FLUENT中应用DPM模型时双R分布的详细说明
FLUENT 多相流模型中文版资料
沈阳航空工业学院
(2) 混合模型
混合模型的相可以是流体或颗粒,并被看作互相穿插的连续统一体。混合模型求解 混合物动量方程,以设定的相对速度描述弥散相。适用混合模型的应用包括低载粉率的 带粉气流、含气泡流、沉降过程和旋风分离器等。混合模型还可以用于模拟无相对速度 的匀质弥散多相流。
(3) Euler 模型
。
当St 1时,颗粒将紧密跟随连续相,可以使用 DPM 模型、混合模型或 Euler 模型
三者中任何一种;当St 1 时,颗粒的运动将独立于连续相,可以 DPM 模型或 Euler 模 型;当 St 1,则又可以采用三种中的任何一种。具体采用何种模型还要考虑相体积分
数和计算量的大小。
航空发动机轴心通风器油 / 气两相流动中,滑油呈微小油滴,平均直径约数十μm, 局部油滴颗粒含量率最大约 10−4,体积分数最大不超过 10−7,典型情况下St数约 0.01。
入流边界的情况下,稳态的 VOF 计算才是有意义的。例如,旋转杯中自由表面的形状 取决于液体的初始的水平高度,这样的问题必须用瞬态格式求解。而另一个例子是水渠 中的水流,在其上方有空气,且空气有独立的入口,可以用稳态格式求解。
应用 VOF 模型的限制条件: 必须使用基于压力求解器。VOF 模型不能使用基于密度求解器。 所有控制容积必须充满一种流体相或多相的组合。VOF 模型不允许没有流体的空
(5.380)
式中, κ
β γ
αd αc
。不太高的分散相体积分数情况下分散相颗粒间平均距离较大,可以
忽略分散相颗粒压力和粘性应力,因而可以采用 DPM 模型。
可以用 Stokes 数 St 度量颗粒的动量非平衡程度。St 数定义为颗粒响应时间与系统响
应时间之比:
Fluent多相流模型选择与设定
1.多相流动模式我们可以根据下面的原则对多相流分成四类:・气•液或者液•液两相流:O气泡流动:连续流体中的气泡或者液泡。
O液滴流动:连续气体中的离散流体液滴。
O活塞流动]在连续流体中的大的气泡O分层自由面流动:由明显的分界面隔开的非混合流体流动。
・气•固两相流:O充满粒子的流动:连续气体流动中有离散的固体粒子。
O气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
O流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液•固两相流O泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes数通常小于1。
当Stokes数大于1时,流动成为流化(fluidization) 了的液-固流动。
o水力运输:在连续流体中密布着固体颗粒o沉降运动:在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流(上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子:泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2.多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗丨丨法,后面分别简称欧拉法和拉格朗日法。
史上Fluent最详细操作步骤 一看就懂
Fluent简单分析教程第1步双击运行Fluent,首先出现如下界面,对于二维模型我们可以选择2d(单精度)或2ddp(双精度)进行模拟,通常选择2d即可。
Mode选择缺省的Full Simulation即可。
点击“Run”。
然后进入如下图示意界面:第2步:与网格相关的操作1.读入网格文件car1.mesh操作如下图所示:打开的“Select File”对话框如图所示:(1)找到网格文件E:\gfiles\car1.mesh;(2)点击OK,完成输入网格文件的操作。
注意:FLUENT读入网格文件的同时,会在信息反馈窗口显示如下信息:其中包括节点数7590等,最后的Done表示读入网格文件成功。
2.网格检查:操作如下图所示:FLUENT在信息反馈窗口显示如下信息:注意:(1)网格检查列出了X,Y的最小和最大值;(2)网格检查还将报告出网格的其他特性,比如单元的最大体积和最小体积、最大面积和最小面积等;(3)网格检查还会报告出有关网格的任何错误,特别是要求确保最小体积不能是负值,否则FLUENT无法进行计算。
3.平滑(和交换)网格这一步是为确保网格质量的操作。
操作:→Smooth/Swap...打开“Smooth/Swap Grid”对话框如图所示:(1)点击Smooth按钮,再点击Swap,重复上述操作,直到FLUENT 报告没有需要交换的面为止。
如图所示:(2)点击Close按钮关闭对话框。
注意:这一功能对于三角形单元来说尤为重要。
4.确定长度单位操作如下图所示:打开“Scale Grid”对话框如图所示:(1)在单位转换(Units Conversion)栏中的(Grid Was Created In)网格长度单位右侧下拉列表中选择m;(2)看区域的范围是否正确,如果不正确,可以在Scale Factors 的X和Y中分别输入值10,然后点击“Scale”或“Unscale”即可;(3)点击Scale;(4)点击Close关闭对话框。
FLUENT系列资料:7
多相流算例多相流模拟介绍在自然界和工程问题中会遇到大量的多相流动。
物质一般具有气态、液态和固态三相,但是多相流系统中相的概念具有更为广泛的意义。
在多项流动中,所谓的“相”可以定义为具有相同类别的物质,该类物质在所处的流动中具有特定的惯性响应并与流场相互作用。
多相流动模式根据多相流系统中相的概念,按照下面的原则对多相流分成如下几类:∙气-液或者液-液两相流:o气泡流动:连续流体中的气泡或者液泡。
o液滴流动:连续气体中的离散流体液滴。
o活塞流动: 在连续流体中的大的气泡o分层自由面流动:由明显的分界面隔开的非混合流体流动。
∙气-固两相流:o充满粒子的流动:连续气体流动中有离散的固体粒子。
o气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
∙液-固两相流o泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes数通常小于1。
当Stokes数大于1时,流动成为流化(fluidization)了的液-固流动。
o水力运输: 在连续流体中密布着固体颗粒o沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
∙三相流(上面各种情况的组合)多相系统的例子各流动模式对应的例子如下:∙气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷∙液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗∙活塞流例子:管道或容器内有大尺度气泡的流动∙分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝∙粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动∙风力输运例子:水泥、谷粒和金属粉末的输运∙流化床例子:流化床反应器,循环流化床∙泥浆流例子:泥浆输运,矿物处理∙水力输运例子:矿物处理,生物医学及物理化学中的流体系统∙沉降例子:矿物处理多相建模方法计算流体力学的进展为深入了解多相流动提供了基础。
Fluent多相流模型选择
FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。
2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。
最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。
3、液固两相流动泥浆流:流体中的大量颗粒流动。
颗粒的stokes数通常小于1。
大于1是成为流化了的液固流动。
水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。
4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。
多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。
2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。
3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。
6)对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。
8)沉降采用欧拉模型9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。
fluent(DPM模型)傻瓜式步骤
fluent(DPM模型)傻瓜式步骤
下面说明傻瓜用法的操作步骤:
1.通过Define→Models→DiscretePhase来打开DPM模型的控制面板,
2.选中interactionwithContinuousPhase;
3.将NumberofContinuousPhaseIterationsperDPMIteration 置为20;
4.选中SpecifyLengthScale,将LengthScale置为0.01,注意LengthScale后面的
单位是m;
5.粗略估计颗粒的行程,然后用该行程除以LengthScale,得到的值就是Max.
NumberOfSteps要输入的值。
(实际上,LengthScale与Max.NumberOfSteps的
乘积即为跟踪颗粒轨迹的最大长度,如果你想观察颗粒在整个流场中的流动,那
么这个乘积的值就要大于颗粒的轨迹长度,所以此时可以适当地扩大Max.
NumberOfSteps的值。
)
6.点击面板下方的injections,弹出Injections 面板,再点击Create,弹出Set
InjectionProperties面板,在此面板中设定颗粒的属性。
7.在PointProperties下输入颗粒的各种参数;
8.在TurbulentDispersion下激活StochasticTracking选项,将NumberofTries改
成10。
至此,DPM模型的基本设定就全部结束了。
接下来的任务就是针对自己
模型的特点,有针对性的到帮助文件中去寻找解决问题的方法。
Fluent模型几大问题你知道么
FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。
2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。
最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。
3、液固两相流动泥浆流:流体中的大量颗粒流动。
颗粒的stokes数通常小于1。
大于1是成为流化了的液固流动。
水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。
4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。
多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。
2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。
3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。
6)对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。
8)沉降采用欧拉模型9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。
Fluent多相流模型选择与设定
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。
o 液滴流动:连续气体中的离散流体液滴。
o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。
o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o 泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes 数通常小于1。
当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。
o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流(上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
论坛上有关Fluent--DPM模型相关问题与答案整理
论坛上有关Fluent--DPM模型相关问题与答案整理Q:如何用Tecplot画DPM计算的颗粒轨迹,在FLUENT中显示颗粒的轨迹,截出的图不是很清晰,想在Tecplot中显示颗粒的运动轨迹,不知道能否实现, 有没有很好的办法,谢谢~A: 1、读取文件Cy1.lpk,该组数据说明了圆柱绕流。
该组数据有8个变量及60个zones组成,其中每一个zone为一个时间步长。
读取数据后显示云图显示如下2 、关闭contour 显示层后,如下图显示,在下图中左边侧边栏可以看到时间指标,是用来进行动画控制的。
但其处于灰色不可用状态,并未进行瞬态设置。
为了计算粒子运动轨迹及烟线,必须进行瞬态数据设置。
瞬态设置,打开菜单栏Data?Edit Time Strands弹出下列对话框,将左边zones 全部处于亮显的选中状态,按界面显示操作完毕,点击apply按钮,关闭对话框。
3、为计算粒子路径,须指定起始位置。
打开菜单栏Plot?Stream traces,弹出如下对话框,按界面显示数据操作完毕点击create stream,然后close。
可以看到stream trace在数据区域产生。
4、打开菜单栏Analyze?Field Variables 进行如下图设置:点击ok。
打开菜单栏Analyze?Calculate Particle path and Streak lines。
按界面显示设置完毕点击Calculate 开始计算。
当弹出Particle calculation successful。
计算完毕点击ok点击左侧边栏Zones style ,弹出,按界面显示设置完毕。
点击close,显示如下:打开菜单栏Plot?Stream traces,关闭stream traces的显示。
然后打开侧边栏zones style,选中mesh标签,设置Mesh Color为Multi。
显示如下:5、打开菜单栏Analyze?Calculate Particle path and Streak lines。
fluent仿真欧拉模型中,对于气固两相流材料的设置原则
fluent仿真欧拉模型中,对于气固两相流材料的设置原则【主题】fluent仿真欧拉模型中,对于气固两相流材料的设置原则【正文】1. 欧拉模型介绍在流体力学领域,欧拉模型是描述流体运动的基本模型之一。
它通过对流体的质量、动量和能量进行数学描述,来研究流动的规律。
在fluent仿真中,欧拉模型被广泛应用于多相流模拟,特别是气固两相流体的仿真。
2. 气固两相流材料的设置原则气固两相流是指气体和固体颗粒同时存在并相互作用的流动现象。
在fluent仿真中,对于气固两相流体的设置,需遵循以下原则:2.1 明确流场特性在设置气固两相流模拟时,首先要明确流场的特性,包括颗粒的密度、直径、速度和分布等。
这些参数的准确描述对于模拟结果的准确性至关重要。
2.2 考虑颗粒间相互作用在气固两相流体中,气体和颗粒之间存在着复杂的相互作用。
在fluent仿真中,需要考虑颗粒间的碰撞、沉降、回流等过程,以准确模拟流体的运动和颗粒的分布。
2.3 优化边界条件在设置气固两相流仿真时,边界条件的设定对于模拟结果的精度和稳定性有着重要影响。
需要合理设置出口压力、入口速度、颗粒注入速率等参数,以保证仿真结果的准确性。
2.4 考虑物质性质气固两相流体的模拟中,物质的性质也是至关重要的。
需要考虑气体和颗粒的密度、粘度、表面张力等物性参数,并合理设置在fluent仿真中。
3. 个人观点和理解在进行fluent仿真中,对于气固两相流体的设置原则,我认为需综合考虑流场特性、颗粒间相互作用、边界条件和物质性质等因素,以达到准确、可靠的模拟结果。
不断优化模型和参数设置,提高模拟的精度和稳定性。
4. 总结和回顾fluent仿真欧拉模型中,对于气固两相流体的设置原则,需要全面考虑流场特性、颗粒间相互作用、边界条件和物质性质等因素。
只有在这些方面做到全面、准确的设置,才能得到高质量的仿真结果。
【知识文章格式撰写】本文介绍了fluent仿真欧拉模型中,对于气固两相流体的设置原则,涉及了明确流场特性、考虑颗粒间相互作用、优化边界条件、考虑物质性质等内容。
fluent离散相DPM模型模拟
0.15
180-200
0.05
定义一个颗粒的粒径分布所对应的Yd就是:
Mass Fraction with
Diameter,d(μm)
Diameter Greater thand,Yd
70
0.95
100
0.85
120
0.50
Mass Fraction with
Diameter,d(μm)
Diameter Greater thand,Yd
70
0.95
100
0.85
120
0.50
150
0.20
180
0.05
200
(0.00)
Yd= e-1≈0.368所对应的d值即为dm,由于上表中没有0.368,所以需要根据已有数值进行拟合,得到曲线如下:
1、导入网格,设置边界条件,一阶计算,solve—controls—solution controls
速度压力耦合选择SIMPLE,
2、一阶收敛后,改为SIMPLEC,如图
注意:不要初始化,迭代6000步左右
3、QUICK模式迭代收敛或稳定后,改为非稳状态计算液相Define—Models—Solver
关于n的计算,可以使用Excel来做。个人感觉还是很好使的。
掌握了rosin-rammler分布规则后,便可在使用DPM模型时根据实际情况设定不同的粒径了。
但需要注意的是rosin-rammler分布是一种连续分布,
然而,在fluent计算的时候,需要设定Number of diameters,并且在计算结果中可以看到,粒径的分布并不是连续的。如果粒径分成10级,那么只能看见10种粒径。而且,均从同一个颗粒源发射出。
fluent dpm 并行方法
fluent dpm 并行方法【原创实用版3篇】篇1 目录1.Fluent DPM 简介2.Fluent DPM 并行方法的优势3.Fluent DPM 并行方法的实现4.Fluent DPM 并行方法的应用案例5.总结篇1正文【1.Fluent DPM 简介】Fluent DPM(Discrete Particle Method)是一种基于离散粒子方法的流体动力学模拟软件,广泛应用于工程领域,如能源、建筑、环境等。
Fluent DPM 可以模拟复杂的流体动力学问题,包括湍流、热传导和化学反应等。
【2.Fluent DPM 并行方法的优势】Fluent DPM 并行方法可以显著提高计算速度,减少计算时间。
通过将计算任务分配给多个处理器,可以实现同时计算,从而提高整个模拟过程的效率。
这对于处理大型计算任务,如模拟大尺度流体动力学问题,具有重要意义。
【3.Fluent DPM 并行方法的实现】Fluent DPM 并行方法主要通过使用 Message Passing Interface (MPI)实现。
MPI 是一种用于并行计算的通信协议,可以实现不同处理器之间的数据交换和任务调度。
通过 MPI,Fluent DPM 可以将计算任务分配给多个处理器,并在各个处理器之间实现数据的同步和协调。
Fluent DPM 并行方法在许多实际应用中发挥着重要作用,例如:- 在建筑领域,Fluent DPM 并行方法可以用于模拟建筑物的风环境,为建筑设计提供参考;- 在能源领域,Fluent DPM 并行方法可以用于模拟流体动力学问题,如油气输送、热交换等;- 在环境领域,Fluent DPM 并行方法可以用于模拟污染物扩散、水流动态等。
【5.总结】Fluent DPM 并行方法具有显著的优势,可以提高计算速度和效率。
通过实现 MPI,Fluent DPM 可以在多个处理器上同时计算,为处理大型计算任务提供便利。
篇2 目录一、Fluent DPM 并行方法的背景和意义二、Fluent DPM 并行方法的具体实现三、Fluent DPM 并行方法的优点和应用场景四、Fluent DPM 并行方法的局限性和未来发展方向篇2正文一、Fluent DPM 并行方法的背景和意义随着计算机技术的快速发展,大型并行计算已经成为了科学计算和工程模拟的重要手段。
fluent讲义_各种计算模型介绍_网格介绍
Inviscid Laminar Reynolds时均方程方法:
湍流粘性系数法 Reynolds应力方程法
Large Eddy Simulation (only 3D)
CFD-FVM
31
7/5/2004
Spalart-Allmaras:一方程模型
不适于自由剪切流动、分离流动,多用于外流,如航空航天问题。准2D问 题,如翼型绕流
E E E
S
S
S
C
C
C
R
R
CFD-FVM
13
7/5/2004
Formula for map scheme:
4*End+N*Side
Formula for submap scheme:
4*End+ L*Side + M*(E+C) + N* (2*E+R)
E
E
S
S
C E E
C E E E
S E
S E E
CFD-FVM
22
7/5/2004
Radiation
Surface to surface (S2S): 模拟封闭体内辐射传输, 不考虑参与性介质的辐射 Rosseland:扩散近似法,当光学厚度(衰减系数* 几何光学长度)大于3时使用。 P1:考虑散射,适于光学厚的介质 Discrete transfer (DTRM):不考虑散射,精确,适 于光学薄的介质 Discrete ordinates (DOM):考虑散射,精确,适于 光学薄的介质
CFD-FVM
29 7/5/2004
User defined functions (UDF)
链接在求解器上的用户自己编制的C语言程序 UDF的主要应用:
FLUENT-第六节传热模型
精品PPT
对固体板划分(huà fēn)网格 vs. 薄壁方法
薄壁方法 人工模型模拟壁面热阻 壁面需要必要的数据输入(材料导热系数,厚度) 只有(zhǐyǒu)对内部边界用耦合边界条件
Wall zone (no shadow)
Fluid zone
Wall thermal resistance is calculated using artificial wall thickness and material type. Through-thickness temperature distribution is assumed to be linear.
固体属性必须(bìxū)是常 数,不能和温度相关
Static Temperature (cell value)
Virtual conduction cells
精品PPT
自然(zìrán)对流 当流体加热后密度变化(biànhuà)时,发生自然对流 流动是由密度差引起的重力驱动的 有重力存在时,动量方程的压力梯度和体积力项重写为:: 其中
度值 ρ0. 设置热膨胀系数 β. 使用温度变化模型 (ideal gas,
AungierRedlich-Kwong, polynomial): 设置操作密度或 让 FLUENT 从单元平均中计算 ρ0
精品PPT
辐射(fúshè)
当和对流及导热换热相比,
量级相当时,应该考虑辐射效应
σ , Stefan-Boltzmann常数, 5.67×10-8 W/(m2·K4)
方向强度 瞬态情况 当方向向量是用太阳计算器算出的化,
瞬态计算中太阳方向矢量会随时间改 变 设置 “time steps per solar load update”
Fluent多相流模型选择与设定(优选.)
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。
o 液滴流动:连续气体中的离散流体液滴。
o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。
o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o 泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes 数通常小于1。
当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。
o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流(上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
ANSYSFLUENT多相流模型简介
ANSYSFLUENT多相流模型简介自然和工程中多数流动现象都是多相的混合流动。
物理上物质的相分为气相、液相和固相。
但在多相流系统中相的概念意义更广泛。
在多相流中,相被定义为一种对浸没其中的流体及势场有特定的惯性响应及相互作用的可分辨的物质。
例如,同一种物质的不同尺寸颗粒都可以被看作不同的相,因为相同尺寸的颗粒集合对流场具有相似的动力学响应。
多相流具有多种存在方式,以两相体系为例,可分为:气液多相体系;气固多相体系;液固多相体系;不相溶的液液体系。
FLUENT中的多相流模型ANSYS FLUENT 提供了丰富的多相流模型,被广泛应用于能源化工、环境工程、冶金矿山、汽车、航空航天、农业、医疗等各个行业:· Lagrangian Dispersed Phase Model (DPM)· Volume of Fluid model (VOF)· Eulerian Model· Mixture ModelDPM模型:追踪离散颗粒的运动轨迹,如喷雾干燥炉、煤粉炉、液体燃料喷雾燃烧等,颗粒喷入后,可以和连续相间进行热量、质量和动量的传递;FLUENT中引入的DDPM模型和EDM模型,更有效的考虑了颗粒间的相互碰撞和弹性力等因素,能很好的模拟密相颗粒流。
VOF模型:直接追踪相界面,用于模拟自由表面流/分层流的流动,如:容器内液面震荡、波浪的冲击、堰流、喷注破碎等;FLUENT中引入的造波模型,可定义浅水波到较深的水波,包括一阶波到五阶波等非线性波,用户可输入不同的波形;欧拉模型:对每一相求解动量方程和连续性方程,并通过相间作用力来实现相间耦合,能够求解相间的曳力、升力、虚拟质量力、湍流耗散力、相间传热、传质和化学反应等,能够有效的模拟多相分离与相间混合,如:流化床反应器、气泡床反应器、污水处理等;FLUENT中引入的PBM模型可以模拟颗粒相间的聚并、破碎、生长、成核等现象,同时可以模拟颗粒相的粒径分布;Mixture模型:欧拉模型的简化,属于FLUENT多相流模型中较为简单的模型,多数情况下可以作为欧拉模型的替代。
FLUENT系列资料7之DPM设置
多相流算例多相流模拟介绍在自然界和工程问题中会遇到大量的多相流动。
物质一般具有气态、液态和固态三相,但是多相流系统中相的概念具有更为广泛的意义。
在多项流动中,所谓的“相”可以定义为具有相同类别的物质,该类物质在所处的流动中具有特定的惯性响应并与流场相互作用。
多相流动模式根据多相流系统中相的概念,按照下面的原则对多相流分成如下几类:•气-液或者液-液两相流:o气泡流动:连续流体中的气泡或者液泡。
o液滴流动:连续气体中的离散流体液滴。
o活塞流动: 在连续流体中的大的气泡o分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o充满粒子的流动:连续气体流动中有离散的固体粒子。
o气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes数通常小于1。
当Stokes数大于1时,流动成为流化(fluidization)了的液-固流动。
o水力运输: 在连续流体中密布着固体颗粒o沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流(上面各种情况的组合)多相系统的例子各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子:泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理多相建模方法计算流体力学的进展为深入了解多相流动提供了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FLUENT中应用DPM模型时双R分布的详细说明
使用动网格的模型在应用DPM模型进行计算时,Injection Type不能使用surface。
关于rosin-rammler分布
举例说明,有一组颗粒服从这样一种粒径分布,见下表:
Diameter Mass Fraction
Range (μm ) in Range
0-70 0.05
70-100 0.10
100-120 0.35
120-150 0.30
150-180 0.15
180-200 0.05
定义一个变量Y d,其定义为:比指定粒径d 大的颗粒的质量分数。
那么上面所说的颗粒的粒径分布所对应的Y d 就是:
Mass Fraction with
Diameter,d(μm) Diameter Greater than d,Y d
70 0.95
100 0.85
120 0.50
150 0.20
180 0.05
200 (0.00)
Rosin-Rammler分布函数假定粒径d和Y d只见存在这样一种指数关系:
Y d = (e-(d /dm ))n(1)
其中d[size=10.5pt]m为平均粒径(Mean Diameter );n 为传播系数(Spread Parameter)。
为了获得上述两种数值,需要找到d和Y d 的关系。
Mass Fraction with
Diameter,d ( μm) Diameter Greater than d, Y d
70 0.95
100 0.85
120 0.50
150 0.20
180 0.05
200 (0.00)
Y d = e-1≈0.368所对应的d值即为d[size=10.5pt]m,由于上表中没有0.368,所以需要根据已有数值进行拟合,得到曲线如下:
根据上图找到Y d =0.368所对应的d值,在这里d[size=10.5pt]m[size=10.5pt]=d ≈131μm。
得到d[size=10.5pt]m 后,根据式(1)可以得到式(2)
n =ln(-ln Y d )/ln(d/d m) (2)
用式(2)来计算n 值。
共有6种粒径,但是只能得到5个n值,因为最后一个Y d =0。
将5个n 值进行平均,最终便得到n的大小。
在这个例子中n=4.52。
关于n的计算,可以使用Excel来做。
个人感觉还是很好使的。
掌握了rosin-rammler分布规则后,便可在使用DPM模型时根据实际情况设定不同的粒径了。
但需要注意的是rosin-rammler分布是一种连续分布
然而,在fluent计算的时候,需要设定[size=10.5pt]Number of diameters,并且在计算结果中可以看到,粒径的分布并不是连续的。
如果粒径分成10级,那么只能看见10种粒径。
而且,均从同一个颗粒源发射出。
关于Injection Type说明
常用Injection Type是group和surface,采用group形式时需要设定第一个颗粒源和最后一个颗粒源的位置,而且这种形式可以设定颗粒源的个数;但是surface就不能设定颗粒源的个数,颗粒源的位置默认分布在发射面的每一个网格上。
所以在网格数目很大时,第二种形式会有较多的颗粒源,这要消耗巨大的计算时间。
而第一种形式由于可控治颗粒源数量,故可以设定相对较少的颗粒源。
但麻烦的是在三维模型中需要设置不止一个颗粒源。