初中数学圆总复习材料

合集下载

初中数学《圆的有关概念和性质》复习课优质课件

初中数学《圆的有关概念和性质》复习课优质课件
形的外接 叫做三角形的外心.

性质:三角形的外心到三角形的三个
顶点的距离相等.
核心点拨
考点三:三角形的外接圆及圆内接四边形
圆内接四边形:如果一个四边形的
6.圆内
接四边形
的性质定

顶点都在同一个圆上
____________________,这个四边形
四边
叫做圆内接四边形,这个圆叫做_____
形的外接圆
)
思路分析
首先作出相关的辅助线,利用垂径定理和勾股定理求出各线段之间
的关系,得到一些特殊的三角形,再利用圆周角定理推出相关角的
度数即可.
变式训练
2-1
如 图 , 在 ⊙O 中 , 弦 AB , CD 相 交 于 点 P. 若 ∠A = 48° ,
∠APD=80°,则∠B的度数为(
A
)
A.32°
B.42°
质.有时还需要添加

或等弧进行证明.
辅助线,构成直径所
推论2:半圆(或直径)所对的圆周角是
对的圆周角,以便转

______,90°的圆周角所对的____是直
直角
化为直角三角形的问
径.
题去研究.
考点三:三角形的外接圆及圆内接四边形
定义:经过三角形各顶点的圆叫做三
5.三角 角形的外接圆.三角形外接圆的圆心
对的____相等,所对的____相等.
(1)在同圆或等圆中,


定理2:在同圆或等圆中,________、____、
如果弧不相等,那
圆心角


么弧所对的弦、圆
____中如果有一组量相等,那么它们所对应
的其余各组量都分别相等.

圆初中数学知识点总结

圆初中数学知识点总结

圆初中数学知识点总结圆初中数学知识点总结总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,因此,让我们写一份总结吧。

那么总结有什么格式呢?以下是小编为大家整理的圆初中数学知识点总结,仅供参考,大家一起来看看吧。

圆初中数学知识点总结1一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA 叫半径。

由圆的意义可知:圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。

心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。

连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。

由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角则两个钝角之和>180°与三角形内角和等于180°矛盾。

∴不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

人教版初中数学九年级上册第24章知识复习第一部分圆的有关概念和性质

人教版初中数学九年级上册第24章知识复习第一部分圆的有关概念和性质

在上图中,
D
若∠COD=∠AOB,则 CD=AB,CD=AB ;
若CD=AB,则 ∠COD=∠AOB,CD=AB;
若CD=AB,则 ∠COD=∠AOB,CD=AB,.
CAD=ACB.
(二)圆的有关性质 3、垂径定理:

垂直于弦的直径平分这条弦,并且平分弦 所对的两条弧。 推论:①平分弦(非直径)的直径垂直于这条弦,
(二)圆的有关性质 Q
A•
O•
•B
P
C
4、②在同圆或等圆中,同弧或等弧所对的 圆周角相等,都等于该弧所对的圆心角的 一半;相等的圆周角所对的弧相等。
如图:∠BOC=2∠BAC=2∠BPC=2∠BQC.
(二)圆的有关性质
PQ
O •
D
A C
B
如图:若AB=CD, 则∠AOB=∠COD=2∠APB=2∠CQD.
反之,若∠APB=∠CQD,则AB=CD.
【及时巩固】
d P
P
d
O

r
d
P
1、设⊙O的半径为r,点P到圆心的而距离为d,
则 ①点P在⊙O上 d = r;
②点P在⊙O内 d< r;
③点P在⊙O外 d >r.
【及时巩固】
2、“经过三角形各顶点的圆叫三角形的外接圆. 外接圆的圆心叫做三角形的外心(即三角形三边 中垂线的交点),这个三角形叫圆的内接三角形.” 先分别作出锐角三角形、钝角三角形、直角三 角形的外接圆,再观察图形,填空:
并且平分弦所对的弧; ②平分弧的直径垂直平分这条弧所对的弦;...
(二)圆的有关性质

垂径定理及推论可归纳为: 一条直线若具有“①经过圆心; ②垂直于弦;③平分弦;④平分弦所对的 优弧;⑤平分弦所对的劣弧”这五个性质 中的两个,这条直线就具有其余三个性质. 注意:①③组合有限制.

人教版初中数学圆的知识点总复习含答案解析

人教版初中数学圆的知识点总复习含答案解析

人教版初中数学圆的知识点总复习含答案解析一、选择题1.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( )A .123B .1536π-πC .30312π-D .48336π-π【答案】C【解析】【分析】 易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可.【详解】连接OE ,OF .∵BD=12,AD :AB=1:2,∴AD=43 ,AB=83,∠ABD=30°,∴S △ABD =×43×12=243,S 扇形=603616,633933602OEB S ππ⨯==⨯⨯=V ∵两个阴影的面积相等,∴阴影面积=()224369330312ππ⨯--=- .故选:C【点睛】本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.3.如图,在ABC ∆中,90ABC ∠=︒,6AB =,点P 是AB 边上的一个动点,以BP 为直径的圆交CP 于点Q ,若线段AQ 长度的最小值是3,则ABC ∆的面积为( )A .18B .27C .36D .54【答案】B【分析】如图,取BC的中点T,连接AT,QT.首先证明A,Q,T共线时,△ABC的面积最大,设QT=TB=x,利用勾股定理构建方程即可解决问题.【详解】解:如图,取BC的中点T,连接AT,QT.∵PB是⊙O的直径,∴∠PQB=∠CQB=90°,∴QT=12BC=定值,AT是定值,∵AQ≥AT-TQ,∴当A,Q,T共线时,AQ的值最小,设BT=TQ=x,在Rt△ABT中,则有(3+x)2=x2+62,解得x=92,∴BC=2x=9,∴S△ABC=12•AB•B C=12×6×9=27,故选:B.【点睛】本题考查了圆周角定理,勾股定理,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,则有中考选择题中的压轴题.4.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.2【答案】B【分析】连接AI 、BI ,因为三角形的内心是角平分线的交点,所以AI 是∠CAB 的平分线,由平行的性质和等角对等边可得:AD=DI ,同理BE=EI ,所以图中阴影部分的周长就是边AB 的长.【详解】连接AI 、BI ,∵点I 为△ABC 的内心,∴AI 平分∠CAB ,∴∠CAI=∠BAI ,由平移得:AC ∥DI ,∴∠CAI=∠AID ,∴∠BAI=∠AID ,∴AD=DI ,同理可得:BE=EI ,∴△DIE 的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B .【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.5.如图,AC BC ⊥,8AC BC ==,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作»AB ,过点O 作AC 的平行线交两弧于点D 、E ,则图中阴影部分的面积是( )A .20833π- B .20833π+C .20833π D .20433π 【答案】A【解析】【分析】 如图,连接CE .图中S 阴影=S 扇形BCE −S 扇形BOD −S △OCE .根据已知条件易求得OB =OC =OD =4,BC =CE =8,∠ECB =60°,OE =3,所以由扇形面积公式、三角形面积公式进行解答【详解】解:如图,连接CE.∵AC⊥BC,AC=BC=8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,∴∠ACB=90°,OB=OC=OD=4,BC=CE=8.又∵OE∥AC,∴∠ACB=∠COE=90°.∴在Rt△OEC中,OC=4,CE=8,∴∠CEO=30°,∠ECB=60°,OE=3∴S阴影=S扇形BCE−S扇形BOD−S△OCE=2260811-4-443 36042ππ⨯⨯⨯⨯=20-83 3π故选:A.【点睛】本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.6.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作»PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交»PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=12∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.7.如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC=30°,DC=1,则⊙O的半径为()A.2 B.3C.2﹣3D.1【答案】B【解析】【分析】先由圆周角定理知∠BDA=∠ADC=90°,结合∠DAC=30°,DC=1得AC=2DC=2,∠C=60°,再由AB=ACtanC=23可得答案.【详解】∵AB是⊙O的直径,∴∠BDA=∠ADC=90°,∵∠DAC=30°,DC=1,∴AC=2DC=2,∠C=60°,则在Rt△ABC中,AB=ACtanC=23,∴⊙O的半径为3,故选:B.【点睛】本题主要考查圆周角定理,解题的关键是掌握半圆(或直径)所对的圆周角是直角和三角函数的应用.的扇形无重叠地围成一个圆锥,则这个圆锥的高8.如图,用半径为12cm,面积272cm为()A .12cmB .6cmC .6√2 cmD .63 cm 【答案】D【解析】 【分析】 先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.【详解】 72π=212360n π⨯ 解得n=180°,∴扇形的弧长=18012180π⨯=12πcm . 围成一个圆锥后如图所示:因为扇形弧长=圆锥底面周长即12π=2πr解得r=6cm ,即OB=6cm根据勾股定理得OC=22126=63-cm ,故选D .【点睛】本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来.9.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )A .B .C .D .【答案】B【解析】【分析】 根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选B.【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.下列命题错误的是()A.平分弦的直径垂直于弦B.三角形一定有外接圆和内切圆C.等弧对等弦D.经过切点且垂直于切线的直线必经过圆心【答案】C【解析】【分析】根据垂径定理、三角形外接圆、圆的有关概念判断即可.【详解】A、平分弦的直径一定垂直于弦,是真命题;B、三角形一定有外接圆和内切圆,是真命题;C、在同圆或等圆中,等弧对等弦,是假命题;D、经过切点且垂直于切线的直线必经过圆心,是真命题;故选C.【点睛】本题考查了命题与定理的知识,解题的关键是根据垂径定理、三角形外接圆、圆的有关概念等知识解答,难度不大.11.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】试题分析:∵AC为切线∴∠OAC=90°∵∠C=40°∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50°∴∠ABD=∠ODB=25°.考点:圆的基本性质.12.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC 的三个顶点都在格点上,过点C 作△ABC 外接圆的切线,则该切线经过的格点个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 作△ABC 的外接圆,作出过点C 的切线,两条图象法即可解决问题.【详解】如图⊙O 即为所求,观察图象可知,过点C 作△ABC 外接圆的切线,则该切线经过的格点个数是3个,选:C .【点睛】考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.13.如图,已知ABC ∆和ABD ∆都O e 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆ 【答案】A【分析】根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠Q ,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.14.如图,点,,A B S 在圆上,若弦AB 的长度等于圆半径的2倍,则ASB ∠的度数是( ).A .22.5°B .30°C .45°D .60°【答案】C【解析】【分析】 设圆心为O ,连接OA OB 、,如图,先证明OAB V 为等腰直角三角形得到90AOB ∠=︒,然后根据圆周角定理确定ASB ∠的度数.【详解】解:设圆心为O ,连接OA OB 、,如图,∵弦AB 的长度等于圆半径的2倍,即2AB OA =,∴222OA OB AB +=,∴OAB V 为等腰直角三角形,90AOB ∠=︒ ,∴1452ASB AOB ∠=∠=°. 故选:C .本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.16.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,OC 交⊙O 于点D ,若∠ABD =24°,则∠C 的度数是( )A .48°B .42°C .34°D .24°【答案】B【解析】【分析】 根据切线的性质求出∠OAC ,结合∠C =42°求出∠AOC ,根据等腰三角形性质求出∠B =∠BDO ,根据三角形外角性质求出即可.【详解】解:∵∠ABD=24°,∴∠AOC=48°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠AOC+∠C=90°,∴∠C=90°﹣48°=42°,故选:B.【点睛】考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.17.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.6C.8 D.8【答案】B【解析】【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OP的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=16,∴BM=DN=8,∴OM=ON==6,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=.故选B.【点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.18.如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.8833π-B.16833π-C.16433π-D.8433π-【答案】B【解析】【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:∵圆的半径为4,OB=OA=OC=4,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=2,在Rt△COD中利用勾股定理可知:224223,243AC CD-===∵sin∠COD=3,2 CDOC=∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=1144383 22OB AC⨯=⨯⨯=,∴S扇形=2 1204163603ππ⨯⨯=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=1683 3π-.故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b(a、b是两条对角线的长度);扇形的面积=2 360 n r π.19.如图,在圆O中,直径AB平分弦CD于点E,且CD=43,连接AC,OD,若∠A与∠DOB互余,则EB的长是()A.3B.4 C3D.2【答案】D【解析】【分析】连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,3∵∠A与∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,设OE=x,则CO=2x,∴CO 2=OE 2+CE 2即(2x)2=x 2+(23)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.20.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线323y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A .3B .2C 3D 2 【答案】D【解析】【分析】先根据题意,画出图形,令直线3x+ 23x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,作OH ⊥CD 于H ;然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C 、D 两点的坐标值; 再在Rt △POC 中,利用勾股定理可计算出CD 的长,并利用面积法可计算出OH 的值; 最后连接OA ,利用切线的性质得OA ⊥PA ,在Rt △POH 中,利用勾股定理,得到21PA OP =-PA 的最小值即可.【详解】如图,令直线3x+23x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=3D(0,3当y=033,解得x=-2,则C(-2,0),∴222(23)4CD=+=,∵12OH•CD=12OC•OD,∴OH=233 4⨯=连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴2221PA OP OA OP=-=-当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA22(3)12-=故选D.【点睛】本题考查了切线的性质,解题关键是熟记切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.。

初三数学圆的总复习

初三数学圆的总复习
内切
两个圆有且仅有一个公共点,且该点在两个圆的内部时,称 这两个圆内切。
圆与圆的相交
相交
两个圆有两个不同的公共点时,称这两个圆相交。此时两个公共点连成的线段叫 做两圆的公共弦。
特殊相交
当两个圆的半径相等且相交于两点时,这两点连成的线段既是两圆的公共弦也是 两圆的直径。
05 圆的综合应用
圆的面积与周长计算
01
02
03
圆的面积公式
$S = pi r^{2}$,其中 $r$ 是圆的半径。这个公 式用于计算圆的面积。
圆的周长公式
$C = 2pi r$ 或 $C = pi d$,其中 $r$ 是圆的半径, $d$ 是圆的直径。这两个 公式用于计算圆的周长。
扇形面积公式
$S_{扇形} = frac{npi r^{2}}{360}$,其中 $n$ 是扇形的圆心角,$r$ 是 圆的半径。这个公式用于 计算扇形的面积。
线的性质。
圆的拓展应用问题
圆锥曲线问题
圆锥曲线包括椭圆、双曲线和抛物线。在解决这类问题时,需要掌握圆锥曲线的定义、标 准方程和性质等知识点。
极坐标与参数方程问题
极坐标是一种用距离和角度来描述平面上点的方法,参数方程则是用参数来描述曲线上点 的坐标的方法。在解决这类问题时,需要掌握极坐标与直角坐标的互化以及参数方程与普 通方程的互化等知识点。
通过一般方程,可以计算出圆心坐标$left( frac{D}{2},-frac{E}{2} right)$和半径 $r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
方程变形
通过配方等方法,可以将一般方程转化为标准方 程。
圆的图形与方程的关系
图形与方程对应
01

初中数学圆总复习课件

初中数学圆总复习课件
圆的综合问题
圆的运动问题
总结词
理解运动问题中的变量和常量,掌握运动过程中圆的变化规 律。
详细描述
在解决圆的运动问题时,需要理解圆心和半径在运动过程中 的变化规律,以及这些变化对圆的面积、周长等量的影响。 同时,要善于利用代数和几何方法来求解相关问题。
圆的面积和周长问题
总结词
掌握计算圆面积和周长的公式,理解半径与面积、周长的关系。
扇形面积公式
若圆心角为 $alpha$,半径为 $r$,则扇形面积 $S_{扇形} = frac{1}{2} alpha r^{2}$。
圆与直线的位置关系
相切
直线与圆只有一个公共点,即直 线与圆相切。
相交
直线与圆有两个公共点,即直线与 圆相交。
相离
直线与圆没有公共点,即直线与圆 相离。
02
圆的定理与性质
圆的内接四边形
总结词
理解内接四边形的性质和判定定理
详细描述
圆的内接四边形具有一系列重要的性质,如对角互补、外角等于内对 角等。这些性质在解题过程中经常用到,需要熟练掌握。
总结词
掌握内接四边形的面积和周长的计算方法
详细描述
圆的内接四边形的面积和周长的计算涉及到圆的半径和内角,需要灵 活运用圆的性质和三角函数的知识。
总结词 详细描述
总结词 详细描述
理解弦的重要定理和性质
弦在圆中具有很多重要的定理和性质,如垂径定理、弦心距定 理等。这些定理和性质在解题过程中经常用到,需要熟练掌握

掌握弦长的计算方法以及与弦相关问题的解决方法
弦长的计算以及与弦相关问题的解决方法是解决与弦相关问题 的关键,需要熟练掌握其应用方法。
03
圆的数学建模
总结词

初中数学圆知识点总结

初中数学圆知识点总结

初中数学圆知识点总结初中数学圆知识点总结一.1、弧长公式n°的圆心角所对的弧长l的计算公式为L=nπr/1802、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.S=﹙n/360﹚πR2=1/2×lR3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.S=1/2×l×2πr=πrl4.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

5.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

6.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.4、弦切角定理弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.二.圆周角和圆心角的关系:1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.2.圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;初中数学圆知识点学习技巧1.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上===d=r;②点在圆内===ddr.二.圆的对称性:1.与圆相关的概念:④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

(完整版)初三数学圆知识点复习专题经典

(完整版)初三数学圆知识点复习专题经典
∴ PA2 PC PB
A
D
E
O
C
B
线长是这点到割
( 4 )割线定理 :从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线段长的积相等
(如上图) 。
即:在⊙ O 中,∵ PB 、 PE 是割线
∴PC PB PD PE
例 1. 如图 1,正方形 ABCD的边长为 1,以 BC为直径。在正方形内作半圆 于 E,求 DE: AE的值。
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称 1
推 3 定理,即上述四个结论中, 只要知道其中的 1 个相等,则可以推出其它的 3 个结论,
即:① AOB DOE ;② AB DE ; ③ OC OF ;④ 弧 BA 弧 BD
O A
C
E F D
∴C D
推论 2 :半圆或直径所对的圆周角是直角;圆周角是直角所对的弧
C
是半圆,所对的弦是直径。
即:在⊙ O 中,∵ AB 是直径
或∵ C 90
B
A
O
∴ C 90
∴AB 是直径
推论 3 :若三角形一边上的中线等于这边的一半,那么这个三角形是
C
直角三角形。
即:在△ ABC 中,∵ OC OA OB
B
A
推论 1:( 1 )平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2 )弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3 )平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结

初中数学圆专题复习(精心整理版)

初中数学圆专题复习(精心整理版)

圆一、知识点梳理知识点1:圆的定义:1. 圆上各点到圆心的距离都等于.2. 圆是对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念1.在同圆或等圆中,相等的弧叫做2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的.3. 直径所对的圆周角是,90°所对的弦是.知识点3:圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别.知识点4:垂径定理垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分.知识点5:确定圆的条件三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三角形的、这个三角形是圆的.知识点6:点与圆的位置关系(1)点与圆的位置关系:点在圆内、点在圆上、点在圆外.其中r为圆的半径,d为点到圆心的距离,知识点7:直线与圆的位置关系直线与圆的位置关系有三种:相交、相切、相离.设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表:知识点8:切线的判定与性质判定切线的方法有三种:①利用切线的定义:即与圆有的直线是圆的切线。

②到圆心的距离等于的直线是圆的切线。

③经过半径的外端点并且于这条半径的直线是圆的切线。

切线的五个性质:①切线与圆只有公共点;②切线到圆心的距离等于圆的;③切线垂直于经过切点的;④经过圆心垂直于切线的直线必过;⑤经过切点垂直于切线的直线必过。

知识点9:切线长定理经过圆外一点作圆的切线,这点与之间的线段的长度,叫做这点到圆的切线长.过圆外一点可以引圆的两条切线,它们的相等,这一点和圆心的连线平分两条切线的.知识点10:三角形内切圆和三角形各边都相切的圆叫做三角形的,三角形内切圆的圆心叫三角形的.知识点11:圆和圆的位置关系设两圆半径分别为R和r。

24--圆复习

24--圆复习
则此三角形的周长是__2_2_c_m__. 3.⊙O边长为2cm的正方形ABCD的内切圆,E、F切⊙O
于P点,交AB、BC于E、F,则△BEF的周长是_2_c_m__.
G E
FH
三.正多边形:
A
B
1叫.做中这心个:正一多个边正形多的边中形心外.接圆的圆心F O
2.半径:正多边形外接圆的半径叫做这
个正多边形的半径.
直线与这个圆相离. (2) 相切: 一条直线与一个圆只有一个公共点,叫
做直线与这个圆相切. (3) 相交: 一条直线与一个圆有两个公共点,叫
做直线与这个圆相交.
切线长定理:
从圆外一点引圆的两条切线,它们 的切线长相等;这点与圆心的连线平分 这两条切线的夹角。
.A
. O . B
∵PA、PB为⊙O的切线 ∴PA=PB, P ∠APO= ∠BPO
三角形的内心就是三角形各角平分线的交点.
不在同一直线上的三点确定一个圆.
3.如图,是某机械厂的一种零件平面图.
(1)请你根据所学的知识找出该零件所在圆的 圆心(要求正确画图,不写做法,保留痕迹).
(2)若弦AB=80cm,AB的中点C到AB的距离是 20cm,求该零件所在的半径长.
基础题:
1.既有外接圆,又内切圆的平行四边形是正__方__形__. 2.直角三角形的外接圆半径为5cm,内切圆半径为1cm,
角的计算常要连, 遇到直径想直角,
构成等腰解疑难; 灵活应用才方便。
熟练掌握以下的结论
设a、b、c分别为ABC中A、B、C的对边,面积为S,
则内切圆半径(1)r s ,其中p 1(a b c);
p
2
(2)C 90,则r 1(a b c) 2
r

初三总复习知识点总结圆

初三总复习知识点总结圆

初三总复习知识点总结圆圆是初中数学学科中的一个重要内容,它是与平面几何和数学分析密切相关的概念。

在初三阶段,学生在圆的相关知识点上要进行系统的学习和巩固。

本文将对初三总复习中的圆相关知识点进行总结,包括圆的定义、圆的性质、圆的解析几何等方面。

一、圆的定义圆是平面上以一个点为圆心,以一个长度为半径的线段为半径的所有点的集合。

简而言之,圆是由半径为r的所有点构成的几何图形。

二、圆的性质1. 圆与直径:直径就是通过圆心的两个点之间的线段,直径的长度等于圆的半径的两倍。

2. 圆与弧:圆上的弧是圆周上的一段连续的弯曲线,圆周上的任意两点之间的弧称为小弧,小于半圆的弧称为短弧,等于半圆的弧称为半弧,大于半圆的弧称为长弧。

3. 圆与切线:切线是与圆只有一个交点,并且与圆在这个交点处垂直的直线,切线的切点处是切点。

4. 圆与弦:弦是圆上的一条线段,连接圆上的两个点,弦的长度小于等于直径。

5. 圆与弦的关系:如果两条弦相等,那么它们所对应的弧相等;如果两条弦所对应的弧相等,那么它们的长度相等。

6. 圆与弦的垂直关系:如果一个弦上有一个切线垂直于它,那么这个弦的中点会位于半径上。

7. 圆的内切角和内接弧:一个圆与其内接三角形的三个内切角相等,且每个内切角对应的内接弧是相等的。

三、圆的解析几何1. 圆的方程:对于一个以(h, k)为圆心,r为半径的圆,它的方程是(x - h)² + (y - k)² = r²。

2. 圆的位置关系:两个圆相交于两个交点、内切于一个交点或者外切(相切)于一个交点,也可以不相交。

3. 判断点是否在圆内或圆外:对于一个以(h, k)为圆心,r为半径的圆,一个点P(x, y)在圆的内部当且仅当 (x - h)² + (y - k)² < r²;一个点P在圆的边界上当且仅当 (x - h)² + (y - k)² = r²;一个点P在圆的外部当且仅当 (x - h)² + (y - k)² > r²。

最新人教版初中九年级上册数学【圆全章复习】教学课件

最新人教版初中九年级上册数学【圆全章复习】教学课件
请补全解答过程.
E
C
6
4
4D
H4
A
O
BF
10
综合运用
小结:
E
E
C
C
D
D
3
3
1 A2
O
BF
A
12
O
BF
综合运用
小结:
E
E
C D
C D
G
H
A
O
BF
A
O
BF
知识梳理
圆的对称性
圆的有关性质 弧、弦、圆心角之间的关系
同弧上的圆周角和圆心角的关系
圆 点、直线和圆的位置关系
点和圆的位置关系 直线和圆的位置关系
综合运用
例 如图,⊙O是△ABC的外接圆,若AB=6cm,∠C=60°,则⊙O的半径为 ________cm.
C
O
A
B
综合运用
方法1:作OD⊥AB于D,连接OA,OB.
∵∠C=60°,
∴∠AOB=2∠C=120°.
∵OA=OB,OD⊥AB于D, AB=6 cm,
∴△AOD中,∠ADO=90°,
知识梳理
圆的有关性质
圆的对称性 垂径定理 弧、弦、圆心角之间的关系 定理 同弧上的圆周角和圆心角的关系
圆周角定理
初中数学
重点回顾
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
A2 A1
A3
O
B
C
重点回顾
圆周角定理的推论 推论1:同弧或等弧所对的圆周角相等. 推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 推论3:圆内接四边形的对角互补.
切线的判定定理:经过半径的外端并且垂直于这 条半径的直线是圆的切线.

初中数学圆总复习课件

初中数学圆总复习课件

圆的易错计算
公式应用错误
在进行圆的计算时,学生容易因为对公式的理解不透彻或者记忆不准确而出现计算错误,如圆的周长、面积、弧长等计算公 式。
圆的易错证明
逻辑推理错误
在证明一些与圆相关的定理和性质时,学生容易在逻辑推理上出现错误,如证明切线的性质、垂径定 理等。
THANKS
感谢您的观看
04
圆的实际应用
生活中的圆
总结词
生活中的圆无处不在,与我们的生活 紧密相连。
详细描述
生活中的许多事物都与圆有关,例如 轮胎、锅碗瓢盆、太阳、月亮等。这 些事物的形状和运动轨迹都与圆有关 ,是圆在实际生活中的应用。
圆的运动问题
总结词
运动中的圆涉及到速度、加速度等物理量的计算和运用。
详细描述
在运动中,圆可以作为物体运动的轨迹,涉及到速度、加速 度等物理量的计算。例如,在自行车行驶的过程中,车轮的 转动与行驶速度和路程有关,可以通过圆的性质来计算。
圆的相离证明
总结词
利用离点性质和离点定理是解决这类 问题的关键。
总结词
通过证明两圆没有公共点来证明两圆 相离的方法是解决这类问题的基本技 巧。
总结词
利用离点坐标和距离公式来证明两圆 相离的方法是解决这类问题的常用技 巧。
总结词
通过证明两圆的圆心在同一条直线上 来证明两圆相离的方法是解决这类问 题的特殊技巧。
01
02
03
04
总结词
利用交点性质和交点定理是解 决这类问题的关键。
总结词
通过证明两圆有两个不同的交 点来证明两圆相交的方法是解
决这类问题的基本技巧。
总结词
利用交点坐标和距离公式来证 明两圆相交的方法是解决这类

初中数学-圆的总复习

初中数学-圆的总复习

1.外离、外切、相交、内切、内含.
相切
相交
●O
●O1
2
外切
●O●O1
2
内切
●O
●O1
2
相交
相离
●O
●O1
2
外离
●●OO1
内含
2
上述五种位置关系还可以分成:相交、相切、相离三类
3.圆与圆的位置关系量化揭密
R
●O
2
两圆外离
r
●O1
外离
R
●O
2
d > R+r; 两圆外切
r
●O1
外切
d = R+r;
R
●O
2
r●O1 相交
Rr
●O●O1
2
内切
Rr
●●OO1
2
内含
两圆相交 两圆内切 两圆内含
R-r < d < R+r. d = R-r;
d < R-r;
已知⊙O1与⊙O2相切,且⊙O1的半径6cm,两圆的
圆心距为8cm,则⊙O2的半径为

十一、 弧长与扇形面积 1. 半径为R的圆中,n°的圆心角所对的弧长的计算公式
A
A
D
D
B
●O
B
●O
●O′

A′ D′ B′

A′ D′ B′
2.推论 在同圆或等圆中,如果①两个圆心角,②两条弧, ③两条弦,④两条弦的弦心距中,有一组量相等,那么它们 所对应的其余各组量都分别相等.
(一)、圆的中心对称性 (1)若将圆以圆心为旋转中心,旋转180°, 你能发现什么? 圆绕其圆心旋转180°后能与原来图形相重合。 因此,圆是中心对称图形,对称中心是圆心。

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。

圆有无数条对称轴,对称轴经过圆心。

圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。

二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。

2. 切线性质:圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。

3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。

4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。

圆锥椭圆的两焦点是圆锥的底面圆心和顶点。

双曲线类似。

三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。

如圆形广场、圆形剧场等。

2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。

这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。

3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。

这些元件的形状和布局对于电子设备的功能和性能有着重要影响。

4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。

对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。

四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。

我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。

2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。

3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。

初中圆知识点总结复习

初中圆知识点总结复习

初中圆知识点总结复习圆是初中数学中很重要的一个知识点,也是初中数学的基础内容之一。

圆的相关知识点主要涉及到圆的基本概念、圆的性质、圆的相关定理和应用等方面。

下面我将对圆的知识点进行总结复习,以便同学们更好地掌握和理解这一重要的数学知识。

一、圆的基本概念1. 圆的定义圆是平面上到一个确定点的距离恒定的所有点的集合。

这个确定点叫做圆心,恒定的距离叫做半径。

2. 圆的元素圆由圆心和半径组成,圆心用符号O表示,半径用符号r表示。

3. 圆周圆的周长叫做圆周,用符号C表示。

4. 圆面积圆的面积叫做圆面积,用符号S表示。

5. 圆的直径以圆心为端点的两条相交的直径互相垂直,且一定相等。

6. 圆的弦在圆内连接圆上的两点的线段叫做弦。

7. 圆的弧圆的部分叫做圆弧。

圆弧的长用符号l表示。

8. 圆心角以圆心为顶点的角叫做圆心角。

圆心角的度数等于它所对的圆周弧所对应的圆心角的长度。

二、圆的性质1. 圆的性质(1)任意一条弦都在一个圆内。

(2)圆周定理:圆周内的任意点到圆心的距离都相等。

(3)圆内外点定理:圆外一点到圆的两个切点的距离相等。

(4)同样长度的圆周弧所对的圆心角的大小是相等的。

2. 圆的三要素圆的三要素包括圆心、半径和圆周。

3. 圆的相交(1)相交圆:包括相交内切圆、相交外切圆、相交且不相切的圆。

(2)不相交圆:包括包含关系、内含关系和相离关系。

4. 圆的切线(1)切线的性质:切线与半径垂直,切线与切点的切线相等。

(2)切线定理:圆外一点的切线与圆心的连线垂直。

5. 圆的相似对于两个圆,如果它们的半径之比相等,那么这两个圆是相似的。

三、圆的相关定理1. 圆上的弦定理圆上的弦所夹的圆心角等于它所对的圆周角。

2. 正多边形内接圆和外接圆正多边形内接圆的半径和外接圆的半径之比为$\sqrt{2+\sqrt{2}}$。

3. 等角的圆周弧对于等角的圆周弧,它所对应的圆心角的大小是相等的。

4. 弦切角定理相同弦切圆的两个等角,它对应的弦相等。

初中数学圆总复习课件教学文稿.

初中数学圆总复习课件教学文稿.

初中数学圆总复习课件教学文稿.一、教学内容本节课将围绕初中数学教材中“圆”的相关章节进行复习。

详细内容包括:圆的定义及相关性质、圆的方程、圆的垂径定理、圆的弦、弧和弦心距的关系、圆的面积和周长计算、圆与圆的位置关系等。

二、教学目标1. 巩固圆的基本概念,理解圆的相关性质,并能运用这些性质解决实际问题。

2. 熟练掌握圆的方程表示方法,能解决与圆相关的代数问题。

3. 掌握圆的垂径定理及弦、弧和弦心距的关系,并能应用于解决几何问题。

三、教学难点与重点难点:圆的方程、圆与圆的位置关系、圆的面积和周长计算。

重点:圆的定义、性质、垂径定理及其应用、弦、弧和弦心距的关系。

四、教具与学具准备教具:多媒体课件、黑板、粉笔、圆规、直尺。

学具:圆规、直尺、练习本、计算器。

五、教学过程1. 实践情景引入展示与学生生活相关的圆形物体,如硬币、圆桌等,引导学生思考这些物体的共同特点,引出圆的定义。

2. 例题讲解(1)求半径为5的圆的面积和周长。

(2)已知圆心坐标为(3,4),半径为5,求该圆的方程。

(3)判断两个圆的位置关系:一个圆的方程为(x2)^2 +(y3)^2 = 25,另一个圆的方程为(x+2)^2 +(y+3)^2 = 25。

3. 随堂练习(1)求圆心为(0,0),半径为10的圆的面积和周长。

(2)已知圆的方程为(x4)^2 +(y+5)^2 = 64,求圆的半径和圆心坐标。

(3)判断圆(x3)^2 +(y+2)^2 = 25与圆(x+3)^2 +(y2)^2 = 25的位置关系。

4. 知识点讲解与巩固(1)圆的定义及相关性质。

(2)圆的方程表示方法。

(3)圆的垂径定理及其应用。

(4)弦、弧和弦心距的关系。

(5)圆与圆的位置关系。

六、板书设计1. 圆的定义及相关性质2. 圆的方程3. 圆的垂径定理及其应用4. 弦、弧和弦心距的关系5. 圆与圆的位置关系七、作业设计1. 求半径为8的圆的面积和周长。

答案:面积=201.06 cm^2,周长=50.24 cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学总复习——《圆》【知识结构】⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧侧面积、全面积计算侧面展开图定义圆柱和圆锥形面积计算圆面积、扇形、组合图形周长计算圆周长、弧长、组合图画法应用边长、面积的计算计算半径、边心距、中心角计算概念正多边形正多边形与圆内含内切相交外切外离圆和圆的位置关系切割线定理及推论相交弦定理及推论相交性质判定相切相离直线和圆的位置关系反证法点的轨迹圆内接四边形圆周角定理距之间的关系圆心角、弧、弦、弦心垂径定理及推论基本性质三点定圆定理点与圆的位置关系定义圆的有关性质圆第一节 基本性质【知识回顾】1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论 【考点分析】确定条件: 圆心确定位置;半径确定大小。

1、 圆的对称性:圆是轴对称图形也是中心对称图形。

对称轴是直径,对称中心是圆心。

2、 垂径定理:3、 点与圆的位置关系设圆的半径为R ,一点到圆心的距离为d ,点在圆外R d >⇔;点在圆上R d =⇔;点在圆内R d <⇔。

第二节直线和圆的位置关系【知识回顾】1.三种位置及判定与性质:2.切线的性质(重点)3.切线的判定定理(重点)。

圆的切线的判定有⑴…⑵…4.切线长定理 【考点分析】1、直线和圆的位置关系及其数量特征: 直线和圆的位置相交相切相离d>Rd=R d<R直线与圆相离 直线与圆相切 直线与圆相交D 与r 的关系 d<rd=rd>r公共点个数 2 1 0 公共点名称 交点 切点 无 直线名称割线切线无2、有关定理和概念切线的判定定理: 判定方法:①②③ 切线的性质定理及推论: 切线长定理: 三角形的内切圆和内心:8、如图80309,点A 在⊙O 外,射线AO 与⊙O 交于F,G 两点,点H 在⊙O 上,弧FH=弧GH,点D 是弧FH 上一个动点(不运动至F ),BD 是⊙O 的直径,连结AB,交⊙O 于点C,连结CD,交AO 于点E,且OA=5,OF=1,设AC=x,AB=y 。

①求y 关于x 的函数关系式,并写出自变量x 的取值范围。

②若DE=2CE,求证:AD 是⊙O 的切线。

③当DE,DC 的长是方程x 2-ax+2=0的两根时,求sin ∠DAB 的值。

第三节与圆有关的角【知识回顾】与圆有关的角:⑴圆心角定义(等对等定理) ⑵圆周角定义(圆周角定理,与圆心角的关系) ⑶弦切角定义(弦切角定理) 【考点分析】圆心角定理,圆周角定理,弦切角定理,圆内接四边形定理以及相关概念,能熟练地运用这些知识进行有关证明与计算。

【能力创新】如图14,AB 是⊙O 的直径,弦CD ⊥AB 于P 。

⑴已知:CD=8cm ,∠B=30°,求⊙O 的半径;⑵如果弦AE 交CD 于F ,求证:AC 2=AF ·AE. 第四节与圆有关的比例线段【知识回顾】与圆有关的比例线段1.相交弦定理2.切割线定理 【考点分析】1、和圆有关的线段间的比例关系可列表如下:相交弦定理及推论1切割线定理及推论2 条件 弦AB,CD相交于P 点弦CD ⊥直径AB 交于P 点PT 是⊙O 的切线,PAB 是⊙O 的割线 PAB 、PCD 均为⊙O 的割线 图形图80401 图80402 图80403图80404 结论 PA ·PB=PC ·PDPC 2=PA ·PBPT 2=PA ·PBPA ·PB =PC ·PD2、可深化得出的结论:PA ·PB 为常数。

设⊙O 的半径为R ,对于相交弦则有PA ·PB =R 2-OP 2,对于切割线则有PA ·PB =OP 2- R 2。

3、解题方法:①直接应用相交弦定理,切割线定理及其推论;②找相似三角形,当不能直接运用定理和推论时,通常用添加辅助线的方式以证明三角形相似得证。

第五节圆和圆的位置关系【知识回顾】1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质 【考点分析】1、五种位置关系及其数量特征(注意“数形结合”)。

d>R+rd=R+r R-r<d<R+r d=R-r d<R-r外离 外切 相交 内切 内含两圆位置关系 相交相切 相离外切 内切 外离 内含 d 与R 、r 的关系 R-r<d <R+r (R>r) d= R+rd= R-r (R>r)d> R+rd< R-r (R>r) 公共点个数 2 1 1 0 0 外公切线条数 2 2 1 2 0 内公切线条数0 1 0 2 0 公切线条数 2314 0★记忆方法:O R-r R+r★ ★ ★ d 内含 相交 外离 2、有关定理: 连心线的性质:当两圆相交时,连心线垂直平分公共弦;当两圆相切时,连心线过切点;当两圆外离时,连心线过内(外)公切线的交点且连心线平分两条公切线的夹角;当两圆内含时,连心线是对称轴。

公切线的性质:两圆的两条外(内)公切线的长相等;两条外(内)公切线的交点在连心线上且夹角被连心线平分。

公切线长的计算公式:l 外公切线=d 2-(R-r)2 l 内公切线=d 2-(R +r)2..两个圆是轴对称图形,两圆的连心线是它的对称轴。

3、思想方法:(1)抓住“切点”,明辨圆与圆的相切及圆与直线的相切,并充分、合理地运用有关“切”的定理。

(2)全面思考问题:如两圆无公共点,则为外离或内含;相切分“外切”和“内切”;两个圆心可在公共弦和同侧或异侧。

(3)发现和建立两圆之间的联系,注意有些线段或角具有双重身份,应灵活使用。

第六节正多边形和圆【知识回顾】1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质 3.圆的外切四边形、内接四边形的性质 4.正多边形及计算中心角:)(2360右图αα=︒=n n 内角的一半:21180)2(⨯︒-=n n β5、一组计算公式(1)圆周长公式(2)圆面积公式(3)扇形面积公式(4)弧长公式 (5)弓形面积的计算方法(6)圆柱、圆锥的侧面展开图及相关计算 【考点分析】1、任何一个正多边形都有一个外接圆和一个内切圆,而且是同心圆。

2、一个正n 边形,当n 为奇数时,它是一个轴对称图形,且有n 条对称轴;当n 为偶数时,它同时也是一个中心对称图形,其对称中心为其外(内)心。

3、弧长公式l 弧AB=n180πR 。

4、扇形面积公式:S 扇形=n 360 πR 2=12l R 。

5、弓形面积公式:6、正n 边形:7、立体图形圆柱和圆锥,可将它们转化为平面图形进行研究。

要掌握圆柱和圆锥转化成相关平面图形的特征,以及与圆柱和圆锥的联系。

、9、结论及方法:(1)正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。

同心圆内切外切(2)正多边形的有关计算问题,常转化为解直角三角形的问题来研究。

(3)常用“隔离法”来按各元素之间的数量关系。

(4)求阴影部分面积常转化为规则图形来求,或采用“重叠法”及“代数法”。

第七节轨迹和作图【知识回顾】一、点的轨迹六条基本轨迹二、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分【考点分析】1,轨迹:条件F⇔图形C五条基本轨迹:①圆:到定点距离等于定长的点的轨迹。

②中垂线:到线段两个端点距离相等的点的轨迹。

③角平分线:到角的两边距离相等的点轨迹。

④平行线:到一直线距离为定值的点的轨迹是一条到该直线距离为定值的平行线。

⑤平行线:到两平行线距离相等的点的轨迹是平行与两条直线且到两直线距离相等的直线。

相切在作图中应用直线和圆弧在切点处连接;圆弧与圆弧在切点处外连接和内连接。

例2说明下点的轨迹:1,一边固定的菱形的对角线交点的轨迹;2,已知圆内等弦的中点轨迹;3,已知圆内平行弦的中点轨迹;4,四边形ABCD是已知圆O的内接梯形,且AB∥CD,若AB固定,写出这个梯形的对角线交点的轨迹;已知定长l及半径r的圆O,若圆O外一点P向圆所作的切线长为l,试写出点P的轨迹;A、B为两定点,且22PBPA-一定值,试写出动点P的轨迹;AB、CD是已给的两条平行线,E、F分别是AB、CD上的动点,连接EF,试写出EF中点P的轨迹;⊿ABC为一已知的等边三角形,P为一动点,若PA=PB+PC,试求点P的轨迹;已知⊿ABC及一动点P,若S⊿PAB=S⊿PAC,试求动点P的轨迹;动点P与定圆O的最短距离等于该圆的半径R,试写出动点P的轨迹;《圆》测试题一、填空题。

(3分×12=36分)1、和已知线段两个端点距离相等的点的轨迹是。

2、一个半径是5cm的圆,它的一条弦长是6cm,则弦心距是。

3、已知,等边ΔABC内接于⊙O,AB=10cm,则⊙O的半径是。

4、一条弦把圆分成2:3两部分,那么这条弦所对的圆心角的度数是。

5、已知PA切⊙O于A,PBC交⊙O于B、C,PA=43,PC=12,则PB= 。

6、已知圆O的弦AB经过弦CD的中点P,若AP=2cm,CD=8cm,则PB的长是。

7、如图80001,①在ABC中,AB=AC,∠BAC=120°,②A与BC相切点D。

与AB相交于点E,则∠EDB =( )度。

8、已知⊙O1与⊙O2的直径分别为4cm和2cm,圆心距为6cm,则两圆的公切线有条。

9、如图80002,⊙O1与⊙O2相交于A和B,PQ交⊙O1于M和Q,切⊙O2于P,交AB延长线于N,MN=3,QN=15,则PN= 。

10、弯制管道时,先按中心线计算“展直长度”,再下料。

根据右图可算得管道的展直长度为。

(单位:mm,精确到1 mm。

)11、如图80004,⊙O的半径为1,圆周角∠ABC=30°,则图中阴影部分的面积是(π表示)。

12、数学课上,学生动手将面积为400cm2的正方形硬纸片围成圆柱的侧面,则此圆柱的底面直径为。

二、选择题。

(3分×10=30分)1、下列命题中,错误的是()A、在同圆或等圆中,相等的圆周角所对的弧也相等;B、到圆心的距离等于半径的点在圆上;C、全等的两个三角形必定相似;D、相等的两个角是对顶角。

2、如图80005,点C在以AB为直径的半圆O上,∠BAC=20°,则∠BOC等于()。

相关文档
最新文档