中科大FLUENT讲稿_第三章_湍流模型

合集下载

湍流模型及其在FLUENT软件中的应用

湍流模型及其在FLUENT软件中的应用

湍流模型及其在FLUENT软件中的应用一、本文概述湍流,作为流体动力学中的一个核心概念,广泛存在于自然界和工程实践中,如大气流动、水流、管道输送等。

由于其高度的复杂性和非线性特性,湍流一直是流体力学领域的研究重点和难点。

随着计算流体力学(CFD)技术的快速发展,数值模拟已成为研究湍流问题的重要手段。

其中,湍流模型的选择和应用对于CFD模拟结果的准确性和可靠性具有决定性的影响。

本文旨在深入探讨湍流模型的基本理论及其在FLUENT软件中的应用。

我们将简要回顾湍流的基本概念、特性和分类,为后续的模型介绍和应用奠定基础。

接着,我们将详细介绍几种常用的湍流模型,包括雷诺平均模型(RANS)、大涡模拟(LES)和直接数值模拟(DNS)等,并重点分析它们的适用范围和优缺点。

在此基础上,我们将重点关注FLUENT软件在湍流模拟方面的应用。

FLUENT作为一款功能强大的CFD软件,提供了丰富的湍流模型供用户选择。

我们将通过具体案例,展示如何在FLUENT中设置和应用不同的湍流模型,以及如何通过参数调整和结果分析来优化模拟效果。

我们还将探讨湍流模型选择的影响因素和最佳实践,以帮助读者更好地理解和应用湍流模型。

本文将对湍流模型在FLUENT软件中的应用进行总结和展望,分析当前存在的问题和挑战,并探讨未来的发展趋势和应用前景。

通过本文的阅读,读者可以全面了解湍流模型的基本理论及其在FLUENT 软件中的应用方法,为实际工程问题的解决提供有力的理论支持和技术指导。

二、湍流基本理论湍流,亦被称为乱流或紊流,是一种流体动力学现象,其特点是流体质点做极不规则而又连续的随机运动,同时伴随有能量的传递和耗散。

湍流与层流相对应,是自然界和工程实践中广泛存在的流动状态。

湍流流动的基本特征是流体微团运动的随机性和脉动性,即流体微团除有沿平均运动方向的运动外,还有垂直于平均运动方向的脉动运动。

这种脉动运动使得流体微团在运动中不断混合,流速、压力等物理量在空间和时间上均呈现随机性质的脉动和涨落。

fluent湍流模型

fluent湍流模型

第三节,
湍流模型
3.3.1 单方程(Spalart-Allmaras)模型 ~ ,表征出了近壁(粘性影响)区域以外的湍流运动粘 Spalart-Allmaras 模型的求解变量是ν ~ 的输运方程为: 性系数。ν
~ ~ ~ ∂ν Dν 1 ∂ ∂ν ~ − Yν ρ = Gν + 3-9 ( µ + ρν ) + Cb 2 ρ Dt σ ν~ ∂ x ∂ x ∂ x j j j 其中,Gν 是湍流粘性产生项;Yν 是由于壁面阻挡与粘性阻尼引起的湍流粘性的减少;σ ν ~
ρu y u = τ uτ µ ρuτ y u 1 = ln E µ uτ k
其中,k=0.419,E=9.793。
3-18
如果网格粗错不能用来求解层流底层,则假设与壁面近邻的网格质心落在边界层的对数 区,则根据壁面法则: 3-19
对流传热传质模型 在 FLUENT 中,用雷诺相似湍流输运的概念来模拟热输运过程。给出的能量方程为:
3-11
壁面的距离;S ≡
Ω ij =
∂u 1 j − ∂u i 2 ∂xi ∂x j
由于平均应变率对湍流产生也起到很大作用,FLUENT 处理过程中,定义 S 为:
S ≡ Ω ij + C prod min(0, S ij − Ω ij )
Байду номын сангаас其中, C prod = 2.0 , Ω ij ≡
率ε两个方程,湍流粘性系数用湍动能 k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍 流粘性系数 µ t 是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限 制性。 另外的方法是求解雷诺应力各分量的输运方程。这也需要额外再求解一个标量方程,通常 是耗散率ε方程。这就意味着对于二维湍流流动问题,需要多求解 4 个输运方程,而三维湍流 问题需要多求解 7 个方程,需要比较多的计算时间,对计算机内存也有更高要求。 在许多问题中,Boussinesq 近似方法可以得到比较好的结果,并不一定需要花费很多时间 来求解雷诺应力各分量的输运方程。但是,如果湍流场各向异性很明显,如强旋流动以及应力 驱动的二次流等流动中,求解雷诺应力分量输运方程无疑可以得到更好的结果。

fluent湍流模型对结果的影响

fluent湍流模型对结果的影响

一、概述湍流模型是流体力学中一个重要的研究对象,它描述了在流体运动中湍流对流动特性的影响。

湍流模型在工程领域的应用十分广泛,对于预测流动的结果具有重要意义。

本文将主要讨论湍流模型对流动结果的影响,以期为相关研究和工程实践提供一定的参考。

二、湍流模型的基本原理湍流是流体力学中一种复杂而难以预测的现象,它表现为流体在流动过程中产生的不规则变化和涡旋运动。

湍流模型的基本原理是通过对湍流运动进行建模和假设,从而简化流体运动的描述,使其能够被数学模型所描述和预测。

湍流模型一般包括雷诺平均湍流模型、拉格朗日湍流模型、欧拉湍流模型等不同类型。

三、湍流模型对结果的影响1. 增加模拟的准确性湍流模型的选择直接影响着流动结果的准确性。

合适的湍流模型可以更准确地描述流动的湍流特性,从而提高数值模拟的准确性。

相比较而言,湍流模型在描述层流流动时,模拟结果将受到更大的影响。

2. 提高计算的稳定性一些湍流模型在计算过程中具有更好的数值稳定性,能够保证数值模拟的收敛性和精确性。

通过合理选择湍流模型,可以有效提高计算的稳定性,减少计算中的数值振荡和发散现象,保证计算结果的可靠性。

3. 影响计算的耗时不同的湍流模型对计算的耗时也有不同的影响。

一些湍流模型对计算的精度和收敛性要求较高,因此需要更长的计算时间。

合理选择湍流模型能够在保证计算结果准确性的减少计算的耗时,提高计算效率。

4. 对后续分析的影响流动结果的准确性和可靠性,直接影响着后续的工程分析和设计。

合适的湍流模型能够提供更准确的流动结果,为后续的工程分析和设计提供可靠的基础。

而不合理的湍流模型选择可能会导致计算结果的不准确,从而影响后续分析的结果。

四、选择合适的湍流模型1. 考虑计算的要求在选择湍流模型时,需要充分考虑计算的要求,包括对计算结果准确性和稳定性的要求,以及对计算耗时的限制等因素。

根据具体的计算要求,选择合适的湍流模型,以满足工程实践的需要。

2. 结合实验数据验证在选择湍流模型时,需要结合实验数据对模型进行验证。

fluent中常见的湍流模型及各自应用场合

fluent中常见的湍流模型及各自应用场合

标题:深入探讨fluent中常见的湍流模型及各自应用场合在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。

本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。

1. 简介湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。

在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。

2. k-ε模型k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。

它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。

k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。

3. k-ω模型k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。

与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。

4. LES模型LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。

在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复杂湍流流动进行模拟。

5. DNS模型DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。

在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。

总结与回顾通过本文的介绍,我们可以看到不同的湍流模型在fluent中各有其适用的场合。

从k-ε模型和k-ω模型适用于工程领域的实际流动情况,到LES模型和DNS模型适用于研究湍流细节结构和小尺度特征,每种湍流模型都有其独特的优势和局限性。

《fluent湍流模型》课件

《fluent湍流模型》课件

Fluent湍流模型的常见问题
常见的问题包括模型精度不够、 计算量太大、计算时间过长等。
解决法
可以通过减小网格尺寸、改变模 拟设置、使用高性能计算机等方 法来解决问题。
常见错误示范
常见错误包括不合理的边界条件、 不准确的物理参数设定等。
总结
通过本课程的学习,您已了解Fluent湍流模型的基本概念、原理和应用。希望您可以将所学应用到实际工作中, 并继续跟踪湍流模型的发展趋势。
工业中的应用
在飞机、汽车、火箭等工业 制造领域中广泛应用,可以 用于优化产品设计、性能测 试和流体控制等方面。
实际案例分析
使用Fluent湍流模型成功预 测了风力发电机转子的性能, 为风力发电技术的发展做出 了重要贡献。
优缺点
具有高精度、高可靠性和可 灵活扩展等优点,但对计算 资源要求较高。
常见问题与解决方法
通过求解雷诺应力方程来描述湍流过程,
精度更高但计算量更大。
3
Large Eddy Simulation
通过将湍流流场分解成大尺度和小尺度
Detached Eddy Simulation
4
来模拟流体运动。
相对于LES模拟时间更短,适合处理具有 湍流特性的旋转流和湍流边界层等问题。
Fluent湍流模型应用
质量守恒方程
描述流体中物质的流 动规律,保证物质质 量不会凭空消失或凭 空增加。
模拟方法
计算流体力学(CFD) 模拟的方法,如有限 元方法、有限体积法 和边界元方法等。
湍流模型原理
1
k-ε模型
在工程实践中应用广泛,许多气动工程
Reynolds Stress Model
2
和水动力学模拟都基于该模型进行。

fluent零方程湍流模型

fluent零方程湍流模型

fluent零方程湍流模型标题:湍流的魅力:探索Fluent零方程湍流模型导语:湍流是自然界中普遍存在的现象,它的复杂性使得我们对其理解充满了好奇与挑战。

在工程领域中,湍流对流体流动的影响不可忽视。

而Fluent零方程湍流模型为我们提供了一种研究湍流现象的有效工具。

本文将以人类的视角,探索这一模型的魅力,展示湍流的奥秘。

第一部分:湍流的定义与特性湍流是一种随机、不规则的流动现象,它在自然界中广泛存在。

与层流相比,湍流的特点是流速和压力的空间和时间波动较大。

湍流的复杂性使得其研究变得困难,但也正是这种复杂性使湍流显示出了一些令人惊叹的特性,比如能量耗散和涡旋结构的形成。

第二部分:Fluent零方程湍流模型的原理与应用Fluent零方程湍流模型是一种简化的湍流模型,它基于湍流的能量耗散理论。

该模型通过假设湍流的能量耗散率与流体的速度梯度成正比,从而实现了对湍流的模拟。

这种模型在工程领域中得到广泛应用,可以帮助工程师预测湍流对流体流动的影响,从而优化设计和提高效率。

第三部分:探索湍流的奥秘湍流的复杂性使得我们对其理解充满了挑战,但也正是这种挑战使得湍流的研究变得更加有趣。

从大气中的湍流到海洋中的湍流,从飞机机翼上的湍流到燃烧过程中的湍流,湍流无处不在。

通过Fluent零方程湍流模型,我们可以更好地理解湍流的形成机制和特性,进而应用于实际工程中。

结语:湍流是自然界中一种复杂而神奇的现象,它的研究对我们理解流体动力学以及优化工程设计具有重要意义。

Fluent零方程湍流模型为我们提供了一种有效的工具,可以帮助我们模拟和预测湍流对流体流动的影响。

通过深入研究湍流的特性和应用,我们可以更好地掌握湍流的奥秘,为工程实践提供更优化的解决方案。

让我们一同探索湍流的魅力,感受科学与工程的交融之美。

fluent的空气湍流模型

fluent的空气湍流模型

fluent的空气湍流模型(实用版)目录一、引言二、Fluent 中的湍流模型概述1.湍流模型的种类2.湍流模型的选择三、Fluent 中的空气湍流模型1.k-模型2.sa 模型3.LES 模型四、Fluent 中湍流模型的应用1.边界层流动2.噪声模拟五、结论正文一、引言在计算机流体动力学(CFD)领域,湍流是一种常见的流动现象。

由于其复杂性,工程师们通常需要使用湍流模型来模拟这种流动。

Fluent 是一款广泛应用于 CFD 领域的软件,它提供了多种湍流模型供用户选择。

本文将介绍 Fluent 中的空气湍流模型。

二、Fluent 中的湍流模型概述1.湍流模型的种类在 Fluent 中,湍流模型主要分为以下几类:k-模型、sa 模型、LES 模型、RSM 模型等。

这些模型分别适用于不同的流动情况,具有各自的优缺点。

2.湍流模型的选择选择合适的湍流模型是模拟流体流动的关键。

在实际应用中,需要根据流体的性质、流动区域、流动速度等因素来选择合适的湍流模型。

三、Fluent 中的空气湍流模型1.k-模型k-模型是一种基于涡旋随机化的湍流模型,适用于高速、非粘性流体流动。

在 Fluent 中,k-模型可以通过设置湍流粘性系数来调整模型的性能。

2.sa 模型sa 模型,即 Smagorinsky 模型,是一种基于涡旋随机化和湍流扩散的混合模型。

它在高速、非粘性流体流动方面具有较好的性能。

在 Fluent 中,sa 模型可以通过设置涡旋随机化参数和湍流扩散参数来调整模型的性能。

3.LES 模型LES 模型,即大涡模拟,是一种基于湍流涡旋结构的湍流模型。

它适用于高速、非粘性流体流动以及具有较强湍流特性的流动。

在 Fluent 中,LES 模型可以通过设置湍流涡旋参数来调整模型的性能。

四、Fluent 中湍流模型的应用1.边界层流动在边界层流动模拟中,湍流模型的选择尤为重要。

一般来说,对于有压力梯度的大范围边界层流动,可以选择 k-模型或 sa 模型;而对于强旋流和旋转流动,可以选择 LES 模型或 RSM 模型。

fluent的空气湍流模型

fluent的空气湍流模型

fluent的空气湍流模型摘要:一、Fluent 空气湍流模型的概述二、湍流模型的类型及选择三、设置湍流模型的步骤四、影响湍流模型的因素五、如何获取较好的湍流模型模拟结果正文:Fluent 是一款广泛应用于流体动力学模拟的软件,其中的空气湍流模型是解决实际工程问题的重要工具。

本文将详细介绍Fluent 中的空气湍流模型,包括模型的类型、设置方法以及影响模拟结果的因素。

一、Fluent 空气湍流模型的概述在Fluent 中,空气湍流模型主要分为以下几种:k-ε 模型、k-ω 模型、SST 模型、大涡模拟(LES)等。

这些模型都是基于实际湍流特性进行数学建模,用以预测和分析流体流动中的复杂现象。

二、湍流模型的类型及选择在选择湍流模型时,需要考虑流动特性、雷诺数、模拟精度等因素。

例如,k-ε 模型适用于广泛范围内的流动问题,但其精度相对较低;而k-ω 模型则适用于高速、大涡占主导的流动场合。

具体模型的选择可根据实际情况和需求进行。

三、设置湍流模型的步骤在Fluent 中设置湍流模型主要包括以下步骤:1.打开Fluent 软件,创建或导入计算模型。

2.在“Meshing”模块中,设置网格类型、尺寸和数量。

3.在“Boundary Conditions”模块中,设置进口、出口、壁面等边界条件。

4.在“Turbulence”模块中,选择合适的湍流模型,并设置模型参数。

5.设置其他物理参数,如压力、速度、密度等。

6.进行模拟计算。

四、影响湍流模型的因素湍流模型的选择和设置不仅取决于流动特性,还受到以下因素的影响:1.雷诺数:雷诺数是判断流动状态的重要参数,不同湍流模型适用于不同雷诺数的流动场合。

2.边界条件:边界条件的设置会影响湍流模型的表现,尤其是壁面边界层的影响。

3.网格质量:网格质量直接影响数值模拟的准确性和稳定性,选用合适的网格类型和尺寸至关重要。

五、如何获取较好的湍流模型模拟结果1.选择合适的湍流模型:根据实际流动特性和需求,选择适合的湍流模型。

fluent的空气湍流模型

fluent的空气湍流模型

fluent的空气湍流模型摘要:1.Fluent 软件概述2.湍流模型的概述3.Fluent 中的湍流模型分类4.各类湍流模型的特点及适用范围5.如何选择合适的湍流模型6.结论正文:一、Fluent 软件概述Fluent 是一款由美国CFD 公司(Computational Fluid Dynamics)开发的计算流体动力学(CFD)软件,广泛应用于工程领域,如航空航天、能源、化工、环境等。

Fluent 可以模拟流体的层流和湍流状态,为研究流体流动提供了强大的工具。

二、湍流模型的概述湍流是指流体在高速流动时,由于粘性力的不稳定性,产生的无规则、高度混合的流动状态。

在实际工程中,大部分流体流动都处于湍流状态。

为了模拟这种复杂的流动现象,Fluent 提供了多种湍流模型供用户选择。

三、Fluent 中的湍流模型分类Fluent 中的湍流模型主要分为以下几类:1.k-ε模型:基于k-ε两方程模型,其中k 为湍流动能耗散率,ε为湍流能量耗散率。

2.k-ω模型:基于k-ω两方程模型,其中k 为湍流动能耗散率,ω为湍流旋涡耗散率。

3.SST 模型:基于Spalart-Allmaras 三维湍流模型,考虑了流场中的旋涡和湍流扩散。

4.RSM 模型:基于大涡模拟(LES)的湍流模型,考虑了湍流尺度的空间分布。

5.VOF 模型:基于体积分数(Volume of Fluid)的湍流模型,适用于两相流问题。

6.Mixture 模型:基于混合长度理论的湍流模型,适用于多相流问题。

四、各类湍流模型的特点及适用范围1.k-ε模型:计算精度较高,适用于大部分工程问题。

特别适用于湍流强度较低、流动平稳的问题。

2.k-ω模型:考虑了湍流旋涡的耗散,适用于湍流强度较高、流动剧烈的问题。

例如,涡轮机、喷气发动机等。

3.SST 模型:计算精度较高,适用于考虑湍流旋涡耗散的问题。

例如,飞机翼型、汽车尾翼等。

4.RSM 模型:适用于湍流强度较高、流动剧烈的问题,特别是具有强旋流和旋转的流体。

fluent教程 第三章,湍流模拟

fluent教程 第三章,湍流模拟

ui u j 2 ul ij uiu j x j xi 3 xl x j


上面两个方程称为雷诺平均的Navier-Stokes(RANS)方程。
uiu j
如果要求解该方程,必须模拟该项以封闭方程。
计算流体与传热传质
湍流模型
湍流模拟
D1
热科学与能源工程系
计算流体与传热传质
湍流模型
什么是湍流?

湍流:非定常,非周期性的三维速度脉动、 强化物质、动量和 能量的输运. 瞬时速度分解为平均速度和脉动速度: Ui(t) Ui + ui(t)
ui(t) U i (t) Ui
Time

压力、温度、组分浓度值具有类似的脉动
D18 热科学与能源工程系
计算流体与传热传质
湍流模型
目前采用的标准k-e模型方程为
t e e ( e ) ( e u j ) [( ) ] (Ce1 P Ce2 e ) t x j x j e x j k
u P uiuj i x j
其中
gTL3 Ra
D9
热科学与能源工程系
计算流体与传热传质
湍流模型
湍流特点

额外应变率

流向曲率 测向分离 加速或减速 有旋 回流 (或分离) 二次流

3D振荡流动 Transpiration (吹风/吸气) 自由湍流 剪切层相互作用
D10
热科学与能源工程系
i 1
D7 热科学与能源工程系
3
计算流体与传热传质
湍流模型
湍流应力

若以主对角线上的三个分量作为对称轴,则对称的两个切应力分 量是相等的,很显然,这是一个对称的二阶张量。很容易可以证 明,在各向同性湍流中,湍流正应力的三个分量相等,即

第3章,fluent湍流模型-1

第3章,fluent湍流模型-1

第三章,湍流模型第一节, 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。

即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有:ij ijj i t j i k x u xu u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。

根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。

第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。

第三类是大涡模拟。

前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。

大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。

实际求解中,选用什么模型要根据具体问题的特点来决定。

选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。

FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。

湍流模型种类示意图包含更多 物理机理每次迭代 计算量增加提的模型选RANS-based models第二节,平均量输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。

对于速度,有:i i i u u u '+= 3-3其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。

第三章 湍流模型

第三章 湍流模型

第三章 湍流模型第一节 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。

即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量(笛卡尔坐标系)表示,即有:ij i j j i t j i k x u x u u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 ij δ为DELT 函数,一般i=j 时为1,否则为0.模型的任务就是给出计算湍流粘性系数t μ的方法。

根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。

(模拟大空间建筑空气流动)μt=0.038 74ρvl (模拟通风空调室内的空气流动)比例系数由直接数值模拟的结果拟合而得,其中:v 为当地时均速度,l 为当地距壁面最近的距离。

第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。

第三类是大涡模拟。

前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。

大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。

实际求解中,选用什么模型要根据具体问题的特点来决定。

选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。

参见:湍流模型的选择资料。

FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。

湍流模型种类示意图大涡模拟启动需要用命令:(rpsetvar 'les-2d? #t)Direct Numerical Simulation包含更多物理机理 每次迭代计算量增加 提的模型选RANS-based models第二节 平均量输运方程输运过程的粘滞系数、扩散系数和热传导率,故称为输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。

Fluent湍流模型

Fluent湍流模型

Fluent湍流模型1Laminar(层流)似乎和流体力学中讲的一样……2Spalar-Allmaras(1-eqn):针对动力漩涡粘性;对应一组新的方程,不用计算和剪切应力厚度相关的长度尺寸。

适用于航空领域,壁面束缚流动;也应用于透平机械。

在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。

需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。

3k-ε模型最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。

它是个半经验的公式,是从实验现象中总结出来的。

标准k-ε(standard)改进RNG k-ε模型和带旋流k-ε模型。

3.1RNG k-ε模型(RNG)RNG模型在e方程中加了一个条件,有效的改善了精度;考虑到了湍流漩涡,提高了在这方面的精度;RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e 模型使用的是用户提供的常数。

然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。

3.2带旋流修正的k-ε模型(realizable)The realizable k-εmodel isrecommended in cases where flow separation around sharp corners or overbluffbodies can be expected.带旋流修正的k-e模型为湍流粘性增加了一个公式;为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程;带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。

而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。

带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。

fluent-湍流模型

fluent-湍流模型

fluent 湍流模型流体运动千变万化,但是都遵循自然规律,流体在运动中遵循质量守恒定律,动量定理和能量守恒定律。

从这些定律出发,导出流体力学基本方程组。

由质量守恒定律推出连续性方程由几种推导方法:1:拉格朗日观点法,2:欧拉法,3:直角坐标下控制体法0div V tρρ∂+=∂(对不可压流体,0divV =) 张量表示为:()0i iv t x ρρ∂∂+=∂∂ 由动量定理推出运动方程dVF divP dt ρρ=+ 张量表示为ij i i jp dv F dt x ρρ∂=+∂ 由能量守恒定理推出能量方程:()dUP S div kgradT q dtρρ=++ 或者 ij ji i i dU T p s k q dt x x ρρ⎛⎫∂∂=++ ⎪∂∂⎝⎭由此得出流体力学基本方程组:'0:()123(,)div V tdV F divPdt dU P S div kgradT q dt P pI S IdivV IdivVp f T ρρρρρρμμρ∂⎧+=⎪∂⎪⎪=+⎪⎪⎨=++⎪⎪⎛⎫⎪=-+-+ ⎪⎪⎝⎭⎪=⎩或者写为:()'0123(,)i iij i i j ij ji i i ij ij ij kk ij kk ijv t x p dvF dt x dU T p s k q dt x x p p s s s p f T ρρρρρρδμδμδρ∂⎧∂+=⎪∂∂⎪⎪∂=+⎪∂⎪⎪⎨⎛⎫∂∂=++⎪ ⎪∂∂⎝⎭⎪⎪⎛⎫⎪=-+-+ ⎪⎝⎭⎪⎪=⎩对于粘性不可压缩均质流体的基本方程为:0()2divV dV F gradp V dtds T div kgradT q dt P pI S ρρμρρμ=⎧⎪⎪=-+∆⎪⎨⎪=Φ++⎪⎪=-+⎩(这就是N-S 方程) 对于粘性不可压缩均质流体的基本方程组为01divV dV F gradp V dt dTC k T dt νρρ⎧⎪=⎪⎪=-+∆⎨⎪⎪=Φ+∆⎪⎩其中, ,v k 分2P pI S μ=-+别是常数粘性系数及热传导系数,Φ是耗损函数,22S μΦ=,方程组有五个二阶偏微分方程,用来确定五个未知函数,,,V p T ,一般情况下,动力学元素p 与运动学元素v 和热力学元素T 相互影响,特别是流场受温度场影响,主要是粘性系数和温度有关体现出来,如果温度变化不大,则粘性系数可以去为常数,从而流场不受温度影响,流场可以独立与温度场而求解。

中科大FLUENT讲稿_第三章_湍流模型

中科大FLUENT讲稿_第三章_湍流模型

第三章,湍流模型第一节, 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。

即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有:ij ijj i t j i k x u xu u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。

根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。

第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。

第三类是大涡模拟。

前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。

大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。

实际求解中,选用什么模型要根据具体问题的特点来决定。

选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。

FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。

湍流模型种类示意图包含更多 物理机理每次迭代 计算量增加提供RANS-based models第二节,平均量输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。

对于速度,有:i i i u u u '+= 3-3其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。

湍流模型fluent

湍流模型fluent

湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。

湍流模型,是指确定湍流输运项的一组代数或微分方程,通过这组方程,Reynolds方程得以封闭.它基于对湍流过程的假设,借助经验常数或函数,建立高阶湍输运项与低阶湍输运项直至与平均流之间的某种关系。

k-ε模型①标准的k-ε模型:最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。

在FLUENT中,标准k-ε模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。

适用范围广、经济、合理的精度。

它是个半经验的公式,是从实验现象中总结出来的。

湍动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。

振动资讯应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。

②RNG k-ε模型:RNG k-ε模型来源于严格的统计技术。

它和标准k-ε模型很相似,但是有以下改进:a、RNG模型在ε方程中加了一个条件,有效的改善了精度。

b、考虑到了湍流漩涡,提高了在这方面的精度。

c、RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-ε模型使用的是用户提供的常数。

d、标准k-ε模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。

这些公式的作用取决于正确的对待近壁区域。

这些特点使得RNG k-ε模型比标准k-ε模型在更广泛的流动中有更高的可信度和精度。

③可实现的k-ε模型:可实现的k-ε模型是近期才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。

·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。

术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。

中科大Fluent 讲稿

中科大Fluent 讲稿

二维网格:
triangle
quadrilateral
tetrahedron 三维网格:
hexahedron
prism or wedge pyramid
图 1-1,FLUENT 的基本控制体形状 用 FLUENT 程序求解问题的步骤 1, 确定几何形状,生成计算网格(用 GAMBIT,也可以读入其它指定程序生成的网格) 2, 选择 2D 或 3D 来模拟计算 3, 输入网格 4, 检查网格 5, 选择解法器 6, 选择求解的方程:层流或湍流(或无粘流) ,化学组分或化学反应,传热模型等。确定 其它需要的模型如:风扇、热交换器、多孔介质等模型。
∂ρ ∂ + ( ρu i ) = S m ∂t ∂xi
2-1
该方程是质量守恒的总的形式,可以适合可压和不可压流动。源项 S m 是稀疏相增加到 连续相中的质量, (如液体蒸发变成气体)或者质量源项(用户定义) 。 对于二维轴对称几何条件,连续方程可以写成:
∂ρ ∂ ∂ ρv + ( ρu ) + ( ρv ) + = Sm ∂t ∂x ∂r r
GAMBIT 设置几何形状 生成 2D 或 3D 网格
几何形状或 网格
其 它软件包, 如 CAD,CAE 等
prePDF PDF 查表
2D 或 3D 网格
FLUENT
边 界 网 格
PDF 程序
网格输入及调整 物理模型 边界条件 流体物性确定 计算 结果后处理
边 界 和 ( 或 ) 体 网 格 TGrid 2D 三角网格 3D 四面体网格 2D 和 3D 混合网格
T
2-9
虽然能量的标准形式里包括了压力做功和动能项,但在采用 segregated solver 求解不可 压问题时候都可以忽略掉。当然,如果想不忽略它们的作用,可以在 define/models/energy 中设置。对于可压缩流动问题,在用 coupled solvers 求解时总是考虑压力做功和动能项。 粘性耗散项是考虑流体中的粘性剪切作用产生的热量。如果用 segregated solver 求解, 默认设置并没有考虑。如果 Brinkman 数( Br =

fluent湍流模型讲解

fluent湍流模型讲解


剪切应力输运k–ω (SSTKW) 模型(Menter, 1994)


© 2006 ANSYS, Inc. All rights reserved.
6-13
ANSYS, Inc. Proprietary
Introductory FLUENT Notes FLUENT v6.3 Augr 2008


Spalart-Allmaras 是一种低耗的求解关于改进的涡粘输运方程的 RANS 模型 主要用于空气动力学/涡轮机, 比如机翼上的超音速/跨音速流动, 边界层流动 等等

对于有壁面边界空气动力学流动应用较好

在有逆压梯度的情况下给出了较好的结果 在涡轮机应用中很广泛 还没有应用于各种复杂的工程流动 对流动尺度变换较大的流动不太合适(平板射流,自由剪切流)
© 2006 ANSYS, Inc. All rights reserved.
6-6
ANSYS, Inc. Proprietary
Introductory FLUENT Notes FLUENT v6.3 Augr 2008

RANS 模拟 – 时间平均

将N-S方程中的瞬时变量分解成平均量和脉动量:
ui Rij Rij uiuj x x (Reynolds 应力张量) j j Reynolds 应力是由附加的平均过程引起的,因此为了封闭控制方程 组,必须对Reynolds应力建模 ui ui p u k t xk xi x j 周期) 运动,输运量 (质量, 动量, 组分) 在时间 和空间中波动

湍流漩涡. 增强的混合(物质,动量 能量,等等)效果
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章,湍流模型第一节, 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。

即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有:ij ijj i t j i k x u xu u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。

根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。

第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。

第三类是大涡模拟。

前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。

大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。

实际求解中,选用什么模型要根据具体问题的特点来决定。

选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。

FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。

湍流模型种类示意图包含更多 物理机理每次迭代 计算量增加提供RANS-based models第二节,平均量输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。

对于速度,有:i i i u u u '+= 3-3其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。

把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式:0)(=∂∂+∂∂i iu x t ρρ 3-5 ()j i jl l ij i j j i ji i u u x x u x u x u x x p Dt Du ''-∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+∂∂∂∂+∂∂-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。

他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。

额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。

如果要求解该方程,必须模拟该项以封闭方程。

如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。

这样才可以求解有密度变化的流动问题。

法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。

变量的密度加权平均定义为:ρρ/~Φ=Φ 3-7符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有:Φ''+Φ=Φ~。

很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即:0≠Φ'', 0=Φ''ρBoussinesq 近似与雷诺应力输运模型为了封闭方程,必须对额外项雷诺应力j i u u ''-ρ进行模拟。

一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即:ij i i t ijj i t j i x u k x u xu u u δμρμρ)(32∂∂+-⎪⎪⎭⎫⎝⎛∂∂+∂∂=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。

Boussinesq 近似的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。

Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

另外的方法是求解雷诺应力各分量的输运方程。

这也需要额外再求解一个标量方程,通常是耗散率ε方程。

这就意味着对于二维湍流流动问题,需要多求解4个输运方程,而三维湍流问题需要多求解7个方程,需要比较多的计算时间,对计算机内存也有更高要求。

在许多问题中,Boussinesq 近似方法可以得到比较好的结果,并不一定需要花费很多时间来求解雷诺应力各分量的输运方程。

但是,如果湍流场各向异性很明显,如强旋流动以及应力驱动的二次流等流动中,求解雷诺应力分量输运方程无疑可以得到更好的结果。

第三节, 湍流模型3.3.1 单方程(Spalart-Allmaras )模型Spalart-Allmaras 模型的求解变量是ν~,表征出了近壁(粘性影响)区域以外的湍流运动粘性系数。

ν~的输运方程为: ννννρννρμσνρY x C x x G Dt D j b j j -⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∂∂+∂∂+=~~)~(1~2~ 3-9 其中,νG 是湍流粘性产生项;νY 是由于壁面阻挡与粘性阻尼引起的湍流粘性的减少;νσ~和2b C 是常数;ν是分子运动粘性系数。

湍流粘性系数用如下公式计算:1~ννρμf t = 其中,1νf 是粘性阻尼函数,定义为:31331ννχχC f +=,并且ννχ~≡。

湍流粘性产生项,νG 用如下公式模拟:νρν~~1S C G b = 3-10 其中,222~~ννf dk S S +≡,而1211ννχχf f +-=。

其中,1b C 和k 是常数,d 是计算点到壁面的距离;S ij ij ΩΩ≡2。

ij Ω定义为:⎪⎪⎭⎫⎝⎛∂∂-∂∂=Ωji i j ij x u x u 21 3-11 由于平均应变率对湍流产生也起到很大作用,FLUENT 处理过程中,定义S 为:),0min(ij ij prod ij S C S Ω-+Ω≡ 3-12其中,0.2=prod C ,ij ij ij ΩΩ≡Ω,ij ij ij S S S 2≡,平均应变率ij S 定义为:⎪⎪⎭⎫⎝⎛∂∂+∂∂=ji i j ij x u x u S 21 3-13在涡量超过应变率的计算区域计算出来的涡旋粘性系数变小。

这适合涡流靠近涡旋中心的区域,那里只有“单纯”的旋转,湍流受到抑止。

包含应变张量的影响更能体现旋转对湍流的影响。

忽略了平均应变,估计的涡旋粘性系数产生项偏高。

湍流粘性系数减少项νY 为:21~⎪⎭⎫ ⎝⎛=d f C Y w w νρν 3-14其中,6/1636631⎥⎦⎤⎢⎣⎡++=w w w C g C g f 3-15 )(62r r C r g w -+= 3-1622~~dk S r ν≡ 3-17其中,1w C ,2w C ,3w C 是常数,222~~ννf dk S S +≡。

在上式中,包括了平均应变率对S的影响,因而也影响用S ~计算出来的r 。

上面的模型常数在FLUENT 中默认值为:1335.01=b C ,622.02=b C ,3/2~=νσ,1.71=νC ,νσ~2211/)1(/b b w C k C C ++=,3.02=w C ,0.23=w C ,41.0=k 。

壁面条件在壁面,湍流运动粘性ν~设置为零。

当计算网格足够细,可以计算层流底层时,壁面切应力用层流应力-应变关系求解,即:μρττy u u u= 3-18 如果网格粗错不能用来求解层流底层,则假设与壁面近邻的网格质心落在边界层的对数区,则根据壁面法则:⎪⎪⎭⎫ ⎝⎛=μρττy u E k u u ln 13-19 其中,k=0.419,E=9.793。

对流传热传质模型在FLUENT 中,用雷诺相似湍流输运的概念来模拟热输运过程。

给出的能量方程为:h eff ij j i t p i i i S u x T t c k x p E u x E t +⎥⎥⎦⎤⎢⎢⎣⎡+∂∂⎪⎪⎭⎫ ⎝⎛+∂∂=+∂∂+∂∂)(Pr )]([)(τμρρ 3-20 式中,E 是总能量,eff ij )(τ是偏应力张量,定义为:ij ii eff j i ij eff eff ij x u x u x u δμμτ∂∂-∂∂+∂∂=32)()( 3-21 其中,eff ij )(τ表示粘性加热,耦合求解。

如果默认为分开求解,FLUENT 不求解处eff ij )(τ。

但是可以通过变化“粘性模型”面板上的湍流普朗特数(Prt ),其默认值为0.85。

湍流质量输运与热输运类似,默认的Schmidt 数是0.7,该值同样也可以在“粘性模型”面板上调节。

标量的壁面处理与动量壁面处理类似,分别选用合适的壁面法则。

综上所述,Spalart-Allmaras 模型是相对简单的单方程模型,只需求解湍流粘性的输运方程,并不需要求解当地剪切层厚度的长度尺度。

该模型对于求解有壁面影响流动及有逆压力梯度的边界层问题有很好模拟效果,在透平机械湍流模拟方面也有较好结果。

Spalart-Allmaras 模型的初始形式属于对低雷诺数湍流模型,这必须很好解决边界层的粘性影响区求解问题。

在FLUENT 中,当网格不是很细时,采用壁面函数来解决这一问题。

当网格比较粗糙时,网格不满足精确的湍流计算要求,用壁面函数也许是最好的解决方案。

另外,该模型中的输运变量在近壁处的梯度要比ε-k 中的小,这使得该模型对网格粗糙带来数值误差不太敏感。

但是,Spalart-Allmaras 模型不能预测均匀各向同性湍流的耗散。

并且,单方程模型没有考虑长度尺度的变化,这对一些流动尺度变换比较大的流动问题不太适合。

比如,平板射流问题,从有壁面影响流动突然变化到自由剪切流,流场尺度变化明显。

3.3.2 标准ε-k 模型标准ε-k 模型需要求解湍动能及其耗散率方程。

湍动能输运方程是通过精确的方程推导得到,但耗散率方程是通过物理推理,数学上模拟相似原形方程得到的。

该模型假设流动为完全湍流,分子粘性的影响可以忽略。

因此,标准ε-k 模型只适合完全湍流的流动过程模拟。

标准ε-k 模型的湍动能k 和耗散率ε方程为如下形式:M b k i k t iY G G x k x Dt Dk --++⎥⎦⎤⎢⎣⎡∂∂⎪⎪⎭⎫ ⎝⎛+∂∂=ρεσμμρ3-22 kC G C G k C x x DtD b k i k t i 2231)(ερεεσμμερεεε-++⎥⎦⎤⎢⎣⎡∂∂⎪⎪⎭⎫ ⎝⎛+∂∂= 3-23 在上述方程中,k G 表示由于平均速度梯度引起的湍动能产生,b G 是用于浮力影响引起的湍动能产生;M Y 可压速湍流脉动膨胀对总的耗散率的影响。

相关文档
最新文档