中考数学考点:圆的知识点汇总考点精讲
圆中考 知识点总结
圆中考知识点总结圆是中学数学中的一个重要知识点,在中考数学中起着重要的作用。
因此,掌握圆的相关知识对于中考数学是非常重要的。
本文将对中考数学中关于圆的知识点进行总结,帮助学生更好地复习和掌握圆的相关知识。
知识点总结一、基本概念1. 圆的定义:圆是由平面上距离一个确定点一定距离的点的全体组成的集合。
2. 圆的要素:圆心、半径、直径、弧、圆周。
3. 圆的性质:圆的直径是圆周的两倍,圆周上任意两点与圆心的距离相等。
二、圆的相关公式1. 圆的周长公式:C=2πr。
2. 圆的面积公式:S=πr²。
三、圆的相关定理1. 直径定理:直径所对应的两个锐角为直角。
2. 圆的切线定理:过圆外一点引圆的切线与过该点作圆的半径垂直。
3. 圆的切线与弦的性质:相交弦定理、弦切定理。
4. 圆的内切与外切定理:内切定理、外切定理。
四、圆的相关应用1. 圆的面积和周长的应用:计算圆的面积、周长和扇形面积等。
2. 圆的几何关系:切线与圆的位置关系、相交弦的性质等。
3. 圆的倒影与旋转:圆的旋转变换、圆的倒影变换。
五、解题技巧1. 熟练掌握圆的相关公式和定理,能够正确应用公式和定理解题。
2. 多做练习,培养解决问题的能力,提高解题技巧。
3. 注意细节,正确理解题目的意思和要求,避免因理解错误而导致错误答案。
六、经典例题1. 已知AB是∠O的平分线,且AC⊥BC,求证:AC=BC。
2. 已知AB与CD是两条相交的直径,P是与AB、CD相交的一点,求证:PA²+PB²=PC²+PD²。
3. 如图,ΔABC是等边三角形,M、N分别是BC、AB的中点,P为AM的垂足,若PA=2,则求BP的长。
4. 四通五达服装公司要在正方形草坪内竖立一些旗杆,使得每个旗杆都最多不见这块草坪中心的五分之一。
那么最多可以竖立几个旗杆?结语通过对圆的相关知识点进行总结,我们可以更好地掌握圆的相关概念、公式、定理和应用。
2024中考数学一轮复习核心知识点精讲—圆的基本性质与圆有关的位置关系
2024中考数学一轮复习核心知识点精讲—圆的基本性质与圆有关的位置关系1.探索并了解点和圆、直线和圆以及圆和圆的位置关系.2.知道三角形的内心和外心.3.了解切线的概念,并掌握切线的判定和性质,会过圆上一点画圆的切线.考点1:点与圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外。
考点2:直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;r d=r r dd考点3:切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN OA ⊥且MN 过半径OA 外端∴MN 是⊙O 的切线2、性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
考点4:切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵PA 、PB 是的两条切线∴PA PB =;PO 平分BPA∠考点5:三角形的内切圆和内心(1)三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。
(2)三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
注意:内切圆及有关计算。
(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)△ABC 中,∠C=90°,AC=b ,BC=a ,AB=c ,则内切圆的半径r=2cb a -+。
(3)S △ABC =)(21c b a r ++,其中a ,b ,c 是边长,r 是内切圆的半径。
初三圆知识点汇总
初三圆知识点汇总圆是初中数学中的一个重要内容,也是中考的必考知识点之一。
下面就为大家详细汇总初三圆的相关知识点。
一、圆的定义1、动态定义:在平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 所形成的图形叫做圆。
固定的端点 O 叫做圆心,线段 OA 叫做半径。
2、静态定义:圆是到定点的距离等于定长的点的集合。
二、圆的相关概念1、弦:连接圆上任意两点的线段叫做弦。
2、直径:经过圆心的弦叫做直径,直径是圆中最长的弦。
3、弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧分为优弧、劣弧和半圆。
4、半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
5、等圆:能够重合的两个圆叫做等圆。
6、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
三、圆的基本性质1、圆的对称性(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。
(2)圆是中心对称图形,对称中心为圆心。
2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
3、圆心角、弧、弦之间的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
四、圆的位置关系1、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:(1)点在圆外⇔ d > r;(2)点在圆上⇔ d = r;(3)点在圆内⇔ d < r。
2、直线与圆的位置关系设圆的半径为 r,圆心到直线的距离为 d,则有:(1)直线与圆相离⇔ d > r;(2)直线与圆相切⇔ d = r;(3)直线与圆相交⇔ d < r。
中考数学圆知识点归纳
中考数学圆知识点归纳一、圆的定义和性质:1.圆的定义:平面上的所有到圆心距离相等的点的集合。
2.圆的部分:弧、弦、弧长、弦长、圆心角、半径、直径、切线、弧度、坐标公式等。
二、圆的特殊位置和位置关系:1.圆上的点与圆心之间的关系:圆周角是直径的角为直角。
2.圆内外的点与圆心之间的关系:内接圆和外接圆。
三、圆的性质:1.半径相等的圆相等,直径相等的圆相等。
2.圆的直径是两个切点。
3.两圆相交,切点在弦上,切点与所对弧不在一条直径上。
4.圆上的切线与半径垂直,且只有一条。
(切线切圆问题)5.过圆外一点可以作无数条切线,其中只有一条切线与圆通过该点处的切线垂直。
(外切线和切线问题)四、圆的计算:1.圆的周长:C=2πr(其中r为半径)。
2.圆的面积:S=πr²(其中r为半径)。
3.弧长:L=2πr(对应圆心角为360°的弧)。
4.弧度制和角度制的转换:弧度=角度×(π/180°)角度=弧度×(180°/π)五、利用圆的知识解决问题:1.根据已知条件作出相关几何图形,运用定理和性质求解问题。
2.提取关键信息,运用圆的性质和公式进行计算。
3.运用切线的特性求解问题。
4.运用弧的性质,求解弧长、弦长、圆心角等问题。
5.运用角平分线和垂直平分线的性质,求解相关问题。
六、与圆相关的解题技巧:1.制图时,可以借助直角三角形和等腰三角形的性质。
2.运用圆的部分的特性,构造性质,使用类似全等三角形的方法求解问题。
3.运用余弦定理、正弦定理等三角函数的性质,结合圆的特性求解问题。
4.利用圆内切四边形的特性解决问题。
以上为中考数学圆知识点的归纳,希望对你复习和备考有所帮助。
2024年中考数学一轮复习考点精讲课件—圆的相关概念及性质
对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.
考点二 圆的性质
题型01 由垂径定理及推论判断正误
【例1】(2023·浙江·模拟预测)如图,是⊙ 是直径,是弦且不是直径, ⊥ ,则下列结论不一定正
【详解】解:如图,连接,
∵线段是⊙ 的直径, ⊥ 于点E, = 16,
1
1
∴ = = 2 = 2 × 16 = 8,
∴在Rt △ 中,可有 = 2 + 2 = 62 + 82 = 10,
∴⊙ 半径是10.
故选:D.
考点二 圆的性质
题型03 根据垂径定理与全等三角形综合求解
直径)(4)平分弦所对的优弧(5)平分弦所对的劣弧,若已知五个条件中的两个,那么可推出其中三个,简
称“知二得三”,解题过程中应灵活运用该定理.
常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;
2)有弦中点,连中点和圆心,得垂直平分.
考点二 圆的性质
3. 弧、弦、圆心角的关系
即的最小值是8.故选:C.
考点二 圆的性质
1. 圆的对称性
内容
补充
圆的轴对称 经过圆心任意画一条直线,并沿此直线圆对折,直线两旁的部分能够 ①圆的旋转不变性是其他中心对称图形所
性
完全重合,因此圆是轴对称图形,每一条直径所在的直线都是它的 没有的性质.
对称轴,圆有无数条对称轴.
圆的中心对 将圆绕圆心旋转180°能与自身重合,因此它是中心对称图形,它
①圆心,它确定圆的位置.
②半径,它确定圆的大小.
的点组成的图形.
中考圆形知识点总结归纳
中考圆形知识点总结归纳圆形是中学数学中一个重要的几何概念,在中考中也是一个常见的考点。
本文将对中考中涉及到的圆形知识进行总结和归纳,帮助考生复习和掌握这一部分内容。
一、圆的基本概念圆是由平面上任意一点到另一点的距离都相等的点的集合。
其中,距离相等的这个固定值称为圆的半径,用字母r表示。
圆心是圆上任意两点的连线的垂直平分线的交点。
二、圆的性质1. 圆上任意两点之间的距离都等于圆的半径。
2. 圆心角的度数等于它所对的弧的度数,且圆心角所对的弧长等于圆的半径乘以圆心角的弧度值。
3. 相等弧所对的圆心角是相等的。
4. 圆的内切正多边形的中心与圆心重合。
三、弧1. 圆周角:圆周角是指以圆心为顶点的角,它的两边是相交于圆上的两条弧。
圆周角的度数等于它所对的弧的度数。
2. 弦:圆内部连接两点的线段称为弦。
弦分割出的两条弧叫做弦所对的弧。
3. 弧长:指圆上的一段弧所对应的圆周长度。
弧长等于圆心角的弧度值乘以圆的半径。
四、相交弦与切线的性质1. 相交弦定理:相交弦所对的弧相等,或者说两个相交弦所对应的圆心角相等。
2. 切线的性质:切线与半径的垂直分割线。
切线于半径的交点处所对应的圆心角为直角。
五、圆的面积和周长1. 圆的面积公式:S = πr²,其中S为圆的面积,r为圆的半径,π取近似值3.14。
2. 圆的周长公式:C = 2πr,其中C为圆的周长。
六、圆的应用1. 圆的切线与圆的性质:切线与切点间的弦相等,切线切割出的小圆与大圆相似。
2. 弧长与扇形面积:扇形面积等于扇形所对的圆心角的弧长所占整个圆的比例乘以圆的面积。
总结:通过对中考圆形知识点的总结和归纳,我们可以看到,圆形在中考中的考点比较多,涉及到圆的基本概念、性质、弧、相交弦与切线的性质、面积和周长以及应用等方面的内容。
对于考生而言,要牢固掌握圆的基本概念和性质,熟练运用相关公式和定理,灵活应用于解题过程中。
只有通过不断的实践和练习,才能在考试中熟练运用所学的圆形知识,取得好的成绩。
初三圆的知识点归纳总结
初三圆的知识点归纳总结圆是初中数学中一个重要的几何概念,它涉及到的知识点较多。
下面将对初三圆的知识点进行归纳总结,以便于读者更好地理解和掌握。
1. 圆的定义与性质圆是平面上的一条曲线,其上的任意两点到圆心的距离相等。
圆由无数点组成,其中最重要的是圆心和半径。
- 圆心:圆上所有点到圆心的距离相等,通常用字母O表示。
- 半径:连接圆心和圆上任意一点的线段,通常用字母r表示。
2. 相关公式与计算圆的周长和面积是初三学习中需要重点掌握的计算公式。
- 圆的周长公式:C = 2πr,其中π取近似值3.14,r为半径。
- 圆的面积公式:S = πr²,其中π取近似值3.14,r为半径。
3. 弧与弦圆上的弧是圆上两点之间的曲线段,弧由圆心角所确定。
圆上任意两点之间的线段称为弦。
- 弧长:弧长可以通过圆心角与圆的周长的比例来计算,通常用字母l表示。
l = (θ/360) × 2πr,其中θ为圆心角的度数。
- 弦长:弦长可以通过半径和圆心角来计算,通常用字母s表示。
s = 2r × sin(θ/2),其中θ为圆心角的度数。
4. 切线与切点在圆上,过圆上一点的直线称为切线,该点称为切点。
圆的切线与半径的关系如下:- 切线与半径的垂直关系:切线与通过切点的半径垂直相交。
- 切线的长度:切线的长度可以通过直角三角形的定理计算。
假设切点坐标为(x₀, y₀),半径为r,则切线长为L = √(x₀² +y₀²)。
5. 弧度制与角度制圆的度量可以用角度制和弧度制来表示。
- 角度制:一个圆的360°被等分为若干个小部分,每个小部分被称为1度(1°)。
- 弧度制:一个圆的一周对应的弧长为2π,定义为2π弧度(2π rad),因此1弧度约等于57.3°。
6. 圆的其他性质- 在同一个圆上,相等弧所对圆心角相等,圆心角相等则所对弧相等。
- 在同一个圆上,位于圆上的两条弦相等,则其所对的圆心角相等。
(完整版)初三数学圆知识点复习专题经典
A
D
E
O
C
B
线长是这点到割
( 4 )割线定理 :从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线段长的积相等
(如上图) 。
即:在⊙ O 中,∵ PB 、 PE 是割线
∴PC PB PD PE
例 1. 如图 1,正方形 ABCD的边长为 1,以 BC为直径。在正方形内作半圆 于 E,求 DE: AE的值。
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称 1
推 3 定理,即上述四个结论中, 只要知道其中的 1 个相等,则可以推出其它的 3 个结论,
即:① AOB DOE ;② AB DE ; ③ OC OF ;④ 弧 BA 弧 BD
O A
C
E F D
∴C D
推论 2 :半圆或直径所对的圆周角是直角;圆周角是直角所对的弧
C
是半圆,所对的弦是直径。
即:在⊙ O 中,∵ AB 是直径
或∵ C 90
B
A
O
∴ C 90
∴AB 是直径
推论 3 :若三角形一边上的中线等于这边的一半,那么这个三角形是
C
直角三角形。
即:在△ ABC 中,∵ OC OA OB
B
A
推论 1:( 1 )平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2 )弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3 )平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结
中考数学圆知识点总结7篇
中考数学圆知识点总结7篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点叫做圆心,定长叫做半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转不变性,即围绕圆心旋转任意角度后,得到的图形仍然与原图形重合。
二、圆的性质1. 圆的直径是最大的弦,弦是连接圆上两点的直线段,直径是特殊的弦。
2. 圆心到圆上各点的距离都等于半径,即圆的半径是圆的长度单位,它决定了圆的大小。
3. 圆的周长与直径的比值叫做圆周率,是一个重要的数学常数,约等于3.1415926。
4. 圆的面积等于π乘以半径的平方,即圆的面积随着半径的增大而增大。
三、圆与直线的关系1. 直线与圆有三种位置关系:相交、相切、相离。
相交是指直线与圆有两个不同的交点;相切是指直线与圆有一个切点;相离是指直线与圆没有交点。
2. 圆的切线垂直于过切点的半径,即切线与半径是垂直关系。
3. 圆的两条平行弦所对的圆心角相等,即圆心角的大小只与弦的位置有关,与弦的长度无关。
四、圆与圆的位置关系1. 两个圆的位置关系有五种:外离、外切、相交、内切、内含。
外离是指两个圆没有公共点;外切是指两个圆有一个公共点;相交是指两个圆有两个不同的公共点;内切是指两个圆有一个公共点且两圆的圆心在公共点的两侧;内含是指两个圆的圆心在同一个大圆的内部。
2. 两个圆的圆心距等于两圆半径之和或差,即两圆的位置关系可以通过计算圆心距来判断。
3. 两个相交的圆,它们的交点叫做共点,共点将两圆分成四段弧,每段弧叫做一拱。
五、圆的幂和极坐标1. 圆的幂是指一个点到一个圆的距离的平方,即该点到圆心的距离乘以它自身。
圆的幂是该点的极坐标系中的ρ值。
2. 极坐标系是一种在平面中表示位置的方法,它使用一个角度和一个距离来表示一个点。
在极坐标系中,圆的幂可以通过ρ值来计算。
3. 通过计算圆的幂和极坐标系中的角度值,我们可以确定一个点是否在某个圆上或某个圆外。
篇2一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
2024年中考数学总复习第一部分考点精讲第六单元圆第1课时与圆有关的性质
返回目录
名称
公式
中心角
360 正n边形的每个中心角θ为__n___
图例
正多边 形与圆
边心距
正n边形的边心距r=
R2
a 2
2
周长 面积
正n边形的周长l=na 1
正n边形的面积S=__2___rl(l为
正n边形的周长)
R:半径 r:边心距 a:边长 θ:中心角
第1课时 与圆有关的性质
一题串讲重难点
理及其推
_的__圆__心__角__的__一__半_____,
论(图③) 即∠BAC= 12∠BOC
图③
第1课时 与圆有关的性质
返回目录
1.____同__弧__或__等__弧__所__对__的__圆__周__角__相__等_____,即
∠BAC=∠BDC
推论 2.直径(或半圆)所对的圆周角是___直__角____,
返回目录
基础知识巩固
例1
如图,△ABC内接于⊙O,BC为⊙O的
直径,点D为劣弧 AC上一点,连接OD,BD.
(1)∠BAC=__9_0___°;
(2)若∠COD=70°,
则∠CBD=___3_5__°,
∠BDO=___3_5__°;
例1题图
第1课时 与圆有关的性质
(3)如图②,点A为 BD的中点,若∠ACB=20°, 则∠ABD=__2_0___°,∠CBD=__5_0___°; (4)如图③,OD⊥AC交AC于点F,AC=8. ①AF的长为__4____; ②若∠CBD=27°,则∠ABD=__2_7___°; ③若⊙O的直径为10,则DF的长为__2____.
尺规作图 圆锥的侧面展开图是扇形
1 考点精讲 2 一题串讲重难点 3 广东8年真题子母题
初三圆知识点总结归纳
初三圆知识点总结归纳在初三数学学习中,圆是一个重要的几何形状。
本文将对初三圆的相关知识点进行总结归纳,帮助同学们更好地理解和掌握圆的性质与计算方法。
一、圆的基本概念圆是指平面上与给定点距离相等的所有点的集合。
其中,给定的点叫做圆心,所有与圆心距离相等的点叫做圆上的点,而半径则是圆心到圆上任意一点的距离。
二、圆的性质1. 圆的直径、半径和弦- 直径:通过圆心的一条线段,且与圆上两个点相交。
- 半径:圆心到圆上任意一点的距离,也是圆的直径的一半。
- 弦:圆上的一条线段,两端点在圆上。
2. 圆的周长和面积- 周长:圆的周长也叫圆周长,等于圆的直径与圆周之间的比例(π)。
- 面积:圆的面积等于圆周长度(C)与直径的关系(π)。
三、圆的重要定理1. 切线定理- 定理一:圆的半径与切线的垂直段的平方之和等于切线段的平方。
- 定理二:直线与圆相切,则切线垂直于直径。
2. 弧长定理- 在同一个圆或者等圆中,属于同一个圆弧的两条弧所对的圆心角相等。
- 在同一个圆或者等圆中,圆心角相等的弧所属的圆弧长也相等。
3. 弦切角定理- 当一个半径与一条弦相交时,弦上的弧所对的圆心角等于半径与弦的夹角。
- 等弧所对的圆心角相等。
四、圆的计算方法1. 利用圆的周长计算半径和直径:- 已知周长求半径:半径 = 周长/ (2 * π)- 已知周长求直径:直径 = 周长/ π2. 利用圆的面积计算半径和直径:- 已知面积求半径:半径= √(面积/ π)- 已知面积求直径:直径= √(4 * 面积/ π)五、例题演练1. 题目一:已知圆的直径为10cm,求其面积和周长。
解答:半径 = 直径 / 2 = 10cm / 2 = 5cm面积= π * 半径² = π * 5² ≈ 78.54cm²周长= 2 * π * 半径= 2 * π * 5 ≈ 31.42cm2. 题目二:已知圆的周长为18.84cm,求其半径和直径。
初三数学圆的知识点总结
初三数学圆的知识点总结一、圆的相关概念1.圆的定义圆是平面上到一个点的距离等于定长的所有点的集合。
这个距离被称为圆的半径,记作r。
圆的大小用圆的半径r来表示。
2.圆的要素圆是由圆心和半径确定的,其中圆心是到圆上任意一点的距离都相等的点,半径是从圆心到圆上的任意一点的距离。
3.圆的基本性质(1)圆的任意直径都等于其半径的两倍。
(2)圆的周长C等于2πr(周长与圆的直径、半径间的关系)。
(3)圆的面积S等于πr²(圆的面积与半径的关系)。
二、圆的常见问题及解题方法1.圆的周长和面积的计算问题对于周长和面积的计算问题,一般需要根据给出的条件,按照具体的计算公式计算得出结果。
2.圆的图形问题在图形问题中,通常遇到的问题有圆与直线的相交关系、圆与圆的位置关系等问题。
解决这些问题通常需要利用圆的性质、基本定理进行分析。
三、圆的相关定理1.圆心角定理圆心角定义:圆心角是以圆心为顶点的角。
当圆心角对应的弧长是整个圆周长的m分之n时,圆心角的度数是360°的m分之n。
当弧长为s时,圆心角的度数是(s/πr)×360°。
2.圆周角定理两条相交弦所夹角的大小,与它们所对的弧有关。
圆周角是以圆周作为边的角。
圆周角等于它所对圆周的两条弧的有关角的度数之和。
3.正比例定理如果两个圆的半径成正比,则这两个圆的面积成正比;如果两个圆的面积成正比,则这两个圆的周长成正比。
四、圆的应用1.工程设计中的圆在工程设计中,圆形是最常见的图形之一,比如在设计轮胎、车轮等产品时都会使用到圆的知识。
2.日常生活中的圆在日常生活中,圆形也是常见的,比如钟表、盘子、足球等都是圆形的。
对于这些物体,我们也可以通过圆的知识对其周长、面积等进行计算和分析。
3.数学问题中的圆圆的知识在解决数学问题中也是必不可少的,比如在几何问题中,计算圆的周长、面积等都需要运用圆的相关知识。
总之,初三数学圆的知识点包括了圆的基本概念、常见问题及解题方法、相关定理和应用等内容。
专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)
专题30 圆的基本性质【知识要点】知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)知识点二垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造RT△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑷圆心;⑸半径,⑹其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
2024中考数学一轮复习核心知识点精讲—与圆有关的计算
2024中考数学一轮复习核心知识点精讲—与圆有关的计算1.掌握弧长和扇形面积计算公式;2.会利用弧长和扇形面积计算公式进弧长和扇形面积的计算考点1:圆内正多边形的计算(1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:2OD BD OB =;(2)正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::OE AE OA =(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =.考点2:扇形的弧长和面积计算扇形:(1)弧长公式:180n Rl π=;(2)扇形面积公式:213602n R S lRπ==n :圆心角R :扇形多对应的圆的半径l :扇形弧长S :扇形面积注意:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.(4)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(5)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量.考点3:扇形与圆柱、圆锥之间联系1、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh rππ+C 1D 1(2)圆柱的体积:2V r hπ=2、圆锥侧面展开图(1)S S S =+侧表底=2Rr r ππ+(2)圆锥的体积:213V r hπ=注意:圆锥的底周长=扇形的弧长(180r 2Rn ΠΠ=)【题型1:正多边形和圆的有关计算】【典例1】(2023•福建)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为,若用圆内接正十二边形作近似估计,可得π的估计值为()A.B .2C .3D .2【答案】C【解答】解:如图,AB是正十二边形的一条边,点O是正十二边形的中心,过A作AM⊥OB于M,在正十二边形中,∠AOB=360°÷12=30°,∴AM=OA=,=OB•AM==,∴S△AOB∴正十二边形的面积为12×=3,∴3=12×π,∴π=3,∴π的近似值为3,故选:C.【变式1-1】(2023•临沂)将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是()A.60°B.90°C.180°D.360°【答案】B【解答】解:由于正六边形的中心角为=60°,所以正六边形绕其中心旋转后仍与原图形重合,旋转角可以为60°或60°的整数倍,即可以为60°,120°,180°,240°,300°,360°,不可能是90°,故选:B.【变式1-2】(2023•安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60°B.54°C.48°D.36°【答案】D【解答】解:∵五边形ABCDE是正五边形,∴∠BAE==108°,∠COD==72°,∴∠BAE﹣∠COD=108°﹣72°=36°,故选:D.【变式1-3】(2023•山西)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M均为正六边形的顶点.若点P,Q的坐标分别为,(0,﹣3),则点M的坐标为()A.(3,﹣2)B.(3,2)C.(2,﹣3)D.(﹣2,﹣3)【答案】A【解答】解:设中间正六边形的中心为D,连接DB.∵点P,Q的坐标分别为,(0,﹣3),图中是7个全等的正六边形,∴AB=BC=2,OQ=3,∴OA=OB=,∴OC=3,∵DQ=DB=2OD,∴OD=1,QD=DB=CM=2,∴M(3,﹣2),故选:A.【变式1-4】(2023•内江)如图,正六边形ABCDEF内接于⊙O,点P在上,点Q是的中点,则∠CPQ 的度数为()A.30°B.45°C.36°D.60°【答案】B【解答】解:如图,连接OC,OD,OQ,OE,∵正六边形ABCDEF,Q是的中点,∴∠COD=∠DOE==60°,∠DOQ=∠EOQ=∠DOE=30°,∴∠COQ=∠COD+∠DOQ=90°,∴∠CPQ=∠COQ=45°,故选:B.【题型2:弧长和扇形面积的有关计算】【典例2】(2023•张家界)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于()A.πB.3πC.2πD.2π﹣【答案】B【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∴==,∵的长==π,∴该“莱洛三角形”的周长是3π.故选:B.【变式2-1】(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π【答案】B【解答】解:∵CA=CB,CD⊥AB,∴AD=DB=AB′.∴∠AB′D=30°,∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==π.故选:B.【变式2-2】(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是()A.m B.m C.m D.(+2)m【答案】C【解答】解:连接AC,BD,AC和BD相交于点O,则O为圆心,如图所示,由题意可得,CD=2m,AD=2m,∠ADC=90°,∴tan∠DCA===,AC==4(m),∴∠ACD=60°,OA=OC=2m,∴∠ACB=30°,∴∠AOB=60°,∴优弧ADCB所对的圆心角为300°,∴改建后门洞的圆弧长是:=(m),故选:C.【变式2-3】(2023•锦州)如图,点A,B,C在⊙O上,∠ABC=40°,连接OA,OC.若⊙O的半径为3,则扇形AOC(阴影部分)的面积为()A.πB.πC.πD.2π【答案】D【解答】解:∵∠ABC=40°,∴∠AOC=2∠ABC=80°,∴扇形AOC的面积为,故选:D.【题型3:有圆有关的阴影面积的计算】【典例3】(2023•广元)如图,半径为5的扇形AOB中,∠AOB=90°,C是上一点,CD⊥OA,CE⊥OB,垂足分别为D,E,若CD=CE,则图中阴影部分面积为()A.B.C.D.【答案】B【解答】解:连接OC,如图所示,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴∠AOB=∠ODC=∠OEC=90°,∴四边形OECD是矩形,∵CD =CE ,∴四边形OECD 是正方形,∴∠DCE =90°,△DCE 和△OEC 全等,∴S 阴影=S △DCE +S 半弓形BCE=S △OCE +S 半弓形BCE=S 扇形COB==,故选:B .【变式3-1】(2023•雅安)如图,某小区要绿化一扇形OAB 空地,准备在小扇形OCD 内种花,在其余区域内(阴影部分)种草,测得∠AOB =120°,OA =15m ,OC =10m ,则种草区域的面积为()A .B .C .D .【答案】B 【解答】解:S 阴影=S 扇形AOB ﹣S 扇形COD ==(m 2).故选:B.【变式3-2】(2023•鄂州)如图,在△ABC中,∠ABC=90°,∠ACB=30°,AB=4,点O为BC的中点,以O为圆心,OB长为半径作半圆,交AC于点D,则图中阴影部分的面积是()A.5πB.5﹣4πC.5﹣2πD.10﹣2π【答案】C【解答】解:连接OD.在△ABC中,∠ABC=90°,∠ACB=30°,AB=4,∴BC=AB=4,∴OC=OD=OB=2,∴∠DOB=2∠C=60°,∴S阴=S△ACB﹣S△COD﹣S扇形ODB=×4×4﹣﹣=8﹣3﹣2π=5﹣2π.故选:C.【变式3-3】(2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为()A.米2B.米2C.米2D.米2【答案】C【解答】解:连结BC,AO,如图所示,∵∠BAC=90°,∴BC是⊙O的直径,∵⊙O的直径为1米,∴AO=BO=(米),∴AB==(米),∴扇形部件的面积=π×()2=(米2),故选:C.【题型4:圆锥的有关计算】【典例4】(2023•东营)如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是()A.3B.4C.5D.6【答案】A【解答】解:设底面半径为R,则底面周长=2πR,圆锥的侧面展开图的面积=×2πR×5=15π,∴R=3.故选:A.【变式4-1】(2022•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是()A.90°B.100°C.120°D.150°【答案】C【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,设圆心角的度数是n度.则=2π,解得:n=120.故选:C.【变式4-2】(2022•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是()A.圆柱的底面积为4πm2B.圆柱的侧面积为10πm2C.圆锥的母线AB长为2.25mD.圆锥的侧面积为5πm2【答案】C【解答】解:∵底面圆半径DE=2m,∴圆柱的底面积为4πm2,所以A选项不符合题意;∵圆柱的高CD=2.5m,∴圆柱的侧面积=2π×2×2.5=10π(m2),所以B选项不符合题意;∵底面圆半径DE=2m,即BC=2m,圆锥的高AC=1.5m,∴圆锥的母线长AB==2.5(m),所以C选项符合题意;∴圆锥的侧面积=×2π×2×2.5=5π(m2),所以D选项不符合题意.故选:C.【变式4-3】(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为()A.10cm B.20cm C.5cm D.24cm【答案】D【解答】解:设母线的长为R,由题意得,πR=2π×12,解得R=24,∴母线的长为24cm,故选:D.一.选择题(共10小题)1.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形的中心角∠COD的度数是()A.72°B.60°C.48°D.36°【答案】A【解答】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为=72°,故选:A.2.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.,πC.2,D.2,【答案】D【解答】解:如图所示,连接OC、OB,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OC=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OB sin∠OBM=4×=2,的长==;故选:D.3.如图,⊙O的半径为1,点A、B、C都在⊙O上,∠B=45°,则的长为()A.πB.πC.πD.π【答案】C【解答】解:∵∠B=45°,∴∠AOC=90°,∵⊙O的半径为1,∴的长===π,故选:C.4.如图,AB是半圆O的直径,C、D是半圆上两点,且满足∠ADC=120°,BC=1,则的长为()A.B.C.D.【答案】A【解答】解:如图,连接OC.∵∠ADC=120°,∴∠ABC=60°,∵OB=OC,∴∠OCB=∠OBC=∠B=60°,OB=OC=BC=1,∴的长为=,故选:A.5.如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π【答案】B【解答】解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.6.若扇形的半径是12cm弧长是20πcm,则扇形的面积为()A.120πcm2B.240πcm2C.360πcm2D.60πcm2【答案】A【解答】解:该扇形的面积为:(cm2).故选:A.7.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°后得到△AB'C',点B经过的路径为弧BB′,若∠BAC=60°,AC=3,则图中阴影部分的面积是()A.B.C.D.3π【答案】C【解答】解:在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=3,∴∠ABC=30°.∴AB=2AC=6.根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′﹣S△ABC==.故选:C.8.如图,四边形ABCD为正方形,边长为4,以B为圆心、BC长为半径画,E为四边形内部一点,且BE⊥CE,∠BCE=30°,连接AE,则阴影部分面积()A.B.6πC.D.【答案】C【解答】解:如图,作EF⊥AB于点F,∵BE⊥CE,∠BCE=30°,∴BE=BC=2,∠CBE=60°,∴CE=BE=2,∠EBF=30°,∴EF=BE=1,∴S阴影=S扇形ABC﹣S△BCE﹣S△ABE=﹣×2×﹣×1=4π﹣2﹣2.故选:C.9.如图,圆锥的母线长为5cm,高是4cm,则圆锥的侧面展开扇形的圆心角是()A.180°B.216°C.240°D.270°【答案】B【解答】解:∵圆锥的母线长为5cm,高是4cm,∴圆锥底面圆的半径为:=3(cm),∴2π×3=,解得n=216°.故选:B.10.已知圆锥的底面半径是4,母线长是5,则圆锥的侧面积是()A.10πB.15πC.20πD.25π【答案】C【解答】解:圆锥的侧面积=×2π×4×5=20π,故选:C.二.填空题(共8小题)11.AB是⊙O的内接正六边形一边,点P是优弧AB上的一点(点P不与点A,B重合)且BP∥OA,AP 与OB交于点C,则∠OCP的度数为90°.【答案】90°.【解答】解:∵AB是⊙O的内接正六边形一边,∴∠AOB==60°,∴=30°,∵BP∥OA,∴∠OAC=∠P=30°,∴∠OCP=∠AOB+∠OAC=60°+30°=90°.故答案为:90°.12.已知正六边形的内切圆半径为,则它的周长为12.【答案】见试题解答内容【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长等于正六边形的半径,设正六边形的半径为a,∴△OAB是等边三角形,∴OA=AB=a,∴OG=OA•sin60°=a×=,解得a=2,∴它的周长=6a=12.故答案为:12.13.如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧,点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路的长度为40πm.【答案】见试题解答内容【解答】解:由题意得,这段弯路的长度为,故答案为:40π.14.已知扇形的圆心角为120°,面积为27πcm2,则该扇形所在圆的半径为9cm.【答案】见试题解答内容【解答】解:∵扇形的圆心角为120°,面积为27πcm2,∴由S=得:r===9cm,故答案为:9cm.15.圆锥的侧面积是10πcm2,底面半径是2cm,则圆锥的母线长为5cm.【答案】见试题解答内容【解答】解:底面半径是2cm,则扇形的弧长是4π.设母线长是l,则×4πl=10π,解得:l=5.故答案为:5.16.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是4 cm.【答案】见试题解答内容【解答】解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故答案为4.17.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是6π.【答案】见试题解答内容【解答】解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积,则阴影部分的面积是:=6π,故答案为:6π.18.如图,将边长相等的正六边形和正五边形拼接在一起,则∠ABC的度数为132°.【答案】见试题解答内容【解答】解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°,∴∠ABC=360°﹣120°﹣108°=132°,故答案为:132.一.选择题(共7小题)1.在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受到中国人的浪漫,如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,“雪花”中心与原点重合,C,F在y轴上,则顶点B的坐标为()A.(4,2)B.(4,4)C.D.【答案】C【解答】解:连接OB,OA,如图所示:∵正六边形是轴对称图形,中心与坐标原点重合,∴△AOB是等边三角形,AO=BO=AB=4,AB⊥x轴,AM=BM,∵AB=4,∴AM=BM=2,∴OM=,∴点B的坐标为:(2,2),故选:C.2.如图,正五边形ABCDE内接于⊙O,点F在弧AE上.若∠CDF=95°,则∠FCD的大小为()A.38°B.42°C.49°D.58°【答案】C【解答】解:如图,连接OE,OD,CE,∵五边形ABCDE是正五边形,∴∠CDE=(5﹣2)×180°÷5=108°,∵∠CDF=95°,∴∠FDE=∠CDE﹣∠CDF=108°﹣95°=13°,∴∠FCE=13°,∵正五边形ABCDE内接于⊙O,∴∠EOD=360°÷5=72°,∴∠ECD==36°,∴∠FCD=∠FCE+∠ECD=36°+13°=49°,故选:C.3.如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D.若⊙O的半径为5,AB=4,则的长是()A.B.C.D.4π【答案】A【解答】解:连接AC,OB,OD,CD,作CF⊥AB于点F,作OE⊥CF于点E,由垂定理可知OD⊥AB于点D,AD=BD==.又OB=5,∴OD===,∵CA、CD所对的圆周角为∠CBA、∠CBD,且∠CBA=∠CBD,∴CA=CD,△CAD为等腰三角形.∴AF=DF==,又四边形ODFE为矩形且OD=DF=,∴四边形ODFE为正方形.∴,∴CE===2,∴CF=CE+EF=3=BF,故△CFB为等腰直角三角形,∠CBA=45°,∴所对的圆心角为90°,∴==.故选:A.4.如图,将直径为4的半圆形分别沿CD,EF折叠使得直径两端点A,B的对应点都与圆心O重合,则图中阴影部分的面积为()A.B.C.D.【答案】A【解答】解:连接AC,OC,OE,BE,由题意得:CD垂直平分OA,∴AC=OC,∴△OAC是等边三角形,同理△BOE是等边三角形,∴∠AOC=∠BOE=60°,∴∠COE=60°,∴弓形AMC、弓形ONC、弓形OPE的面积相等,∵圆的直径是4,∴OA=2,∴扇形OAC的面积==,△OAC的面积=OA2=,∴扇形OCE的面积=扇形OAC的面积=,∴弓形AMC的面积=扇形OAC的面积﹣△OAC的面积=﹣,∴阴影的面积=扇形OCE的面积﹣弓形AMC的面积×2=﹣2×(﹣)=2﹣.故选:A.5.如图,扇形AOB中,∠AOB=90°,点C,D分别在OA,上,连接BC,CD,点D,O关于直线BC 对称,的长为π,则图中阴影部分的面积为()A.B.C.D.【答案】A【解答】解:连接BD、OD,交BC与E,由题意可知,BD=BO,∵OD=OB,∴OD=OB=DB,∴∠BOD=60°,∵∠AOB=90°,∴∠AOD=30°,∵的长为π,∴,∴r=6,∴OB=6,∴OE==3,BE=OB=3,∴CE=OE=,+S△COE﹣S△BOE=+﹣=6π﹣3.∴阴影部分的面积=S扇形BOD故选:A.6.如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是()A.B.C.D.【答案】B【解答】解:如图,连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=8,∵AD∥BO,∴∠OAD=∠AOB=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵△OAD与△ABD与△AOB是等底等高的三角形,∴S阴影=S扇形AOB==π.故选:B.7.如图,一个圆锥的母线长为6,底面圆的直径为8,那么这个圆锥的侧面积是()A.24πB.40πC.48πD.【答案】A【解答】解:根据题意,这个圆锥的侧面积=×8π×6=24π.故选:A.二.填空题(共5小题)8.如图,已知正方形ABCD的边长为4cm,以AB,AD为直径作两个半圆,分别取弧AB,弧AD的中点M,N,连结MC,NC,则图中阴影部分的周长为(4)cm.【答案】(4).【解答】解:解法一:如图,取AD的中点O,连接NO,设CN交AD于点E,∵N是弧AD的中点,∴NO⊥AD,∵CD⊥AD,∴NO∥CD,∴△NOE∽△CDE,∴====,∴OE=OD=,在Rt△NOE中,NE===,∴CM=CN=3NE=2,∵点M,N分别为弧AB,弧AD的中点∴弧AB,弧AD的长度和为2×=2π,∴图中阴影部分的周长为(4)cm.解法二:作NH⊥BC于点H,则CH=2,NH=6,在Rt△NHC中,NC===2,∴CM=CN=2,∵点M,N分别为弧AB,弧AD的中点∴弧AB,弧AD的长度和为2×=2π,∴图中阴影部分的周长为(4)cm.故答案为:(4).9.如图,△ABC是边长为1的等边三角形,曲线CC1C2C3C4…是由多段120°的圆心角所对的弧组成的,其中的圆心为A,半径为AC;的圆心为B,半径为BC1;的圆心为C,半径为CC2;的圆心为A,半径为AC3……,,,,…的圆心依次按点A,B,C循环,则的长是.(结果保留π)【答案】.【解答】解:∵△ABC是边长为1的等边三角形,∴AC=AC1=1,∠CAB=∠ABC=∠BCA=60°,;∴BC2=BC1=AB+AC1=2,CC3=CC2=BC2+AB=3,∠CAC1=∠C1BC2=C2CC3=120°,∴的半径为1;的半径为2;的半径为3;所对的圆心角为120°,∴的半径为n,所对的圆心角为120°,∴所在圆的半径为2023,所对的圆心角为120°,∴的长为.故答案为:.10.如图,已知矩形纸片ABCD,AD=2,,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为.【答案】见试题解答内容【解答】解:cos∠BAE=,∴∠BAE=30°,∴∠DAE=60°,∴圆锥的侧面展开图的弧长为:=π,∴圆锥的底面半径为π÷2π=.11.如图,从一块半径为20的圆形纸片上剪出一个圆心角是90°的扇形ABC,如果将剪下来的扇形ABC围成一个圆锥,则该圆锥的底面半径是.【答案】.【解答】解:连接BC,如图,∵∠BAC=90°,∴BC为⊙O的直径,即BC=20,∴AB=10,设该圆锥的底面圆的半径为r,根据题意得2πr=,解得r=,即该圆锥的底面圆的半径为m.故答案为:.12.如图,AB是圆锥底面的直径,AB=6cm,母线PB=9cm,点C为PB的中点,若一只蚂蚁从A点处出发,沿圆锥的侧面爬行到C点处,则蚂蚁爬行的最短路程为cm.【答案】cm.【解答】解:由题意知,底面圆的直径AB=6cm,故底面周长等于6πcm,设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得6π=,解得n=120°,所以展开图中∠APD=120°÷2=60°,因为半径PA=PB,∠APB=60°,故三角形PAB为等边三角形,又∵D为PB的中点,所以AD⊥PB,在直角三角形PAD中,PA=9cm,PD=cm,根据勾股定理求得AD=(cm),所以蚂蚁爬行的最短距离为cm.故答案为:cm.1.(2023•连云港)如图,矩形ABCD内接于⊙O,分别以AB、BC、CD、AD为直径向外作半圆.若AB=4,BC=5,则阴影部分的面积是()A.π﹣20B.π﹣20C.20πD.20【答案】D【解答】解:如图,连接BD,则BD过点O,在Rt△ABD中,AB=4,BC=5,∴BD2=AB2+AD2=41,S阴影部分=S以AD为直径的圆+S以AB为直径的圆+S矩形ABCD﹣S以BD为直径的圆=π×()2+π×()2+4×5﹣π×()2=+20﹣=20,故选:D.2.(2023•广安)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC为半径画弧,交AB于点E,以点B为圆心,BC为半径画弧,交AB于点F,则图中阴影部分的面积是()A.π﹣2B.2π﹣2C.2π﹣4D.4π﹣4【答案】C【解答】解:在等腰直角△ABC中,∠ACB=90°,AC=BC=2,∴∠A=∠B=45°,+S扇形CBF﹣S△ABC∴阴影部分的面积S=S扇形CAE=×2﹣=2π﹣4.故选:C.3.(2023•上海)如果一个正多边形的中心角是20°,那么这个正多边形的边数为18.【答案】见试题解答内容【解答】解:360°÷20°=18.故这个正多边形的边数为18.故答案为:18.4.(2023•衡阳)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是10.【答案】10.【解答】解:∵多边形是正五边形,∴正五边形的每一个内角为:×180°×(5﹣2)=108°,∴∠O=180°﹣(180°﹣108°)×2=36°,∴正五边形的个数是360°÷36°=10.故答案为:10.5.(2023•宿迁)若圆锥的底面半径为2cm,侧面展开图是一个圆心角为120°的扇形,则这个圆锥的母线长是6cm.【答案】见试题解答内容【解答】解:设圆锥的母线长为x cm,根据题意得=2π•2,解得x=6,即圆锥的母线长为6cm.故答案为6.6.(2023•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为6cm,扇形的圆心角θ为120°,则圆锥的底面圆的半径r为2cm.【答案】2.【解答】解:由题意得:母线l=6,θ=120°,2πr=,∴r=2(cm).故答案为:2.7.(2022•广元)如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为.【答案】.【解答】解:如图,过点O作AB的垂线并延长,垂足为C,交⊙O于点D,连结AO,AD,根据垂径定理得:AC=BC=AB=,∵将⊙O沿弦AB折叠,恰经过圆心O,∴OC=CD=r,∴OC=OA,∴∠OAC=30°,∴∠AOD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠D=60°,在Rt△AOC中,AC2+OC2=OA2,∴()2+(r)2=r2,解得:r=2,∵AC=BC,∠OCB=∠ACD=90°,OC=CD,∴△ACD≌△BCO(SAS),=×π×22=.∴阴影部分的面积=S扇形ADO故答案为:.8.(2023•金华)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为πcm.【答案】π.【解答】解:连接OE,OD,∵OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠C=∠ODB,∴OD∥AC,∴∠EOD=∠AEO,∵OE=OA,∴∠OEA=∠BAC=50°,∴∠EOD=∠BAC=50°,∵OD=AB=×6=3(cm),∴的长==π(cm).故答案为:π.9.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【答案】5;.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.。
人教版九年级数学第六单元《圆》中考知识点梳理
第六单元《圆》中考知识点梳理第21讲圆的基本性质知识点一:圆的有关概念关键点拨与对应举例1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.知识点二:垂径定理及其推论2.垂径定理及其推论定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.延伸根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧BC;②弧AD=弧BD;③AE=BE;④AB⊥CD;⑤CD是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.知识点三:圆心角、弧、弦的关系3.圆心角、弧、弦的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点四:圆周角定理及其推论4.圆周角定理及其推论(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a,∠A=1/2∠O.图a 图b 图c( 2 )推论:①在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b,∠A=∠C.②直径所对的圆周角是直角.如图c,∠C=90°.③圆内接四边形的对角互补.如图a,∠A+∠C=180°,∠ABC+∠在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.例:如图,AB是⊙O的直径,C,D是⊙O上ADC=180°. 两点,∠BAC=40°,则∠D的度数为130°.第22讲与圆有关的位置关系知识点一:与圆有关的位置关系关键点拨及对应举例1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.例:已知:⊙O的半径为2,圆心到直线l的距离为1,将直线l沿垂直于l的方向平移,使l与⊙O相切,则平移的距离是1或3.图形公共点个数0个1个2个数量关系d>r d=r d<r知识点二:切线的性质与判定3.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.4.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.*5.切线长(1)定义:从圆外一点作圆的切线,这点与切点之间的线段长叫做这点到圆的切线长.(2)切线长定理:从圆外一点可以引圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.例:如图,AB、AC、DB是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为2.知识点四:三角形与圆5.三角形的外接圆图形相关概念圆心的确定内、外心的性质内切圆半径与三角形边的关系:(1)任意三角形的内切圆(如图a),设三角形的周长为C,则S△ABC=1/2Cr.(2)直角三角形的内切圆(如图b)①若从切线长定理推导,可得r=1/2(a+b+c);若从面积推导,则可得r=.这两种结论可在做选择题和填空题时直接应用.例:已知△ABC的三边长a=3,b=4,c=5,则它的外切圆半径是2.5.经过三角形各定点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形三角形三条垂直平分线的交点到三角形的三个顶点的距离相等6.三角形的内切圆与三角形各边都相切的圆叫三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫圆的外切三角形到三角形三条角平分线的交点到三角形的三条边的距离相等第23讲与圆有关的计算知识点一:正多边形与圆关键点拨与对应举例1.正多边形与圆(1)正多边形的有关概念:边长(a)、中心(O)、中心角(∠AOB)、半径(R))、边心距(r),如图所示①.(2)特殊正多边形中各中心角、长度比:中心角=120°中心角=90°中心角=60°,△BOC为等边△a:r:R=2:1:2 a:r:R=2::2 a:r:R=2:2例:(1) 如果一个正多边形的中心角为72°,那么这个正多边形的边数是5.(2)半径为6的正四边形的边心距为32,中心角等于90°,面积为72.知识点二:与圆有关的计算公式2.弧长和扇形面积的计算扇形的弧长l=180n rπ;扇形的面积S=2360n rπ=12lr例:已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为3π.3.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:,S侧==πrl在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.例:如图,已知一扇形的半径为3,圆心角为60°,则图中阴影部分的面积为。
中考圆的知识点总结
中考圆的知识点总结中考数学中,圆是一个重要的几何图形,涉及的知识点较多。
在考试中,对圆的相关知识的理解和掌握是非常关键的。
本文将对中考数学中与圆有关的知识点进行总结和归纳,帮助考生理清思路,更好地备战中考数学。
1. 圆的定义圆是平面上到一个定点的距离等于定值的所有点构成的图形。
其中,定点叫做圆心,距离叫做半径。
2. 圆的性质(1)圆上任意两点之间的线段,叫做弧。
(2)圆的直径是圆上任意两点连线沿圆内部的最大距离,它的长度是半径的2倍。
(3)圆的周长是圆周上的所有点连成的折线的长度。
(4)圆内任意两点与圆心连线的夹角是等腰三角形的夹角。
3. 圆的相关公式(1)圆的周长公式:C = 2πr(其中,C表示周长,r表示半径,π取3.14)。
(2)圆的面积公式:A = πr²(其中,A表示面积)。
4. 圆的位置关系(1)相离:两个圆没有交点,且圆心之间的距离大于两个圆的半径之和。
(2)相切外切:两个圆有且仅有一个公共切点,且圆心之间的距离等于两个圆的半径之和。
(3)相交:两个圆有两个交点,且圆心之间的距离小于两个圆的半径之和。
(4)包含内切:一个圆完全包含另一个圆,且两个圆心之间的距离小于等于两个圆的半径之差。
5. 判定正方形和矩形的方法如果一个四边形的四个角都是直角,并且四条边的长度相等,就可以判定为正方形。
若四边形的对边相等且相邻边两两相等,则可以判定为矩形。
6. 圆锥的相关知识(1)圆锥的配准:当给出圆锥的高及底面的半径时,可以通过连接圆锥的顶点、底面圆心以及连接顶点和底面圆周上的一点构成一个直角三角形,从而确定圆锥的顶部的位置。
(2)圆锥的表面积公式:S = πr² + πrl(其中,S表示表面积,r 表示底面半径,l表示斜高)。
(3)圆锥的体积公式:V = 1/3πr²h(其中,V表示体积,r表示底面半径,h表示高)。
7. 圆柱的相关知识(1)圆柱的表面积公式:S = 2πrh + 2πr²(其中,S表示表面积,r表示底面半径,h表示高)。
中考数学圆知识点总结5篇
中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。
二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。
2. 切线性质:圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。
4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。
圆锥椭圆的两焦点是圆锥的底面圆心和顶点。
双曲线类似。
三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。
如圆形广场、圆形剧场等。
2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。
这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。
3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。
这些元件的形状和布局对于电子设备的功能和性能有着重要影响。
4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。
对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。
四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。
我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。
2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。
3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。
中考圆形知识点总结归纳
中考圆形知识点总结归纳圆形是中考数学中的一个重要知识点,它涉及到多个概念和性质,以下是对中考圆形知识点的总结归纳:圆的基本定义圆是一个平面上所有与给定点(圆心)距离相等的点的集合。
这个距离称为半径。
圆的方程圆的标准方程是 \( (x - h)^2 + (y - k)^2 = r^2 \),其中 \( (h, k) \) 是圆心的坐标,\( r \) 是半径。
圆的性质1. 圆周上的任意一点到圆心的距离都等于半径。
2. 圆的直径是圆上两点之间的最长距离,直径的长度是半径的两倍。
3. 圆内任意两点之间的线段,最短的是直线段,即直径。
4. 圆的切线在切点处与半径垂直。
圆的面积和周长- 圆的面积公式是 \( A = \pi r^2 \)。
- 圆的周长(圆周)公式是 \( C = 2\pi r \)。
圆与直线的位置关系1. 直线与圆相离:直线与圆没有公共点。
2. 直线与圆相切:直线与圆有一个公共点,即切点。
3. 直线与圆相交:直线与圆有两个公共点。
圆与圆的位置关系1. 两圆外离:两圆没有公共点。
2. 两圆外切:两圆只有一个公共点。
3. 两圆相交:两圆有两个公共点。
4. 两圆内切:一个圆完全包含在另一个圆内,只有一个公共点。
5. 两圆内含:一个圆完全包含在另一个圆内,没有公共点。
圆的内接多边形1. 内接于圆的多边形,其所有顶点都在圆上。
2. 正多边形是内接于圆的多边形,且所有边长相等,所有内角相等。
圆的外切多边形1. 外切于圆的多边形,其所有边都与圆相切。
2. 正多边形的外接圆是所有顶点都与圆相切的圆。
圆的弧和扇形1. 弧是圆上两点之间的线段。
2. 扇形是圆心角和它所对的弧所围成的区域。
圆的切线和割线1. 切线是与圆相切的直线。
2. 割线是与圆相交的直线,但不经过圆心。
结束语通过以上对中考圆形知识点的总结归纳,我们可以看到圆的几何性质和计算在中考数学中占有重要地位。
掌握这些知识点对于解决相关的几何问题至关重要。
2025年中考数学总复习第一部分考点梳理第27课时圆的基本概念及性质
(一)
(二)
(三)
2.性质 ①对称性:圆是轴对称图形,其对称轴是任意一条过圆心的直 线,对称轴有无数条;圆是中心对称图形,对称中心是圆心; ②旋转不变性:圆绕圆心旋转任意角度都与自身重合.
(一)
(二)
(三)
3.弧、弦、圆心角之间的关系 在同圆或等圆中,相等的圆心角所对的弧相等,所对的
定理 弦也相等. (1)在同圆或等圆中,如果两条弧相等,那么它们所对的 圆心角相等,所对的弦也相等;
∴∠AOD=∠BOD=12∠AOB=∠ACB=60°. 又∵OD=OA,OD=OB,∴△OAD和△OBD都是等边三角形, ∴OA=AD=OD,OB=BD=OD,∴OA=AD=DB=BO,∴四边 形OADB是菱形.
考点1
考点2
考点3
考点4
考点3 垂径定理及其推论[由选学调整为必学][8年1考] 例4:如图,在☉O中,点C是弦AB上一点, 连接OA,OC. (1)若C是AB的中点,∠OAB=37°, 则∠AOC=____5_3_°____; (2)若☉O的半径为5,弦心距OC=3, 则弦AB的长是___8____. [2024泉州一模改编]
(一)
(二)
(三)
弧:圆上任意两点间的部分叫做圆弧,简称弧. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每 一条弧都叫做半圆. 弧 劣弧:小于半圆的弧叫做劣弧. 优弧:大于半圆的弧叫做优弧. 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧
(一)
(二)
(三)
等圆 能够完全重合的两个圆叫做等圆 圆心角 顶点在圆心的角叫做圆心角 圆周角 顶点在圆上,并且两边都与圆相交的角叫做圆周角
(一)
(二)
(三)
5.如图,AB是☉O的直径,点C为☉O上一点, ∠A=23°,则 ∠B=____6_7___°.
考点20 与圆有关的位置关系及计算(精讲)-2024年中考数学一轮复习之核心考点精讲精练(原卷版)
考点20.与圆有关的位置关系及计算(精讲)【命题趋势】与圆相关的位置关系也是各地中考数学中的必考考点之一,主要内容包括点、直线与圆的位置关系、切线的性质和判定、三角形的内切圆和外接圆三块,在解答题中想必还会考查切线的性质和判定,和直角三角形结合的求线段长的问题和三角函数结合的求角度的问题等知识点综合,考查形式多样,多以动点、动图的形式给出,难度较大。
关键是掌握基础知识、基本方法,力争拿到全分。
【知识清单】1:点、直线与圆的位置关系类(☆☆)1)点和圆的位置关系:已知⊙O的半径为r,点P到圆心O的距离为d,则:图1图2(1)d<r⇔点在⊙O内,如图1;(2)d=r⇔点在⊙O上,如图2;(3)d>r⇔点在⊙O外,如图3.解题技巧:掌握已知点的位置,可以确定该点到圆心的距离与半径的关系,反过来已知点到圆心的距离与半径的关系,可以确定该点与圆的位置关系。
2)直线和圆的位置关系:设⊙O的半径为r,圆心到直线l的距离为d,则直线和圆的位置关系如下:图1图2图3(1)d>r⇔相离,如图1;(2)d=r⇔相切,如图2;(3)d<r⇔相交,如图3。
2:切线的性质与判定(☆☆☆)1)切线的性质:(1)切线与圆只有一个公共点;(2)切线到圆心的距离等于圆的半径;(3)切线垂直于经过切点的半径。
解题技巧:利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题。
2)切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法);(2)到圆心的距离等于半径的直线是圆的切线(数量关系法);(3)经过半径外端点并且垂直于这条半径的直线是圆的切线(判定定理法)。
切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径。
3)切线长定理定义:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长。
定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学考点:圆的知识点汇总考点精讲
中考是初中降低中的一个重要阶段,查字典数学网精心为大家搜集整理了中考数学考点:圆的知识点汇总考点精讲,希望对大家的数学学习有所协助!
中考数学考点:圆的知识点汇总考点精讲
1不在同不时线上的三点确定一个圆。
2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ①平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3圆是以圆心为对称中心的中心对称图形
4圆是定点的距离等于定长的点的集合
5圆的外部可以看作是圆心的距离小于半径的点的集合
6圆的外部可以看作是圆心的距离大于半径的点的集合
7同圆或等圆的半径相等
8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对
的弦相等,所对的弦的弦心距相等
10推论在同圆或等圆中,假设两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其他各组量都相等
11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
13切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
14切线的性质定理圆的切线垂直于经过切点的半径
15推论1 经过圆心且垂直于切线的直线必经过切点
16推论2 经过切点且垂直于切线的直线必经过圆心
17切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18圆的外切四边形的两组对边的和相等外角等于内对角19假设两个圆相切,那么切点一定在连心线上
20①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
21定理相交两圆的连心线垂直平分两圆的公共弦
22定理把圆分红n(n3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24正n边形的每个内角都等于〔n-2〕180/n
25定理正n边形的半径和边心距把正n边形分红2n个全等的直角三角形
26正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27正三角形面积3a/4 a表示边长
28假设在一个顶点周围有k个正n边形的角,由于这些角的和应为 360,因此k(n-2)180/n=360化为〔n-2〕(k-2)=4 29弧长计算公式:L=n兀R/180
30扇形面积公式:S扇形=n兀R^2/360=LR/2
31内公切线长= d-(R-r) 外公切线长= d-(R+r)
32定理一条弧所对的圆周角等于它所对的圆心角的一半33推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34推论2 半圆〔或直径〕所对的圆周角是直角;90的圆周角所对的弦是直径
35弧长公式 l=a*r a是圆心角的弧度数r 0 扇形面积公式
s=1/2*l*r
经过精心的整理,有关中考数学考点:圆的知识点汇总考点精讲的内容曾经出现给大家,祝大家学习愉快!。