臭氧法脱硝技术方案

合集下载

臭氧法脱硝技术方案

臭氧法脱硝技术方案

臭氧法脱硝技术方案1000字臭氧法脱硝技术是一种将臭氧作为氧化剂进行脱硝的技术。

其原理是将臭氧气体通过反应器中的催化剂床层,使硝化物(主要为NOx)被氧化为氮气(N2)和水(H2O)等中性物质,从而达到减少空气中氮氧化物含量的目的。

以下是臭氧法脱硝技术方案的详细介绍:技术流程:臭氧法脱硝技术的基本流程包括臭氧制备系统、脱硝反应器和尾气处理系统三部分。

其流程如下:1.臭氧制备系统将气体中的氧(常用纯氧气体)与空气按照一定比例混合,通过臭氧发生器产生臭氧气体。

2.脱硝反应器将发生的臭氧气体与带有硝化物的尾气进行反应。

3.反应结束后,剩余的臭氧气体通过尾气处理系统进一步处理,以达到环保标准的排放要求。

主要技术要点:1.臭氧制备系统:臭氧制备系统一般采用等离子体离子化技术,将氧分子分解成臭氧分子。

该体系中臭氧的制备速率与臭氧分布均匀性是比较重要的技术指标。

制备臭氧的浓度一般为3~4%。

2.反应过程:反应器中的催化剂活性组分必须具有高的选择性和活性,以保证硝化物和臭氧之间的反应速率足够快和极大化。

合适的催化剂活性组分应该满足以下特征:具有高的活性和选择性;能够承受反应条件的严峻;耐高温,耐强腐蚀,以及酸碱中性等。

催化剂的载体一般采用介孔氧化硅或氯化铝,以及氧化铝一类的中性无机物。

对于粒径的选择,尺寸约为1.0 mm左右时机械强度较好。

3.尾气处理系统:尾气处理系统主要是用来处理剩余的臭氧气体,以满足环保标准的排放要求。

ICR(Inside of control room)是国内常用的尾气处理装置之一。

它采用多级过滤技术,经过筛网过滤和喷淋等处理过程,使气体中的有害成分被彻底清除,从而达到环保要求。

技术优势:1. 高效:臭氧法脱硝技术能够在较短的反应时间内,将NOx快速转化为N2和H2O等中性物质。

臭氧在反应过程中不溶于水,不生成二氧化硫等腐蚀性气体,因此反应器的设备要求较低,且具有较高的脱硝效率。

2. 稳定:臭氧法脱硝技术能够在宽范围的氧气比例下正常运行,且对供应气体的稳定性要求不高,因此运行稳定性较高。

某钢厂脱硝方案臭氧法

某钢厂脱硝方案臭氧法

*钢厂臭氧脱硝方案技术方案------公司2012年4月10日目录1总论21.1工程概述21.2工程概况22脱硝方案32.1设计参数32.2系统烟气流程32.3设计方案33设备材料报价84供货周期85简易工艺流程96效劳与承诺91总论1.1工程概述*钢厂现有烟气温度在换热器后降低至150℃以下,烟气中含有的氮氧化物超标,需要建立脱硝装置去除烟气中的氮氧化物,1.2工程概况1.2.1机组情况主体机组参数如下:2脱硝方案2.1设计参数脱硝装置的设计参数。

表21脱硝装置的设计参数2.2系统烟气流程见流程图2.3设计方案本工程采用臭氧氧化加碱液吸收法。

烟气首先在换热器后排出烟道与臭氧接触,利用臭氧的强氧化特性,将NO氧化成高价态的氮氧化物,再用碱液喷淋吸收,以到达脱硝目的,喷淋塔同时能够洗涤除去大局部二氧化硫及烟尘,可以彻底解决尾气发黄现象。

2.3.1反响原理1〕、臭氧的氧化特性臭氧的氧化能力极强,从下表可知,臭氧的氧化复原电位仅次于氟,比过氧化氢、高锰酸钾等都高。

此外,臭氧的反响产物是氧气,所以它是一种高效清洁的强氧化剂。

臭氧脱硝的原理在于臭氧可以将难溶于水的NO氧化成易溶于水的NO2、N2O3、N2O5等高价态氮氧化物。

2〕、臭氧的化学反响机理臭氧的详细化学反响机理比拟复杂。

在实际运用中,可根据低温条件下臭氧与NO的关键反响进展调试。

低温条件下,O3与NO之间的关键反响如下:NO+O3→NO2+O2〔1〕NO2+O3→NO3+O2〔2〕NO3+NO2→N2O5〔3〕NO+O+M→NO2+M 〔4〕NO2+O→NO3〔5〕3〕、吸收剂化学反响机理常用碱液吸收剂有 NaOH、 Ca(OH) 2、NH4OH等。

用NaOH吸收尾气中氮氧化物的反响如下:2NO2+2NaOH=NaNO2+NaNO3+H2O 〔1〕NO+NO2+2NaOH=2NaNO2+H2O 〔2〕本工程后续建立有双碱法脱硫工程,可利用现有脱硫塔作为脱硝的吸收塔,主要吸收介质为NaOH。

臭氧脱硝方案

臭氧脱硝方案

臭氧脱硝方案随着工业化的不断发展,环境污染成为当今社会所面临的一大挑战。

其中,大气污染是最为突出的问题之一。

臭氧脱硝技术作为一种当前被广泛关注和研究的环境治理方案,为减少大气污染提供了新的希望。

一、臭氧脱硝的原理与依据臭氧脱硝即通过利用臭氧分解大气中的氮氧化物(NOx),达到减少大气中有害气体浓度的目的。

其基本的化学反应方程如下:2NOx + O3 -> N2 + 2O2 + O2通过此反应,臭氧氧化分解了氮氧化物,并最终产生氮气和氧气。

这个过程中,臭氧充当的是氧化剂的角色,而氮氧化物则是被还原的对象。

而反应生成物的氮气和氧气对环境没有任何有害影响,因此这种臭氧脱硝技术被广泛用于环境治理领域。

二、臭氧脱硝技术的应用场景臭氧脱硝技术在不同场景中的应用具有广泛性和灵活性。

以下分别从工厂、交通运输和家庭生活三个方面进行探讨。

1. 工厂排放治理工厂作为重要的源头排放环境污染物,其大气排放一直备受关注。

臭氧脱硝技术可以针对工厂排放的氮氧化物进行治理,使排放气体达到符合环保要求的标准。

工厂常用的臭氧脱硝设备主要包括臭氧发生器和脱硝装置。

臭氧发生器通过电离和瞬时放电的方式产生臭氧,脱硝装置则将臭氧引入氮氧化物排放源,实现氮氧化物的催化分解。

2. 交通运输尾气治理交通运输是城市大气污染的主要源之一。

在交通拥堵的道路上,尾气中的氮氧化物排放量往往较高。

这时,采用臭氧脱硝技术对尾气进行治理,可以有效减少大气中有害气体的浓度。

一种常见的应用方式是在车辆的排气管中设置臭氧发生器,将产生的臭氧与尾气中的氮氧化物进行反应,达到脱硝的目的。

3. 家庭生活空气净化除了工厂和交通运输,家庭生活中也存在着一定的大气污染问题。

例如,燃煤取暖和烹饪产生的氮氧化物排放,对家庭成员身体健康造成潜在威胁。

因此,臭氧脱硝技术也可以应用于家庭生活空气净化中。

通过在室内设置臭氧发生器,对空气中的氮氧化物进行处理,可以改善室内空气质量,减少有害气体对居民的影响。

臭氧脱硝的介绍

臭氧脱硝的介绍

臭氧脱硝的介绍臭氧脱硝是一种重要的氮氧化物治理技术,它可以高效地减少工业排放所带来的氮氧化物对环境的污染。

本文将介绍臭氧脱硝的基本原理、工作机理、工艺流程、优缺点及适用范围等方面的内容。

一、臭氧脱硝的基本原理臭氧脱硝利用臭氧氧化一氧化氮(NO)或氨(NH3),生成亚硝酸和亚硝酸盐或硝酸盐,然后通过一系列反应使其还原为气态氮(N2)和水(H2O)释放出来。

臭氧氧化一氧化氮或氨的反应方程式如下:NO + O3 = NO2 + O2 + ONH3 + O3 = NO + H2O + 2O2亚硝酸/盐和硝酸盐的反应方程式如下:3NO2 + O2 = 2NO + 2NO22NO2 + 2OH- = NO2- + NO3- +H2ONO2- + 2OH- = NO3- + H2ON2 + 2O2 = 2NO22NO + 2OH- = NO2- + H2O2NO2 + 4OH- = 2NO3- + 2H2O这样,臭氧脱硝可以将一氧化氮和氨等氮氧化物转化为更易处理的亚硝酸/盐和硝酸盐,进而进行还原反应,形成氮和水。

该过程所需要的臭氧可以通过电解氧化水产生,也可以通过空气中氧气电离而产生。

二、臭氧脱硝的工作机理臭氧脱硝的工作机理主要分为三个步骤:1. 氮氧化物氧化阶段:臭氧与一氧化氮或氨等氮氧化物接触,臭氧通过氧化作用使其转化为亚硝酸/盐和硝酸盐。

2. 氮氧化物还原阶段:亚硝酸/盐和硝酸盐经过还原反应转化为氮和水,减少氮氧化物对环境的污染。

3. 臭氧再生阶段:通过对使用过的臭氧进行再生,确保臭氧脱硝系统的稳定性和持续作用。

三、臭氧脱硝的工艺流程臭氧脱硝是一种先进的氮氧化物治理技术,其工艺流程主要包括前处理、臭氧反应器、后处理等三个部分。

前处理:通过对氮氧化物的预处理,使各种氮氧化物处于最佳的反应状态。

臭氧反应器:该反应器正常运行条件下获得良好的催化效果,可以将一氧化氮或氨转化为亚硝酸盐和硝酸盐,这些化合物随后通过后处理系统进一步处理,使其发生还原反应,最终转化成无害的氮和水。

臭氧脱硝技术方案

臭氧脱硝技术方案

臭氧脱硝技术方案引言臭氧脱硝技术是一种常用的空气污染物控制技术,可有效去除烟气中的硫酸盐和硝酸盐,减少大气环境中的酸雨和光化学烟雾的生成。

本文将介绍臭氧脱硝技术的原理、工艺流程和应用场景。

技术原理臭氧脱硝技术是一种化学反应法,通过将臭氧注入烟气中,使其与烟气中的二氧化硫和氮氧化物发生反应,生成稳定的硫酸盐和亚硝酸盐。

这些生成物会随烟气一起排出烟囱,并通过烟囱排放到大气中。

臭氧脱硝技术的主要反应方程式如下:2SO2 + O3 → 2SO32NO + O3 → 2NO2技术工艺流程臭氧脱硝技术的主要工艺流程包括臭氧产生、混合反应和尾气处理三个步骤。

1. 臭氧产生臭氧可以通过给氧源加电或者光照等方式产生。

其中常用的方法是通过电解水产生臭氧,其反应方程式如下:2H2O → 4H+ + O2 + 4e^-2H2O + 4e^- → 4OH-2OH- → O2 + 2H2O + 4e^-2. 混合反应在烟气进入脱硝设备之前,臭氧需要与烟气中的二氧化硫和氮氧化物充分混合。

混合的方式可以采用喷射或循环往复流的形式,以确保臭氧与废气充分接触,提高反应效率。

3. 尾气处理脱硝反应完成后,产生的硫酸盐和亚硝酸盐会随烟气一同进入尾气处理系统。

尾气处理系统通常包括除尘装置和吸收塔。

除尘装置用于去除烟气中的固体颗粒物,吸收塔则用于将硫酸盐和亚硝酸盐捕集并形成稳定的产品。

应用场景臭氧脱硝技术适用于燃煤和燃油等工业锅炉、电厂和工业炉窑等不同场景的烟气治理。

臭氧脱硝技术具有高效、节能、环保等优点,有效地减少了大气环境中的酸雨和光化学烟雾的生成,提高了环境空气质量。

结论臭氧脱硝技术是一种常用的空气污染物控制技术,通过化学反应将烟气中的硫酸盐和亚硝酸盐转变为稳定的产品,并通过尾气处理系统进行排放。

该技术适用于不同场景的烟气治理,具有高效、节能、环保等优点。

臭氧脱硝方案

臭氧脱硝方案

臭氧脱硝方案引言在大气污染治理中,脱硝技术是一项重要的措施。

臭氧脱硝方案是一个高效且环保的技术,可以有效地降低氮氧化物(NOx)的排放。

本文将介绍臭氧脱硝的原理、应用和优势。

原理臭氧脱硝采用臭氧气体(O3)作为氧化剂,通过将NOx氧化为氮酸根离子(NO3-)而进行脱硝。

臭氧在反应过程中具有较强的氧化能力,可以迅速将NOx氧化为稳定的氮酸根离子,从而降低大气中的污染物浓度。

臭氧脱硝主要通过以下两个反应来完成:1.2NO + O3 → 2NO2 + O2 :臭氧和氮氧化物之间的反应。

2.NO2 + O3 → NO3- + O2 :氮酸根离子生成反应。

臭氧和氮氧化物的反应是一个自由基链式反应,因此在反应中需要一个合适的条件来控制臭氧的生成和使用,以促进脱硝效果的最大化。

应用臭氧脱硝技术广泛应用于燃煤电厂、工业锅炉、石化厂等高温燃烧过程中的烟气脱硝处理。

其适用于大气中NOx浓度较高的场所,可以显著降低氮氧化物的排放,改善空气质量。

脱硝的关键是在氧化反应中控制好气体的混合比例。

要保证脱硝效果,通常需要通过优化臭氧气体的供给和混合方式,以达到最佳的混合效果。

此外,脱硝设备的选型和设计也是关键因素之一。

优势臭氧脱硝方案相比传统的脱硝技术有以下优势:1.高效环保:臭氧具有较强的氧化能力,可以将NOx迅速氧化成稳定的氮酸根离子,有效降低大气中的污染物浓度。

2.适应性强:臭氧脱硝技术适用于高温燃烧过程中的烟气脱硝处理,适用于不同类型的燃煤电厂、工业锅炉和石化厂。

3.技术成熟:臭氧脱硝技术在实践中得到了广泛应用,已经形成了较为成熟的工程实施经验。

4.无二次污染:臭氧脱硝的主要产物是稳定的氮酸根离子,不会产生二次污染。

结论臭氧脱硝方案是一种高效且环保的技术,可以有效减少大气中的氮氧化物排放。

其原理简单清晰,应用广泛,而且具有高效环保、适应性强、技术成熟和无二次污染等优势。

在大气污染治理中,臭氧脱硝方案将发挥重要的作用,并对改善空气质量起到积极的推动作用。

臭氧氧化脱硝技术介绍

臭氧氧化脱硝技术介绍

臭氧氧化脱硝技术介绍【技术名称】臭氧氧化脱硝技术【技术内容】以臭氧为氧化剂将烟气中不易溶于水的NO氧化成更高价的氮氧化物,然后以相应的吸收液对烟气进行喷淋洗涤,实现烟气的脱硝处理。

本技术脱硝效率高(90%),对烟气温度没有要求,可作为其他脱硝技术的补充,达到深度脱硝。

臭氧氧化吸收脱硝法以臭氧为氧化剂将烟气中不易溶于水的NO氧化成NO2或更高价的氮氧化物,然后以相应的吸收液(水、碱溶液、酸溶液或金属络合物溶液等)对烟气进行喷淋洗涤,使气相中的氮氧化物转移到液相中,实现烟气的脱硝处理。

经过氧化后的烟气在洗涤塔中主要发生如下反应:NO2+H2O→HNO3+NON2O5+H2O→HNO3NO+NO2+2NaOH→2NaNO2+H2O全套臭氧氧化脱硝工艺系统简单,容易在原有脱硫塔基础上改造并实现脱硫脱硝同时进行;脱硝效率高(可达90%以上);根据烟气中氮氧化物的实时监测,可实现氧化剂(臭氧)投加量的精确控制,使系统的运行效率不受锅炉运行状态影响;系统运行温度低,可实现低温脱硝处理;系统运行效率不随运行时间增加而下降,大大减少脱硝系统的停机检修时间;臭氧的氧化能力也能实现对烟气中其它有害成分(如汞)的氧化脱除,能满足将来越来越严的环保要求。

目前,该技术开始在国内石化行业应用。

其脱硝效率一般大于85%,可达90%以上;NO排放浓度可达20mg/m3以下;100万m3/h工程投资大致为5000万左右;运行成本一般低于16元(每公斤NO)。

该技术成熟、稳定,运行简单,脱硝效率高,且可以运用于温度较低的烟气脱硝中,以及燃煤电站锅炉烟气深度脱硝。

是"十一五'、"十二五'以来,在国家相关科技计划的资助下,我国在臭氧发生器放电结构和放电介质的设计研究、大功率变频谐振电源与臭氧发生器的参数研究、整体结构和放电管模块化结构的图纸设计研究、冷却系统、检测系统、PLC控制系统的研究设计以及臭氧发生系统的可靠性分析等方面取得重要进展,大幅提高了大型臭氧发生器的制造水平,使装置具有高效率、低能耗、体积小、寿命长、运行稳定可靠、价格低等显著优点。

臭氧脱硝技术方案

臭氧脱硝技术方案

臭氧脱硝技术方案引言臭氧脱硝技术是一种用臭氧氧化氮氧化物(NOx)来减少大气污染物的排放的方法。

臭氧脱硝技术在控制大气污染、改善空气质量方面具有重要作用。

本文将介绍臭氧脱硝技术的原理、应用领域及技术方案。

原理臭氧脱硝技术是利用臭氧与NOx反应生成亚硝酸盐和硝酸盐,进一步与氨反应生成硝酸铵,并在表面活性剂的作用下与颗粒物吸附在集尘器上,达到减少NOx排放的目的。

臭氧脱硝技术的主要步骤包括: 1. 生成臭氧:臭氧发生器将氧气通过电源放电产生臭氧。

2. 氧化反应:将臭氧引入反应器中与NOx氧化反应生成亚硝酸盐和硝酸盐。

3. 还原反应:将氨注入反应器中,与亚硝酸盐和硝酸盐发生反应,生成硝酸铵。

4. 吸附分离:在表面活性剂的作用下,硝酸铵与颗粒物吸附在集尘器上。

应用领域臭氧脱硝技术被广泛应用于以下领域:1.火电厂:臭氧脱硝技术能有效降低火电厂的NOx排放量,帮助企业达到环保要求。

2.石化工厂:臭氧脱硝技术可以应用于石化工厂中的反应器,帮助减少NOx排放对环境的影响。

3.钢铁冶炼:臭氧脱硝技术可以用于炼钢过程中的烟道排放处理,减少大气污染物的排放。

4.汽车尾气治理:臭氧脱硝技术可以应用于汽车尾气处理装置中,减少尾气中的NOx排放。

臭氧脱硝技术的具体方案根据不同的应用领域和实际情况而有所差异。

一个基本的臭氧脱硝技术方案包括以下几个主要组成部分:臭氧发生器臭氧发生器是臭氧脱硝技术的核心设备。

臭氧发生器通过电源放电将氧气转化为臭氧。

常用的臭氧发生器有液氧发生器、臭氧管式发生器等,其选择要根据具体情况进行。

反应器反应器是臭氧与NOx氧化反应和还原反应的主要场所。

反应器的设计要考虑到反应器内的物料均匀性和气体流动性,以便达到最佳的反应效果。

同时,反应器材质的选择要能够耐受臭氧和颗粒物的侵蚀。

氨注入系统是将氨气引入反应器进行还原反应的关键设备。

氨气的注入要控制好注入量和注入速度,以确保反应过程的稳定性和效果。

集尘器集尘器是对反应后的硝酸铵和颗粒物进行分离的装置。

臭氧脱硝原理以及臭氧脱硝方案

臭氧脱硝原理以及臭氧脱硝方案

臭氧脱硫脱硝知识点一、关于臭氧:臭氧(O3)是氧气(O2)的同素异形体,它是一种具有特殊气味的淡蓝色气体。

分子结构呈三角形,键角为116°,其密度是氧气的1.5倍,在水中的溶解度是氧气的10倍。

臭氧是一种强氧化剂,其氧化还原电位仅次于氟。

臭氧与亚铁、Mn2+ 、硫化物、硫氰化物、氰化物、氯等均发生反应。

臭氧制造设备:臭氧发生器:臭氧发生器是用于制取臭氧气体(O3)的装置。

臭氧易于分解无法储存,需现场制取现场使用(特殊的情况下可进行短时间的储存),所以凡是能用到臭氧的场所均需使用臭氧发生器。

利用高压电离(或化学、光化学反应),使空气中的部分氧气分解聚合为臭氧,是氧的同素异形转变过程;亦可利用电解水法获得。

臭氧发生器的分类按臭氧产生的方式划分,臭氧发生器主要有三种:一是高压放电式,二是紫外线照射式,三是电解式。

臭氧浓度臭氧为混合气体其浓度通常按质量比和体积比来表示。

质量比是指单位体积内混合气体中含有多少质量的臭氧,常用单位mg/L、mg/m3或g/m3等表示。

体积比是指单位体积内臭氧所占的体积含量或百分比含量,使用百分比表示如2%、5%、12%等。

臭氧浓度是衡量臭氧发生器技术含量和性能的重要指标。

同等的工况条件下臭氧输出浓度越高其品质度就越高。

二、臭氧脱硝原理:1. 基本原理:臭氧具有仅次于氟的强氧化性,完全有能力将烟气恶劣环境中的NO氧化成高价态,提高烟气中氮氧化物的水溶性,从而通过湿法洗脱。

其中主要包括以下反应:NO+O3→NO2+O2 (1)NO2+O3→NO3+O2 (2)NO2+NO2→N2O4 (3)N2O4+O3→N2O5 (4)NO3+NO2→N2O5 (5)3NO2+H2O→2HNO3+NO (6)N2O5+ H2O→2HNO3 (7)利用臭氧将NO氧化为高价态的氮氧化物后,需要进一步地吸收。

常见的吸收液有Ca(OH)2、NaOH 等碱液。

不同的吸收剂产生的脱除效果会有一定的差异。

臭氧脱硫脱硝

臭氧脱硫脱硝

玻璃炉窑臭氧同时脱硫脱硝工艺方案SO2、 NOx等污染物会造成严重的大气污染,危害人类健康。

对SO2的控制,目前较为成熟的技术是石灰石—石膏法,脱除效率可达95%以上。

此外还有炉内喷钙脱硫、电子束法脱硫等技术。

对NOx的控制分为两类,一类是控制燃煤过程中NOx的生成,主要有低氧燃烧法、两段燃烧法和烟气再循环法等。

另一类是通过物理化学方法进行脱除,主要有催化、吸收、吸附、放电等。

其中广泛应用的是选择性催化还原法(SCR),脱除效率达90%以上。

随着国家对污染物排放的要求越来越严格,同时脱硫脱硝已成为烟气污染物控制技术的发展趋势。

目前国内外广泛使用的是湿式烟气脱硫和NH3选择催化还原技术脱硝的组合。

该技术的脱硫脱硝效率虽然高,但是投资和运行成本昂贵。

其他的脱硫脱硝技术还包括等离子体法、催化法、吸附法等,但只有少数进入生产应用。

烟气中NOx的主要组成是NO(占95%),NO难溶于水,而高价态的NO2、N2O5等可溶于水生成HNO2和 HNO3,溶解能力大大提高,从而可与后期的SO2同时吸收,达到同时脱硫脱硝的目的。

臭氧作为一种清洁的强氧化剂,可以快速有效地将NO氧化到高价态。

电子束法和脉冲电晕法虽然能够产生强氧化剂物质,如·OH、·HO2等,但工作环境恶劣,自由基存活时间非常短,能耗较高。

O3的生存周期相对较长,将少量氧气或空气电离后产生O3,然后送入烟气中,可显著降低能耗。

目前利用臭氧进行脱硫脱硝在国外已有工程应用实例,在我国还处于探索阶段。

1 臭氧脱硝机理臭氧的氧化能力极强,从下表可知,臭氧的氧化还原电位仅次于氟,比过氧化氢、高锰酸钾等都高。

此外,臭氧的反应产物是氧气,所以它是一种高效清洁的强氧化剂。

臭氧脱硝的原理在于臭氧可以将难溶于水的NO氧化成易溶于水的NO2、N2O3、N2O5等高价态氮氧化物。

浙江大学王智化等人对臭氧同时脱硫脱硝过程中NO的氧化机理进行了研究,构建出O 3与NO X 之间65步详细的化学反应机理,该机理比较复杂。

氨水——臭氧组合高效脱硫脱硝技术方案

氨水——臭氧组合高效脱硫脱硝技术方案

一、45t/h锅炉烟气现场调查1、燃煤质量状况标识符号指标名称单位实际指标备注R 燃煤发热量大卡4500A 煤中灰分% 25S 燃煤全硫分%3。

8C 燃煤中碳含量% 80O 燃煤中氧含量% 6H 燃煤中氢含量% 4W 燃煤中水分%102、锅炉烟气排放现状3、锅炉烟气中污染物排放现状4、锅炉烟气脱除效率难点分析5、建议与商权《关于重点工业企业实施降氮脱硝工作的通告》穂府(2009)26号中规定:“60t/h以下的锅炉实施降氮脱硝不低于40%".根据这一规定,本项目的最终排放指标可否定为不低于260mg/Nm3。

(应按广东省标准不高于200mg/Nm3)二、烟气脱硫脱硝技术方案选择1、业主的要求该公司地处广州增城市沙埔镇,是一家纺织、皮革的企业,是经国家相关部门批准注册的企业。

该公司自备电厂的45t/h燃煤锅炉属于(穂府(2009)26号)《通告》第三条第三款所要求的实施降氮脱硝的整改范畴。

该锅炉建于2007年8月,属于为高倍循环流化床锅炉,锅炉出力为45蒸吨/时。

备用锅炉为低倍循环流化床锅炉,锅炉出力为25蒸吨/时,两台锅炉在空气预热器后都配备了静电除尘设备.三年多来,设备运转良好。

有效地保证了企业对电力负荷的需求。

为了确保公司生产经营正常进行,业主提出了如下要求:①在实施锅炉烟气降氮脱硝脱硫技改工程时不得影响锅炉的正常运转;②建造脱硫脱硝设施应设立在引风机以下区段,确保原有锅炉系统不受腐蚀;③建成的脱硫脱硝系统的运行效果必须达到环保局提出的所有控制要求。

2、我们选择脱硫脱硝技术方案的原则思考由于现代先进的脱硫脱硝技术都不可能对烟气中的氮和硫实施100%的脱除,所以经净化后的烟气中仍然还会残留微量的氮和硫,与水化合后形成酸性液,对后续管道和设备造成腐蚀.因此,新配置的脱硫脱硝设备应是一个相对独立的运行体系,我们计划采用压入式将烟气送进脱硫脱硝系统,烟气被净化后直接送入烟囱。

●不在静电除尘器以上的烟道中附加任何脱硝设施。

臭氧脱硝技术方案

臭氧脱硝技术方案

臭氧脱硝工艺方案一、工艺说明1. 工艺原理利用臭氧发生器制备臭氧,通过布气装置把臭氧气体均布到烟气管道截面,在管道中设置烟气混合器,使臭氧与含NOX的烟气在烟气管道中充分混合并发生氧化反应。

将烟气中的NOX 氧化为容易吸收的NO2和N2O5。

再利用氨法脱硫洗涤塔,对NO2和N2O5进行吸收反应,生成硝酸氨与亚硝酸氨。

最后再与硫酸盐一起富集、浓缩、干燥后,作为氮肥加以利用。

其主要反应式为:NO+O3=NO2+O22NO2+O3=N2O5+O22NO2+2NH3+H2O=NH4NO2+NH4NO3N2O5+2NH3+H2O =2NH4NO32. 工艺流程图3. 主要工艺参数每小时需要处理的NOX 的量为:60000×(800-100)×10-6=42kg/h二、主要设备说明1. 臭氧发生器根据烟气中NOX的含量,计算所需要的臭氧设备约为2台25kg/h的臭氧发生器,两用一备,配置气源控制系统,冷却水系统及配套齐全的自动控制(PLC)、检测仪器等。

至于采用何种气源(空气或氧气)的臭氧发生器系统,根据项目现场情况经与业主协商后确定。

1.1 臭氧制备工艺及流程(氧气源工艺)业主提供的氧气管道气通过设置的一级减压稳压装置处理后,经过氧气过滤器进行过滤,并通过露点仪检测进气露点,通过流量计计量进气量,并与PLC 站联动。

每套系统的进气管路上设置安全阀用于泄压保护系统。

在臭氧发生室内的高频高压电场内,部分氧气转换成臭氧,产品气体为臭氧化气体,经温度、压力监测后、经出气调节阀后由臭氧出气口排出。

臭氧发生室出气管路上设有臭氧取气口,并装有电磁阀,每个设备的取气管分别通过各自的发生臭氧浓度仪检测臭氧出气浓度。

臭氧发生器设置1套封闭循环冷却水系统,通过板式换热器换热,为臭氧发生器提供冷却水。

并配置一台冷却循环水泵,冷却循环水泵受PLC自动控制系统监控。

冷却水进水管路设置压力传感器,用于检测并反馈到PLC自动控制系统,冷却水出水有温度变送器、流量开关等,当冷却水温度超过设定值或者流量低于设定值时报警。

臭氧法脱硝技术方案

臭氧法脱硝技术方案

.xxxx有限公司2×35t链条炉臭氧脱硝改造项目技术规范书目录一、项目概况: (3)二、臭氧脱硝技术要求 (3)3 本项目脱硝方案 (4)一、项目概况:Xxx公司现有2台35t/h链条炉,无锡华光锅炉厂产品, 2011年建成投产,锅炉现配套布袋除尘器, 2套双碱法脱硫,未配套脱硝系统。

原始NOx排放浓度约300mg/Nm3。

锅炉及烟气污染物排放情况如下表:现有锅炉未配套脱硝设施,为满足当前超低排放标准要求,需对现有环保设施进行脱硝改造。

根据现场环保设施运行情况结合类似项目经验,本次超低排放采用臭氧氧化法脱硝工艺。

二、臭氧脱硝技术要求2.1 项目建设的规模项目建设规模为2×35t/h链条锅炉脱硝工程。

2.2 脱硝系统总技术要求(1)脱硝工艺要做到技术成熟、设备运行可靠;(2)根据工程的实际情况尽量减少脱硝装置的建设投资;(3)脱硝装置应布置合理;(4)脱硝剂要有稳定可靠的来源;(5)脱硝工艺氧化剂、水和能源等消耗少,尽量减少运行费用;2.3设计依据三、本项目脱硝方案3.1脱硝技术浅析一、NO的生成机理X燃煤过程中会产生氮氧化物,主要有一氧化氮与二氧化氮,这两种统称做氮氧化物(NOx),燃煤过程中NOx的生成与排放量和煤燃烧的方式,尤其是温度与过量空气量等条件相关。

燃煤过程中形成氮氧化物的途径主要有三个:热力型氮氧化物、快速型氮氧化物、燃料型氮氧化物以上三种类型的NOx,他们各自的生成量与煤的温度有关,在电厂机组中燃料型氮氧化物是最多的,占到氮氧化物总量的60%到80%,热力型氮氧化物其次,快速型氮氧化物最少。

二、脱硝方法选择当前控制氮氧化物排放的方法可以分为三种,第一种是低氮氧化物燃烧技术,这种方法主要是通过技术手段,来抑制或者还原在燃烧过程中产生的氮氧化物,来降低氮氧化物的排放;第二种是炉膛喷射脱硝方法;第三种是烟气净化方法。

烟气净化方法包括干法脱氮技术和湿法脱氮技术。

下面将对他们分别进行介绍。

臭氧脱硝技术方案

臭氧脱硝技术方案

臭氧脱硝技术方案臭氧脱硝技术是一种利用臭氧气氛中的活性氧分子对氮氧化物(NOX)进行高效氧化还原反应的方法,主要应用于燃煤电厂、燃气锅炉、工业炉窑、石化等大气污染源。

本文将提出一种基于臭氧脱硝技术的方案,以减少大气污染物排放,改善空气质量。

一、原理简介臭氧脱硝技术是通过臭氧与氮氧化物发生氧化还原反应,将NOX转化为氮气和水蒸汽,从而实现脱硝的效果。

臭氧分解生成的活性氧会与NOX 反应生成氮气和水蒸汽,反应过程中活性氧也会进一步催化反应,提高反应效率。

二、关键设备和工艺1.臭氧发生器:臭氧发生器是臭氧脱硝系统的核心设备,其主要功能是将氧气转化为臭氧。

常见的臭氧发生器有电解法、高频等离子法和紫外线法等。

这些方法的共同特点是能够高效地产生臭氧气体,但具体选择应根据实际情况进行。

2.反应器:反应器是将臭氧与NOX混合进行反应的装置。

根据反应器的结构不同,可以分为管式反应器和喷雾反应器。

管式反应器将臭氧气体与待处理的废气通过内部的管道进行混合反应,而喷雾反应器则是将臭氧气体喷洒到废气中进行反应。

喷雾反应器的优点是反应效率高,但对喷雾系统的控制要求高。

3.除尘器:臭氧脱硝过程中会产生一些颗粒物,因此需要配置除尘设备进行处理。

常用的除尘器有静电除尘器和布袋除尘器。

这些除尘设备能够有效地捕捉并去除颗粒物,保证排放物的合格。

三、操作流程1.前处理:原料气中的颗粒物、有毒物质等需要通过前处理设备进行去除。

前处理设备一般采用布袋除尘器、活性炭吸附器等。

2.臭氧发生:将氧气通过臭氧发生器产生臭氧气体。

臭氧发生器的选择应根据工艺要求和设备性能进行。

3.反应处理:将产生的臭氧与待处理气体进行混合反应。

反应器的设计应保证混合均匀,在反应过程中保持适当的溶液浓度和悬浮液浓度,以提高反应效率。

4.除尘处理:将反应后的气体通过除尘设备进行颗粒物的去除,保证排放物的合格。

5.废气排放:经过处理后的气体可以直接排放到大气中。

四、技术优势1.脱硝效果好:臭氧脱硝技术能够高效转化NOX为无害的氮气和水蒸汽,脱硝效果优于传统的氨法脱硝和选择性催化还原脱硝。

臭氧低温脱硫脱硝技术(LoTOx)

臭氧低温脱硫脱硝技术(LoTOx)

臭氧低温脱硫脱硝技术(LoTOx)目前烟气脱硝技术可分为干法和湿法两大类,其中干法脱硝中的选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是市场应用最广(约占60%烟气脱硝市场)、技术最成熟的脱硝技术,其原理是向烟气中喷氨或尿素等含有NH?3自由基的还原剂,在高温下直接(或催化剂的协同下)与烟气中的NOx发生氧化还原反应,把NOx 还原成氮气和水。

但该技术也有其巨大的局限性,由于化学反应需要在高温下进行,而对于中小型锅炉以及工业锅炉来说,排烟温度远不能达到化学反应所需要的高温,因此低温烟气脱硝技术就成为市场的必须。

低温烟气脱硝技术以低温氧化技术(LoTOx)最为简单有效,由于烟气中的氮氧化物主要组成是NO(占95%),NO难溶于水,而高价态的NO2、N2O5等可溶于水生成HNO2和HNO3,溶解能力大大提高,很容易通过碱液喷淋等手段将其从烟气中脱出。

将烟气中的NO转化为高价态,需引入较强的氧化剂,在众多氧化剂中,臭氧是最环保清洁的强氧化剂,在高效转化NO至高价态的过程中不遗留任何二次污染物,另外不同于·OH、·HO2 等,工作环境恶劣,自由基存活时间非常短,能耗较高,O3的生存周期相对较长,将少量氧气或空气电离后产生O3,然后送入烟气中,可显著降低能耗。

臭氧脱硝原理臭氧具有仅次于氟的强氧化性,完全有能力将烟气恶劣环境中的NO氧化成高价态,提高烟气中氮氧化物的水溶性,从而通过湿法洗脱。

其中主要包括以下反应:NO+O3→NO2+O2 (1)NO2+O3→NO3+O2 (2)NO2+NO2→N2O4 (3)N2O4+O3→N2O5 (4)NO3+NO2→N2O5 (5)3NO2+H2O→2HNO3+NO (6)N2O5+ H2O→2HNO3 (7)利用臭氧将NO氧化为高价态的氮氧化物后,需要进一步地吸收。

常见的吸收液有Ca(OH)2、NaOH 等碱液。

不同的吸收剂产生的脱除效果会有一定的差异。

臭氧脱硝工艺流程

臭氧脱硝工艺流程

臭氧脱硝工艺流程臭氧脱硝工艺流程是一种利用臭氧对烟气中的氮氧化物(NOx)进行脱除的方法。

该工艺以其高效、高可靠性和环境友好的特点,被广泛应用于煤电、锅炉和工业烟气等领域。

臭氧脱硝工艺流程主要包括臭氧发生、混合和反应、反应后处理和处理废气净化等环节。

首先是臭氧发生。

臭氧通过电解或紫外线辐射生成。

电解法是将水加入电解槽中,通过电解将水分解成氧气和氢气,然后通过反应器内的电极进行臭氧发生。

紫外线辐射法则是通过紫外线辐射器将氧气转化为臭氧。

这两种方法都能够有效地产生臭氧。

接下来是混合和反应。

将产生的臭氧与烟气混合,使其充分接触。

根据氮氧化物与臭氧进行氧化反应生成氮氧化物和氮酸,进而生成氮气和氧气的特性,可以减少氮氧化物的排放量。

混合和反应可以采用喷射喉或反应器等方式进行。

然后是反应后处理。

将经过反应的烟气进行冷却和除尘处理,以提高脱硝效果。

冷却可以使用冷却器或换热器进行,以降低烟气温度,进一步提高反应效果。

除尘则是采用静电除尘器、布袋除尘器等装置,将烟气中的颗粒物去除。

最后是处理废气净化。

脱硝后的废气中仍然含有一定量的臭氧和氮氧化物。

为了保护环境和人体健康,需要对废气进行净化处理。

常见的治理措施包括吸收塔、活性炭吸附、催化氧化等。

吸收塔可以利用碱性溶液将氮氧化物吸收,活性炭吸附则是利用活性炭对臭氧进行吸附,催化氧化则是通过催化剂对氮氧化物进行氧化,将其转化为无害物质。

臭氧脱硝工艺流程具备高效、高可靠性和环境友好的特点。

通过臭氧的发生、混合和反应、反应后处理以及处理废气净化等环节的结合,可以有效地将烟气中的氮氧化物去除,并减少对环境的污染。

该工艺在实际应用中已取得了良好的效果,并得到了广泛认可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xxxx有限公司2×35t链条炉臭氧脱硝改造项目技术规范书目录一、项目概况: (3)二、臭氧脱硝技术要求 (3)3 本项目脱硝方案 (4)一、项目概况:Xxx公司现有2台35t/h链条炉,无锡华光锅炉厂产品,2011年建成投产,锅炉现配套布袋除尘器,2套双碱法脱硫,未配套脱硝系统。

原始NOx排放浓度约300mg/Nm3。

锅炉及烟气污染物排放情况如下表:现有锅炉未配套脱硝设施,为满足当前超低排放标准要求,需对现有环保设施进行脱硝改造。

根据现场环保设施运行情况结合类似项目经验,本次超低排放采用臭氧氧化法脱硝工艺。

二、臭氧脱硝技术要求2.1 项目建设的规模项目建设规模为2×35t/h链条锅炉脱硝工程。

2.2 脱硝系统总技术要求(1)脱硝工艺要做到技术成熟、设备运行可靠;(2)根据工程的实际情况尽量减少脱硝装置的建设投资;(3)脱硝装置应布置合理;(4)脱硝剂要有稳定可靠的来源;(5)脱硝工艺氧化剂、水和能源等消耗少,尽量减少运行费用;2.3设计依据三、本项目脱硝方案3.1脱硝技术浅析一、NO X的生成机理燃煤过程中会产生氮氧化物,主要有一氧化氮与二氧化氮,这两种统称做氮氧化物(NOx),燃煤过程中NOx的生成与排放量和煤燃烧的方式,尤其是温度与过量空气量等条件相关。

燃煤过程中形成氮氧化物的途径主要有三个:热力型氮氧化物、快速型氮氧化物、燃料型氮氧化物以上三种类型的NOx,他们各自的生成量与煤的温度有关,在电厂机组中燃料型氮氧化物是最多的,占到氮氧化物总量的60%到80%,热力型氮氧化物其次,快速型氮氧化物最少。

二、脱硝方法选择当前控制氮氧化物排放的方法可以分为三种,第一种是低氮氧化物燃烧技术,这种方法主要是通过技术手段,来抑制或者还原在燃烧过程中产生的氮氧化物,来降低氮氧化物的排放;第二种是炉膛喷射脱硝方法;第三种是烟气净化方法。

烟气净化方法包括干法脱氮技术和湿法脱氮技术。

下面将对他们分别进行介绍。

:1、低氮燃烧技术由氮氧化物形成的条件可以知道,对氮氧化物的形成起决定性作用的为燃烧区域温度和过量空气系数。

所以,低氮氧化物燃烧技术是通过对燃烧区域的温度与空气量进行控制,达到阻止氮氧化物生成从而降低排放的目的。

低氮氧化物燃烧技术要求,在降低氮氧化物的同时,确保锅炉燃烧稳定,而且飞灰中的含碳量不得超标。

目前经常用到的低氮氧化物燃烧技术主要有以下几种:燃烧优化、空气分级燃烧技术、燃料分级燃烧技术、烟气再循环技术、低NOx燃烧器2、炉膛喷射脱销技术这种方法是在炉膛上喷射某些物质,让它在一定的温度下还原已经生成的氮氧化物,以此来降低氮氧化物的排放量。

这一过程包含喷水、喷氨和喷二次燃料等。

但是喷水与喷二次燃料的方法,尚存在着如何将NO氧化为N02和解决非选择性反应的问题,因此,目前还不成熟。

3、选择性催化还原法SCR选择性催化还原法(SCR)指通过使用催化剂,添加还原剂,还原剂分解成还原性气体如NH3和NOx,在催化作用下发生氧化还原反应,使NOx转化为氮气和水。

在这三种烟气脱确工艺中,SCR工艺的脱硝效和工艺成熟度最高。

我国现在已建成或拟建的烟气脱硝工程中大多采用SCR工艺。

该技术的反应温度为300~40℃其反应如下:4NH3+4NO+02=4N2+6H20 (1)4NH3+6N0=5N2+6H20 (2)2NH3+N0+N02=2N2+3H20 (3)8NH3+6N02=7N2+12H20 (4)其中上述反应式中以第一个化学反应方程式为主要反应,这是因为在烟气中95%NOx是以NO的形式存在。

SCR工艺脱硝率通常可以达75%以上,可使出口烟气中排放的NOx浓度降到接近100mg/m3。

还原剂的选择一般有氨水、液氨和尿素3种。

SCR工艺的催化剂一般为金属氧化物,最为常见有V2O5、MnO2等..4、选择性非催化还原法选择性非催化还原法(SNCR)指在不用催化剂的情况下,把还原剂喷进炉膛,还原剂受热分解成NH3,与NOx反应生成N2和H2O,其反应温度为800`1200℃。

反应公式为:NH3为还原剂: 4NH3+4N0+O2—4N2+6H2O (5)尿素为还原剂: 2N0+C0F(NH2)2+1/202—2N2+CO2+2H2O (6)SNCR工艺的脱硝率主要受到温度、NH3/N0X摩尔比、停留时间和锅炉尺寸等因素影响,对于大型电厂最多只能达到40%的去除率。

SNCR工艺的最佳温度为850~1100℃。

最佳NH3/NO X摩尔比为1:2。

当工艺的停留时间设置成为Is 时,达到最大的脱硝率82%。

(3)联合工艺联合工艺(SNCR-SCR)有两个反应区(2-4)。

第一个为SNCR反应区,第二个为SCR反应区。

NOx先进入SNCR工艺进行一部分的去除,然后NOx伴随着第一反应区的逃逸氨进入SCR工艺进行进一步的去除。

主要反应公式参考SNCR与SCR工艺的反应公式见式(1)、(5)、(6)。

由于第一步在SNCR工艺中预先去除部分NOx,在SCR工艺进口NOx浓度减小,对催化剂的依赖下降。

相对于SCR工艺,联合工艺有效减少了投资与运行费用, 相对于单独的SNCR工艺提高了脱硝率。

联合工艺最初是在日本进行实验运行研宄。

运行结果表明,运用联合工艺,NOx的去除率较单独SNCR上升20%左右,氨逃逸降低了4倍多.图2- 4 SCR/SNCR联合法工艺图(5)臭氧脱硝技术烟气中NOx 的主要组成是NO(占95%),NO 难溶于水,而高价态的NO2、N2O5等可溶于水生成HNO2和HNO3,溶解能力大大提高,从而可与后期的SO2同时吸收,达到同时脱硫脱硝的目的。

臭氧作为一种清洁的强氧化剂,可以快速有效地将NO 氧化到高价态。

电子束法和脉冲电晕法虽然能够产生强氧化剂物质,如·OH、·HO2等,但工作环境恶劣,自由基存活时间非常短,能耗较高。

O3的生存周期相对较长,将少量氧气或空气电离后产生O3,然后送入烟气中,可显著降低能耗。

1、臭氧脱硝机理臭氧的氧化能力极强,从下表可知,臭氧的氧化还原电位仅次于氟,比过氧化氢、高锰酸钾等都高。

此外,臭氧的反应产物是氧气,所以它是一种高效清洁的强氧化剂。

低温条件下,O3与NO 之间的关键反应如下:NO+O3→NO2+O2(1)NO2+O3→NO3+O2(2)NO3+NO2→N2O5(3)NO+O+M→NO2+M (4)NO2+O→NO3(5)臭氧脱硝主要是利用臭氧的强氧化性将NO 氧化为高价态氮氧化物,然后在洗涤塔内将氮氧化物吸收转化为溶于水的物质,达到脱除的目的。

在典型烟气温度下,臭氧对NO 的氧化效率可达85%以上,结合尾部湿法洗涤,脱硝效率也在O3/NO 摩尔比为0.9时达到86.27%。

以下为臭氧脱硝工艺流程图。

图2-5 臭氧氧化湿法脱硝工艺流程图2、影响因素利用臭氧脱硝的影响因素主要有摩尔比、反应温度、反应时间、吸收液性质等,这些因素对脱硝效率都有不同程度的影响。

(1)摩尔比摩尔比(O3/NO)是指O3与NO 之间摩尔数的比值,它反映了臭氧量相对于一氧化氮量的高低。

NO 的氧化率随O3/NO 的升高直线上升。

目前已有的研究中,在0.9≤O3/NO<1的情况下,脱硝率可达到85%以上,有的甚至几乎达到100%。

根据式(1)可见,O3与NO 完全反应的摩尔比理论值为1,但在实际中,由于其他物质的干扰,可发生一系列其他反应,如式(2)~(5),使得O3不能100%与NO 进行反应。

(2) 温度由于臭氧的生存周期关系到脱硫脱硝效率的高低,所以考察臭氧对温度的敏感性具有重要意义。

在对臭氧的热分解特性的研究中得出在150℃的低温条件下,臭氧的分解率不高,只有0.5%,但随着温度增加到250℃甚至更高时,臭氧分解速度明显加快。

(3) 反应时间臭氧在烟气中的停留时间只要能够保证氧化反应的完成即可,反应时间在1~10s 之间对反应器出口的NO 摩尔数没有什么影响,而且增加停留时间并不能增大NO 的脱除率。

这主要是因为关键反应的反应平衡在很短时间内即可达到不需要较长的臭氧停留时间。

(4) 吸收液性质利用臭氧将NO 氧化为高价态的氮氧化物后,需要进一步地吸收。

常见的吸收液有Ca(OH)2、NaOH 等碱液。

不同的吸收剂产生的脱除效果会有一定的差异。

在利用水吸收尾气时,NO 和SO2的脱除效率分别达到86.27%和100%。

这是利用气体在水中的溶解度进行吸收。

在现有脱硝技术中,其中广泛应用的是选择性催化还原法(SCR),脱除效率达90%以上。

随着国家对火电厂污染物排放的要求越来越严格,同时脱硫脱硝已成为烟气污染物控制技术的发展趋势。

目前国内外广泛使用的是湿式烟气脱硫和NH3选择催化还原技术脱硝的组合。

该技术的脱硫脱硝效率虽然高,但是投资和运行成本昂贵。

其他的脱硝技术还包括等离子体法、催化法、吸附法等,但只有少数进入生产应用。

随着环保要求的日益严格,传统的烟气脱硝工艺将不能满足严格的减排要求,此外,传统工艺还存在设备投资高、占地面积大、系统复杂等缺点。

因此开发工艺简单、可靠的脱硫脱硝工艺具有重要意义。

采用臭氧的高级氧化技术不仅对NO X具有良好的脱除效果,而且对烟气中的其他有害污染物,比如重金属汞也有一定的去除能力。

其主要反应式为:NO+O3=NO2+O22NO2+O3=N2O5+O24NO2+2MO+H2O=M(NO2)2+ M(NO3)2N2O5+ MO +H2O = M(NO3)23.2脱硝系统设计方案3.2.1 设计原则针对现场情况,对烟气进行氧化脱硝,工艺采用湿法的布置方法。

主要设计原则如下:工艺遵循技术成熟、设备先进运行稳定、操作维护方便、自动化程度较高、运行成本较低、无二次污染原则。

能够保证高可用率,而且完全符合环境保护要求。

工艺充分考虑锅炉特点,系统阻力稳定。

工艺与设备布置合理,能满足现有场地位置要求。

整个除尘系统的所有建(构)筑物布置与主体工程协调。

并根据其工程设计和布置要求在所给定的区域范围内优化,以使其工艺流程和布置合理、安全和经济。

改造后达到超低排放要求。

针对小型工业锅炉,目前常用的脱硝工艺为SNCR脱硝,由于SNCR脱硝系统脱硝效率有限,无法达到超低排放标准的要求,因此常用氧化湿法以应对越来越严格的排放标准要求。

氧化脱硝其基本脱硝原理为:通过添加强氧化剂将烟气中NOx主要成分NO 氧化为N2O5或N2O3,然后通过脱硫系统吸收剂吸收。

强氧化剂可以选用臭氧、亚氯酸钠、亚氯酸钠、二氧化氯等。

3.2.2工艺路线本方案本着投资少,运行成本低,效率高且满足将来标准要求,采用氧化脱硝新技术。

对烟气温度无特殊要求,脱氮效率高达70%。

脱硝用水全部闭路循环,且配置了中水脱氯装置不向外排废水,无二次污染。

在烟气脱硝塔内,利用多道逆顺向喷淋法,将吸收液喷入烟气中,在高速气流的带动下,吸收液被吹成雾状,比表面积大,使气液接触更加充分,从而确保了脱硝效率的稳定。

相关文档
最新文档