臭氧同时脱硫脱硝技术

合集下载

臭氧液相氧化同时脱硫脱硝实验研究

臭氧液相氧化同时脱硫脱硝实验研究

臭氧液相氧化同时脱硫脱硝实验研究马双忱,苏敏,马京香,金鑫,孙云雪,赵毅(华北电力大学环境学院,保定 071003)摘要:在自制的鼓泡反应器上对臭氧(O 3)液相氧化分别脱硫脱硝技术进行了实验研究.结果表明,液相中O 3对NO 能够有效氧化,S O 2的存在对NO 的脱除具有一定的负面影响,而pH 值对NO 的脱除率影响较小.[O 3]Π[NO]=111时,NO 脱除率可达到8916%.pH 在3~11范围内,NO 脱除率达80%以上.温度在20~65℃范围内,NO 脱除率不发生明显变化.结合尾部洗涤装置后,可有效脱除S O 2和NO x ,脱硫效率几乎达到100%,在[O 3]Π[NO]=111时,可获得8412%的脱硝效率.关键词:脱硫脱硝;臭氧;液相氧化中图分类号:X701 文献标识码:A 文章编号:025023301(2009)1223461204收稿日期:2009201211;修订日期:2009203210基金项目:华北电力大学归国留学人员科研基金项目作者简介:马双忱(1968~),男,博士,副教授,主要研究方向为燃煤大气污染控制理论与技术,E 2mail :msc1225@1631comExperimental R esearch for Simultaneous R emoval of SO 2and NO x by Aqueous Oxidation of O 3MA Shuang 2chen ,S U Min ,MA Jing 2xiang ,J I N X in ,S UN Y un 2xue ,ZH AO Y i(School of Environment ,N orth China E lectric P ower University ,Baoding 071003,China )Abstract :The rem oval of S O 2and NO x by aqueous oxidation of O 3was studied by self 2designed bubbling reactor.The results show that NO can be oxidized efficiently by O 3in liquid phase ,while the existence of S O 2has a negative im pact on the rem oval of NO and pH value has a little im pact.The NO rem oval efficiency is 8916%at [O 3]Π[NO ]=1.1.When the rang of pH value is in 3211,NO rem oval efficiency can be achieved over 80%.At 20265℃,NO rem oval efficiency has no change.C ombining with wet scrubbing tower ,S O 2rem oval efficiency is nearly 100%and NO x rem oval efficiency is 8412%at [O 3]Π[NO ]=111.S O 2and NO x can be rem oved effectively by aqueous oxidation of O 3simultaneously.K ey w ords :desulfurization and denitrification ;ozone ;aqueous oxidation 我国的能源结构主要以煤炭为主,燃煤过程中产生大量的S O 2、NO x 等大气污染物,造成了严重的大气污染和经济损失.目前国内外广泛使用的脱硫脱硝技术是湿式石灰石石膏法烟气脱硫(FG D )和NH 3选择性催化还原脱硝技术(SCR )的组合.上述技术的脱硫脱硝效率虽然高,但投资和运行成本昂贵[1].其他的技术还包括等离子体法、催化法、吸附法等,但只有少数进入生产应用[2].目前燃煤电厂急需一种能同时控制烟气中多污染物的技术,以简化系统、降低能耗、节省空间等[3].赵毅等[4]利用自主开发的高活性吸收剂在烟气循环流化床上进行了同时脱硫脱硝实验,当Ca Π(S +N )为112,NaClO 2质量分数为116%,温度为60℃,湿度为4146%时,其脱硫和脱硝效率分别达到9317%和6515%.电子束技术[5,6]用于烟气同时脱硫脱硝时,其脱硫效率>90%,脱硝效率>70%,但由于能耗较高,限制了其发展.近年来国内外很多学者采用高级氧化技术,包括O 3氧化技术等应用于烟气脱硫脱硝.美国能源部[7]报告了一种新兴的NO x 控制技术,此工艺的原理基于将氧Π臭氧混合气注入烟道,将NO x 氧化成高价态且易溶于水的N 2O 3和N 2O 5,最终在洗涤塔内被碱性物质脱除.王智化[8,9]等对采用O 3氧化技术同时脱硫脱硝进行了试验研究,结果表明在典型烟气温度下,O 3对NO 的氧化效率可达84%以上,结合尾部湿法洗涤,脱硫率近100%,脱硝效率也在[O 3]Π[NO]摩尔比=019时达到86127%.在另一篇文章里,Wang 等[10]将O 3注入模拟烟气进行脱除S O 2、NO x 以及Hg 的研究,然后采用碱吸收塔对烟气进行洗涤,结果表明NO 和Hg 0的脱除率与O 3的注入量有关,当O 3加入量为200×10-6时,NO 的脱除效率可达到85%,此工艺对NO 和S O 2的脱除率最高可分别达到97%和100%.目前对臭氧氧化技术的研究主要是气相氧化结合尾部吸收,而对液相氧化的研究较少.本研究主要对O 3液相氧化分别脱硫脱硝进行基础的实验分析.第30卷第12期2009年12月环 境 科 学E NVIRONME NT A L SCIE NCEV ol.30,N o.12Dec.,20091 实验系统与方法采用自组装实验系统进行实验,实验系统如图1所示.O 3发生器为北京同林3S 2A5型空气源装置.液相反应器为自制的200m L 玻璃容器,容器内放O 3分布筛板和烟气分布筛板.两者均为玻璃砂芯漏斗,粒径为30~50μm.O 3分布筛板距反应器底部1cm ,烟气鼓泡分布筛板器距反应器底部2cm.为减小液体压强对气体压强的影响,反应吸收液配制为150m L.在液相反应器进气口和出气口连接旁路系统测定气体的初始浓度,以及反应结束后对气体浓度进行回测.反应后的烟气经碱液吸收后通过干燥瓶进入烟气分析仪.在线测量烟气分析仪为德国进口MRU VARI O 增强型烟气分析仪,可以测定烟气温度、O 2、NO x 和S O 2的初始浓度等以及反应完全后的尾气成分及浓度.实验过程如下:O 2、NO x 和S O 2等气体经流量计后进入混气瓶,然后送入鼓泡反应器内的模拟烟气分布筛板.空气经O 3发生器放电产生O 3,经流量计送入反应器内的O 3分布筛板,O 3浓度通过碘量法进行测定.实验中维持O 3以及模拟烟气总流量在1L Πmin.尾气成分由烟气分析仪在线测量,测量结果以5s Π次的采样频率在线记录储存于电脑中.图1 实验系统示意Fig.1 Schematic of experiment2 结果与讨论211 O 3量对NO 脱除率的影响[O 3]Π[NO]摩尔比是指烟气中加入O 3的摩尔数与烟气中NO 的摩尔数之比,反映了O 3加入量相对于NO 量的高低.调节O 3发生器产生不同的O 3浓度,使摩尔比O 3ΠNO 从0105变化到111.反应吸收液为去离子水.常温纯水条件下,O 3的分解速度较慢,可忽略不计.实验结果如图2所示.图2 [O 3]Π[N O]对N O 脱除率的影响Fig.2 E ffect of [O 3]Π[NO]for rem oval efficiency of NONO x 的液相氧化首先是气体在溶液中的溶解,该吸收符合亨利定律.由于NO 在水中的溶解度很低(25℃下亨利常数为1194×10-8m ol ΠL ・Pa ),并且很难通过常规方法显著提高溶解度.所以使NO 转化为容易吸收的形态是脱硝的关键[11].NO (g)NO (aq )(1) 液相脱硝过程主要包括:①NO 的吸收;②液相氧化NO 为高价态氮氧化物;③气相部分氧化NO 为易溶解的高价态氮氧化物[12].液相中O 3可与NO 发生如下5个主要反应[9]:O 3+NO =NO 2+O 2(2)O 3+NO 2=O 2+NO 3(3)NO 2+NO 3=N 2O 5(4)O 2+HO 2=NO 2+・OH (5)NO +HO 2=HNO 3(6) 这些反应的反应速率都很快,生成易溶于水的NO 2、NO 3等,并破坏了NO 的溶解平衡式(1),从而促进NO 的溶解和吸收氧化,即过程①和②.此外气相中O 3也和NO 发生反应,即过程③.所以图2显示出[O 3]Π[NO ]摩尔比对NO 氧化有明显影响,[O 3]Π[NO ]=015时,有7815%的NO 被氧化,而当[O 3]Π[NO]=111(理论化学计量比为1)时,脱除率接近90%.可见O 3同NO 的反应是快速不可逆反应.在O 3过量的情况下,NO 氧化率接近但不能达到100%,主要是因为O 3除氧化NO 外,还与其它NO x进行反应,有一定的消耗.212 pH 值对脱除NO 的影响保持[O 3]Π[NO]摩尔比约为0184,研究pH 值对2643环 境 科 学30卷脱除NO 的影响,结果见图3.pH 值对NO 脱除率的影响并不显著,只在一定范围内波动.这可能是因为NO 的溶解度随离子浓度的增大而减小,并且在一定的离子浓度下,NO 的溶解度在pH 值2~13范围内是常数.此外,虽然O 3在水中的分解速度随pH 的提高而加快,但是由于有不断的O 3补充,所以参与反应的O 3充足,不影响对NO 的氧化.常规WFG D 系统的pH 值范围一般控制在5~6之间,因此,实际应用时可控制pH 值在这一范围.pH 值应用钙基吸收剂(石灰石或氢氧化钙)调节,如附近有氨源,也可以采用氨水来调节.图3 pH 值对N O 脱除率的影响Fig.3 E ffect of pH for rem oval efficiency of NO图4 温度对N O 脱除率的影响Fig.4 E ffect of tem perature for rem oval efficiency of NO213 温度对脱除NO 的影响将吸收器置于恒温水浴槽中,调节水浴槽温度.保持[O 3]Π[NO]摩尔比约为0184,研究温度对NO 脱除率的影响,具体见图4.吸收液温度对脱硝的影响不是很明显,较高的温度并没有使脱硝率有明显下降.一般来说,NO 的溶解度随温度的上升而减小,但反应速度随温度升高而增大,这种相反的影响有可能相互抵消.而且虽然随着温度的升高,O 3会发生分解,但是由于O 3对NO 的氧化是快速不可逆的,该速度比O 3的分解速度快很多,所以温度对NO 的氧化效率影响甚微.目前典型湿式石灰石法烟气脱硫中,浆液温度为50℃左右,O 3可以运用于此温度环境中.214 [O 3]Π[S O 2]摩尔比对脱硫率的影响由于锅炉烟气中S O 2的含量较高,而S O 2也可以与O 3发生反应生成更易溶于水的S O 3.如果S O 2与O 3的反应程度较高,一方面会促进后期湿法洗涤的效率,但另一方面S O 2会与NO 产生竞争,使得O 3的消耗加速.所以从节省能耗的角度出发,希望S O 2与O 3的反应程度越低越好.模拟烟气中只采用S O 2来考察O 3对S O 2氧化的影响.采用的吸收液是去离子水,调节O 3发生器产生的O 3浓度,使[O 3]Π[S O 2]摩尔比从0~110.如图5所示,随着施加O 3量的增加,反应器出口S O 2的浓度降低.说明O 3对S O 2具有一定的氧化作用,促进了S O 2的吸收.图5 [O 3]Π[SO 2]摩尔比对脱硫率的影响Fig.5 E ffect of [O 3]Π[S O 2]for rem oval efficiency of NO215 结合尾部吸收同时脱除NO ΠS O 2在上述条件实验的基础上,进行了臭氧液相氧化尾部吸收同时脱除NO ΠS O 2实验.采用10%的Ca (OH )2作为吸收液,反应温度为35℃,NO 和S O 2的初始浓度均为950mg Πm 3.实验结果见图6,从中可见S O 2在洗涤后脱除效率达到100%,由于Ca (OH )2与S O 2可发生化学反应,且Ca (OH )2不是循环利用,所以S O 2的吸收比较彻底.NO 的脱除率随着O 3量的增加而上升,当[O 3]Π[NO ]=0184时,NO 的脱除效率可达到8115%,这主要是因为NO 不断地被氧化成为NO 2等更易溶于水的高价态NO x .相比图2,在同一摩尔比的情况下,图6的NO脱除效率比较低,这主要是因为S O 2会与一部分O 3364312期马双忱等:臭氧液相氧化同时脱硫脱硝实验研究反应,造成O 3消耗,引起NO 脱除率的略微下降,但总体上NO 的脱除效率仍然较高.NO 脱除率的微降说明S O 2的存在起到竞争氧化的作用,但由于O 3对NO 更加敏感,再加上二者同时存在时,O 3几乎是先氧化NO 后氧化S O 2,所以竞争氧化影响很小.常规WFG D 中,喷淋过程可显著降低S O 2的浓度,此外有研究表明NO 和NO 2也可氧化HS O -3和S O 2-3为S O 2-4,加速液相S O 2的吸收转化[13~16],使得它对O 3氧化NO 的影响更小,剩余的O 3将HS O -3、H NO 2及H NO 2和HS O-3反应生成的氮硫氧化物和羟胺磺酸盐化合物最终氧化为H NO 3和H 2S O 4,可见采用O 3结合尾部洗涤的方法可以同时高效脱除NO x 和S O 2,从而实现脱硫脱硝一体化.图6 结合尾部吸收后N O ΠSO 2的同时脱除效率(t =35℃)Fig.6 Rem oval efficiencies of NO and S O 2combinedend abs orbing unit3 结论(1)在室温条件下,O 3对NO 能够有效氧化,在[O 3]Π[NO]=111时,NO 脱除率可达到8916%.(2)pH 值和温度对NO 的脱除率影响较小,只有在pH 为2的情况下,NO 脱除率才有明显的下降.在20~65℃范围内,NO 脱除率不发生明显变化.(3)S O 2对NO 的脱除具有负面的影响,这主要是因为O 3对S O 2也有氧化作用,导致S O 2和NO 之间的竞争氧化.(4)结合尾部洗涤装置,采用O 3可同时对S O 2 和NO 进行高效脱除.脱硫效率几乎为100%,脱硝效率随着[O 3]Π[NO]的增加而上升,在[O 3]Π[NO ]=111时,可获得8412%的脱硝效率.参考文献:[1] 王旭伟,鄢晓忠,陈彦菲,等.国内外燃煤锅炉烟气同时脱硫脱硝技术的研究进展[J ].电站系统工程,2007,23(4):527.[2] 魏林生,周俊虎,王智化,等.臭氧氧化结合化学吸收同时脱硫脱硝的研究[J ].动力工程,2006,26(4):5632567.[3] 马双忱,马京香,赵毅.燃煤电厂烟气多污染物控制技术研究与模型分析[R].郑州:2007年火电厂环境保护综合治理技术研讨会,2007.2902296.[4] 赵毅,马宵颖,刘松涛,等.高活性吸收剂同时脱硫脱硝实验研究[J ].中国电力,2008,41(2):55259.[5] 毛本将,丁伯南.电子束烟气脱硫技术及工业应用[J ].环境保护,2004,(9):15218.[6] 王广建,马智,秦永宁,等.等离子体法在烟气脱硫中应用进展[J ].化学工业与工程,2007,24(3):2662271.[7] Emerging environmental technologies :an analysis of new treatmenttechnologies for the California energy comm ission [R ].EPRI ,Palo Alto ,CA ,California Energy C omm ission.Sacramento ,CA :2003.[8] 王智化,周俊虎,魏林生,等.用臭氧氧化技术同时脱除锅炉烟气中NO x 及S O 2的实验研究[J ].中国电机工程学报,2007,27(11):125.[9] 王智化,周俊虎,温正城,等.利用臭氧同时脱硫脱硝过程中NO 的氧化机理研究[J ].浙江大学学报:工学版,2007,41(5):7652769.[10] W ang Z H ,Zhou J H ,Zhu Y Q ,et al .S imultaneous rem oval ofNO x ,S O 2and Hg in nitrogen flow in a narrow reactor by oz one injection:Experimental results [J ].Fuel Processing T echnology ,2007,88(8):8172823.[11] 马双忱,赵毅,陈颖敏.液相催化氧化脱除烟气中S O 2和NO x的机理讨论[J ].华北电力大学学报,2001,28(4):75279.[12] 陆雅静,熊源泉.亚铁螯合剂液相脱除NO x 的研究进展[J ].洁净煤燃烧与发电技术,2006,(3):17219.[13] C ounce R M ,Craw ford D B.Performance m odels for NO x abs orbers Πstrippers[J ].Environ Prog ,1990,9(2):87292.[14] Littlejohn D ,W ang Y,Chang S G.Oxidation of Aqueous Sulfite I onby Nitrogen Dioxide [J ].Environment Science T echnology ,1993,27(10):216222167.[15] Littlejohn D ,Chang S G.Oxidative Decom position of Nitrogen 2SulfurOxides [J ].Industrial Engineering Chem istry Research ,1994,33(3):5152518.[16] 傅军,肖博文,涂晋林.NO x 、S O 2液相反应研究进展———一种同时脱硫脱氮的新思路[J ].化工进展,1999,(1):26228.4643环 境 科 学30卷。

用臭氧氧化技术同时脱除锅炉烟气中NOx 及SO2

用臭氧氧化技术同时脱除锅炉烟气中NOx 及SO2

用臭氧氧化技术同时脱除锅炉烟气中NOx 及SO2 中国绿色节能环保网点击数:365 发布时间:2009年11月13日摘要:对臭氧氧化锅炉烟气同时脱硫脱硝技术进行了基础试验研究,主要对臭氧的无催化热分解特性、臭氧与NO 和SO2 的氧化特性以及结合湿法洗涤的整体脱除效果进行了试验研究。

关键词:O3,NOx,SO2,多种污染物控制,脱除引言我国是以煤炭为主要能源供应的少数国家之一,燃煤过程中产生的SO2、NOx 等大气污染物质成为危害我国大气环境的主要污染源。

发达国家普遍采用的WFGD(wet flue gas desulfuration)与SCR (selective catalystic reduction) 结合的方法虽然脱除效率高,但投资与运行成本非常昂贵,我国电厂往往很难承受,因此开发廉价高效的同时脱硫脱硝技术就显得尤为重要。

近年来各种新的烟气同时脱硫脱硝技术不断涌现,在NOx 和SO2 的脱除当中,NOx 的脱除要比SO2 困难得多,因此从NOx 角度可将同时脱硫脱硝技术大致可分为2 类:第1 类是催化还原法,主要利用催化剂、还原剂等将NOx 进行还原,同时脱硫,如ABB 公司的SNOXTM 技术,Babcock &Wilcox 公司的SOx-NOx-ROx BOXTM 技术,另外如活炭技术、活性炭纤维技术、CuO/γ-Al2O3 技术等;第2 类为氧化吸收法,利用各种强氧化剂和活性自由基将不溶于水的NO 氧化生成NO2,从而与SO2 在后期同时吸收,强氧化剂如NaClO2、HClO3、KMnO4、P4 等,自由基如O、OH、O3、HO2 等,其产生技术有电子束技术、脉冲电晕放电等离子体技术等。

针对目前我国大部分电厂正逐步投运WFGD 技1术的现状,开发第 2 类的氧化吸收法多脱技术,开发可与WFGD 相结合的同时脱硫脱硝技术具有非常广阔的应用前景。

第2 类氧化吸收法中的代表为已商业化应用的电子束技术,由于自由基存活时间非常短,需要将自由基的产生与烟气反应器合二为一,而锅炉烟气中含有大量的N2、CO2、H2O、粉尘等物质,放电条件恶劣,同时N2、CO2 消耗大量的输入能量,造成该技术的运行费用昂贵。

臭氧氧化结合化学吸收同时脱硫脱硝的研究_魏林生

臭氧氧化结合化学吸收同时脱硫脱硝的研究_魏林生

第26卷第4期 2006年8月动 力 工 程Journal of Power EngineeringVol .26No .4 Aug .2006  文章编号:1000-6761(2006)04-563-05臭氧氧化结合化学吸收同时脱硫脱硝的研究魏林生, 周俊虎, 王智化, 岑可法(浙江大学能源清洁利用国家重点实验室,杭州310027)摘 要:为深入研究和开发臭氧氧化结合化学吸收同时脱除多种污染物技术,阐明了石灰石吸收脱除臭氧氧化产物(SO x 和NO x )的吸收反应机理,通过气液固平衡理论对石灰石浆液吸收SO x 和NO x 特性进行了分析研究。

理论分析表明:烟气中CO 2对SO x 和NO x 吸收的影响可以忽略,并给出浆液在吸收容量所能承受的最大气液比。

当[CaC O 3]=0.05mol l 时,临界点M =600~700;当[CaC O 3]=0.1mol l 时,临界点M =1200~1300;当[CaCO 3]=0.15mol l 时,临界点M =1900~2000。

图4表1参9关键词:环境工程学;脱硫脱硝;吸收特性;臭氧中图分类号:X511 文献标识码:ASimultaneous Desulfurization and Denitrification byCombined Ozone Oxidation and Chemical ScrubbingWEI Lin -sheng , ZH OU Jun -hu , W A NG Zhi -hua , CEN Ke -fa(MOE 's Key Lab of Clean Energy Utilization and Envir onmental Engineering ,Institute of Ther mal Engineering ,Zhejiang University ,Hangzhou 310027,China )Abstract :The reaction mechanisms of ozone with many pollutants are being elucidated ,and the dynamic pr ocesses ofozone ,oxidizing NO x and SO 2,simulated .According to thermodynamic principles ,the partial pressures of SO x and NO x ,after the flue gas wet state 's simultaneous desulfurization and denitration reactions r espectively with Ca (OH )2and Ca CO 3,have both attained equilibrium ,ar e then calculated .Calculation results show that as an absor bent ,Ca (OH )2is superior to CaCO 3,and both of them exhibit nearly a 100%removal efficiency .Figs 4,table 1and refs 9.Keywords :environmental engineering ;desulfurization and denitrification ;absorbing characteristic ;ozone收稿日期:2005-12-20 修订日期:2006-02-25基金项目:国家自然科学基金资助项目(50476059);国家重点基础研究973发展规划资助项目(2006CB200303);国家杰出青年科学基金资助项目(50525620)。

臭氧催化氧化脱硫脱硝一体化技术

臭氧催化氧化脱硫脱硝一体化技术

剂与硝酸分离,分离后的硝酸与氨水结合,生成硝酸铵,结晶干燥后形成
副产物硝酸铵化肥,反应如下: 2NO+O3 → N2O3+H2)或 NO+H2O2 → NO2+H2O(加入H2O2) HNO2+LCO → LCO.HNO2 2LCO.HNO2+O2 → 2LCO+2HNO3 HNO3+NH4OH → NH4NO3+H2O
无二次污染,无固体废弃物无废水排放;副产品为化肥。
运行成本低。其运行成本为石灰石/石膏法40%;
CAO半干法1/3,氨法1/2;SCR法70%。
2016/3/26
3
2016/3/26
山美水美
4
1、催化氧化技术介绍——技术背景
一、催化氧化一体化技术存在的必然性: 目前国内脱硝市场的兴起和脱硫改造严格 技术优势及其他常规脱硫方法的局限性 国家排放标准的要求日益严格 SNCR,SCR的缺点及催化剂的局限性(产能,热稳定性和化学稳定 性面临考验,二次污染) 补充:国内外很多机构一直都在研究一体化技术 国外:BECLO,苏联罗斯门捷列夫 国内:浙大,华北电力等
6、有机催化剂物理性质: 状态:油状; 沸点:300℃; 颜色:深棕色; 燃点:241.5℃
闪点:142℃;
相对密度:0.942g/ml
饱和蒸汽压:0.7mmHG(60℃);
粘度:14.5cp(20.8℃)4.72cp(60℃)
2016/3/26
26
2、催化氧化技术介绍——系统组成
7、催化氧化技术系统组成
水结合,生成硫酸铵,结晶干燥后形成副产物硫酸铵化肥,反应如下:
H2SO3+LCO → LCO.H2SO3 2LCO.H2SO3+O2 → 2LCO+2H2SO4。

臭氧氧化吸收法脱硝技术研究

臭氧氧化吸收法脱硝技术研究

臭氧氧化吸收法脱硝技术研究摘要:目前,国内外学者对于臭氧氧化一体化脱除氮氧化物、二氧化硫的研究多停留在理论分析、实验室研究阶段,所模拟的烟气成分、反应条件与实际工程有较大差别,研究结果对工程实践指导作用有限。

本文以工程化项目为基础,研究臭氧结合氧化镁湿法脱硫一体化脱除技术中关键参数对脱除效率的影响,通过数据分析总结了臭氧量(O3/NOx)、反应温度、入口NOx/SO2浓度、停留时间对脱除效率的影响,并对一体化脱除过程中的氧化和吸收进行机理分析,从而指导工程设计。

关键词:臭氧氧化脱硝适应性经济性关键因素1.研究背景1.1 技术背景锅炉或窑炉运行过程会产生大量氮氧化物(NOx),如不加以治理,随烟气进入大气的氮氧化物会对自然环境造成极大危害,影响人类生存环境。

目前应用广泛的脱硝技术为选择性催化还原脱硝(SCR)和选择性非催化还原(SNCR)技术,目前在各大电厂中大型锅炉脱硝均为采用这两种技术。

这两种技术能在一定程度上满足烟气脱硝需求,但也存在一定的适应性问题如下:(1)还原剂危害SCR和SNCR工艺均要使用还原剂NH3,虽然有的工艺系统采用尿素热解作为氨原,但仍不可避免的存在氨逃逸的问题,环境会造成二次污染。

特别的对于某些氮氧化物排放过高的机组,为了满足环保要求,会增大还原剂喷射量,导致氨逃逸过高,对周边环境污染严重。

热电联产机组或市政过暖机组多位于市区或市郊,采用SCR或SNCR脱硝技术不仅有氨逃逸的危险,氨水或液氨本身就是重大危险源,氨水或液氨一旦发生泄露将对周围环境造成破坏,威胁周围居民安全。

(2)机组适应性限制SNCR脱硝工艺要求烟气温度区间为850℃~1150℃,还原剂与烟气混合停留时间高于0.5秒;SCR脱硝工艺要求烟气温度区间为320~420℃,同时要求机组具备必须的改造空间。

对于大型工业锅炉或电站锅炉(大于300MW)机组,无论是煤粉锅炉或循环流化床锅炉基本都可满足相关改造条件,但相当数量的中小型燃煤锅炉或其他形式窑炉,由于炉型结构紧凑,难以满足SCR或SNCR技术要求。

臭氧+双氧水组合脱硝脱硫一体化工艺方案

臭氧+双氧水组合脱硝脱硫一体化工艺方案

臭氧+双氧水组合脱硝脱硫一体化工艺方案脱硝技术路线的确定2.1NOx生成机理一般燃烧设备燃烧过程中生成的氮氧化物包括NO、NO2、N2O 等,其中 NO占90%以上,NO2占 5-10%,N2O只占 1%左右,因此燃烧过程中产生的NOx主要是指NO和NO2。

在含氮物质的氧化和还原反应过程中,按照 NOx生成的主要途径和来源可以分为热力型NOx、快速型 NOx和燃料型 NOx(见图 1)。

图3-1 NOX生成和脱除的反应途径(1)热力型 NOx热力型 NOx主要是指在燃烧过程中参与燃烧的空气中的氮气被氧化生成的NOx,其中的生产过程是一个不分支连锁反应。

热力型NOx的生成机理是前苏联科学家捷里多维奇(Zeldovich)于1946年提出的。

总反应式如下:N2?+ O2 ? 2NO (1)NO +?1/2O2 ? NO2 (2)(2) 快速型NOx根据碳氢燃料预混火焰轴向NO分布的实验结果,指出碳氢自由基(CHi)在燃烧过程中撞击空气中的N2分子生成HCN、NH、CN 和 N等中间产物,这些中间产物再进一步氧化生成NOx,称为快速型NOx。

快速型NOx中的氮虽然也是来自空气中的氮气,但是同热力型 NOx的生成机理却不相同,其主要生成路径入下图所示。

快速型 NOx的生成对温度的依赖性很低,然而过量空气系数对快速型 NOx的影响较大。

燃烧过程中快速型 NOx的生成量很少,一般不作为 NOx控制的主要考虑对象。

(3)燃料型NOx燃料型 NOx是指燃料中的氮化合物在燃烧过程中热分解后又氧化而的NOx。

其主要生成路径如下图所示。

由于N-H键和N-C键的远比N≡N键要小得多,燃料型 NOx的生成要比热力型NOx容易得多,是生成NOx的最主要来源。

2.2现有主要脱硝技术比较分析现有主要脱硝技术经济性比较见下表技术名称SCR SNCR 臭氧氧化法还原剂NH3为主氨水或尿素溶液O3反应温度300~400℃850~1100℃50-200℃反应器需要建设不需要不需要脱硝效率80-95% 15-50% 70~95%催化剂需要,且定期更换,价格贵不需要不需要还原剂喷射位置多选择于省煤器与空气预热器之间炉膛或炉膛出口不需要SO2/SO3转化有无无NH3逃逸3~5ppm 10~15ppm 无对燃烧设备影响NH3与 SO3易形成 NH4HSO4,造成堵塞或腐几乎没有影响没有影响蚀系统压损1000pa左右无无是否需要吹灰是否否燃料影响高灰分会磨耗催化剂,碱金属氧化物会钝化催化剂(催化剂中毒)无无燃烧设备效率影响降低热效率无无煤焦油影响煤焦油导致催化剂堵塞,并覆盖催化剂表面活性成分,造成催化剂失效无无占地面积大小小投资高低中等运行费用高低中等2.3 本项目脱硝技术方案的确定组合氧化法是非常适合本项目的脱硝方案。

臭氧脱硝技术方案

臭氧脱硝技术方案

臭氧脱硝技术方案引言臭氧脱硝技术是一种常用的空气污染物控制技术,可有效去除烟气中的硫酸盐和硝酸盐,减少大气环境中的酸雨和光化学烟雾的生成。

本文将介绍臭氧脱硝技术的原理、工艺流程和应用场景。

技术原理臭氧脱硝技术是一种化学反应法,通过将臭氧注入烟气中,使其与烟气中的二氧化硫和氮氧化物发生反应,生成稳定的硫酸盐和亚硝酸盐。

这些生成物会随烟气一起排出烟囱,并通过烟囱排放到大气中。

臭氧脱硝技术的主要反应方程式如下:2SO2 + O3 → 2SO32NO + O3 → 2NO2技术工艺流程臭氧脱硝技术的主要工艺流程包括臭氧产生、混合反应和尾气处理三个步骤。

1. 臭氧产生臭氧可以通过给氧源加电或者光照等方式产生。

其中常用的方法是通过电解水产生臭氧,其反应方程式如下:2H2O → 4H+ + O2 + 4e^-2H2O + 4e^- → 4OH-2OH- → O2 + 2H2O + 4e^-2. 混合反应在烟气进入脱硝设备之前,臭氧需要与烟气中的二氧化硫和氮氧化物充分混合。

混合的方式可以采用喷射或循环往复流的形式,以确保臭氧与废气充分接触,提高反应效率。

3. 尾气处理脱硝反应完成后,产生的硫酸盐和亚硝酸盐会随烟气一同进入尾气处理系统。

尾气处理系统通常包括除尘装置和吸收塔。

除尘装置用于去除烟气中的固体颗粒物,吸收塔则用于将硫酸盐和亚硝酸盐捕集并形成稳定的产品。

应用场景臭氧脱硝技术适用于燃煤和燃油等工业锅炉、电厂和工业炉窑等不同场景的烟气治理。

臭氧脱硝技术具有高效、节能、环保等优点,有效地减少了大气环境中的酸雨和光化学烟雾的生成,提高了环境空气质量。

结论臭氧脱硝技术是一种常用的空气污染物控制技术,通过化学反应将烟气中的硫酸盐和亚硝酸盐转变为稳定的产品,并通过尾气处理系统进行排放。

该技术适用于不同场景的烟气治理,具有高效、节能、环保等优点。

臭氧同时脱硫脱硝技术介绍

臭氧同时脱硫脱硝技术介绍

臭氧同时脱硫脱硝技术介绍摘要:对利用臭氧同时脱硫脱硝技术进行了综述,分析了臭氧对NOx的脱除机理。

臭氧同时脱硫脱硝技术具有明显的一体化脱除特性,但臭氧的发生费用却制约了它的应用。

介绍了目前国外在工程上应用的低温氧化技术(LoTOx),分析了其脱除效果及优缺点。

煤炭作为主要能源物,其燃烧过程排放的SO2、NOx等污染物的总量很大,会造成严重的大气污染,危害人类健康。

对SO2的控制,目前较为成熟的技术是石灰石—石膏法,脱除效率可达95%以上。

此外还有炉内喷钙脱硫、电子束法脱硫等技术。

对NOx的控制分为两类,一类是控制燃煤过程中NOx的生成,主要有低氧燃烧法、两段燃烧法和烟气再循环法等。

另一类是通过物理化学方法进行脱除,主要有催化、吸收、吸附、放电等。

其中广泛应用的是选择性催化还原法(SCR),脱除效率达90%以上。

随着国家对火电厂污染物排放的要求越来越严格,同时脱硫脱硝已成为烟气污染物控制技术的发展趋势。

目前国内外广泛使用的是湿式烟气脱硫和NH3选择催化还原技术脱硝的组合。

该技术的脱硫脱硝效率虽然高,但是投资和运行成本昂贵。

其他的脱硫脱硝技术还包括等离子体法、催化法、吸附法等,但只有少数进入生产应用。

烟气中NOx的主要组成是NO(占95%),NO难溶于水,而高价态的NO2、N2O5等可溶于水生成HNO2和HNO3,溶解能力大大提高,从而可与后期的SO2同时吸收,达到同时脱硫脱硝的目的。

臭氧作为一种清洁的强氧化剂,可以快速有效地将NO氧化到高价态。

电子束法和脉冲电晕法虽然能够产生强氧化剂物质,如·OH、·HO2等,但工作环境恶劣,自由基存活时间非常短,能耗较高。

O3的生存周期相对较长,将少量氧气或空气电离后产生O3,然后送入烟气中,可显著降低能耗。

目前利用臭氧进行脱硫脱硝在国外已有工程应用实例,在我国还处于探索阶段。

1 臭氧脱硝机理臭氧的氧化能力极强,从下表可知,臭氧的氧化还原电位仅次于氟,比过氧化氢、高锰酸钾等都高。

臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝

臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝
Key words:ozone oxidation;pollution;flue gas;simultaneous removal of SO2 an d N Ox;sodium thiosulfate; absorption
2015—10.12收到 初稿 ,2015—11-25收到修 改稿 。 联系 人 :朱燕 群 。第一作 者 :杨业 (1993一 ),男 ,硕 士研 究生 。 基金项 目: 国家 重 点基础 研 究发展 计划 项 目 (2O12cB2l49O6);国 家 杰 出青年 科学 基金 项 目 (51422605)。
Reeeived date:2015-10.12.
Corresponding author:ZHU Y ̄ qun ,yqzbu@zju.edu.cn
Foundation item:supported by the National Basic Research Program of China(2012CB214906)and t he National Science Fund for Distinguished You ng Scholars ofChina f51422605).
Abstract:Ozone oxidation and Na2S203 solution spray was combined to remove 802 and NOx simulta n eously. This coupling was studied experim entally.The results show that:502 a n d NOx can be eliminated simultaneously; at O3/NO m ole ratio 1.1— 1.2,the N0 rem oval efi ciency increases with increasing concentration of Na2S203; existence of 802 can facilitate removal ofNOx;the N rem oval ef i ciency reaches 70% with lOW emission of SO2 at Na2S203 concentration 2.0% an d at 502 gas concentration 1030 m g ·m- .Furthermore.the NOx rem oval efi ciency is enhanced with the pH of solution from 2.5 to 9.and reaches 75% at pH 9.The result of 3 hours running experiment indicates that N Ox a n d 802 can be removed ef i ciently and simultaneously and the stable and continuous operation iS possible.because sodium t hiosulfate Ca n facilitate rem oval of NOx and the NOx iS domina ntly convened into N0j.This process could be an eficient approach for eliminating 802 and NOx simulta n eously and could have potential industrial application.

臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝实验研究

臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝实验研究

臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝实验研究通过臭氧氧化结合硫代硫酸钠溶液模拟烟气同时脱硫脱硝的试验。

研究发现,通过采用臭氧氧化结合硫代硫酸钠溶液湿法喷淋能够同时脱除NOx与SO2;同时,控制臭氧与一氧化氮摩尔比在1.1-1.2时,增加硫代硫酸钠溶液浓度能够提高NOx的脱除率,同时达到SO2较高的脱除率,达到稳定的同时脱硫脱硝。

标签:臭氧氧化;污染;同时脱硫脱硝;硫代硫酸钠在工业燃料燃烧过程中,经常会释放大量的危害物质,对人体与环境造成巨大的伤害,包括SO2、Hg、PM、NOx等,最常见的污染物就是二氧化硫和氧化氮类物质。

现阶段国家对大气污染物排放制定了严苛的标准,为了降低氧化氮类污染物质的排放,一般需要进行燃烧后的烟气脱硝,以此来降低排放物中的NOx 浓度。

常用的脱硝技术有低氮燃烧、烟气脱硝,目前较多使用的烟气脱硝技术包括非催化还原法、选择性催化还原法等。

臭氧脱硝、臭氧脱硫技术作为一种新兴技术,能够促进烟气的同时脱硫脱硝,在喷淋塔浆液中加入添加剂能够进一步促进脱硝。

1 试验设计本实验设计包括了模拟烟气的配气系统、进行臭氧与一氧化氮氧化反应的反应系统、模拟喷淋塔进行污染物脱除的吸收系统、对烟气采样分析的分析系统。

其中模拟烟气的配气系统包含了N2、O2、CO2等气体,NO与SO2由浓度为5%的钢瓶气提供。

当氧气流经臭氧放生器时,产生相应浓度的臭氧,之后经过质量流量计进入反应系统。

主要模拟烟气成分如表1所示。

本实验分别选取三个浓度的SO2,即0.280mg·m-3、1030mg·m-3。

反应系统中,一氧化氮、氮气、二氧化硫與二氧化碳混合之后分别与臭氧进行气相氧化,气体的总流量为5L·min-1,反应温度为150℃。

实验表明,臭氧在200℃以下的环境里分解速度比较慢,这一温度下对臭氧氧化NO没有影响。

随后通过温度控制达到实验目标温度。

在吸收系统中,喷淋液滴的粒径约为50μm,单层喷淋液气比为42L·m-3,以此模拟烟气在喷淋塔中的停留时间为6s。

氨水——臭氧组合高效脱硫脱硝技术方案

氨水——臭氧组合高效脱硫脱硝技术方案

一、45t/h锅炉烟气现场调查1、燃煤质量状况标识符号指标名称单位实际指标备注R 燃煤发热量大卡4500A 煤中灰分% 25S 燃煤全硫分%3。

8C 燃煤中碳含量% 80O 燃煤中氧含量% 6H 燃煤中氢含量% 4W 燃煤中水分%102、锅炉烟气排放现状3、锅炉烟气中污染物排放现状4、锅炉烟气脱除效率难点分析5、建议与商权《关于重点工业企业实施降氮脱硝工作的通告》穂府(2009)26号中规定:“60t/h以下的锅炉实施降氮脱硝不低于40%".根据这一规定,本项目的最终排放指标可否定为不低于260mg/Nm3。

(应按广东省标准不高于200mg/Nm3)二、烟气脱硫脱硝技术方案选择1、业主的要求该公司地处广州增城市沙埔镇,是一家纺织、皮革的企业,是经国家相关部门批准注册的企业。

该公司自备电厂的45t/h燃煤锅炉属于(穂府(2009)26号)《通告》第三条第三款所要求的实施降氮脱硝的整改范畴。

该锅炉建于2007年8月,属于为高倍循环流化床锅炉,锅炉出力为45蒸吨/时。

备用锅炉为低倍循环流化床锅炉,锅炉出力为25蒸吨/时,两台锅炉在空气预热器后都配备了静电除尘设备.三年多来,设备运转良好。

有效地保证了企业对电力负荷的需求。

为了确保公司生产经营正常进行,业主提出了如下要求:①在实施锅炉烟气降氮脱硝脱硫技改工程时不得影响锅炉的正常运转;②建造脱硫脱硝设施应设立在引风机以下区段,确保原有锅炉系统不受腐蚀;③建成的脱硫脱硝系统的运行效果必须达到环保局提出的所有控制要求。

2、我们选择脱硫脱硝技术方案的原则思考由于现代先进的脱硫脱硝技术都不可能对烟气中的氮和硫实施100%的脱除,所以经净化后的烟气中仍然还会残留微量的氮和硫,与水化合后形成酸性液,对后续管道和设备造成腐蚀.因此,新配置的脱硫脱硝设备应是一个相对独立的运行体系,我们计划采用压入式将烟气送进脱硫脱硝系统,烟气被净化后直接送入烟囱。

●不在静电除尘器以上的烟道中附加任何脱硝设施。

臭氧液相氧化同时脱硫脱硝实验研究

臭氧液相氧化同时脱硫脱硝实验研究

臭氧液相氧化同时脱硫脱硝实验研究【摘要】本文首先介绍了同时脱硫脱硝技术的优势,然后介绍了实验系统与方法,最后介绍了结果与讨论。

【关键词】臭氧液相氧化;同时脱硫脱硝;实验研究前言我国的能源结构主要以煤炭为主,燃煤过程中产生大量的SO2、NOx等大气污染物,造成了严重的大气污染和经济损失。

臭氧液相氧化同时脱硫脱硝技术能够有效的对污染物进行去除。

1 同时脱硫脱硝技术的优势同时脱硫脱硝技术能在同一套系统内实现脱硫与脱硝,具有以下特点:①设备精简,占地面积小。

②基建投资少,生产成本低。

③自动化程度高,管理方便。

2 实验系统与方法采用自组装实验系统进行实验,实验系统如图1所示.O3发生器为北京同林3S-A5型空气源装置.液相反应器为自制的200mL玻璃容器,容器内放O3分布筛板和烟气分布筛板.两者均为玻璃砂芯漏斗,粒径为30~50μm.O3分布筛板距反应器底部1cm,烟气鼓泡分布筛板器距反应器底部2cm.为减小液体压强对气体压强的影响,反应吸收液配制为150mL.在液相反应器进气口和出气口连接旁路系统测定气体的初始浓度,以及反应结束后对气体浓度进行回测.反应后的烟气经碱液吸收后通过干燥瓶进入烟气分析仪.在线测量烟气分析仪为德国进口MRUV ARIO增强型烟气分析仪,可以测定烟气温度、O2、NOx和SO2的初始浓度等以及反应完全后的尾气成分及浓度.实验过程如下:O2、NOx和SO2等气体经流量计后进入混气瓶,然后送入鼓泡反应器内的模拟烟气分布筛板.空气经O3发生器放电产生O3,经流量计送入反应器内的O3分布筛板,O3浓度通过碘量法进行测定.实验中维持O3以及模拟烟气总流量在1Lmin.尾气成分由烟气分析仪在线测量,测量结果以5s次的采样频率在线记录储存于电脑中.图1 实验系统示意图3 结果与讨论3.1 O3量对NO脱除率的影响[O3]/[NO]摩尔比是指烟气中加入O3的摩尔数与烟气中NO的摩尔数之比,反映了O3加入量相对于NO量的高低.调节O3发生器产生不同的O3浓度,使摩尔比O3/NO从0.05变化到1.1.反应吸收液为去离子水.常温纯水条件下,O3的分解速度较慢,可忽略不计.实验结果如图2所示图2 [O3]/[NO]对NO脱除率的影响NOx的液相氧化首先是气体在溶液中的溶解,该吸收符合亨利定律.由于NO 在水中的溶解度很低(25℃下亨利常数为1.94×10-8molL·Pa),并且很难通过常规方法显著提高溶解度.所以使NO转化为容易吸收的形态是脱硝的关键.液相脱硝过程主要包括:①NO的吸收;②液相氧化NO为高价态氮氧化物;③气相部分氧化NO为易溶解的高价态氮氧化物[12].液相中O3可与NO发生如下5个主要反应.这些反应的反应速率都很快,生成易溶于水的NO2、NO3等,并破坏了NO 的溶解平衡式(1),从而促进NO的溶解和吸收氧化,即过程①和②.此外气相中O3也和NO发生反应,即过程③.所以图2显示出[O3][NO]摩尔比对NO氧化有明显影响,[O3][NO]=0.5时,有78.5%的NO被氧化,而当[O3]/[NO]=1.1(理论化学计量比为1)时,脱除率接近90%.可见O3同NO的反应是快速不可逆反应.在O3过量的情况下,NO氧化率接近但不能达到100%,主要是因为O3除氧化NO外,还与其它NOx进行反应,有一定的消耗.3.2 pH值对脱除NO的影响保持[O3]/[NO]摩尔比约为0.84,研究pH值对脱除NO的影响,结果见图3.pH值对NO脱除率的影响并不显著,只在一定范围内波动.这可能是因为NO 的溶解度随离子浓度的增大而减小,并且在一定的离子浓度下,NO的溶解度在pH值2~13范围内是常数.此外,虽然O3在水中的分解速度随pH的提高而加快,但是由于有不断的O3补充,所以参与反应的O3充足,不影响对NO的氧化.常规WFGD系统的pH值范围一般控制在5~6之间,因此,实际应用时可控制pH值在这一范围.pH值应用钙基吸收剂(石灰石或氢氧化钙)调节,如附近有氨源,也可以采用氨水来调节.图3 pH值对NO脱除率的影响3.3 温度对脱除NO的影响将吸收器置于恒温水浴槽中,调节水浴槽温度.保持[O3]/[NO]摩尔比约为0.84,研究温度对NO脱除率的影响,具体见图4.吸收液温度对脱硝的影响不是很明显,较高的温度并没有使脱硝率有明显下降.一般来说,NO的溶解度随温度的上升而减小,但反应速度随温度升高而增大,这种相反的影响有可能相互抵消.而且虽然随着温度的升高,O3会发生分解,但是由于O3对NO的氧化是快速不可逆的,该速度比O3的分解速度快很多,所以温度对NO的氧化效率影响甚微.目前典型湿式石灰石法烟气脱硫中,浆液温度为50℃左右,O3可以运用于此温度环境中.图4 温度对NO脱除率的影响3.4 [O3]/[SO2]摩尔比对脱硫率的影响由于锅炉烟气中SO2的含量较高,而SO2也可以与O3发生反应生成更易溶于水的SO3.如果SO2与O3的反应程度较高,一方面会促进后期湿法洗涤的效率,但另一方面SO2会与NO产生竞争,使得O3的消耗加速.所以从节省能耗的角度出发,希望SO2与O3的反应程度越低越好.模拟烟气中只采用SO2来考察O3对SO2氧化的影响.采用的吸收液是去离子水,调节O3发生器产生的O3浓度,使[O3]/[SO2]摩尔比从0~1.0.如图5所示,随着施加O3量的增加,反应器出口SO2的浓度降低.说明O3对SO2具有一定的氧化作用,促进了SO2的吸收.图5 [O3]/[SO2]摩尔比对脱除率的影响3.5 结合尾部吸收同时脱除NOSO2在上述条件实验的基础上,进行了臭氧液相氧化尾部吸收同时脱除NOSO2实验.采用10%的Ca(OH)2作为吸收液,反应温度为35℃,NO和SO2的初始浓度均为950mgm3.实验结果见图6,从中可见SO2在洗涤后脱除效率达到100%,由于Ca(OH)2与SO2可发生化学反应,且Ca(OH)2不是循环利用,所以SO2的吸收比较彻底.NO的脱除率随着O3量的增加而上升,当[O3][NO]=0.84时,NO的脱除效率可达到81.5%,这主要是因为NO不断地被氧化成为NO2等更易溶于水的高价态NOx.相比图2,在同一摩尔比的情况下,图6的NO脱除效率比较低,这主要是因为SO2会与一部分O3反应,造成O3消耗,引起NO脱除率的略微下降,但总体上NO的脱除效率仍然较高.NO脱除率的微降说明SO2的存在起到竞争氧化的作用,但由于O3对NO更加敏感,再加上二者同时存在时,O3几乎是先氧化NO后氧化SO2,所以竞争氧化影响很小.常规WFGD中,喷淋过程可显著降低SO2的浓度,此外有研究表明NO和NO2也可氧化HSO-3和SO2-3为SO2-4,加速液相SO2的吸收转化,使得它对O3氧化NO的影响更小,剩余的O3将HSO-3、HNO2及HNO2和HSO-3反应生成的氮硫氧化物和羟胺磺酸盐化合物最终氧化为HNO3和H2SO4,可见采用O3结合尾部洗涤的方法可以同时高效脱除NOx和SO2,从而实现脱硫脱硝一体化.图6 结合尾部吸收后NO/SO2的同时脱除率(t=35℃)4 结束语我国深刻的国情必然导致了煤矿在燃烧过程中生成的大量有害气体。

臭氧法脱硝技术方案

臭氧法脱硝技术方案

臭氧法脱硝技术方案Last revision on 21 December 2020xxxx有限公司2×35t链条炉臭氧脱硝改造项目技术规范书目录一、项目概况:Xxx公司现有2台35t/h链条炉,无锡华光锅炉厂产品, 2011年建成投产,锅炉现配套布袋除尘器, 2套双碱法脱硫,未配套脱硝系统。

原始NOx排放浓度约300mg/Nm3。

脱硝改造。

根据现场环保设施运行情况结合类似项目经验,本次超低排放采用臭氧氧化法脱硝工艺。

二、臭氧脱硝技术要求项目建设的规模项目建设规模为2×35t/h链条锅炉脱硝工程。

脱硝系统总技术要求(1)脱硝工艺要做到技术成熟、设备运行可靠;(2)根据工程的实际情况尽量减少脱硝装置的建设投资;(3)脱硝装置应布置合理;(4)脱硝剂要有稳定可靠的来源;(5)脱硝工艺氧化剂、水和能源等消耗少,尽量减少运行费用;三、本项目脱硝方案脱硝技术浅析一、NO的生成机理X燃煤过程中会产生氮氧化物,主要有一氧化氮与二氧化氮,这两种统称做氮氧化物(NOx),燃煤过程中NOx的生成与排放量和煤燃烧的方式,尤其是温度与过量空气量等条件相关。

燃煤过程中形成氮氧化物的途径主要有三个:热力型氮氧化物、快速型氮氧化物、燃料型氮氧化物以上三种类型的NOx,他们各自的生成量与煤的温度有关,在电厂机组中燃料型氮氧化物是最多的,占到氮氧化物总量的60%到80%,热力型氮氧化物其次,快速型氮氧化物最少。

二、脱硝方法选择当前控制氮氧化物排放的方法可以分为三种,第一种是低氮氧化物燃烧技术,这种方法主要是通过技术手段,来抑制或者还原在燃烧过程中产生的氮氧化物,来降低氮氧化物的排放;第二种是炉膛喷射脱硝方法;第三种是烟气净化方法。

烟气净化方法包括干法脱氮技术和湿法脱氮技术。

下面将对他们分别进行介绍。

:1、低氮燃烧技术由氮氧化物形成的条件可以知道,对氮氧化物的形成起决定性作用的为燃烧区域温度和过量空气系数。

所以,低氮氧化物燃烧技术是通过对燃烧区域的温度与空气量进行控制,达到阻止氮氧化物生成从而降低排放的目的。

脱硫脱硝技术介绍

脱硫脱硝技术介绍

脱硫脱硝技术介绍1.选择性低温氧化技术(LoTOx)+EDV(Electro-Dynamic Venturei)洗涤系统原理:臭氧同时脱硫脱硝主要是利用臭氧的强氧化性将 NO氧化为高价态氮氧化物,然后在洗涤塔内将氮氧化物和二氧化硫同时吸收转化为溶于水的物质,达到脱除的目的。

效果:在典型烟气温度下,臭氧对NO的氧化效率可达84%以上,结合尾部湿法洗涤,脱硫率近100%,脱硝效率也在O3/NO摩尔比为0.9时达到86.27%。

也有研究将臭氧通进烟气中对NO进行氧化,然后采用Na2S和NaOH溶液进行吸收,终极将NOx转化为N2,NOx的往除率高达 95%,SO2往除率约为100%。

但是吸收液消耗比较大。

影响因素:主要有摩尔比、反应温度、反应时间、吸收液性质等1)在 0.9≤O3/NO<1的情况下,脱硝率可达到85%以上,有的甚至几乎达到100%。

2)温度控制在150℃3)臭氧在烟气中的停留时间只要能够保证氧化反应的完成即可.关键反应的反应平衡在很短时间内即可达到,不需要较长的臭氧停留时间。

4)常见的吸收液有Ca(OH)2、NaOH等碱液,用水吸扫尾气时,NO和SO2的脱除效率分别达到86.27%和100%。

用Na2S和NaOH溶液作为吸收剂,NOx的往除率高达95%,SO2往除率约为100%,但存在吸收液消耗量大的问题。

优点:较高的NOX脱除率,典型的脱除范围为70%~90%,甚至可达到95%,并且可在不同的NOX浓度和NO、NO2的比例下保持高效率;由于未与NOX反应的O3会在洗涤器内被除往,所以不存在类似SCR中O3的泄漏题目;除以上优点外,该技术应用中 SO2和CO的存在不影响NOX的往除,而LoTOx也不影响其他污染物控制技术,它不存在堵塞、氨泄漏,运行费用低。

2.半干法烟气脱硫技术主要介绍旋转喷雾干燥法。

该法是美国和丹麦联合研制出的工艺。

该法与烟气脱硫工艺相比,具有设备简单,投资和运行费用低,占地面积小等特点,而且烟气脱硫率达75%—90%。

臭氧脱硫脱硝技术报告

臭氧脱硫脱硝技术报告

臭氧氧化同时脱硫脱硝技术一、背景近年来,随着我国工业经济的迅速发展,能源消费的增长也日益加快,伴随而来的是氮氧化物排放量急速上升,排放到大气中的氮氧化物在阳光中的紫外线照射下会发生光化学反应,产生一种光化学烟雾,它是一种看似透明闻起来却呛人的环境杀手。

同时,氮氧化物也是导致酸雨的元凶之一,它还参与臭氧层的破坏,氧化亚氮在高空同温层中会破坏臭氧层,使较多的紫外线辐射到地面,增加皮肤癌的发病率。

所以,大气中氮氧化物的控制和治理已被世界各国所重视。

二、臭氧氧化脱硫脱硝的类型及影响因素臭氧脱硫脱硝总结起来有两类:一类是气相氧化结合尾部吸收;一类是液相氧化。

臭氧作为一种强氧化剂,可以容易的将NO氧化成可溶于水生成HNO2和HNO3的NO2、N2O3、N2O5等高价态氮氧化物。

然后采用NaOH溶液进行吸收,最终将NO x转化为N2达到脱除的目的,NO x的去除率高达95%。

低温条件下,O3与NO之间的关键反应如下:NO+O3→NO2+O2(1)NO2+O3→NO3+O2(2)NO3+NO2→N2O5(3)NO+O+M→NO2+M (4)NO2+O→NO3(5)利用臭氧同时脱硫脱硝的影响因素主要有摩尔比、反应温度、反应时间、吸收液性质等,这些因素对脱硝和脱硫效率都有不同程度的影响。

(1)摩尔比摩尔比(O3/NO)是指O3与NO之间摩尔数的比值,它反映了臭氧量相对于NO 的高低。

NO的氧化率随O3/NO的升高直线上升。

目前已有的研究中,在0.9≤O3/NO <1的情况下,脱硝率可达到85%以上,有的甚至几乎达到100%。

根据式(1)可见,O3与NO完全反应的摩尔比理论值为1,但在实际中,由于其他物质的干扰,可发生一系列其他反应,如式(2)~(5),使得O3不能100%与NO进行反应。

(2)温度由于臭氧的生存周期关系到脱硫脱硝效率的高低,所以考察臭氧对温度的敏感性具有重要意义。

在150℃的低温条件下,臭氧的分解率不高,但随着温度增加到250℃甚至更高时,臭氧分解速度明显加快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

臭氧同时脱硫脱硝技术摘要:对利用臭氧同时脱硫脱硝技术进行了综述,分析了臭氧对NOx的脱除机理。

臭氧同时脱硫脱硝技术具有明显的一体化脱除特性,但臭氧的发生用度却制约了它的应用。

介绍了目前国外在工程上应用的低温氧化技术'>低温氧化技术(LoTOx),分析了其脱除效果及优缺点。

关键词:臭氧,同时脱硫脱硝,低温氧化技术'>低温氧化技术煤炭作为主要能源物,其燃烧过程排放的SO2、NOx等污染物的总量很大,会造成严重的大气污染,危害人类健康。

对SO2的控制,目前较为成熟的技术是石灰石-石膏法,脱除效率可达95%以上。

此外还有炉内喷钙脱硫、电子束法脱硫等技术。

对NOx的控制分为两类,一类是控制燃煤过程中NOx的天生,主要有低氧燃烧法、两段燃烧法和烟气再循环法等。

另一类是通过物理化学方法进行脱除,主要有催化、吸收、吸附、放电等。

其中广泛应用的是选择性催化还原法(SCR),脱除效率达90%以上。

随着国家对火电厂污染物排放的要求越来越严格,同时脱硫脱硝已成为烟气污染物控制技术的发展趋势。

目前国内外广泛使用的是湿式烟气脱硫和NH3选择催化还原技术脱硝的组合。

该技术的脱硫脱硝效率固然高,但是投资和运行本钱昂贵。

其他的脱硫脱硝技术还包括等离子体法、催化法、吸附法等,但只有少数进进生产应用。

烟气中NOx的主要组成是NO(占95%),NO难溶于水,而高价态的NO2、N2O5等可溶于水天生HNO2和HNO3,溶解能力大大进步,从而可与后期的SO2同时吸收,达到同时脱硫脱硝的目的。

臭氧作为一种清洁的强氧化剂,可以快速有效地将NO氧化到高价态。

电子束法和脉冲电晕法固然能够产生强氧化剂物质,如·OH、·HO2等,但工作环境恶劣,自由基存活时间非常短,能耗较高。

O3的生存周期相对较长,将少量氧气或空气电离后产生O3,然后送进烟气中,可明显降低能耗。

目前利用臭氧进行脱硫脱硝在国外已有工程应用实例,在我国还处于探索阶段。

1 臭氧脱硝机理臭氧的氧化能力极强,从下表可知,臭氧的氧化还原电位仅次于氟,比过氧化氢、高锰酸钾等都高。

此外,臭氧的反应产物是氧气,所以它是一种高效清洁的强氧化剂。

臭氧脱硝的原理在于臭氧可以将难溶于水的NO氧化成易溶于水的NO2、N2O3、N2O5等高价态氮氧化物。

浙江大学王智化等人对臭氧同时脱硫脱硝过程中NO的氧化机理进行了研究,构建出O3与NOX之间65步具体的化学反应机理,该机理比较复杂。

在实际试验中,可根据低温条件下臭氧与NO的关键反应进行研究。

低温条件下,O3与NO之间的关键反应如下:NO+O3→NO2+O2 (1)NO2+O3→NO3+O2 (2)NO3+NO2→N2O5 (3)NO+O+M→NO2+M (4)NO2+O→NO3 (5)2 臭氧同时脱硫脱硝研究概况臭氧同时脱硫脱硝主要是利用臭氧的强氧化性将NO氧化为高价态氮氧化物,然后在洗涤塔内将氮氧化物和二氧化硫同时吸收转化为溶于水的物质,达到脱除的目的。

浙江大学王智化等对采用臭氧氧化技术同时脱硫脱硝进行了试验研究,结果表明在典型烟气温度下,臭氧对NO的氧化效率可达84%以上,结合尾部湿法洗涤,脱硫率近100%,脱硝效率也在O3/NO摩尔比为0.9时达到86.27%。

Young Sun Mok 和Heon-Ju Lee将臭氧通进烟气中对NO进行氧化,然后采用Na2S和NaOH溶液进行吸收,终极将NOx转化为N2,NOx的往除率高达95%,SO2往除率约为100%。

Zhihua Wang等将O3注进模拟烟气进行脱除SO2、NOx以及Hg的研究,然后采用碱吸收塔对烟气进行洗涤,结果表明NO和Hg0的脱除率与O3的注进量有关,当O3加进量为200ppm时,NO的脱除效率可达到85%,此工艺对NO和SO2的脱除率最高可分别达到97%和100%。

此外Sirpa K.Nelo等在臭氧氧化的基础上,用H2O2进行吸收,也得到了较好的结果。

BOC公司将其专利低温氧化技术(LoTOx)授权给Belco(贝尔哥)公司,把这种NOx 控制技术同Belco公司的EDV湿式洗涤器结合起来应用于石油精炼厂,该系统可以同时脱除烟气中的NOx、SO2和颗粒物。

3 臭氧同时脱硫脱硝的主要影响因素利用臭氧同时脱硫脱硝的影响因素主要有摩尔比、反应温度、反应时间、吸收液性质等,这些因素对脱硝和脱硫效率都有不同程度的影响。

3.1 摩尔比摩尔比(O3/NO)是指O3与NO之间摩尔数的比值,它反映了臭氧量相对于一氧化氮量的高低。

NO的氧化率随O3/NO的升高直线上升。

目前已有的研究中,在0.9≤O3/NO<1的情况下,脱硝率可达到85%以上,有的甚至几乎达到100%。

根据式(1)可见,O3与NO完全反应的摩尔比理论值为1,但在实际中,由于其他物质的干扰,可发生一系列其他反应,如式(2)~(5),使得O3不能100%与NO进行反应。

3.2 温度由于臭氧的生存周期关系到脱硫脱硝效率的高低,所以考察臭氧对温度的敏感性具有重要意义。

王智化等人在对臭氧的热分解特性的研究中得出在150℃的低温条件下,臭氧的分解率不高,但随着温度增加到250℃甚至更高时,臭氧分解速度明显加快。

Zhihua Wang等人也得出在25℃时臭氧的分解率只有0.5%,当温度高于200℃时,分解率明显增加。

这些结果对研究臭氧在烟气中的生存时间及氧化反应时间具有重要意义。

3.3 反应时间臭氧在烟气中的停留时间只要能够保证氧化反应的完成即可,在ISHWAR K. PURI的研究中,反应时间在1~104s之间对反应器出口的NO摩尔数没有什么影响,而且增加停留时间并不能增大NO的脱除率。

这主要是由于关键反应的反应平衡在很短时间内即可达到,不需要较长的臭氧停留时间。

3.4 吸收液性质利用臭氧将NO氧化为高价态的氮氧化物后,需要进一步地吸收。

常见的吸收液有Ca(OH)2、NaOH等碱液。

不同的吸收剂产生的脱除效果会有一定的差异。

例如王智化等人在利用水吸扫尾气时,NO和SO2的脱除效率分别达到86.27%和100%。

这是利用气体在水中的溶解度进行吸收,也有试验利用吸收液将高价氮氧化物还原成为N2后直接排进大气中,如Young Sun Mok和Heon-Ju Lee采用Na2S和NaOH溶液作为吸收剂,NOx的往除率高达95%,SO2往除率约为100%,但存在吸收液消耗量大的题目。

4 臭氧氧化技术的工程应用美国BOC公司开发的LoTOx是一种低温氧化技术,将氧/臭氧混合气注进再生器烟道,将NOX氧化成高价态且易溶于水的N2O3和N2O5,然后通过洗涤形成HNO3。

主要的反应如下:NO+O3→NO2+O2 (6)2NO2+O3→N2O5+O2 (7)N2O5+H2O→2HNO3 (8)烟气处理流程见下图。

采用LoTOx技术可得到较高的NOX脱除率,典型的脱除范围为70%~90%,甚至可达到95%,并且可在不同的NOX浓度和NO、NO2的比例下保持高效率;由于未与NOX反应的O3会在洗涤器内被除往,所以不存在类似SCR中O3的泄漏题目;除以上优点外,该技术应用中SO2和CO的存在不影响NOX的往除,而LoTOx也不影响其他污染物控制技术。

BELCO 公司将LoTOx技术与自己研发的EDV(Electro-Dynamic Venturei)洗涤系统结合形成一体化的脱硫脱硝系统,用于石油精炼厂中加热器、锅炉等的废气治理。

经氧化后天生的N2O5通过EDV洗涤器很轻易与烟气中水分发生反应天生HNO3,然后再同洗涤剂天生盐类,最后通过洗涤清理排出系统外。

具体的化学反应如下:N2O5+H2O→2HNO3 (9)HNO3+NaOH→NaNO3+H2O (10)LoTOx-EDV系统可使NOx排放减少到10μg/g以下,可满足最严格的减排要求。

并且不会使SO2转化为SO3,此外,烟气中的颗粒物和硫化物对臭氧消耗或NOX脱除效率的影响并不明显,该系统不仅可以高效往除氮氧化物,而且对二氧化硫和粉尘等颗粒物也有明显的往除效果。

此外,它不存在堵塞、氨泄漏等题目,是一种应用远景广阔的脱硫脱硝技术。

根据M A R A M A 2 0 0 7 评估数据报告,在保证NOX脱除率为80%~95%的情况下,LoTOx运行用度为1700~1950美元/吨NOX,比SCR的运行用度2364~2458美元/吨NOX 要低。

目前LoTOx技术已有应用实例,如大西洋中部的某石油精炼厂采用该技术进行NOX 的脱除,Ohio地区的1台25MW燃煤锅炉采用该技术进行了工程示范,NOX往除率可达85%~90%;在California地区,某利用LoTOx技术的熔铅炉可往除80%的NOX。

5 结语(1)随着环保要求的日益严格,传统的烟气脱硫脱硝工艺将不能满足严格的减排要求,此外,传统工艺还存在设备投资高、占地面积大、系统复杂等缺点。

因此开发工艺简单、可靠的脱硫脱硝工艺具有重要意义。

(2)采用臭氧的高级氧化技术不仅对NOX具有良好的脱除效果,而且对烟气中的其他有害污染物,比如重金属汞也有一定的往除能力。

(3)影响臭氧同时脱硫脱硝的因素主要有摩尔比、反应温度、反应时间、吸收液性质等。

(4)LoTOx的工程应用表明该技术在国外已进进产业化应用阶段,但现阶段臭氧的制备用度较高,制约了该技术的推广使用,随着臭氧发生装置的逐步改进,臭氧氧化同时脱硫脱硝技术必将会有更加广泛的应用远景。

参考文献:[1] 雨景梅,张辉,刘东明. 燃煤电厂烟气脱硫技术发展概况[J].锅炉制造,2008(1):40-43.[2] 赵卫星,肖艳云,林亲铁,岳建雄,廖新娜.烟气脱硝技术研究进展[J].广东化工,2007(5):59-61.[3] 魏林生,周俊虎,王智化,岑可法.臭氧氧化结合化学吸收同时脱硫脱硝的研究[J].动力工程,2008(1):112-116.[4] 王旭伟,鄢晓忠,陈彦菲,等.国内外燃煤锅炉烟气同时脱硫脱硝技术的研究进展[J].电站系统工程,2007(4):5-7.。

相关文档
最新文档