新型分离技术综述
中药有效成分提取分离新技术的研究进展
中药有效成分提取分离新技术的研究进展提取是中药制剂生产过程中最基本、最重要的环节之一,以下是搜集整理的一篇探究中药有效成分提取新技术的,供大家阅读参考。
摘要:综述超临界流体萃取、微波辅助萃取、超声辅助提取、酶工程技术、动态连续逆流提取及动态循环阶段连续逆流提取、半仿生提取、新型吸附剂电泳、超高效液相色谱(UPLC)、高分离度快速液相色谱(RRLC)和超快速液相色谱(UFLC)、高速逆流色谱、超临界流体色谱、亲和色谱、分子烙印亲和色谱、免疫亲和色谱、生物色谱、分子生物色谱、细胞膜色谱、多维组合色谱、萃取与色谱技术联机耦合、大孔树脂吸附分离、膜分离、分子蒸馏技术及双水相萃取等新技术在中药有效成分提取分离中的研究进展。
�关键词:中药;有效成分;提取分离;新技术;进展中药的化学成分十分复杂,含有多种有效成分,提取其有效成分并进一步加以分离、纯化,得到有效单体是中药研究领域中的一项重要内容。
从天然产物中分离有效成分,并发展新药和寻找先导化合物是药物开发的重要内容。
近年来,在中药有效成分提取分离方面出现了许多新技术、新方法,已显示极大的应用前景,使中医药工业更加生机盎然。
以下笔者将这些新技术的进展作一简要介绍:1 中药有效成分提取新技术的进展提取是中药制剂生产过程中最基本、最重要的环节之一,提取的目的是最大限度地提取药材中的药效成分,避免药效成分的分解流失和无效成分的溶出。
随着现代化工工程技术的迅猛发展,一些现代高新技术不断被应用到中药生产中来,大大促进了中药产业的发展,使中药制药工业技术水平上升了一个新的高度。
1.1 超临界流体萃取技术(supercritical fluid extraction,SFE)SFE是一种以超临界流体代替常规有机溶剂,对目标成分进行萃取的新技术。
以CO2为流体的超临界萃取技术在天然药物提取分离中得到广泛的应用,超临界状态下的CO2的极性与正己烷相似,所以最适合用于溶解亲脂性、低沸点的物质,如挥发油、烃、酯、内酯、醚及环氧化合物等,是目前解决中药制药工业中挥发性或脂溶性有效成分提取分离的有效方法,有很强的实用性。
高效液相色谱分离与检测技术的进展与创新
高效液相色谱分离与检测技术的进展与创新概述高效液相色谱(High Performance Liquid Chromatography, HPLC)是一种重要的分离与检测技术,已经在广泛的科学领域中得到了广泛的应用。
本文将对高效液相色谱分离与检测技术的进展与创新进行综述,并探讨其在不同领域中的应用。
一、高效液相色谱的基本原理高效液相色谱是以液相作为固定相的分离技术。
其基本原理是将样品溶解在流动相中,通过与固定相之间的相互作用来实现样品的分离。
高效液相色谱的固定相种类繁多,不同种类的固定相可以实现对不同性质样品的选择性分离。
二、高效液相色谱的发展与创新1. 色谱柱技术的发展:随着材料科学与合成化学的不断进步,新型的色谱柱材料如亲水性、疏水性、离子交换、手性等材料相继出现。
这些材料可以提供更高的分离效率和选择性。
2. 检测器技术的创新:传统的高效液相色谱检测器主要有紫外检测器、荧光检测器和电化学检测器等。
随着科学技术的发展,新型的检测器如质量分析检测器(Mass Spectrometry, MS)和电喷雾检测器(Electrospray Ionization, ESI)等被引入到高效液相色谱中,提高了检测灵敏度和选择性。
3. 色谱分离模式的创新:除了传统的反相色谱分离模式,还出现了离子交换色谱、手性色谱、亲水色谱等新的分离模式。
这些分离模式可以对特定问题提供更好的解决方案。
三、高效液相色谱在不同领域中的应用1. 制药工业:高效液相色谱在制药工业中起着至关重要的作用。
它可以用于药物分析、药物代谢物分析和质量控制,以确保药物的质量和安全性。
2. 环境监测:高效液相色谱在环境监测领域中广泛应用,例如水质监测、土壤污染分析和空气污染物检测等。
它可以快速、准确地测定各种环境污染物。
3. 农业食品安全:高效液相色谱在农业食品安全领域中也发挥着重要作用。
它可以用于农药残留分析、食品添加剂检测和农产品质量控制等方面。
新型膜分离技术的研究进展
( oeeo hmi l nier gadE vomet N r nvri f hn , a un 005 ,hn ) C lg f e c g ei n ni n n, o hU iesyo ia Ti a 30 1C ia l C aE n n r t t C y
作 。与传统分离方法( 蒸发 、 萃取或离子交换等)相 比, 它是在常温下操作 , 没有相变 , 最适 宜对热敏性 物质和生物活性物质 的分离 与浓缩 , 具有高效 、 节 能, 工艺过程简单 , 投资少 , 污染小等优点 , 因而在化 工、 轻工 、 电子、 医药 、 纺织、 生物工程、 环境治理、 冶 金等方面具有广泛 的应用前景。 1 膜分离技术的分离原理和特点
sp rt n tc n lg . T e sp rt n meh ns a d c aa tr t s o i ee t kn s o mba e e aa o e h oo i y h e aai c a i o m n h rce si f df rn id f me rn i c
Ab t a t T e me r n x a f n t c nq e i a n w tp x a t n t c n q e wi ih ef in y s r c : h mb a e e  ̄ c o e h iu s e y e e  ̄ c o e h i u t h g f ce c , i i h i h g p e n a i g e e g . M e r n e a a in tc n lg s a p i d wi ey a e i d o ih s e d a d s vn n r y mb a e s p r t e h o o i p l d l s a n w k n f o y e
分离纯化技术及应用论文
分离纯化工艺的运用及发展综述作者:王亚森分离纯化工艺的运用及发展综述摘要:随着药物研究、开发和生产中常用的分离纯化技术的原理、工艺、特点和应用,为了更好的利用分离纯化技术为社会创造更高的经济价值,本文综合概述了分离纯化技术的基本原理及其应用。
关键词:分离纯化技术,应用,发展,原理,应用。
引言:分离纯化过程就是通过物理、化学或生物等手段,或将这些方法结合,将某混合物系分离纯化成两个或多个组成彼此不同的产物的过程。
通俗地讲,就是将某种或某类物质从复杂的混合物中分离出来,通过提纯技术使其以相对纯的形式存在。
实际上分离纯化只是一个相对的概念,人们不可能将一种物质百分之百地分离纯化。
例如电子行业使用的高纯硅,纯度为99.9999%,尽管已经很纯了,但是仍然含有0.0001%的杂质。
被分离纯化的混合物可以是原料、反应产物、中间体、天然产物、生物下游产物或废物料等。
如中药、生物活性物质、植物活性成分的分离纯化等,要将这些混合物分离,必须采用一定的手段。
在工业中通过适当的技术手段与装备,耗费一定的能量来实现混合物的分离过程,研究实现这一分离纯化过程的科学技术称为分离纯化技术。
通常,分离纯化过程贯穿在整个生产工艺过程中,是获得最终产品的重要手段,且分离纯化设备和分离费用在总费用中占有相当大的比重。
所以,对于药物的研究和生产,分离纯化方法的选择和优化、新型分离设备的研制开发具有极重要的意义。
分离纯化技术在工业、农业、医药、食品等生产中具有重要作用,与人们的日常生活息息相关。
例如从矿石中冶炼各种金属,从海水中提取食盐和制造淡水,工业废水的处理,中药有效成分及保健成分的提取,从发酵液中分离提取各种抗生素、食用酒精、味精等,都离不开分离纯化技术。
同时,由于采用了有效的分离技术,能够提纯和分离较纯的物质,分离技术也在不断地促进其他学科的发展。
如由于各种色谱技术、超离心技术和电泳技术的发展和应用,使生物化学等生命科学得到了迅猛的发展。
分离技术综述
现代分离技术综述分离技术是研究生产过程中混合物的分离、产物的提取或纯化的一门新型学科,随着社会的发展,对分离技术的要求越来越高,不但希望采用更高效的节能、优产的方法,而且希望所采用的过程与环境友好。
正是这种需求,推动了人们对新型分离技术不懈的探索。
近十余年来,新型分离技术发展迅速,其应用范围已涉及化工、环保、生化、医药、食品、电子、航天等领域,不少技术已趋成熟。
本文对分子蒸馏技术、膜分离技术、超临界萃取技术、新型生物膜技术进行综述。
1、分子蒸馏技术1.1分子蒸馏过程技术的基本原理分子蒸馏(molecular distillation)是指在高真空的条件下,液体分子受热从液面逸出,利用不同分子平均自由程差导致其表面蒸发速率不同,而达到分离的方法[1]。
分子分离过程如图1所示,经过预热处理的待分离料液从进料口沿加热板自上而下流入,受热的液体分子从加热板逸出。
由于冷凝和蒸发表面的间距一般小于或等于蒸发分子的平均自由程,逸出分子可以不经过分子碰撞而直接到达冷凝面冷凝,最后进入轻组分接收罐。
重组分分子由于平均自由程小,不能到达冷凝板,从而顺加热板流入重组分接收罐中,这样就实现了轻重组分的分离[2]。
图1分子蒸馏过程1.2分子蒸馏过程理论的研究国内外许多学者在过去几十年里,尝试建立了两种不同方法来研究分子蒸馏过程。
一种是蒸发系数法,即把各种阻力对分子蒸馏速率的影响归纳于参数蒸发系数E,但是由于在某种条件下得到的E值并不能用于另一种条件下的分子蒸馏速率的预测,所以采用该方法研究分子蒸馏并无太多的现实意义。
另一种方法是数学模型化法,即对分子蒸馏过程各个阶段产生的阻力进行研究,分别建立数学模型并求解,计算出分子蒸馏的速率。
Rees G J[3~4]针对离心式分子分馏器从传质传热机理出发,建立了一维数学分析模型,提出了蒸发面温度、液膜厚度与蒸发速率相关联的有限元方程,从微观方面分析了分子蒸馏过程。
M等[5]用高质量流量下膜理论描述了静止式分子蒸馏器液体内部传递过程对液相温度和组成分布的影响,理论和实验结果取得了一致。
色谱分离技术的研究进展及应用
色谱分离技术的研究进展及应用色谱分离技术是一种重要的化学分析方法,通过将化合物在不同材料或介质中进行分离和纯化,实现对化学物质的定量和质量分析。
近年来,随着科技的发展和应用需求的增加,色谱分离技术在医学、环保、食品、化工等领域得到了广泛应用。
本文将从理论基础、新型分离材料、应用领域等方面综述色谱分离技术的研究进展及应用。
一、理论基础色谱分离技术基于物质在不同介质中的色谱性质实现。
不同物质具有各自不同的极性和亲疏水性,为了实现物质的分离和纯化,科学家们设计了各种分离介质和方法。
包括薄层色谱、气相色谱、液相色谱、离子色谱等方法。
其中,液相色谱是目前最常用的色谱分离技术。
液相色谱的理论基础是上述的某些物质在相同液相中分布系数不同的性质,从而实现物质的拆分和分离,为后续分析和应用提供基础。
色谱分离的成功并不是简单地将样品混入色谱柱,然后静等分离,依据样品性质与柱内分离实际存在的许多因素有关,如对分离过程的分子与柱材料的匹配性、进样柱前的样品前处理、柱内分离环境的控制、检测器敏感性和精度等。
比如,在液相中溶解度较高的物质或其他高分子材料,需要采用比表面积较大的吸附柱来扩大分离柱的静态表面积,以提高质谱分析的精度和灵敏度。
二、新型分离材料分离柱是液相色谱技术中的核心部件。
分离柱的材料不断更新,新型材料必须具备以下要求:高分离效率、宽的分离范围、良好的稳定性和重复性等。
目前,新型分离材料涵盖了天然材料、无机合成材料和有机合成材料三大类。
天然材料中,硅胶是经典的色谱分离介质,优点是质量稳定、表面性能好,但在pH、温度、微量杂质和某些化学物质下会出现脱落、分解等现象。
无机合成材料中,亲水性和亲油性介质在分离柱中均有得到应用。
目前,氧化铝、氧化锆、硅酸铝、二氧化钛等均已用于柱材料的合成。
有机合成材料中,尤以新型聚合物和有机硅材料为最。
传统的聚甲基丙烯酸酯和聚苯乙烯已有一定的限制,新型聚合物包括聚丙烯酸酯和有机硅材料,具有分离效率高、催化能力强和不让物质附着等优势,广泛应用于烯烃的气相色谱分离、化合物的分子印迹等领域。
《2024年膜分离技术的研究进展及应用展望》范文
《膜分离技术的研究进展及应用展望》篇一一、引言膜分离技术是一种基于膜的物理分离过程,具有高效、节能、环保等优点,被广泛应用于水处理、生物医药、食品工业、能源等多个领域。
近年来,随着科学技术的发展和人们对于节能环保要求的提高,膜分离技术得到了快速发展,不仅在理论上进行了大量的研究,同时在实践中也得到了广泛的应用。
本文将主要就膜分离技术的研究进展及其应用前景进行综述和展望。
二、膜分离技术研究进展(一)技术分类与特性根据不同原理和用途,膜分离技术主要分为微滤(MF)、超滤(UF)、纳滤(NF)和反渗透(RO)等。
微滤主要用于去除大颗粒物质;超滤则能去除病毒和部分大分子物质;纳滤则介于超滤和反渗透之间,具有较高的截留分子量;反渗透则能实现高盐分和低盐分的分离。
这些技术各自具有独特的特性和应用领域。
(二)技术原理及研究进展膜分离技术的原理主要是利用膜的选择透过性进行物质分离。
在技术上,研究主要集中在新型膜材料的开发、膜制备工艺的优化以及膜的抗污染性等方面。
随着材料科学的发展,越来越多的新型膜材料如纳米复合膜、有机-无机复合膜等被开发出来,这些材料具有更高的通量、更好的截留性能和更长的使用寿命。
此外,膜的制备工艺也在不断优化,如热致相分离法、界面聚合法等,这些方法提高了膜的制备效率和性能。
三、应用领域及案例分析(一)水处理领域在水处理领域,膜分离技术被广泛应用于海水淡化、饮用水处理、污水处理等方面。
例如,在海水淡化中,反渗透技术能有效去除海水中的盐分和杂质,实现海水淡化的目标。
在饮用水处理中,超滤和纳滤技术能有效去除水中的细菌、病毒和部分大分子有机物,提高饮用水的安全性。
(二)生物医药领域在生物医药领域,膜分离技术被用于药物提纯、生物大分子分离等方面。
例如,利用纳滤技术可以有效地从中药提取液中提取出有效成分;利用超滤技术可以有效地去除生物制品中的杂质和病毒等污染物。
(三)食品工业领域在食品工业领域,膜分离技术被用于果汁澄清、乳品加工等方面。
膜分离技术综述
膜分离技术综述摘要:阐述了膜分离技术的特点,并介绍了各种膜分离技术的分离原理以及较全面的综述了它们在的研究现状,及相关领域的应用。
关键词:膜分离技术原理研究现状相关应用正文:膜分离技术是近三十多年来发展起来的高新技术,是多学科交叉的产物,亦是化学工程学科发展新的增长点。
它与传统的分离方法比较,具有如下明显的优点:1.高效:由于膜具有选择性,它能有选择性地透过某些物质,而阻挡另一些物质的透过。
选择合适的膜,可以有效地进行物质的分离,提纯和浓缩;2.节能:多数膜分离过程在常温下操作,被分离物质不发生相变, 是一种低能耗,低成本的单元操作;3.过程简单、容易操作和控制;4.不污染环境。
由于这些优点、使膜分离技术在短短的时间迅速发展起来,已广泛有效地应用于石油化工、生化制药、医疗卫生、冶金、电子、能源、轻工、纺织、食品、环保、航天、海运、人民生活等领域,形成了独立的新兴技术产业。
目前,世界膜市场以每年递增14~30%速度发展,它不仅自身形成了每年约百亿美元的产值,而且有力地促进了社会、经济及科技的发展。
特别是,它的应用与节能、环境保护以及水资源的再生有密切的关系,因此在当今世界上能源短缺、水荒和环境污染日益严重的情况下,膜分离技术得到世界各国的普遍重视,欧、美、日等发达国家投巨资立专项进行开发研究,已取得在此领域的领先地位。
我国在“六五”、“七五”、“八五”、“九五”以及863、973计划中均列为重点项目,给予支持。
关于发展膜分离技术的重要性,美国官方的文件说,“18世纪电器改变了整个工业过程,而20世纪膜技术改变了整个面貌”。
1987年日本东京召开的国际膜与膜过程会议上,曾将“21世纪的多数工业中膜过程所扮演的战略角色”列为专题进行深入讨论,与会的专家一致认为,膜技术将是20世纪末到21世纪中期最有发展前途的高技术之一。
世界著名的化工与膜专家,美国国家工程院院士、北美膜学会主席黎念之博士(我校化工系兼职教授)在1994年应邀访问我国时说“要想发展化工就必须发展膜技术”。
关于三种新型分离技术的综述
周芙蓉(中北大学化工与环境学院,山西太原030051)摘要:目前运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术,在中药制药、农产品加工和环保工程中都得到了广泛应用。
本文主要就近年来这三种分离技术的发展及其应用进行了简单的介绍。
关键词:超临界流体萃取分子蒸馏膜分离分离技术中图分类号:T Q23文献标识码:A文章编号:T1672-8114(2013)04-023-05关于三种新型分离技术的综述1引言国内外对分离技术的发展十分重视,但由于应用领域十分广泛,原料、产品和对分离操作的要求多种多样,决定了分离技术的多样性。
按机理划分,可大致分为五类:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离);用固体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等。
现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术。
2超临界流体萃取技术及其应用超临界流体萃取是一种以超临界流体代替常规有机溶剂对目标组分进行萃取和分离的新型技术。
其原理是利用流体(溶剂)在临界点附近区域(超临界区)内与待分离混合物中的溶质具有异常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动来实现分离的。
由于二氧化碳具有无毒、不易燃易爆、廉价、临界压力低、易于安全地从混合物中分离出来,所以是最常用的超临界流体。
相对于传统提取分离方法(煎煮、醇沉、蒸发浓缩等)具有以下优点:萃取效率高、传递速度快、选择性高、提取物较干净、省时、减少有机溶剂及环境污染、适合于挥发油等脂溶性成分的提取分离。
2.1超临界流体萃取技术特点(1)由于在临界点附近,流体温度或压力的微小变化会引起溶解能力的极大变化,使萃取后溶剂与溶质容易分离。
(2)由于超临界流体具有与液体接近的溶解能力,同时又保持了气体所具有的传递性,有利于高效分离的实现。
现代分离技术综述
现代分离技术综述结晶分离技术的原理与应用朱正,董子豪常州大学华院131摘要: 概述了结晶分离技术的原理, 综述了冷却剂直接触冷却结晶、反应结晶、蒸馏结晶耦合、氧化还原结晶液膜、萃取结晶、磁处理结晶等结晶分离方法。
并且介绍了结晶分离新技术在一些领域的应用。
关键词: 结晶;分离;工艺;应用引言:溶液结晶在物质分离纯化过程中有着重要的作用, 随着工业的发展, 高效低耗的结晶分离技术在石油、化工、生物技术及环境保护等领域的应用越来越广泛, 工业结晶技术及其相关理论的研究亦被推向新的阶段, 国内外新型结晶技术及新型结晶器的开发设计工作取得了较大进展。
1、结晶分离技术的原理结晶分离过程为一同时进行的多相非均相传热与传质的复杂过程。
多年来, 众多研究者在结晶热力学、结晶成核、晶体生长动力学、结晶习性、晶体形态及杂质对结晶过程的影响等方面进行了大量基础性研究并提出了描述结晶过程的理论结晶是一个重要的化工过程, 溶质从溶液中结晶出来要经历两个步骤: 晶核生成和晶体生长。
晶核生成是在过饱和溶液中生成一定数量的晶核; 而在晶核的基础上成长为晶体, 则为晶体生长。
2、结晶分离技术的分类结晶分离技术近年来发展很快, 传统结晶法进一步得到发展与完善, 新型结晶技术也正在工业上得到应用或推广。
(1)冷却剂直接接触冷却结晶法直接接触冷却结晶概念的构想早在20 世纪70年代就有人提出, 但因为选择冷却剂的困难使该技术一直难以获得工业应用。
由于直接冷却结晶具有节能、无需设置换热面、不会引起结疤、不会导致晶体破碎等特点, 因而近年来这一构想再次引起工业界的兴趣。
齐涛等[4] 研究了冷却剂酒精在高粘度高浓度的蔗糖水溶液中直接接触汽化传热过程, 探讨了酒精汽化冷却法制取蔗糖的结晶成核过程。
目前, 直接接触冷却结晶技术还处在研究开发过程中。
(2)反应结晶法反应结晶法作为传统结晶方法之一, 一直受到人们的重视。
工业结晶方法一般可分为溶液结晶、熔融结晶、升华、沉淀等4 类。
新型分离技术综述
新型分离技术摘要随着社会的发展,对分离技术的要求越来越高,不但希望采用更高效的节能、优产的方法,而且希望所采用的过程与环境友好。
本文主要分别对分子蒸馏、新型萃取分离、新型生物膜法、膜分离等新型分离技术的应用和研究现状进行了的阐述。
关键词:分子蒸馏;新型萃取分离;新型生物膜法;膜分离世界万物都是由有序自发地走向无序,所有的纯物质都逐渐变成混合物。
分离技术是研究生产过程中混合物的分离、产物的提纯或纯化的一门新型学科,正是这种需求,推动了人们对新型分离技术不懈的探索。
新型分离技术目前受到材料开发、生产成本及其他学科发展的限制,工业化应用程度还不高,但它们已经在某些高新领域显示出良好的分离性能和强劲的发展势头。
目前新型分离技术主要包括:膜分离技术、膜技术-传统技术的改进、传统分离技术的新应用和反应-分离技术的耦合四个方面。
下面对膜分离技术、新型萃取分离技术、新型生物膜法和分子蒸馏技术的应用和研究现状进行阐述。
1.膜分离技术借助于具有分离性能的膜而实现分离的过程称为膜分离过程。
由于膜分离过程一般没有相变,既节约能耗,又适用于热敏性物料的处理,因而在生物、食品、医药、化工、水处理过程中备受欢迎。
膜分离是利用一张特殊制造的、具有选择透过性能的薄膜,在外力推动下对液相或者气相混合物内的不同成分进行分离、提纯、浓缩的先进加工技术。
根据膜分离过程的不同特征可分为微滤( MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、渗透蒸发(PV)、渗析(D)、电渗析(ED)、电去离子技术(EDI)和气体分离(Gs)等过程,膜分离过程的优势特征:(1)膜分离过程通常在常温下进行,营养成分损失极少,特别适用于热敏性物质;(2)膜分离过程多数不发生相变化,不用化学试剂和添加剂,无二次污染,能耗低,并具有冷杀菌优势,且分离效率高;(3)膜分离过程在密闭的系统中进行,被分离原料无色素分解和褐变反应,所以挥发性成分损失极少,可保持原有的芳香;(4)膜分离过程可在分子级内进行物质分离,适用于许多特殊溶液体系的分离,具有普通滤材无法取代的卓越性能;(5)膜分离多以压力作为推动力,故分离装置简单,易连续操作自控,维修方便,膜组件可单独使用也可联合使用,工艺简单,容易实现自动化操作和高级加工。
简述中药提取分离新技术
简述中药提取分离新技术【关键词】中药;提取分离;综述近年来,在中药提取分离方面出现了许多新技术、新方法,如超临界流体萃取技术、大孔树脂吸附法、半仿生提取法、高速离心分离技术等,这些新技术和方法的应用,使得中药提取既符合传统的中医药理论,又能达到提高有效成分的收率和纯度的目的。
因此,运用新提取技术研究中药,是实现中药现代化的重要途径,必将为中药现代化研究注入新的活力。
笔者就近年来几种新方法在中药提取过程中的应用进行简单的概述。
1中药提取新技术1.1超临界流体萃取技术超临界流体是指处于临界温度和临界压力以上,物理性质介于气体与液体之间的流体。
这种流体兼有气体和液体的特点,它具有和气体相当的高渗透能力和低粘度,又具有和液体相近的密度和对许多物质优良的溶解能力。
超临界流体萃取是以超临界流体代替常规有机溶剂对目标组分进行萃取和分离的新型技术,与传统的提取分离法相比,其最大的优点是可以在近常温条件下提取分离不同极性、不同沸点的化合物,几乎保留中药中全部有效成分,无有机溶剂残留,因此,其中药有效成分提取的纯度高,而且收率高,操作简单、节能。
1.2大孔树脂吸附法大孔树脂吸附分离技术是以采用特殊的吸附剂从中药复方煎液中有选择地吸附其中的有效成分、除去无效成分的一种提取精制的新工艺。
此外,大孔吸附树脂还可应用于中药有效成分样品组成含量测定前的预分离。
该方法具有设备简单、操作方便、节省能源、成本低、产品纯度高、不吸潮等优点,因此,大孔树脂吸附法在中药研究和生产中的应用日益广泛,取得了相当显著的成果。
1.3半仿生提取法半仿生提取法是指从生物药剂学的角度,模仿1∶3服药物及其在胃肠道的转运过程,采用一定dh的酸水和碱水依次连续提取,其目的是提取含指标成分高的活性混合物。
它与纯化学观点“酸碱法”是不能等同的又因为此种提取方法的工艺条件要适合工业化生产的实际.不可能完全与人体条件完成相同,仅“半仿生”而已,故称“半仿生提取法”。
我国膜分离技术综述
我国膜分离技术综述一、本文概述膜分离技术,作为一种高效、节能、环保的分离技术,近年来在我国得到了广泛的关注和应用。
本文旨在全面综述我国膜分离技术的发展历程、现状以及未来的发展趋势,以期为相关领域的研究者和从业者提供有价值的参考。
文章首先回顾了我国膜分离技术的起源与发展历程,阐述了其在不同历史阶段的主要特点和技术进步。
接着,文章重点分析了当前我国膜分离技术的应用现状,包括在水处理、食品加工、生物医药、化工等领域的应用情况,以及在这些领域中取得的成效和存在的问题。
文章还对我国膜分离技术的发展趋势进行了展望,包括新材料的研究与应用、新技术的研发与推广、以及膜分离技术在更多领域的应用探索等方面。
文章指出,随着我国经济社会的持续发展和环保意识的不断提高,膜分离技术将在我国未来的能源、环境、生物等领域发挥更加重要的作用。
文章总结了我国膜分离技术的优势和不足,并提出了针对性的建议和对策,以期推动我国膜分离技术的持续创新和发展。
二、膜分离技术的分类和应用膜分离技术以其独特的分离原理和操作方式,被广泛应用于多个领域。
按照分离机制和孔径大小,膜分离技术主要可以分为以下几类:微滤是一种利用微孔滤膜截留液体中粒径大于1~10μm的微粒的膜分离过程。
它主要用于去除悬浮物、细菌、部分病毒及大分子有机物等。
超滤使用孔径小于1μm的滤膜,能截留分子量大于500~1000的溶质。
超滤常用于溶液的澄清、大分子物质的浓缩和分离、蛋白质溶液的脱盐与浓缩等。
纳滤膜的孔径介于超滤与反渗透之间,一般为几纳米至几百纳米,可用于分离分子量介于200~1000的溶质。
纳滤技术常用于软化水、脱除色度、去除有机物等。
反渗透利用半透膜两侧的压力差为推动力,使水分子通过半透膜而截留溶解在水中的无机盐、有机物及微生物等。
反渗透技术是海水淡化的主流技术。
电渗析是利用直流电场作为推动力进行渗析的一种膜分离方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新型分离技术
摘要
随着社会的发展,对分离技术的要求越来越高,不但希望采用更高效的节能、优产的方法,而且希望所采用的过程与环境友好。
本文主要分别对分子蒸馏、新型萃取分离、新型生物膜法、膜分离等新型分离技术的应用和研究现状进行了的阐述。
关键词:分子蒸馏;新型萃取分离;新型生物膜法;膜分离
世界万物都是由有序自发地走向无序,所有的纯物质都逐渐变成混合物。
分离技术是研究生产过程中混合物的分离、产物的提纯或纯化的一门新型学科,正是这种需求,推动了人们对新型分离技术不懈的探索。
新型分离技术目前受到材料开发、生产成本及其他学科发展的限制,工业化应用程度还不高,但它们已经在某些高新领域显示出良好的分离性能和强劲的发展势头。
目前新型分离技术主要包括:膜分离技术、膜技术-传统技术的改进、传统分离技术的新应用和反应-分离技术的耦合四个方面。
下面对膜分离技术、新型萃取分离技术、新型生物膜法和分子蒸馏技术的应用和研究现状进行阐述。
1.膜分离技术
借助于具有分离性能的膜而实现分离的过程称为膜分离过程。
由于膜分离过程一般没有相变,既节约能耗,又适用于热敏性物料的处理,因而在生物、食品、医药、化工、水处理过程中备受欢迎。
膜分离是利用一张特殊制造的、具有选择透过性能的薄膜,在外力推动下对液相或者气相混合物内的不同成分进行分离、提纯、浓缩的先进加工技术。
根据膜分离过程的不同特征可分为微滤( MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、渗透蒸发(PV)、渗析(D)、电渗析(ED)、电去离子技术(EDI)和气体分离(Gs)等过程,膜分离过程的优势特征:
(1)膜分离过程通常在常温下进行,营养成分损失极少,特别适用于热敏性物质;
(2)膜分离过程多数不发生相变化,不用化学试剂和添加剂,无二次污染,能耗低,并具有冷杀菌优势,且分离效率高;
(3)膜分离过程在密闭的系统中进行,被分离原料无色素分解和褐变反应,所以挥发性成分损失极少,可保持原有的芳香;
(4)膜分离过程可在分子级内进行物质分离,适用于许多特殊溶液体系的分离,具有普通滤材无法取代的卓越性能;
(5)膜分离多以压力作为推动力,故分离装置简单,易连续操作自控,维修方便,膜组件可单独使用也可联合使用,工艺简单,容易实现自动化操作和高级加工。
下面主要介绍两种新型膜分离技术渗透蒸发(PV)和气体分离(Gs)。
1.1渗透蒸发(PV)
渗透蒸发是在膜的渗透边侧形成真空,以膜的前后两侧的化学位差为推动力伴随着相变,由膜选择吸附及在膜中渗透速率不同而进行分离。
主要特点是选择分离系数高,传质速率大,热效率高,操作简单,耗能少,易于实施,不需要加压等。
在传统分离手段难以处理的共沸物、沸点相近的物系、同分异构体的分离以及有机溶液中微量水的脱除等领域显示出独特的优势,极其在脱除水中微量有机物、有机物中水的脱除以及有机混合物的分离等方面展现出重要的应用前景。
渗透蒸发是国外近年来发展起来的膜分离技术,用于他离沸点相近或形成共沸的液体混合物,同传统的分离方法相比,具有操作简单、能耗小、生产成本低、无三废等优点,节能效果和经济效益十分显著。
1.2气体分离(Gs)
气体分离膜是近年来发展很快的一项新技术。
不同的高分子膜对不同种类的气体分子的透过率和选择性不同,因而可以从气体混合物中选择分离某种气体。
如从空气中收集氧,从合成氨尾气中回收氢,从石油裂解的混合气中分离氢、一氧化碳等。
美国洛杉矶加州大学的化学家用一种叫做聚苯胺的能导电的有机材料制作出一种薄膜。
这种聚合物能掺入带电的原子,利用掺杂剂的含量来改变薄膜的渗透性。
在通过这种薄膜时,氧比氮快,二氧化碳比甲烷快,氢比氮更快,因此用这种薄膜制取的氧气和氮气成本低。
它们还可能用于消除汽车和工业排出废气中的污染物。
目前,气体分离膜的研究主要集中在富氧膜。
作为富氧膜的高分子,要求兼具高透过性和高选择性。
若以富氧的空气代替普通空气,将大大提高各种
燃烧装置的效率,并可减少公害。
国外还在开发一种水下呼吸器,它是一种直接从海水中提取溶解氧的潜水装置。
其使用方法是把能运载氧的人的血红素浸在聚胺酯海绵中,当血红素吸收海水中的氧后,通过弱电流使氧放出,以供水中呼吸之用。
2.新型萃取分离技术
液液萃取具有悠久的历史和广泛的应用。
但是,液液萃取过程中两相密度差小、连续相黏度大、返混严重,这些对相际传质十分不利。
另外,两相具有一定程度的互溶性,易造成溶剂损失和二次污染,溶剂再生也对过程的经济性和可靠性产生严重的影响。
随着科学技术的高速发展,作为一种“成熟”技术的液液萃取,正与超临界流体萃取、双水相萃取、膜分离等相关技术相互渗透,促进了液液萃取及其相关技术的发展。
2.1 双水相萃取
双水相系统由两种高聚物或者几种高聚物与无机盐水溶液组成,由于高聚物之间或聚合物与盐之间的不相容性,当聚合物或无机盐浓度达到一定值时,就会形成不互溶的两个水相,两相中水分所占比例在85%-95%范围,被萃取物在两个水相之间分配。
双水相系统中两相密度和折射率差别较小,相界面张力小,两相易分散,活性生物物质或细胞不易失活,可在常温、常压下进行,易于连续操作,具有处理量大等优点,备受工业界的关注。
2.2 超临界流体萃取
超临界流体萃取(SFE)是新型的提取技术,它以超临界条件下的气体作为萃取剂,从液体或固体中萃取出某些成分并进行分离。
SFE技术已走出实验室进入规模化生产阶段,萃取产品种类不断涌现。
但大规模应用于工业生产,还需研究SFE的热力学特性和传质规律,建立萃取系统的动态传质模型,以预测并且要进一步探讨萃取机理,开发萃取工艺,特别是探讨溶剂、物料性质对萃取过程及对食品物料大分子以提高萃取率和产品度。
目前,应用于工业生产的萃取设备还未实现规范化,配套性也不尽合理。
对此,应以传递模型为基础,建立设备放大的数学模型,以便工业设计,同时还应降低设备成本、以便利于推广。
2.3 反胶团萃取技术
为使许多高附加值生物工程产品实现大规模产业化生产,急需开发从发酵液
或细胞培养液中连续提取目的产物的分离技术,以减少对产品生物活性的影响,并保证产品的纯度。
一种新的生化分离技术——反胶团萃取方法,它具有成本低、选择性高、操作方便、放大容易、萃取剂(反胶团相)可循环利用、蛋白质不易变性等优点,在蛋白质混和物的分离、细胞内醇的直接提取、蛋白质的复性、从植物中同时提取油和蛋白质等方面有着重要的应用。
随着研究的不断深入,相信该分离方法为人类提供生化产品已为时不远了,并较之其他的分离方法有更大的优越性和经济合理性。
3.新型生物膜法
生物接触氧化法、塔式生物滤池、生物转盘以及生物流化床工艺是在经典生物滤池的基础上发展起来的一种新型生物膜法。
新型生物膜法就是利用好氧微生物在有充足的氧气和丰富的有机物条件下,迅速繁殖起来,在载体填料介质表面形成由一层多种微生物(主要是细菌)组成的生物膜。
生物膜具有很大的表面积,大量吸附废水中呈多种状态的有机物, 并具有非常强的氧化能力。
当生物膜与废水接触后,水中的有机物被微生物所吸附,并获得迅速地氧化分解, 从而使废水得到净化。
生物膜表面吸氧充分、好氧层生长活跃,当缺氧、厌氧层还不厚时, 它与好氧层保持一种平衡、稳定关系。
好氧层能够保持良好的净化功能,但当缺氧层向厌氧层过渡并逐渐增厚,其增多的代谢产物在向外侧逸出时,必然要穿透好氧层,从而破坏了好氧层生态系的稳定性,使好氧、缺氧、厌氧层之间失去了平衡关系。
这样周而复始,生物膜不断衰老脱落更新。
因此,必须在其后设置固、液分离设施,使处理过的废水与脱落生物膜分离。
4.分子蒸馏技术
分子蒸馏技术是运用不同物质分子运动自由行程的差别而实现物质的分离,因而能够实现远离沸点下的操作。
鉴于其在高真空下运行,且因其特殊的结构型式,因而具备蒸馏压强低、受热时间短、分离程度高等特点,能大大降低高沸点物料的分离成本,极好地保护热敏性物质的品质。
该项技术已广泛应用于高纯物质的提取,特别适用于天然物质的提取与分离。
我国分子蒸馏技术的研究起步较晚, 50年代末期,国内引进分子蒸馏生产线,用于硬脂酸单甘油酯的生产,但由于软、硬件技术不配套及其他各种原因,许多装
置均在搁置。
国内有些研究单位进行了实验室装置研究,但未见工业化应用的报道。
总之,我国的分离技术有了很大的发展,但总体水平,尤其是工业化水平与发达国家相比,差距较大,急需在生产技术、工业组件、制造、示范装置的建立等方面统一协调,组织攻关,以求短期内我国的分离技术在工业应用上走上一个新台阶。