题考查的是有理数的混合运算,熟知有理数混合运算顺序是解答此题的关键.22.利用适当的方法计算:﹣4+17+(﹣36)+73.考点:有理数的加法.分析:先去括号,然后计算加法.解答:解:原式=﹣4+17﹣36+73=﹣4﹣36+17+73=﹣40+90=50.点评:本题考查了有理数的加法.同号相加,取相同符号,并把绝对值相加.23.利用适当的方法计算: + .考点:有理数的乘法.分析:逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.解答:解:原式= ×(﹣9﹣18+1)= ×(﹣26)=﹣14.点评:本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.四、本大题共2小题,每小题5分,满分10分24.已知:若a,b互为倒数,c,d互为相反数,e的绝对值为1,求:(ab)2014﹣3(c+d)2015﹣e2014的值.考点:代数式求值;相反数;绝对值;倒数.分析:由倒数、相反数,绝对值的定义可知:ab=1,c+d=0,e=±1,然后代入求值即可.解答:解:由已知得:ad=1,c+d=0,∵|e|=1,∴e=±1.∴e2014=(±1)2014=1∴原式=12014﹣3×0﹣1=0.点评:本题主要考查的是求代数式的值,相反数、倒数、绝对值的定义和性质,掌握互为相反数的两数之和为0、互为倒数的两数之积为1是解题的关键.25.先化简再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=2.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,把a=﹣1,b=2代入得:6+4=10.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、本大题共2小题,每小题5分,满分10分26.已知全国总人口约1.41×109人,若平均每人每天需要粮食0.5kg,则全国每天大约需要多少kg粮食?(结果用科学记数法表示)考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1 时,n是负数.解答:解:1.41×109×0.5=0.705×109=7.05×108(kg).答:全国每天大约需要7.05×10 8kg粮食.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.27.某市出租车的收费标准为:不超过2前面的部分,起步价7元,燃油税1元,2千米到5千米的部分,每千米收1.5元,超过5千米的部分,每千米收2.5元,若某人乘坐了x(x大于5)千米的路程,请求出他应该支付的费用(列出式子并化简)考点:列代数式.分析:某人乘坐了x(x>5)千米的路程的收费为W元,则W=不超过2km的费用+2km至5km的费用+超过5前面的费用就可以求出x与W的代数式.解答:解:7+1+3×1.5+2.5(x﹣5)=8+4.5+2.5x﹣12.5.=2.5x(元).答:他应该支付的费用为2.5x元.点评:本题考查了列代数式,解答时表示出应付费用范围划分.六、本大题共1小题,满分9分2 8.学校对七年级女生进行了仰卧起坐的测试,以能做40个为标准,超过的次数用正数表示,不足的次数用负数表示,其中6名女生的成绩如下(单位:个):2 ﹣1 03 ﹣2 1(1)这6名女生共做了多少个仰卧起坐?(2)这6名女生的达标率是多少?(结果精确到百分位)考点:正数和负数.分析:(1)由已知条件直接列出算式即可;(2)根据题意可知达标的有4人,然后用达标人数除以总人数即可.解答:解:(1)40×6+(2﹣1+0+3﹣2+1)=240+3=243(个).答:这6名女生共做了243个仰卧起坐;(2)×100%≈0.67=67%.答:这6名女生的达标率是67%.点评:本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.七、本大题共1小题,满分9分29.如图,边长为a的正方形工件,四角各打一个半径为r的圆孔.(1)列式表示阴影部分的面积;(2)当a=15,r=2时,阴影部分的面积是多少?(π取3.14,结果精确到0.1)考点:列代数式;代数式求值.分析:(1)阴影部分面积=正方形的面积﹣四个圆的面积;(2)把a=15,r=2代入(1)所列的代数式中,计算即可.解答:解:(1)阴影部分的面积:a2﹣4πr2;(2)当a=15,r=2时,a2﹣4πr2=152﹣4×3.14×22,=225﹣50.24≈174.8.答:阴影部分的面积是174.8.点评:此题主要考查了列代数式,关键是掌握圆的面积公式和正方形的面积公式.八、本大题共1小题,满分10分30.一振子从A点开始左右水平来回的震动8次后停止,如果规定向右为正,向左为负,这8次震动的记录为(单位:毫米):+10,﹣9,+8,﹣7,+6,﹣5,+5,﹣4.(1)该振子停止震动时在A点哪一侧?距离A点有多远?(2)若该振子震动1毫米需用0.02秒,则完成上述运动共需多少秒?考点:正数和负数.分析:(1)根据有理数的加法,可得答案;(2)根据距离的和乘以单位距离所需的时间,可得总时间.解答:解:(1)10﹣9+8﹣7+6﹣5+5﹣4=1+1+2=4(毫米).答:该振子停止震动时在A点右侧.距离A点有4毫米.(2)(|+10|+|﹣9|+|+8|+|﹣7|+|+6|+|﹣5|+|+5|+|﹣4|)×0.02=54×0.02=1.08(秒).答:完成上述的运动共需1.08秒.点评:本题考查了正数和负数,利用距离的和乘以单位距离所需的时间等于总时间,注意第二问计算的是距离的和.。
人教版初一数学上册应用题精选
2017年12月25日305****6348的初中数学组卷一.选择题(共39小题)1.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.解:设原来两位数的个位数字为x,则十位数字为,这个两位数是,根据题意得:(请完成后面的解答过程)2.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.甲仓库乙仓库 A工地 xB工地 x+10(2)用含x的代数式表示运送甲仓库100吨水泥的运费为元.(写出化简后的结果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)3.我国明代数学家程大为曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只.”请问这群羊有多少只?请设未知数,列出方程.4.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)5.根据题意,列出关于x的方程(不必解方程):(1)要锻造一个直径为10cm,高为8cm的圆柱体毛坯,应截取直径为8cm的圆钢多长?设应截取直径为8cm的圆钢x cm,则可列出方程;(2)某人存了一笔三年定期存款,年利率为 4.25%,今年到期后,连本带息取出11275元,他三年前存了多少元?设他三年前存了x元,则可列出方程.(3)把2005个正整数1,2,3,4,…,2005按如图方式排列成一个表,用一正方形框在表中任意框住4个数,被框住的4个数之和能否等于416?设正方形框中左上角的一个数为x,则可列出方程.6.A、B两站相距300千米,一列快车从A站开出,行驶速度是每小时60千米,一列慢车从B站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)解:设快车开出x小时后两车相遇,根据题意得:7.七年级(2)班的一个综合实践活动小组去A、B两个超市调查去年和今年“五•一”期间的销售情况,下图是调查后小敏与其他两位同学进行交流的情景.根据他们的对话,求A、B两个超市“五•一”期间的销售额(只需列出方程即可).8.抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?9.方程是刻画现实世界数量关系的有效模型,表格是帮助建立方程的手段之一,请填写表格中的数据(不需要化简),列出方程.老师驾车从甲地到乙地,先上坡后下坡,到达乙地后马上原路返回,已知去时共用2.5小时,返回时共用2小时,若上坡的速度是60km/h,下坡的速度是80km/h,则老师去时上坡用了多少小时?由此,可以列出方程.10.一份试卷,一共30道选择题,答对一题得3分,答错一题扣1分,小红每题都答了,共得78分,那么小红答对了几道题?请根据题意,列出方程.11.根据下列条件列出方程:(1)某数比它的大;(2)某数比它的2倍小5;(3)某数的一半比它的3倍大4;(4)某数比它的平方小24;(5)某数的40%与25的差的一半等于30.12.一列火车匀速行驶.经过一座1000m的铁路桥,从车头上桥到车身全部通过铁路桥需要1min,并且车身全部在桥上的时间为40s,求火车的速度和火车的长度.(1)若设火车的速度为xm/s,则列出的方程为.(2)若设火车的长度为xm,则列出的方程为.13.“五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)14.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨若400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.15.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x(x大于0)秒.(1)点C表示的数是;(2)当x= 秒时,点P到达点A处?(3)运动过程中点P表示的数是(用含字母x的式子表示);(4)当P,C之间的距离为2个单位长度时,求x的值.16.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?17.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.18.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?19.列方程解应用题:我国元代数学家朱世杰所撰写的《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:良马平均每天能跑240里,驽马平均每天能跑150里.现驽马出发12天后良马从同一地点出发沿同一路线追它,问良马多少天能够追上驽马?20.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.21.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有多少人?宿舍有多少房间?22.某校七年级社会实践小组去某商场调查商品的销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.(1)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?(2)在(1)的条件下,某公司给员工发福利,在该商场促销钱购买了20件该品牌的衬衫发给员工,后因为有新员工加入,又要购买5件该衬衫,购买这5件衬衫时恰好赶上该商场进行促销活动,求该公司购买这25件衬衫的平均价格.23.一队学生从学校出发去骑行,整个队伍以30千米/时的速度前进.(1)骑行了半小时,突然发现有东西遗忘在学校,一名队员马上以50千米/时的速度返回学校,取到东西后仍以50千米/时的速度追赶队伍,求这名队员从掉头返校到追上队伍,经过了多长时间?(取东西的时间忽略不计)(2)突然前方有事需要接应,派出一名队员前往,如果这名队员以40千米/时的速度独自行进7千米,接应后掉转车头,仍以40千米/时的速度往回骑,直到与其他队员会合.问这名队员从离队开始到与队员重新会合,经过了多长时间?(接应时间忽略不计).解:设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意,可得方程.(本小题只需要列出方程,不用解)24.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金优惠措施额少于等于450元不优惠超过450元,但不超过按售价打九折600元超过600元其中600元部分八点二折优惠,超过600元的部分打三折优惠按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?25.(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?26.A、B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t.探究若客车、出租车距B城的距离分别为y1、y2,写出y1、y2关于t的函数关系式,并计算当y1=200千米时y2的値.发现设点C是A城与B城的中点,(1)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?(2)若两车扣相距100千米时,求时间t.决策己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);方案二:乘坐客车返回城.试通过计算,分析小王选择哪种方式能更快到达B城?27.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?28.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?29.如表为某市居民每月用水收费标准,(单位:元/m3).用水量单价0<x≤22a剩余部分a+1.1(1)某用户1月用水10立方米,共交水费23元,则a= 元/m3;(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费元;(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?30.某商场将M品牌服装每套按进价的2倍进行销售,恰逢“春节”来临,为了促销,他将售价提高了50元再标价,打出了“大酬宾,八折优惠”的牌子,结果每套服装的利润是进价的,该老板到底给顾客优惠了吗?说出你的理由.31.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A、B两地间的路程是多少?32.把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?33.根据下面的两种移动电话计费方式表,考虑下列问题:全球通神州行月租费25元/月0本地通话费0.2元/分钟0.3元/分钟(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?34.马年新年即将来临,七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个,那么比计划多了7个;如果每人做5个,那么比计划少了13个.该小组计划做多少个“中国结”?35.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P 从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.36.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?37.某种绿色食品,若直接销售,每吨可获利润0.1万元;若粗加工后销售,每吨可获利润0.4万元;若精加工后销售,每吨可获利润0.7万元.某公司现有这种绿色产品140吨,该公司的生产能力是:如果进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在15天内将这批绿色产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没有来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.你认为选择哪种方案可获利润最多,为什么?最多可获利润多少元?38.2013年4月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):月用水量水价(元/吨)第1级 20吨以下(含20吨) 1.65第2级 20吨~30吨(含30吨) 2.48第3级 30吨以上 3.30例:若某用户2013年6月份的用水量为35吨,按三级计算则应交水费为:20×1.65+(30﹣20)×2.48+(35﹣30)×3.30=74.3(元)(1)如果小东家2013年6月份的用水量为20吨,则需缴交水费多少元?(2)如果小明家2013年7月份的用水量为a吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含a的代数式表示,并化简)(3)若一用户2013年7月份应该水费90.8元,则该户人家7月份用水多少吨?39.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?二.解答题(共1小题)40.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?2017年12月25日305****6348的初中数学组卷参考答案与试题解析一.选择题(共39小题)1.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.解:设原来两位数的个位数字为x,则十位数字为2x ,这个两位数是20x+x ,根据题意得:(请完成后面的解答过程)【分析】设原来两位数的个位数字为x,根据题意列出方程解答即可.【解答】解:设原来两位数的个位数字为x,可得十位数字为2x,这个两位数是20x+x,根据题意可得:20x+x=10x+2x+27,解得:x=3,所以这个两位数是63.故答案为:2x;20x+x.【点评】此题主要考查了一元一次方程的应用,根据题意得出正确等量关系是解题关键.2.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.甲仓库乙仓库 A工地 x70﹣xB工地100﹣x x+10(2)用含x的代数式表示运送甲仓库100吨水泥的运费为﹣10x+15000 元.(写出化简后的结果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)【分析】(1)根据题意填写表格即可;(2)根据表格中的数据,以及已知的运费表示出总运费即可;(3)根据本次运送水泥总运费需要25900元列方程化简即可.【解答】解:(1)设甲仓库运到A工地水泥的吨数为x吨,则运到B地水泥的吨数为(100﹣x)吨,乙仓库运到A工地水泥的吨数为(70﹣x)吨,则运到B地水泥的吨数为(x+10)吨,补全表格如下:甲仓库乙仓库 A工地 x70﹣xB工地100﹣x x+10(2)运送甲仓库100吨水泥的运费为140x+150(100﹣x)=﹣10x+15000,故答案为:﹣10x+15000;(3)140x+150(100﹣x)+200(70﹣x)+80(x+10)=25900,整理得:﹣130x+3900=0.【点评】此题考查了一元一次方程的应用,弄清题意找到相等关系是解本题的关键3.我国明代数学家程大为曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只.”请问这群羊有多少只?请设未知数,列出方程.【分析】根据“如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只”这一等量关系列出方程即可.【解答】解:设这群羊有x只,根据题意得:x+x+x+x+1=100.【点评】本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是找到等量关系.4.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)【分析】首先设支援拔草的有x人,则支援植树的有(20﹣x)人,根据题意可得等量关系:原来拔草人数+支援拔草的人数=2×(原来植树的人数+支援植树的人数).【解答】解:设支援拔草的有x人,由题意得:31+x=2[18+(20﹣x)].【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.5.根据题意,列出关于x的方程(不必解方程):(1)要锻造一个直径为10cm,高为8cm的圆柱体毛坯,应截取直径为8cm的圆钢多长?设应截取直径为8cm的圆钢x cm,则可列出方程π×52×8=π×42•x ;(2)某人存了一笔三年定期存款,年利率为 4.25%,今年到期后,连本带息取出11275元,他三年前存了多少元?设他三年前存了x元,则可列出方程(1+4.25%×3)x=11275 .(3)把2005个正整数1,2,3,4,…,2005按如图方式排列成一个表,用一正方形框在表中任意框住4个数,被框住的4个数之和能否等于416?设正方形框中左上角的一个数为x,则可列出方程x+x+1+x+7+x+8=416 .【分析】(1)根据题意可知,圆柱形毛坯与圆钢的体积相等,利用此相等关系列方程;(2)利用年利率4.25%的三年期存款,表示出总利息,进而得出等式即可;(3)左右相邻两个数差1,上下相邻的两个数相差为7,据此表示其他三个数,根据题意列出x+x+1+x+7+x+8=416;【解答】(12分)(1)解:设应截取直径8cm的圆钢xcm,由题意得:π×52×8=π×42•x,故答案为:π×52×8=π×42•x;(2)设他三年前存了x元,根据题意得:(1+4.25%×3)x=11275,故答案为:(1+4.25%×3)x=11275;(3)由图表可知:左右相邻两个数差1,上下相邻的两个数相差为7,左上角的一个数为x,则另外三个数用含x的式子从小到大依次表示x+1;x+7;x+8;根据题意可得:x+x+1+x+7+x+8=416,故答案为:x+x+1+x+7+x+8=416.【点评】本题考查了由实际问题列一元一次方程的知识,解题的关键是找到等量关系,难度不大.6.A、B两站相距300千米,一列快车从A站开出,行驶速度是每小时60千米,一列慢车从B站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)解:设快车开出x小时后两车相遇,根据题意得:【分析】设快车开出x小时后两车相遇,根据题意可得,两辆车总共走了300千米,据此列方程.【解答】解:设快车开出x小时后两车相遇,根据题意得:60x+40(x﹣)=300.【点评】本题考查了有实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7.七年级(2)班的一个综合实践活动小组去A、B两个超市调查去年和今年“五•一”期间的销售情况,下图是调查后小敏与其他两位同学进行交流的情景.根据他们的对话,求A、B两个超市“五•一”期间的销售额(只需列出方程即可).【分析】因为今年两超市的销售额都是在同去年进行比较,那么先分别表示出去年的两超市各自的销售额,再根据关系表示出今年两超市的各自的销售额,然后根据等量关系列出方程.【解答】解:设A超市去年的销售额为x万元,则去年B超市的销售额为(150﹣x)万元,今年A超市的销售额为(1+15%)x万元,今年B超市的销售额为(1+10%)•(150﹣x)万元,以今年两超市销售额的和共170万,可得方程:(1+15%)x+(1+10%)(150﹣x)=170解出x,然后可得到A超市的销售额(1+15%)x万元和B超市的销售额(1+10%)•(150﹣x)万元.【点评】此题的关键是理解两个超市有同一年中的销售额的关系,及不同年份中A,B两个超市今年的销售额与去年的销售额之间的关系.8.抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?【分析】首先设应调至甲地段x人,则调至乙地段(29﹣x)人,则调配后甲地段有(28+x)人,乙地段有(15+29﹣x)人,根据关键语句“调配后甲地段人数是乙地段人数的2倍”可得方程28+x=2(15+29﹣x),再解方程即可.【解答】解:设应调至甲地段x人,则调至乙地段(29﹣x)人,根据题意得:28+x=2(15+29﹣x),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.【点评】此题主要考查了一元一次方程的应用,关键是弄懂题意,表示出调配后甲、乙两地段各有多少人.9.方程是刻画现实世界数量关系的有效模型,表格是帮助建立方程的手段之一,请填写表格中的数据(不需要化简),列出方程.老师驾车从甲地到乙地,先上坡后下坡,到达乙地后马上原路返回,已知去时共用2.5小时,返回时共用2小时,若上坡的速度是60km/h,下坡的速度是80km/h,则老师去时上坡用了多少小时?由此,可以列出方程.【分析】设上坡需要x小时,那么下坡就需要2.5﹣x小时,根据题意可得:来回一次上坡和下坡路程相等,据此可列方程解答.【解答】解:设上坡需要x小时,可得:,故答案为:.【点评】此题考查一元一次方程问题,解答本题的关键是明确来回一次上坡和下坡路程相等,重点是求出上坡需要时间.10.一份试卷,一共30道选择题,答对一题得3分,答错一题扣1分,小红每题都答了,共得78分,那么小红答对了几道题?请根据题意,列出方程.【分析】首先设小红答对了x道题,则答错了(30﹣x)道题,再根据题意可得。
人教版七年级上册数学应用题汇总
人教版七年级上册数学应用题汇总(只列式不计算)一、“工程问题”1、一项工程甲单独完成要6天,乙单独完成要12天,丙单独完成要15天(1)甲、乙合作几天完成这项工作?(2)甲、乙、丙合作几天完成这项工程?(3)甲、丙合作几天完成这项工作?(4)乙、丙合作几天完成这项工程?3(5)甲、乙合作几天完成这项工作的?43(6)甲、乙、丙合作几天完成这项工程?5(7)甲单独做了2天后,甲乙合作几天完成这项工作?(8)甲单独做了2天后,甲乙丙合作几天完成这项工作?(9)甲、丙合作3天后有其他工作离开,由乙单独完成,一共几天完成这项工作?4(10)乙单独做了3天,后甲乙丙合作,完成了该工程的,问甲共工作了5几天完成这项工程?4(11)乙单独做了3天,后甲乙合作,完成了该工程的,剩下的由丙单独5完成这项工作,问甲、乙、丙各工作了几天?2、某车间接到x件零件加工任务,计划每天加工120件.(1)6天能完成,问总任务是多少件?(2)实际每天比计划多加工20件,7天能完成,问总任务多少件?2(3)实际每天比计划多加工,4天能完成,问总任务多少件?5(4)实际每天比计划多加工20件,结果比计划提前了2天完成,问总任务多少件?1(5)实际每天比计划少加工,结果比计划多用了4天完成,问总任务多少5件?3、某工程,甲单独完成要45天完成,乙单独做要30天完成,若乙先单独做了22天,剩下的由甲去完成,问甲、乙一共用几天可以完成全部工程?4、一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两对合作.(1)求甲、乙合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费为3000元,乙队每天施工费为2500元,求完成此项工程需付给甲、乙两队共多少钱?5、一件工作甲队单独完成需7.5小时,乙队单独完成要5小时,现乙队单独先做1小时候,剩余工作由甲、乙两队共同完成,问这项工作还需要多长时间完成?二、配套问题1、一个工厂有32工人,要加工一批螺母和螺栓,一个工人每天可生产120个螺母或80个螺栓,已知一个螺母和一个螺栓能配成一套,为了使每天生产的螺母和螺栓刚好配套,问需要分别多少个人生产螺母和螺栓?2、一个木材加工厂,有28名职工,接到一批方桌生产任务,一个工人每天可制作120条桌腿或40个桌面,1张方桌需要一个桌面和4条桌腿,问,如何安排职工才可使每天完成的桌面和桌腿刚好配套?3、用木料做方桌,每立方米木料可做桌面50个或桌腿300条,一张方桌需要一个桌面和4条桌腿,5立方米的木料敲好可做多少张方桌?4、整理一批档案,由一个人完成需要20天,先计划由一部分人先做2天,3然后再增加2人与他们一起做了8天,完成了这项任务的,假设每人的效率都4一样,具体应先安排多少人工作?5、有一批苹果和一些箱子,如果每个箱子里装6千克,则剩余4千克苹果无箱可装,如果每个箱子装8千克苹果则期中一个箱子再装6千克才装满,还剩1只空箱子无苹果可装,问一共有多少个箱子和多少千克苹果?6、美术课上,老师计划将同学们分成若干小组做手工制作,如果每组5人,则多3人;如果每组6人则少5人,教师计划将同学们分成几组?7、一个工厂有职工660人,要加工一批螺母和螺栓,一个工人每天可生产14个螺母或20个螺栓,已知两个螺母和一个螺栓能配成一套,为了使每天生产的螺母和螺栓刚好配套,问需要分别多少个人生产螺母和螺栓?8、某校七年级安排170名学生参加义务绿化活动.如果每个男生平均一天能挖3个树窝,每个女生平均一天能载7棵树,要使每个树窝都能栽上树,那么该校七年级安排的男生和女生各有多少人?9、学校计划从甲公司购买A,B两种型号的小黑板,购买一块A型小黑板比购买一块B型小黑板多用了20元,且购买5块A型小黑板和4块B型小黑板共需820元.求购买一块购买一块A型小黑板、一块B型小黑板各需要多少元?10、某同学在A、B两家超市发现他看中的运动手环的单价相同,书包的单价也相同.运动手环和书包单价之和是452元,且运动手环的单价比书包的单价的4倍少8元.(1)该同学看中的运动手环和书包的单价各是多少?(2)超市促销,超市A所有商品打8折销售,超市B全场购物满100元返30元,该同学仅有400元钱,如果只在一家超市买两样商品,哪家更划算?11、一群学生去纪念馆参加活动,男生戴白色旅游帽女生戴红色旅游帽.休息时2他们坐在一起发现每位男生看到红色与白色的旅游帽一样多,而每位女生看到白色的旅游帽是红色旅游帽的2倍.这群学生共有多少人?12、为迎接新春,甲村准备美化村道,需采用A,B两种不同类型的灯笼2002个,且B灯笼的个数是A灯笼的.3(1)求,A,B两种灯笼的个数各需多少个?(2)已知A,B两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼共花费了多少钱?13、某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没座位;若租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?14、某车间有技术工人85人,平均每天每人可加工A种不见16个或B种部件10个,2个A种部件和3个B种部件配成一套,问:加工A、B两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?15、用白铁皮做罐头盒,每张铁皮可制作盒身25个或制作盒底40个.一个盒身和两个盒底配成一套罐头盒.现有36张白铁皮,用多少张铁皮制盒身,多少张铁皮制盒底可以使盒身和盒底刚好配套?16、某服装厂要做一批某种型号的校服,已知某种布料每3米长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用60米长的这种布料做校服,应分别用多少米布料做上衣和裤子,才能恰好配套?三、行程问题1、A、B两地相距480千米,一列慢车从A地开出,每小时走60千米,一列快车从B地开出,每小时走80千米;慢车先开1小时,相向而行,快车开出几小时后两车相距210千米?2、A,B两地之间的路程为360千米,甲车从A地出发开往B地,每小时行驶72千米;甲车发出25分钟后,乙车从B地出发开往A地,每小时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后,两车相距100千米时,甲车从出发开始共行驶了多长时间?3、一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶1小时后突然1出现故障,修理15分钟后,又追这辆卡车,但速度减小了,结果又用了两小时3才追上这辆卡车,求卡车的速度是每小时多少千米?4、一通讯员骑摩托车需要在规定的时间把文件送到某地,若每小时骑60千米,则早到12分钟;若每小时骑50千米,则要迟到7分钟,求通讯员行驶的路程?5、某船从A地顺流而下到达B地,然后逆流返回,到达A,B两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/小时,水流速度为2千米/小时.A,C两地之间的距离为10千米,求A,B两地之间的距离是多少千米?四、球赛积分问题1、小强是七(3)班的篮球队员,在一场篮球比赛中,他一人得了27分(没有罚球得分),已知他投进的2分球比3分球的2倍多3个,若设他投进去的3分球为x个,求他投进的2分球有多少个?2、一次安全知识竞赛中,一共有25道题,答对一道题的10分,不答或答错一道题扣5分.设小明同学在这次竞赛中答对x道题.(1)根据所给条件,完成下表:答题情况题数答对x每题分值得分-5 10x(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?3、某球队参加了10场足球赛,共积17分,已知胜一场得3分,平一场得1分,负一场得0分,期中该队输了3场,则该队胜多少场?4、我市化学知识竞赛,共25道题,评分规则:答对一道题得5分,答错一道题扣2分,不答不得分,王芳同学在这次竞赛中得了62分,她说有5道题未答,她答对了几道题?四、打折销售问题1、某商品的进价是2000元,标价为3000元,商店要求以利润率为5%的售价打折出售,售货员可以打几折出售该商品?2、某商店先从广州以每件15元的价格购进某种商品10件,后又从深圳以每件12.5元的价格购进同种同规格商品40件,如果商店销售这些商品时要获利12%,南无这种商品的售价应定为每件多少元?3、某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,亲标价的8折销售,仍可盈利9%.(1)求这款空调每台的进价使多少元?(2)在这次促销活动中,商场销售了这款空调机100台,问:盈利了多少元?4、某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁每瓶的价格下调了5%.已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费了17.5元,问:这两种饮料在调价前每瓶个多少元?5、某玩具厂出售一种玩具,其成本价每件28元,如果直接由厂家门市部销售,每件产品售价为35元,同时每月还要支出其他费用2100元;如果委托商场销售,那么出厂价为32元.(1)求在两种销售方式下,每个月销售多少件时,所得利润相同?(2)若每个月销售量达到1000件时,采取那种销售方式获利较多?6、某商品的进价为2000元,标价为3000元,商店打折销售后仍可获利5%,则售货员最低可以打几折出售此商品?7、体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全部销售完后共获利260元.进价(元/个)售价(元/个)9560(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?8、“五一”期间,某电器按成本价提高30%后标价,在打8折销售,售价为2080元.求该电器的成本价是多少元?9、一种商品连续两次均以10%的幅度降价后,售价为480元,问降价前售价为多少元?10、某商场因换季准备处理一批羊绒衫,若每件羊绒衫按标价的六折出售将亏110元,若按标价的八折出售,每件将赚70元.每件羊绒衫的标间是多少元?进价是多少元?11、新华书店某天内销售完甲乙两种书籍,甲种书籍卖得1500元,乙种书籍卖得1260元,若按两种书的成本分别计算,甲种书籍盈利25%,乙种书籍亏本10%,该书店这一天卖这两种书籍总计是盈利还是亏本?进价(元/个)售价(元/个)9560(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?8、“五一”期间,某电器按成本价提高30%后标价,在打8折销售,售价为2080元.求该电器的成本价是多少元?9、一种商品连续两次均以10%的幅度降价后,售价为480元,问降价前售价为多少元?10、某商场因换季准备处理一批羊绒衫,若每件羊绒衫按标价的六折出售将亏110元,若按标价的八折出售,每件将赚70元.每件羊绒衫的标间是多少元?进价是多少元?11、新华书店某天内销售完甲乙两种书籍,甲种书籍卖得1500元,乙种书籍卖得1260元,若按两种书的成本分别计算,甲种书籍盈利25%,乙种书籍亏本10%,该书店这一天卖这两种书籍总计是盈利还是亏本?进价(元/个)售价(元/个)9560(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?8、“五一”期间,某电器按成本价提高30%后标价,在打8折销售,售价为2080元.求该电器的成本价是多少元?9、一种商品连续两次均以10%的幅度降价后,售价为480元,问降价前售价为多少元?10、某商场因换季准备处理一批羊绒衫,若每件羊绒衫按标价的六折出售将亏110元,若按标价的八折出售,每件将赚70元.每件羊绒衫的标间是多少元?进价是多少元?11、新华书店某天内销售完甲乙两种书籍,甲种书籍卖得1500元,乙种书籍卖得1260元,若按两种书的成本分别计算,甲种书籍盈利25%,乙种书籍亏本10%,该书店这一天卖这两种书籍总计是盈利还是亏本?。
人教版七年级上册数学应用题全集及答案
人教版七年级上册数学应用题全集及答案1.一元一次方程应用题市场经济中,打折销售是一种常见的促销手段。
在此背景下,我们需要掌握以下知能点:1)商品利润=商品售价-商品成本价2)商品利润率=商品利润/商品成本价×100%3)商品销售额=商品销售价×商品销售量4)商品的销售利润=(销售价-成本价)×销售量5)商品打几折出售,即按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售。
1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售。
已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元。
这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元。
这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为:45%×(1+80%)x-x=504.某商品的进价为800元,出售时标价为1200元。
后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折。
5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。
经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。
求每台彩电的原售价。
知能点2:方案选择问题6.某蔬菜公司有一种绿色蔬菜。
若在市场上直接销售,每吨利润为1000元。
经粗加工后销售,每吨利润可达4500元。
经精加工后销售,每吨利润涨至7500元。
当地一家公司收购这种蔬菜140吨。
该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨;如果进行粗加工,每天可加工6吨。
但两种加工方式不能同时进行。
受季度等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕。
为此,公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工。
人教版数学七年级上册应用题专项(附答案)
人教版数学七上应用题专项练习一、相遇问题对应数量关系式:速度×时间=路程快者路程+慢者路程=总路程(快者速度+慢者速度)×相遇时间=相遇路程1.AB两地相距75千米,甲车速度50千米每小时从A地出发,乙车速度40千米每小时从B地出发。
同时出发相对而行,几小时后相距30千米?2.甲乙两车从相距300千米的AB两地同时出发,甲速度是乙速度的1.5倍,4小时后相遇,乙速度是多少?3.甲乙两地相距600千米,慢车速度40千米每小时从甲地出发,快车速度60千米每小时从乙地出发;如果让慢车先走55分钟后,快车再出发,求快车开出多少小时后两车相遇?二、追及问题数量关系式:两者的路程差=追及路程/以追及时间为等量关系式1.同时不同地:快者时间=慢者时间快者路程—慢者路程=原来相距路程①甲车在乙车前方600米处,甲速度40千米每小时,乙车速度60千米每小时,同时出发,乙车几小时能追上甲车?②AB两地相距62千米,甲从A出发,每小时行14千米,乙从B出发每小时行18千米,若甲在前乙在后,两人同时同方向出发,几小时后乙超过甲10千米?2.同地不同时:先走者的时间=后走者的时间+时间差先走者的路程=慢走者的路程①慢车从车站开出,每小时行48千米,45分钟后,一快车从同车站同向开出,1.5小时追上了慢车,快车的速度是多少?②古代一队士兵去城外进行训练,以每小时5千米的速度行进,走了18分钟,城内要将一个重要信息传给队长,通讯员骑马以每小时14千米的速度按原路追赶。
通讯员多久能追上?三、环形跑道相遇追及问题同地反向:两者路程和=一圈的路程同地同向:两者路程差=一圈的路程1.一条环形跑道长400米,甲每分钟行450米,乙每分钟行250米;甲乙两人同时同地反向出发,几分钟后再相遇?甲乙两人同时同地同向出发,几分钟后再相遇?2.甲乙两人在400米的环形跑道上跑步,若同时同地同向跑则3分20秒相遇一次;若同时同地反向跑则40秒相遇,求甲的速度是每秒多少米?四、年龄问题等量关系式:大小年龄差永远不会变,一年一岁,人人平等1.现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,几年后父亲年龄是儿子年龄的3倍?3.父亲和女儿的年龄和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿的年龄是父亲现在年龄的三分之一,求女儿现在的年龄?4.现在甲的年龄是乙的2倍,8年后两人年龄和是76岁,现在甲比乙大几岁?五、行船问题顺流航速=船的静水速度+水流速度逆流速度=船的静水速度-水流速度顺流速度×顺流时间=顺流路程逆流速度×逆流时间=逆流路程顺程+逆程=总路程1.一艘船航行于A,B两个码头之间,顺水航行需要2个小时,逆水航行需要4个小时,已知水流速度是4千米/时,求这两个码头之间的距离?2.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?六、飞行问题顺风速=飞机无风速+风速逆风速=飞机无风速-风速顺风速×顺风时间=顺风路程逆风速×逆风时间=逆风路程顺程+逆程=总路程1.一架飞机在两地之间飞行风速为16千米/小时,顺飞飞行需要3小时,逆风飞行需要5小时,求无风时飞机的航速和两地之间的航程?七、利润率问题利润率=(利润÷进价)×100%进价(成本价)+利润=售价利润=进价(成本价)×利润率1.某商品进价500元,按标价的九折销售,利润率为15.2%,求商品的标价是多少元?2.某商品进价2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员可以打几折出售此商品?3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利利润相等,该工艺品每件的进4.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件扔获利15元,这种服装的进价是多少?八、和差倍分的问题问题的特点:已知两个量之间存在和倍差关系,可以求这两个量的多少。
(完整)人教版七年级上册数学应用题及答案
一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a 千瓦时,则超过部分按基本电价的70%收费。
七年级上应用题100道题
七年级上应用题100道题姓名:__________ 班级:__________ 得分:__________一、一元一次方程应用题1.一个数的 6 倍减去 10 等于这个数的 4 倍加上 15,求这个数。
2.某数的 5 倍比它的三分之二大 50,求这个数。
3.一个数加上 20 的差等于这个数的 7 倍减去 12,求这个数。
4.某数的 8 倍加上 15 等于这个数的 10 倍减去 10,求这个数。
5.一个数的 9 倍减去 20 等于这个数的 7 倍加上 18,求这个数。
6.某数的 7 倍比它的 6 倍多 42,求这个数。
7.一个数减去 18 的差等于这个数的 5 倍加上 10,求这个数。
8.某数的 9 倍加上 20 等于这个数的 11 倍减去 15,求这个数。
9.一个数的 10 倍减去 25 等于这个数的 8 倍加上 20,求这个数。
10.某数的 8 倍比它的 7 倍多 56,求这个数。
11.一个数的 11 倍加上 15 等于这个数的 13 倍减去 10,求这个数。
12.某数的 9 倍比它的一半大 72,求这个数。
13.一个数加上 25 的和等于这个数的 8 倍减去 15,求这个数。
14.某数的 10 倍加上 20 等于这个数的 12 倍减去 10,求这个数。
15.一个数的 12 倍减去 30 等于这个数的 10 倍加上 25,求这个数。
16.某数的 10 倍比它的 9 倍多 60,求这个数。
17.一个数减去 22 的差等于这个数的 6 倍加上 12,求这个数。
18.某数的 11 倍加上 25 等于这个数的 13 倍减去 15,求这个数。
19.一个数的 13 倍减去 35 等于这个数的 11 倍加上 30,求这个数。
20.某数的 12 倍比它的 11 倍多 72,求这个数。
二、行程问题应用题21.甲、乙两地相距 550 千米,一辆汽车从甲地开往乙地,速度为每小时 110 千米,几小时可以到达?22.小明骑自行车以每小时 25 千米的速度从家去学校,用时 24 分钟,小明家到学校有多远?23.一辆汽车以每小时 120 千米的速度行驶,经过 4.5 小时到达目的地,返回时速度为每小时100 千米,返回需要多长时间?24.甲、乙两人同时从相距 450 千米的两地相向而行,甲的速度是每小时 75 千米,乙的速度是每小时 60 千米,几小时后两人相遇?25.一艘轮船在两个码头之间航行,顺水航行需要 2.2 小时,逆水航行需要 3.5 小时,水流速度是每小时 6 千米,求轮船在静水中的速度。
2024年七年级上册数学应用题
2024年七年级上册数学应用题一、行程问题。
1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?- 解析:设x小时后两人相遇。
根据路程 = 速度和×时间,可列方程(6 + 4)x=20,即10x = 20,解得x = 2。
所以2小时后两人相遇。
2. 一辆汽车以每小时60千米的速度从A地开往B地,3小时后到达。
返回时速度为每小时45千米,求汽车往返的平均速度。
- 解析:A地到B地的距离为60×3 = 180千米。
返回时所用时间为180÷45=4小时。
往返总路程为180×2 = 360千米,总时间为3 + 4=7小时。
则平均速度为360÷7=(360)/(7)≈51.43千米/小时。
3. 甲、乙两人在环形跑道上跑步,甲每分钟跑200米,乙每分钟跑160米,两人同时同地同向出发,经过40分钟甲第一次追上乙。
求环形跑道的周长。
- 解析:甲每分钟比乙多跑200 - 160 = 40米,40分钟甲比乙多跑了一圈,即环形跑道的周长。
所以周长为40×40 = 1600米。
二、工程问题。
4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?- 解析:设两人合作需要x天完成。
把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。
根据工作量=工作效率和×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3)/(30)+(2)/(30))x=1,即(1)/(6)x = 1,解得x = 6。
所以两人合作需要6天完成。
5. 某工程队修一条路,原计划每天修400米,25天完成,实际每天修500米,实际多少天可以完成?- 解析:这条路的总长度为400×25 = 10000米。
实际每天修500米,那么实际完成天数为10000÷500 = 20天。
人教版七年级上册数学期末一元一次方程应用题(配套问题)专题训练(含答案)
7.(1)七年级 2001 班有男生 20 人,女生 30 人 (2)应该分配 30 人剪筒身,20 人剪筒底
8.(1)裁剪出的侧面个数是 4x ;裁剪出的底面个数是 6x 672 (2)A 方法裁剪 84 张,B 方法裁剪 28 张,能做 84 个盒子
9.应该分配 27 名学生做机身,18 名学生做机翼,每小时能够做出 540 套
(1)请用含 x 的代数式分别表示裁剪出的侧面和底面个数; (2)若裁剪出的侧面和底面恰好全部用完,问 A 方法、B 方法各裁剪几张?能做多少个盒 子?
9.初一年级共 45 名学生参与科技节活动,制作纸飞机模型.每人每小时可做 20 个机 身或 60 个机翼,一个飞机模型要 1 个机身配 2 个机翼,为了使每小时制作的成品刚好 配套,应该分配多少名学生做机身?多少名学生做机翼?在刚好配套的情况下,每小时 能够做出多少套?
5.一套仪器由一个 A 部件和三个 B 部件构成.用1m3 钢材可做 40 个 A 部件或 200 个 B 部件.现要用 8m3 钢材制作这种仪器,应用多少钢材做 A 部件,多少钢材做 B 部件,恰 好配成这种仪器多少套?
6.某瓷器厂共有工人120 人,每个工人一天能做 200 只茶杯或 50只茶壶.如果 8 只茶杯 和一只茶壶为一套. (1)应安排多少人生产茶杯,可使每天生产的瓷器配套. (2)按(1)中的安排,每天可以生产多少套茶具?
17.(1)侧面数:5x+90;底面数:120﹣4x;(2)若裁剪出的侧面和底面恰好全部用完, 能做 32 个盒子. 18.(1)20 立方米 (2)800 元
(1)按 B 种方法剪裁的有______张白板纸;(用含 x 的代数式表示) (2)将 5 32 名工人生产桌子和椅子,每人每天平均生产 15 张桌子或 50 把椅子,一 张桌子要配两把椅子.已知车间每天安排 x 名工人生产桌子. (1)求车间每天生产桌子和椅子各多少?(用含 x 的式子表示) (2)当每天安排多少名工人生产桌子时,生产的桌子和椅子刚好配套?
人教版七年级上册数学应用题大全及答案
一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 50 4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
人教版七年级上册数学一元一次方程应用题(数字问题)专题训练
人教版七年级上册数学一元一次方程应用题(数字问题)专题训练1.一个两位数的数字之和是11,若原数加上45,则得到的数正好是原数的十位数字与个位数字交换位置后所得的数,求这个两位数.2.有一个三位数的个位数字为1,如果把这个1移到最前面的位置上,那么所得的新三位数的2倍比原数多15,求原来的三位数.3.现有一些分别标有-1,2,-4,8,-16,32,…的卡片,这些卡片上的数字是按一定规律排列的,小明拿到了相邻的三张卡片,且卡片上的数字之和为96,则小明拿到的三张卡片上分别标有什么数字?4.一个两位数,十位上的数字比个位上的数字小4,如果把十位上的数与个位上的数对调后,那么所得的两位数比原来的两位数的2倍小12,求原来的两位数.5.有一些分别标有7,14,21,28,…的卡片,后一张卡片上的数比前一张卡片上的数大7,小明拿了相邻的三张卡片.(1)若小明拿到的三张卡片上的数之和为273,则三张卡片上的数分别是多少?(2)小明能否拿到相邻的三张卡片,使得这三张卡片上的数之和等于171?如果能拿到,请求出这三张卡片上的数各是多少?如果不能拿到,请说明理由.6.一个三位数的三个数字和是24,十位数字比百位数字少2,若这个三位数减去两个数字都与百位数字相同的一个两位数所得的数也是三位数,而这个三位数的三个字母的顺序和原来三位数的数字的顺序恰好颠倒,求原来的三位数.7.有人问一个男孩:“你们家兄弟有几个,姊妹有几个?”他回答:“我有几个兄弟就有几个姊妹.”这人又问男孩的姐姐,她回答说:“我的兄弟数就是我的姊妹数的2倍.”请问他们家兄弟、姊妹各有几个?.8.有一列按一定规律排成的数:1,3,7,11,(1)这列数中的第100个数是多少?(2)2019,2021是否为这列数中的数?若是,是第几个数;若不是,请说明理由.9.一个三位数,十位数字是0,个位数字是百位数字的2倍,如果将这个三位数的个位数字与百位数字调换位置得到一个新的三位数,则这个新的三位数比原三位数的2倍少9,设原三位数的百位数字是x:(1)原三位数可表示为______,新三位数可表示为______;(2)列方程求解原三位数.10.已知有理数-3,1,m.(1)计算-3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.11.把100分成两个数的和,使第一个数加3,与第二个数减3的结果相等.这两个数分别是多少?12.如图是输入一个x的值,计算函数y的值的程序框图:(1)当输入x的值为100时,输出的y的值为多少?x时,输出的y的值为-500,则输入的0x的值是多少?(2)当输入一个整数13.将连续的奇数1,3,5,7,9,…排成如图所示的数表.(1)探索任意一个十字形框中的五个数之和与中间的数的关系是.(2)若十字框中的五数之和是2015,请求出此时框中的五个数分别是什么?14.一个两位数,把它的个位数字与十位数字交换位置得到新两位数,原两位数的个位数字比原两位数的十位数字大2,且新两位数与原两位数的和为154,求原两位数是多少?15.已知一个由50个偶数排成的数阵,请你观察框内的四个数之间的关系并解答下列问题:在数阵中任意作一个类似图中的框.(1)设框内左上角的数为x,那么其他三个数分别是:,,.(2)如果框内四个数的和是172,这四个数分别是什么?16.有一些分别标有7,13,19,25…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数之和为345.(1)猜猜小彬拿的3张卡片上的数各是多少?(2)小彬能否拿到相邻的3张卡片,使得3张卡片上的数字之和等于150?如果能拿到,请求出这3张卡片上的数各是多少,如果拿不到,请说明理由.17.幻方是一个古老的数学问题,我国古代的《洛书》中记载了最早的三阶幻方——九宫图.如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等.(1)请求出中间行三个数字的和;(2)九宫图中m,n的值分别是多少?18.将连续的偶数2,4,6,8,…排成如下表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和等于.(2)若将十字框上下左右移动,可框住另外的五个数,设中间的数为x,用代数式表示十字框中的五个数的和是.(3)在移动十字框的过程中,若框住的五个数的和等于2020,这五个数从小到大依次,,,,.(4)框住的五个数的和能等于2019吗?参考答案:1.382.2313.三张卡片上分别标有32,-64,1284.485.(1)三张卡片上的数分别是84、91、98.(2)不能拿到,理由见解析.6.原来的三位数为978.7.他们家兄弟有4个、姊妹有3个.8.(1)395;(2)2019是这列数中的数,是第506个数;2021不是这列数中的数. 9.(1)102x,201x(2)30610.(1)-1;(2)811.47;53.12.(1)-1500;(2)300或140或172.13.(1)五个数之和为中间数的5倍;(2)五个数分别为393,401,403,405,413.14.原两位数是6815.(1)x+2,x+12,x+14;(2)36,38,48,50.16.(1)小彬拿到的三张卡片上的数各是109,115,121;(2)小彬不能拿到相邻的3张卡片,使得这三张卡片上的数之和等于150,n=17.(1)3;(2)1m=-,318.(1)80;(2)5x;(3)这五个数分别为:394,402,404,406,414;(4)不能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年12月25日305****6348 的初中数学组卷一•选择题(共39小题)1.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.解:设原来两位数的个位数字为x,则十位数字为__________ ,这个两位数是_______ ,根据题意得:(请完成后面的解答过程)2•甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140 元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.甲仓库乙仓库A工地x _____B工地 ______ x+10(2)用含x的代数式表示运送甲仓库100吨水泥的运费为______ 元.(写出化简后的结果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)3. 我国明代数学家程大为曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:你这群羊有一百只吗?”赶羊的人回答:我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只. ”请问这群羊有多少只?请设未知数,列出方程.4. 在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)5•根据题意,列出关于x 的方程(不必解方程):(1) 要锻造一个直径为10cm 高为8cm 的圆柱体毛坯,应截取直径为 8cm 的圆 钢多长?设应截取直径为8cm 的圆钢x cm ,则可列出方程 ________ ;(2) 某人存了一笔三年定期存款,年利率为 4.25%,今年到期后,连本带息取 出11275元,他三年前存了多少元?设他三年前存了 x 元,则可列出方程(3)把2005个正整数1, 2,3,4,…,2005按如图方式排列成一个表,用一 正方形框在表中任意框住4个数,被框住的4个数之和能否等于416?A 、B 两站相距300千米,一列快车从A 站开出,行驶速度是每小时 一列慢车从B 站开出,行驶速度是每小时40千米,快车先开15分钟, 而行,快车开出几小时后两车相遇?(只列出方程,不用解)解:设快车开出X 小时后两车相遇,根据题意得:7.七年级(2)班的一个综合实践活动小组去 A 、B 两个超市调查去年和今年 五 「”期间的销售情况,下图是调查后小敏与其他两位同学进行交流的情景.根据 他们的对话,求A B 两个超市 五?一”期间的销售额(只需列出方程即可).28人,乙地段有15人,现在又调来29人,分配在 甲乙两个地段,要求调配后甲地段人数是乙地段人数的 2倍,求应调至甲地段和 乙地段各多少人?设正方形 框中左上角的一个数为X ,则可列出方程5 5 7 60千米,两车相向6. 18 1519 20 2122 12 13 U8.抗洪救灾小组在甲地段有9. 方程是刻画现实世界数量关系的有效模型,表格是帮助建立方程的手段之一, 请填写表格中的数据(不需要化简),列出方程.老师驾车从甲地到乙地,先上坡后下坡,到达乙地后马上原路返回,已知去时共用2.5小时,返回时共用2小时,若上坡的速度是60km/h,下坡的速度是80km/h, 则老师去时上坡用了多少小时?由此,可以列出方程_______ •10. 一份试卷,一共30道选择题,答对一题得3分,答错一题扣1分,小红每题都答了,共得78分,那么小红答对了几道题?请根据题意,列出方程.11. 根据下列条件列出方程:(1)某数比它的昌大学;3 5(2)某数比它的2倍小5;(3)某数的一半比它的3倍大4;(4)某数比它的平方小24;(5)某数的40%与25的差的一半等于30.12. 一列火车匀速行驶.经过一座1000m的铁路桥,从车头上桥到车身全部通过铁路桥需要1min,并且车身全部在桥上的时间为40s,求火车的速度和火车的长度. (1) __________________________________________ 若设火车的速度为xm/s,则列出的方程为___________________________________ .(2) ________________________________________ 若设火车的长度为xm,则列出的方程为_____________________________________ .13. 五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80% 销售,售价为2080元,该电器的成本价为多少元?(只列方程)14. 列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨若400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)—架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50 分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.15. 如图,已知数轴上的点A表示的数为6,点B表示的数为-4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x(x大于0)秒.(1) _____________________ 点C表示的数是;(2)当x= _____ 秒时,点P到达点A处?(3) ______________________________ 运动过程中点P表示的数是 (用含字母x的式子表示);(4)当P,C之间的距离为2个单位长度时,求x的值.B A-I_4_I_I_I_I——I_I_I_I_I_4——>-5-4-3-2-10123 4 5 6 716. 我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的|;|,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?17. 《九章算术》中有一道阐述盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为: 现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4 元,问共有多少人?这个物品的价格是多少?请解答上述问题.18. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?19. 列方程解应用题:我国元代数学家朱世杰所撰写的《算学启蒙》中有这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之. ”译文:良马平均每天能跑240里,驽马平均每天能跑150里.现驽马出发12天后良马从同一地点出发沿同一路线追它,问良马多少天能够追上驽马?20. 学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.21. 学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人, 可空出2个房间•这个学校的住宿生有多少人?宿舍有多少房间?22. 某校七年级社会实践小组去某商场调查商品的销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400 件, 商场准备采取促销措施,将剩下的衬衫降价销售.(1)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%勺预期目标?(2)在(1)的条件下,某公司给员工发福利,在该商场促销钱购买了20件该品牌的衬衫发给员工,后因为有新员工加入,又要购买5件该衬衫,购买这5 件衬衫时恰好赶上该商场进行促销活动,求该公司购买这25件衬衫的平均价格.23. —队学生从学校出发去骑行,整个队伍以30千米/时的速度前进.(1)骑行了半小时,突然发现有东西遗忘在学校,一名队员马上以50千米/时的速度返回学校,取到东西后仍以50千米/时的速度追赶队伍,求这名队员从掉头返校到追上队伍,经过了多长时间?(取东西的时间忽略不计)(2)突然前方有事需要接应,派出一名队员前往,如果这名队员以40千米/时的速度独自行进7千米,接应后掉转车头,仍以40千米/时的速度往回骑,直到与其他队员会合.问这名队员从离队开始到与队员重新会合,经过了多长时间?(接应时间忽略不计).解:设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意,可得方程______ .(本小题只需要列出方程,不用解)24. 平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50% 乙种商品每件进价50元,售价80元(1) ________________________ 甲种商品每件进价为_____________ 元,每件乙种商品利润率为_______________ .(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600 按售价打九折元超过600元其中600元部分八点二折优惠,超过600元的部分打三折优惠按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?25. 备注:假设两家超市相同商品的标价都一样.(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?26. A B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米, 同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t . 探究若客车、出租车距B城的距离分别为y i、y2,写出y i、y关于t的函数关系式,并计算当y i=200千米时y2的値.发现设点C是A城与B城的中点,(1)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?(2)若两车扣相距100千米时,求时间t .决策己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);方案二:乘坐客车返回城.试通过计算,分析小王选择哪种方式能更快到达B城?_■D ------------- C --------------------- 527. 某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空•诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房•求该店有客房多少间?房客多少人?28. 将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4 小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?29. 如表为某市居民每月用水收费标准,(单位:元/m3).用水量单价O v x < 22 a剩余部分a+1.1(1) __________________________________________________ 某用户1月用水10立方米,共交水费23元,则a= __________________________ 元/m3;(2)___________________________________________________________ 在(1)的条件下,若该用户2月用水25立方米,则需交水费___________________ 元;(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%勺用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?30. 某商场将M品牌服装每套按进价的2倍进行销售,恰逢春节”来临,为了促销,他将售价提高了50元再标价,打出了大酬宾,八折优惠”的牌子,结果每套服装的利润是进价的二,该老板到底给顾客优惠了吗?说出你的理由.331. 一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A B两地间的路程是多少?32. 把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?33. 根据下面的两种移动电话计费方式表,考虑下列问题:全球通神州行月租费25元/月0本地通话费0.2元/分钟0.3元/分钟(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?34 •马年新年即将来临,七年级(1)班课外活动小组计划做一批中国结”如果每人做6个,那么比计划多了7个;如果每人做5个,那么比计划少了13个•该小组计划做多少个中国结”?35. 如图,已知数轴上点A表示的数为8, B是数轴上一点,且AB=14动点P 从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t > 0)秒.(1) ____________________________ 写出数轴上点B表示的数,点P表示的数___________________________________ (用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点•点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.百0 A■f36. 一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后, 剩下的部分由乙单独做,还需要几天完成?37. 某种绿色食品,若直接销售,每吨可获利润0.1万元;若粗加工后销售,每吨可获利润0.4万元;若精加工后销售,每吨可获利润0.7万元.某公司现有这种绿色产品140吨,该公司的生产能力是:如果进行粗加工,每天可加工16吨; 如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在15天内将这批绿色产品全部销售或加工完毕,为此该公司设方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没有来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.你认为选择哪种方案可获利润最多,为什么?最多可获利润多少元?38. 2013年4月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解, 此次实行的阶梯式计量水价分为三级(如表所示):月用水量水价(元/吨) 第1级20吨以下(含20吨) 1.65第2级20吨〜30吨(含30吨) 2.48第3级30吨以上 3.30例:若某用户2013年6月份的用水量为35吨,按三级计算则应交水费为:20 X 1.65+(30 - 20)X 2.48+ (35 - 30)X 3.30=74.3 (元)(1)如果小东家2013年6月份的用水量为20吨,则需缴交水费多少元?(2)如果小明家2013年7月份的用水量为a吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含a的代数式表示,并化简)(3)若一用户2013年7月份应该水费90.8元,则该户人家7月份用水多少吨?39. 某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?二.解答题(共1小题)40. 如图,数轴的原点为0,点A B C是数轴上的三点,点B对应的数位1, AB=6 BC=2动点P、Q同时从A C出发,分别以每秒2个长度单位和每秒1 个长度单位的速度沿数轴正方向运动.设运动时间为t 秒(t >0)(1)求点A C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ我QB C2017年12月25日305****6348 的初中数学组卷参考答案与试题解析一•选择题(共39小题)1. 一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.解:设原来两位数的个位数字为x,则十位数字为_2x_,这个两位数是20x+x_,根据题意得:(请完成后面的解答过程)【分析】设原来两位数的个位数字为x,根据题意列出方程解答即可.【解答】解:设原来两位数的个位数字为x,可得十位数字为2x,这个两位数是20x+x,根据题意可得:20x+x=10x+2x+27,解得:x=3,所以这个两位数是63.故答案为:2x; 20x+x.【点评】此题主要考查了一元一次方程的应用,根据题意得出正确等量关系是解题关键.2. 甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140 元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.甲仓库乙仓库A工地x70 - xB工地100-x x+10(2)用含x的代数式表示运送甲仓库100吨水泥的运费为10X+15000元•(写出化简后的结果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)【分析】(1)根据题意填写表格即可;(2)根据表格中的数据,以及已知的运费表示出总运费即可;(3)根据本次运送水泥总运费需要25900元列方程化简即可.【解答】解:(1)设甲仓库运到A工地水泥的吨数为x吨,则运到B地水泥的吨数为(100-x)吨,乙仓库运到A工地水泥的吨数为(70 - x)吨,则运到B地水泥的吨数为(x+10) 吨,补全表格如下:甲仓库乙仓库A工地x 70 - xB 工地100 - x x+10(2)运送甲仓库100吨水泥的运费为140X+150 (100-x) =- 10x+15000, 故答案为:-10X+15000;(3)140X+150 (100 -x) +200 (70 - x) +80 (x+10) =25900, 整理得:-130x+3900=0.【点评】此题考查了一元一次方程的应用,弄清题意找到相等关系是解本题的关键3. 我国明代数学家程大为曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:你这群羊有一百只吗?”赶羊的人回答:我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只. ”请问这群羊有多少只?请设未知数,列出方程.【分析】根据如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只”这一等量关系列出方程即可.【解答】解:设这群羊有x只,根据题意得:x+x+丄x+ _x+1=100.2 4【点评】本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是找到等量关系.4. 在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)【分析】首先设支援拔草的有x人,则支援植树的有(20 - x)人,根据题意可得等量关系:原来拔草人数+支援拔草的人数=2X (原来植树的人数+支援植树的人数). 【解答】解:设支援拔草的有x人,由题意得:31+x=2[18+ (20 -x)].【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意, 找出题目中的等量关系,列出方程.5. 根据题意,列出关于x的方程(不必解方程):(1)要锻造一个直径为10cm高为8cm的圆柱体毛坯,应截取直径为8cm的圆钢多长?设应截取直径为8cm的圆钢x cm则可列出方程_nX 52X 8= nX 42?(—; (2)某人存了一笔三年定期存款,年利率为 4.25%,今年到期后,连本带息取出11275元,他三年前存了多少元?设他三年前存了x元,则可列出方程(1+4.25%X 3) x=11275_.(3)把2005个正整数1, 2,3,4,…,2005按如图方式排列成一个表,用一正方形框在表中任意框住4个数,被框住的4个数之和能否等于416?设正方形框中左上角的一个数为X,则可列出方程_x+x+1+x+7+x+8=416_ .22 23【分析】(1)根据题意可知,圆柱形毛坯与圆钢的体积相等,利用此相等关系列方程;(2)利用年利率4.25%的三年期存款,表示出总利息,进而得出等式即可;(3)左右相邻两个数差1, 上下相邻的两个数相差为7,据此表示其他三个数,根据题意列出x+x+1+x+7+x+8=416;【解答】(12分)(1)解:设应截取直径8cm的圆钢xcm,由题意得:nX 52X 8= nX 4気,故答案为:nX 52X 8=nX 4気;(2)设他三年前存了x元,根据题意得:(1+4.25%X 3)x=11275,故答案为:(1+4.25%X 3)x=11275;(3)由图表可知:左右相邻两个数差1, 上下相邻的两个数相差为7,左上角的一个数为x,则另外三个数用含x的式子从小到大依次表示x+1; x+7; x+8;根据题意可得:x+x+1+x+7+x+8=416故答案为:x+x+1+x+7+x+8=416【点评】本题考查了由实际问题列一元一次方程的知识,解题的关键是找到等量关系,难度不大.6. A、B两站相距300千米,一列快车从A站开出,行驶速度是每小时60千米,一列慢车从B站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)解:设快车开出x小时后两车相遇,根据题意得:【分析】设快车开出x小时后两车相遇,根据题意可得,两辆车总共走了300千米,据此列方程.【解答】解:设快车开出x小时后两车相遇,根据题意得:60x+40 (x -関)=300.【点评】本题考查了有实际问题抽象出一元次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7. 七年级(2)班的一个综合实践活动小组去A、B两个超市调查去年和今年五?一”期间的销售情况,下图是调查后小敏与其他两位同学进行交流的情景•根据他们的对话,求A B两个超市五?一”期间的销售额(只需列出方程即可).【分析】因为今年两超市的销售额都是在同去年进行比较,那么先分别表示出去年的两超市各自的销售额,再根据关系表示出今年两超市的各自的销售额,然后根据等量关系列出方程.【解答】解:设A超市去年的销售额为x万元,则去年B超市的销售额为(150 -x)万元,今年A超市的销售额为(1+15%x万元,今年B超市的销售额为(1+10% ? (150-x)万元,以今年两超市销售额的和共170万,可得方程:(1+15% x+ (1+10% (150-x)=170解出x,然后可得到A超市的销售额(1+15% x万元和B超市的销售额(1+10% ? (150 - x)万元.【点评】此题的关键是理解两个超市有同一年中的销售额的关系,及不同年份中A,B两个超市今年的销售额与去年的销售额之间的关系.8. 抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?【分析】首先设应调至甲地段x人,则调至乙地段(29- x)人,则调配后甲地段有(28+x)人,乙地段有(15+29- x)人,根据关键语句调配后甲地段人数是乙地段人数的2倍”可得方程28+x=2 (15+29- x),再解方程即可.【解答】解:设应调至甲地段x人,则调至乙地段(29 - x)人,根据题意得:28+x=2(15+29 - x),解得:x=20,所以:29 - x=9,答:应调至甲地段20人,则调至乙地段9人.【点评】此题主要考查了一元一次方程的应用,关键是弄懂题意,表示出调配后甲、乙两地段各有多少人.9. 方程是刻画现实世界数量关系的有效模型,表格是帮助建立方程的手段之一,请填写表格中的数据(不需要化简),列出方程.老师驾车从甲地到乙地,先上坡后下坡,到达乙地后马上原路返回,已知去时共用2.5小时,返回时共用2小时,若上坡的速度是60km/h,下坡的速度是80km/h, 则老师去时上坡用了多少小时?由此,可以列出方程」【分析】设上坡需要x小时,那么下坡就需要2.5 - x小时,根据题意可得:来回一次上坡和下坡路程相等,据此可列方程解答.【解答】解:设上坡需要x小时'可得:^^丄":,故答案为:80(275-0,60s “60【点评】此题考查一元一次方程问题,解答本题的关键是明确来回一次上坡和下坡路程相等,重点是求出上坡需要时间.10. 一份试卷,一共30道选择题,答对一题得3分,答错一题扣1分,小红每题都答了,共得78分,那么小红答对了几道题?请根据题意,列出方程.【分析】首先设小红答对了x道题,则答错了(30 - x)道题,再根据题意可得等量关系:答对题的得分-答错题的得分=78分,根据等量关系列出方程即可.【解答】解:设小红答对了x道题,由题意得:3x -(30 - x) X 仁78.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,。