中考数学圆知识点归纳

合集下载

中考数学-圆讲义及练习

中考数学-圆讲义及练习

第3讲圆知识点1 圆周角定理1. 圆的有关概念(1)圆的定义:在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

以点O 为圆心的圆记作“⊙O”,读作“圆O”.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;圆是以圆心为对称中心的中心对称图形.(2)弦:连接圆上任意两点的线段叫做弦.(3)直径:经过圆心的弦叫做直径.(4)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(5)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧.弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”.大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示).2. 圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”.3. 圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.典例剖析例(1)如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°(例(1)图)(例(2)图)(2)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.跟踪训练1.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60°B.50°C.40°D.30°(第1题图)(第2题图)(第3题图)2.如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=.3.如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=.过关精练1.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A.140°B.130°C.120°D.110°(第1题图)(第2题图)(第3题图)(第4题图)2.如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A.60°B.50°C.40°D.30°3.如图,AB是⊙O的直径,点C在⊙O上,则∠ACB的度数为()A.30°B.45°C.60°D.90°4.如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°5.AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°(第5题图)(第6题图)(第7题图)(第8题图)6.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°7.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°8.如图,AB为⊙O的直径,点C、D在⊙O上,若∠CBA=70°,则∠D的度数是.9.如图,点A,B,C在⊙O上,点C在优弧上,若∠OBA=50°,则∠C的度数为.(第9题图)(第10题图)10.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.知识点2 垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.典例剖析例(1)如图⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2(例(1)图)(例(2)图)(2)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为.跟踪训练1.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.1(第1题图)(第2题图)2.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.3.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.1.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm(第1题图)(第2题图)(第3题图)2.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6D.83.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD =20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.4(第4题图)(第5题图)(第6题图)(第7题图)5.如图,在直径为10cm的⊙O中,BC是弦,半径OA⊥BC于点D,AD=2cm,则BC的长为cm.6.如图所示,在⊙O中,直径CD⊥弦AB,垂足为E,已知AB=6,OE=4,则直径CD=.7.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.知识点3 切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线性质的运用见切点,连半径,见垂直.例(1)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°(例(1)图)(例(2)图)(2)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2B.C.D.跟踪训练1.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°(第1题图)(第2题图)2.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B 作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则P A的长为()A.4B.2C.3D.2.5过关精练1.如图AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为()A.60°B.50°C.40°D.30°(第1题图)(第2题图)2.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB 的度数为()A.40°B.50°C.65°D.75°(第3题图)(第4题图)(第5题图)4.如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A.25°B.30°C.35°D.40°5.如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O 交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6.如图,P是⊙O外一点,P A是⊙O的切线,PO=26cm,P A=24cm,则⊙O的周长为()A.18πcm B.16πcm C.20πcm D.24πcm(第6题图)(第7题图)7.如图,AB是⊙O的直径,P A切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5D.8.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.D.(第8题图)(第9题图)9.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.410.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.(第10题图)(第11题图)(第12题图)11.如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=.12.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.13.如图,P A、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC =.(第13题图)(第14题图)(第15题图)14.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=36°,则∠C=度.15.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠B=26°,则∠OCA=度.16.如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接CB.若⊙O的半径为2,∠ABC=60°,则BC=.(第16题图)(第17题图)17.已知:如图,CD是⊙O的直径,点A在CD的延长线上,AB切⊙O于点B,若∠A=30°,OA=10,则AB=.知识点4 扇形面积的计算(1)圆面积公式:S=πr2(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长)(4)求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.例(1)如图,四边形ABCD是矩形,AB=4,AD=2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是.(2)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).跟踪训练1.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.(第1题图)(第2题图)(第3题图)2.如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为()A.B.(2﹣)πC.πD.π3.如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).1.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π(第1题图)(第2题图)(第3题图)2.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.B.C.D.+3.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣B.π+C.π+2D.2π﹣24.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()A.π﹣1B.4﹣πC.D.2(第4题图)(第5题图)(第6题图)(第7题图)5.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣6.如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣π7.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣4B.C.π﹣2D.8.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4B.4π﹣8C.2π﹣8D.4π﹣4(第8题图)(第8 题图)(第10题图)9.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣10.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)11.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).(第11题图)(第12题图)(第13题图)12.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB 于点E,图中阴影部分的面积是(结果保留π).13.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).14.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为第 11 页 共 12 页半径作弧,交AB 于点D ,则图中阴影部分的面积是 .(结果保留π)15.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分的面积为 .(结果保留π)(第14题图) (第15题图)16.如图,一个圆心角为90°的扇形,半径OA =2,那么图中阴影部分的面积为 (结果保留π).(第16题图) (第17题图) (第18题图)17.如图在正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点,若圆的半径等于1,则图中阴影部分的面积为 .18.如图,在扇形OAB 中,∠AOB =90°.D ,E 分别是半径OA ,OB 上的点,以OD ,OE 为邻边的▱ODCE 的顶点C 在上.若OD =8,OE =6,则阴影部分图形的面积是 (结果保留π).19.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为 .(第19题图) (第20题图)20.如图,在矩形ABCD 中,CD =2,以点C 为圆心,CD 长为半径画弧,交AB 边于点E ,且E 为AB 中点,则图中阴影部分的面积为 .21.如图,在▱ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).22.如图,在直角三角形ABC中,∠ABC=90°,AC=2,BC=,以点A为圆心,AB.为半径画弧,交AC于点D,则阴影部分的面积是第12 页共12 页。

中考数学圆的知识点总结

中考数学圆的知识点总结

圆知识点总结几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:圆的几何定义和集合定义、弦、弦心距、弧、等弧、弓形、弓形高三角形的外接圆、三角形的外心、三角形的内切圆、三角形的内心、圆心角、圆周角、弦切角、圆的切线、圆的割线、两圆的内公切线、两圆的外公切线、两圆的内(外)公切线长、正多边形、正多边形的中心、正多边形的半径、正多边形的边心距、正多边形的中心角.二定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形.三公式:1.有关的计算:(1)圆的周长C=2πR;(2)弧长L=180R n π;(3)圆的面积S=πR 2.(4)扇形面积S 扇形=LR 21360R n 2=π;(5)弓形面积S 弓形=扇形面积S AOB ±ΔAOB 的面积.(如图)2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧=2πrh;(r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧=LR 21.(L=2πr,R 是圆锥母线长;r 是底面半径)四常识:1.圆是轴对称和中心对称图形.2.圆心角的度数等于它所对弧的度数.3.三角形的外心⇔两边中垂线的交点⇔三角形的外接圆的圆心;三角形的内心⇔两内角平分线的交点⇔三角形的内切圆的圆心.4.直线与圆的位置关系:(其中d表示圆心到直线的距离;其中r表示圆的半径)直线与圆相交⇔d<r;直线与圆相切⇔d=r;直线与圆相离⇔d>r.5.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径”的方法加辅助线.6.关于圆的常见辅助线:FED BAC OGH圆的外切四边形对边和相等.A B OC D若AD ∥BC 都是切线,连结OA 、OB 可证∠AOB=180°,即A、O、B 三点一线.EACBOD等腰三角形底边上的的高必过内切圆的圆心和切点,并构造相似形.EFCD BAO RtΔABC 的内切圆半径:r=2cb a -+.AC D PO BPC 过圆心,PA 是切线,构造双垂、RtΔ.BCD OAPO 是圆心,等弧出平行和相似.DE MABCFN G作AN⊥BC,可证出:ANAMBC GF =.模型:圆内接等腰三角形模型构成部分:如图1、1—1、2,⊙O、等腰△ABC(AB=AC)本质:角度一:位置关系等腰△ABC 的三个顶点在⊙O 上角度二:圆心O1、如图1、1—1、2,过A 作AD⊥BC 于D 过A 作AD⊥BC 于D,交⊙O 于E,设⊙O 的半径为R,AD=h,底边BC=a,则(1)△ABC 为锐角△⇔圆心O 在三角形的内部(如图1、1)△ABC 为钝角△⇔圆心O 在三角形的外部(如图1、2)(2)圆和它的内接等腰三角形组成的图形是轴对称图形,对称轴是底边的中垂线(1条)→圆心O 在直线AD 上(垂径定理模型)⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+-===→2222a R h R BE CE AC ,AB 弧弧弧弧(3)∠BOD=∠BAC=ACB ∠-︒2180(如图1、1)∠BOD=2∠ACB(如图1、2)2、延长BO 交⊙O 于F,连结CF →FC OD BCF OD 21平行且等于的中位线为→∆3、连结OC,若∠BAC=为菱形四边形ABOC →︒120模型:圆内接三角形内角平分线模型构成部分:如图1,⊙O,△ABC,∠BAC 的角平分线AE,本质:角度一:位置关系(如图1)1、△ABC 的三个顶点在⊙O 上→点O 为△ABC 的外心→外心到三个顶点的距离相等→外心是三角形三边垂直平分线的交点2、∠BAC 的角平分线与BC 交于点D,与⊙O 交于点E,角度二:角平分线与⊙O 的交点E 1、如图1,连结BE、CE,则(1)⎪⎩⎪⎨⎧=→→DC BDAC AB EC =BE EC 弧=BE 弧(2)母子相似三角形模型和相交弦模型⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧∙-∙=→∙=∙∙=→∆∆∆∙=→∆∆∆→CD BD AC AB AD AE AD AC AB EA ED EC EDC ECA BDA EA ED EB EDB EBA CDA 222相似于相似于相似于相似于2、如图2,过E 作直线GF,交直线AB 于G,交直线AC 于F,则(1)BC∥GF ⇔GF 与⊙O 切于点E说明:在①AE 平分∠BAC,②BC∥GF,③GF 与⊙O 切于点E 中,任取两个可以推出第三个(2)BC∥GF 或GF 与⊙O 切于点E⎩⎨⎧∆∆∆∆∆∆∆∆∆∆→EABEBD CAD FAE FEC EACECD BAD GAE GEB 相似于相似于相似于相似于相似于相似于相似于相似于(3)如图6,EM 为切线,AB 为直径→AF⊥EF ()⎪⎩⎪⎨⎧∙=→∆∆→AFAB AE ABE Rt AEF Rt A EF BC 2相似于字模型平行平行于说明:在①AE 平分∠BAC ②EM 为切线③AF⊥EF 中,任意两个成立可以推出第三个(4)如图5,过B 作切线BK 交AE 的延长线于点K⎩⎨⎧←∙∙∠→AKB∽BKE △ BE AK =BK AB CBKBE 平分3、如图3,过E 作EN⊥AB 于N,作EM⊥AC 于M,→△BNE≌△CME ⇒BN=CM →AB+AC=2AM=2AN角度三:△ABC 的内心如图4,I 为内心,AI 交BC 于D,交⊙O 于E,则⎪⎩⎪⎨⎧∙===→DEAE IE CE IE BE 2四点共圆的判定与性质一、四点共圆的判定(一)判定方法1、若四个点到一个定点的距离相等,则这四个点共圆。

中考圆的知识点总结总结

中考圆的知识点总结总结

中考圆的知识点总结总结一、圆的定义和性质1. 圆的定义圆是一个平面上和一个确定点的距离都相等的点的集合。

这个确定点就是圆心,而圆心到圆上的任意点的距离就是半径。

2. 圆的性质(1)圆心角圆心角是以圆心为顶点的角,它的两条边分别是圆周上的两条弦。

圆心角的度数等于对应的弧所对的圆周的度数。

如果圆心角的度数为360度,那么这个角就是周角。

(2)弧圆上的一段弧是圆周的一部分。

圆的周长就是圆周的长度,可以用角度和弧度来表示。

(3)切线和切点切线是一个直线,它与圆相切于一个点。

在圆上,切线与半径的夹角为90度。

(4)同位角同位角是两条平行线被一条截线所切割而形成的一对内角和一对外角。

同位角的性质也可以应用到圆上。

(5)相似两个或者更多的圆是相似的,如果它们有着相同的形状但是不同的尺寸。

相似的圆的半径之比等于它们的直径之比。

二、圆的相关定理1. 圆周角定理圆周角等于圆心角的一半。

2. 圆的面积和周长圆的面积等于πr^2,圆的周长等于2πr,其中r是圆的半径,π是一个无理数,约等于3.14159。

3. 弦长定理在同一个圆上,相交弦的两个切点到圆心的距离相等。

4. 弧长定理同样的圆上,相对的圆周弧长相等。

5. 切线定理切线和半径的夹角为90度。

6. 弧上的角定理同样的圆上,一个圆周弧所对的圆心角等于这个弧上的其他角的和。

7. 线段对定理在一个圆上,两条相交的弧所对的线段互为比例。

三、圆的应用1. 圆的周长和面积的应用圆的周长和面积是经常在实际生活中用到的数学概念。

比如在工程测量中,需要计算环形的周长和面积。

2. 圆的图形补充圆的图形补充,包括扇形、环形等概念,也是圆的知识点之一。

3. 圆的运动学应用在运动学中,圆的运动规律和路径也是一个重要的应用。

四、典型例题下面列举一些典型的中考圆的例题,帮助大家更好地复习和巩固知识。

1. 如果一条切线和一条半径分割了一个角为30度的圆心角,那么这条切线和半径的夹角是多少度?A. 60度B. 45度C. 30度D. 15度答案:A. 60度2. 已知圆的半径为8cm,求圆的面积和周长。

2024中考数学知识点圆的基础性质公式定理

2024中考数学知识点圆的基础性质公式定理

2024中考数学知识点圆的基础性质公式定理中考数学中圆的基础性质公式定理有以下几个:
一、圆周公式
圆的圆周C=2πr,其中C为圆的圆周长,r为圆的半径。

二、圆的面积公式
圆的面积S=πr2,其中S为圆的面积,r为圆的半径。

三、圆心角公式
圆心角的大小θ等于弧长除以半径:θ=l/r,其中θ为圆心角的大小,圆周长l,半径r。

四、圆切线与圆弦关系
三次角关系:若圆的两条切线和圆弧相切,则圆心角的三个角相等:θA=θB=θC,其中θA,θB,θC分别为圆心角的三个角的大小。

五、圆周弦关系
三次角关系:若圆的两条切线和圆弧相切,则两条切线上有等于圆弧的三次夹角:θA=θB=θC,其中θA,θB,θC分别为圆弧上三次夹角的大小。

六、圆的外接四边形关系
若四边形是圆的外接四边形,则四边形的对角线等于圆的直径:DA=DB=2r,其中DA,DB为四边形的两条对角线,r为圆的半径。

七、半径交点概念
若平面上有两条圆,以及它们的公共外接四边形,它们上的所有的交点都是半径交点,即两圆从它们公共外接四边形的对角线交点开始,向外射线,直到相交,所有相交的点都是它们的半径交点。

八、圆内接四边形关系
若四边形是圆的内接四边形,则四边形的对角线等于圆的直径:DA=DB=2r。

初中数学中考圆的知识点总结归纳(中考必备)

初中数学中考圆的知识点总结归纳(中考必备)

中考数学圆的知识点总结归纳一、圆的定义(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

二、圆心(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。

πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

三、周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径四、面积计算公式1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方五、点、直线、圆和圆的位置关系1、点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。

中考数学知识点:圆

中考数学知识点:圆

中考数学知识点:圆中考数学知识点:圆1我们学习的圆是轴对称图形,其对称轴是任意一条通过圆心的直线,所以是无数条对称轴。

圆及有关概念1 到定点的距离等于定长的点的集合叫做圆(circle).这个定点叫做圆的圆心。

2 连接圆心和圆上的任意一点的线段叫做半径(radius)。

3 通过圆心并且两端都在圆上的线段叫做直径(diameter)。

4 连接圆上任意两点的线段叫做弦(chord). 最长的弦是直径。

5 圆上任意两点间的部分叫做圆弧,简称弧(arc).大于半圆的弧称为优弧,优弧是用三个字母表示。

小于半圆的弧称为劣弧,劣弧用两个字母表示。

半圆既不是优弧,也不是劣弧。

优弧是大于180度的弧,劣弧是小于180度的弧6 由两条半径和一段弧围成的图形叫做扇形(sector)。

7 由弦和它所对的一段弧围成的图形叫做弓形。

8 顶点在圆心上的角叫做圆心角(central angle)。

9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

10 圆周长度与圆的直径长度的比值叫做圆周率。

它是一个超越数,通常用π表示,π=3.1415926535……。

在实际应用中,一般取π≈3.14。

11 圆周角等于弧所对的圆心角的一半。

字母表示圆—⊙ ; 半径—r或R(在环形圆中外环半径表示的字母); 弧—⌒ ; 直径—d ;扇形弧长—L ; 周长—C ; 面积—S。

圆的表示方法要求很严格,需要用到相应的知识要求。

中考数学知识点:圆2圆的初步认识一、圆及圆的相关量的定义(28个)1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

2.圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

3.顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

中考数学圆周长知识点总结

中考数学圆周长知识点总结

中考数学圆周长知识点总结中考数学圆周长知识点总结圆周长是中考数学中的一个重要知识点,它涉及到圆的性质和相关公式的运用。

掌握了圆周长的计算方法,可以帮助我们解决与圆相关的各种问题。

本文将从圆的定义、圆的周长计算公式、周长应用题等方面总结中考数学中与圆周长有关的知识点。

一、圆的定义圆是由平面上的一点到平面上任意一点距离相等的点的集合。

其中,平面上距离圆心的距离等于半径的点,称为圆上的点;平面上距离圆心的距离大于半径的点,称为圆外的点;平面上距离圆心的距离小于半径的点,称为圆内的点。

二、周长计算公式1. 圆周长的计算公式圆周长的计算公式是C = 2πr,其中C表示圆的周长,r表示圆的半径。

2. 直径与周长的关系圆的直径是圆上任意两点之间的线段,也是圆周长的两倍。

所以,直径d与周长C之间的关系是d = 2r。

三、周长知识点归纳1. 运用圆周长的公式计算对于给定圆的半径或直径,通过圆周长公式可以直接计算出圆的周长。

例如,已知一个圆的半径为6cm,可以使用圆周长公式C = 2πr进行计算,得到该圆的周长为C = 2π × 6 = 12π cm(精确值),或者使用近似值π ≈ 3.14计算,得到该圆的周长约等于C ≈ 2 × 3.14 × 6 ≈ 37.68 cm。

2. 运用半径和周长的关系计算已知圆的周长,可以通过周长与半径的关系计算出圆的半径。

例如,一个圆的周长为20π cm(精确值),根据圆周长公式C = 2πr,可以得到20π = 2πr,即r = 10 cm。

3. 运用直径和周长的关系计算已知圆的周长,可以通过周长与直径的关系计算出圆的直径。

例如,一个圆的周长为30 cm,根据圆周长公式C = 2πr,可以得到30 = 2πr,即r = 15 cm,进而得到直径d = 2r = 2 × 15 = 30 cm。

四、周长应用题解题技巧1. 已知直径求周长对于已知直径的题目,可以先通过直径求半径,再利用周长公式计算周长。

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。

2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)

2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)

2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)知识点总结1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

2.垂径定理的推论:推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。

3.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。

4.圆周角定理:5.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

6.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。

②性质:I:圆内接四边形的对角互补。

II:圆内接四边形的任意一个外角等于它的内对角。

7.三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆。

圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。

8.切线的性质:①圆的切线垂直于经过切点的半径。

②经过圆心且垂直于切线的直线必经过切点。

③经过切点且垂直于切线的直线必经过圆心。

运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题。

9. 切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。

在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”。

2023年九年级中考一轮复习数学课件圆的基本性质

2023年九年级中考一轮复习数学课件圆的基本性质

例 4 如图,正方形 ABCD 内接于⊙O,E 为 AB 的中点,连结 CE 交 BD 于点 F,延长 CE 交⊙O 于点 G,连结 BG.
(1)求证:FB2=FE·FG; (2)若 AB=6,求 FB 和 EG 的长.
解:(1)证明:∵四边形 ABCD 是正方形, ∴AD=BC,
∴A︵D=B︵C.
(2)如图,连结 OC,CD,OD,OD 交 BC 于点 F. ∵∠DBC=∠CAD=∠BAD=∠BCD, ∴BD=DC. ∵OB=OC,∴OD 垂直平分 BC. ∵△BDE 是等腰直角三角形,BE=2 10,∴BD=2 5. ∵AB=10,∴OB=OD=5. 设 OF=t,则 DF=5-t. 在 Rt△BOF 和 Rt△BDF 中,52-t2=(2 5)2-(5-t)2,解得 t=3, ∴BF=4.∴BC=8.

相等的圆周角所对的弧相等..
推 1、半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径. 论 2、圆内接四边形的对角互补,并且任何一个外角等于它的内对角.
常 见 图 形
圆中常用辅助线:
遇到 弦时
有作垂直于弦的 半径(或直径)或再连接过弦的端点
的半径.
常连弦心距
【解】如图 1,当 PA,PB 不在同一个半圆时,过点 P 作直径 PQ,连结
AQ,BQ.
∵PQ 是⊙O 的直径,
∴∠PAQ=∠PBQ=90°.
∵⊙O 的半径 r=1,
∴PQ=2r=2.
图1
∵PA= 3,PB= 2,
∴cos∠APQ=PPAQ= 23,
cos∠BPQ=PPQB=
2 2.
∴∠APQ=30°,∠BPQ=45°.
∴∠APB=∠APQ+∠BPQ=75°.

中考数学圆知识点总结7篇

中考数学圆知识点总结7篇

中考数学圆知识点总结7篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点叫做圆心,定长叫做半径。

圆有无数条对称轴,对称轴经过圆心。

圆具有旋转不变性,即围绕圆心旋转任意角度后,得到的图形仍然与原图形重合。

二、圆的性质1. 圆的直径是最大的弦,弦是连接圆上两点的直线段,直径是特殊的弦。

2. 圆心到圆上各点的距离都等于半径,即圆的半径是圆的长度单位,它决定了圆的大小。

3. 圆的周长与直径的比值叫做圆周率,是一个重要的数学常数,约等于3.1415926。

4. 圆的面积等于π乘以半径的平方,即圆的面积随着半径的增大而增大。

三、圆与直线的关系1. 直线与圆有三种位置关系:相交、相切、相离。

相交是指直线与圆有两个不同的交点;相切是指直线与圆有一个切点;相离是指直线与圆没有交点。

2. 圆的切线垂直于过切点的半径,即切线与半径是垂直关系。

3. 圆的两条平行弦所对的圆心角相等,即圆心角的大小只与弦的位置有关,与弦的长度无关。

四、圆与圆的位置关系1. 两个圆的位置关系有五种:外离、外切、相交、内切、内含。

外离是指两个圆没有公共点;外切是指两个圆有一个公共点;相交是指两个圆有两个不同的公共点;内切是指两个圆有一个公共点且两圆的圆心在公共点的两侧;内含是指两个圆的圆心在同一个大圆的内部。

2. 两个圆的圆心距等于两圆半径之和或差,即两圆的位置关系可以通过计算圆心距来判断。

3. 两个相交的圆,它们的交点叫做共点,共点将两圆分成四段弧,每段弧叫做一拱。

五、圆的幂和极坐标1. 圆的幂是指一个点到一个圆的距离的平方,即该点到圆心的距离乘以它自身。

圆的幂是该点的极坐标系中的ρ值。

2. 极坐标系是一种在平面中表示位置的方法,它使用一个角度和一个距离来表示一个点。

在极坐标系中,圆的幂可以通过ρ值来计算。

3. 通过计算圆的幂和极坐标系中的角度值,我们可以确定一个点是否在某个圆上或某个圆外。

篇2一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。

数学中考复习 圆的相关知识点及习题

数学中考复习 圆的相关知识点及习题

圆专题一、圆的相关概念1.圆的定义(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作”O⊙“,读作”圆O“.(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:注意:同圆或等圆的半径相等.2.弦和弧(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作AB,读作弧AB.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3.圆心角和圆周角(1)圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.二、圆的对称性1.旋转对称性(1)圆是中心对称图形,对称中心是圆心;圆是旋转对称图形,无论绕圆心旋转多少度角,总能与自身重合.(2)圆的旋转对称性⇒圆心角、弧、弦、弦心距之间的关系.2.轴对称性(1)圆是轴对称图形,经过圆心的任一条直线是它的对称轴.(2)圆的轴对称性⇒垂径定理.三、圆的性质定理1.圆周角定理(1) 定理:一条弧所对的圆周角等于它所对的圆心角的一半. (2) 推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.2. 圆心角、弧、弦、弦心距之间的关系(1) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.(2) 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.注意:①前提条件是在同圆或等圆中;②在由等弦推出等弧时应注意:优弧与优弧相等;劣弧与劣弧相等.3. 垂径定理(1) 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2) 推论1:①平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧.②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (3) 推论2:圆的两条平行线所夹的弧相等.注意:若“过圆心的直线”、“垂直于弦”、“平分弦(非直径)”、“平分弦所对的优弧”、“平分弦所对的劣弧”中的任意两个成立,则另外三个都成立.注意:应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.F EBA CDOr a 2d O CBA所对的两圆心角相等所对的两条弦相等 所对的两条弧相等所对的两条弦的弦心距相等EO D B A【例1】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>【例2】 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm ,则该半圆的半径为______.二、圆的性质定理1. 圆周角定理【例3】 如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.【例4】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180︒,70︒,30︒,则PAQ ∠的大小为( )A .10︒B .20︒C .30︒D .40︒【例5】 如图,O ⊙是ABC ∆的外接圆,已知60B ∠=︒,则CAO ∠的度数是( )A .15︒B .30︒C .45︒D .60︒【例6】 如图,已知O 的弦AB CD ,相交于点E ,AC 的度数为60︒,BD 的度数为100︒,则AEC ∠等于ON MHG FE DC BA( ) A .60°B .100°C .80°D .130°【例7】 如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.【例8】 如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.【例9】 如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.【例10】 如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.DCA BBA【例11】 如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65︒.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.【例12】 如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )B.4D.5【例13】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【例14】 如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.2. 圆内接四边形【例15】 如图,O ⊙外接于正方形ABCD ,P 为弧AD 上一点,且1AP =,PB =PC 的长.【例16】 如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点P ,BAPEC BAP DCBAAB BD =,且0.6PC =,求四边形ABCD 的周长.【例17】 如图,AB CD ,是O ⊙的两条弦,它们相交于点P ,连结AD BD 、,已知4AD BD ==,6PC =,求CD 的长.一、点与圆的位置关系4. 确定圆的条件(5) 圆心(定点),确定圆的位置; (6)半径(定长),确定圆的大小.注意:只有当圆心和半径都确定时,圆才能确定. 5. 点与圆的位置关系(7) 点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定. (8) 设O ⊙的半径为r ,点P 到圆心O 的距离为d ,则有:点在圆外⇔d r >;点在圆上⇔d r =;点在圆内⇔d r <.如下表所示:C二、过已知点的圆1. 过已知点的圆(1) 经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. (2) 经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个. (3) 过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个. (4) 过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.2. 定理:不在同一直线上的三点确定一个圆(1) “不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆; (2) “确定”一词的含义是”有且只有”,即”唯一存在”.三、三角形的外接圆及外心1. 三角形的外接圆(1) 经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. (2) 锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部. 2. 三角形外心的性质(1) 三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; (2) 三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.一、点与圆的位置关系【例18】 已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .7二、过三点的圆【例19】 如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【例20】 如图,直角坐标系中一条圆弧经过网格点A B C ,,,其中B 点的坐标为()44,,则该圆弧所在圆的圆心的坐标为 .三、三角形的外接圆及外心【例21】 如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .【例22】 等边三角形的外接圆的半径等于边长的( )倍. ABCD .12【例23】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【例24】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【例25】 已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E . ⑴ 求证:AD 的延长线平分∠CDE ;⑴ 若30∠=︒BAC ,∆ABC 中BC边上的高为2+∆ABC 外接圆的面积.直线与圆的位置关系设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:6. 切线的性质(9) 定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.(10) 注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心①过圆心,过切点⇒垂直于切线.AB 过圆心,AB 过切点M ,则AB l ⊥. ②过圆心,垂直于切线⇒过切点.AB 过圆心,AB l ⊥,则AB 过切点M . ③过切点,垂直于切线⇒过圆心.AB l ⊥,AB 过切点M ,则AB 过圆心.7. 切线的判定(1) 定义法:和圆只有一个公共点的直线是圆的切线; (2) 距离法:和圆心距离等于半径的直线是圆的切线; (3) 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.AB CD El8. 切线长和切线长定理(1) 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. (2) 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.三、三角形的内切圆1. 三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3. 直角三角形内切圆的半径与三边的关系设a 、b 、c 分别为ABC △中A ∠、B ∠、C ∠的对边,面积为S ,则内切圆半径为sr p=,其中()12p a b c =++.若90C ∠=︒,则()12r a b c =+-.二、切线的性质及判定【例1】 如图,ABC ∆为等腰三角形,AB AC =,O 是底边BC 的中点,O ⊙与腰AB 相切于点D ,求证AC 与O ⊙相切.lcb acbaO F ED CACBAB A【例2】 已知:如图,ABC ∆内接于O ,AD 是过A 的一条射线,且B CAD ∠=∠.求证:AD 是O 的切线.【例3】 已知:如图,AB 是O ⊙的直径,C 为O ⊙上一点,MN 过C 点,AD MN ⊥于D ,AC 平分DAB ∠.求证:MN 为O ⊙的切线.【例4】 如图,已知OA 是O ⊙的半径,B 是OA 中点,BC OA ⊥,P 是OA 延长线上一点,且PA AC =.求证:PC 是O ⊙的切线.【例5】 已知:如图,C 为O ⊙上一点,DA 交O ⊙于B ,连结AC BC 、,且DCB CAB ∠=∠DC 为O ⊙的切线;(2)2CD AD BD =⋅.【例6】 如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.C【例7】 如图,已知AB 为⑴O 的弦,C 为⑴O 上一点,⑴C =⑴BAD ,且BD ⑴AB 于B .(1)求证:AD 是⑴O 的切线.(2)若⑴O 的半径为3,AB =4,求AD 的长.【例8】 如图,Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.【例9】 如图,AB 是O ⊙的的直径,BC AB ⊥于点B ,连接OC 交O ⊙于点E ,弦AD OC ∥,弦DF AB⊥于点G .(1)求证:点E 是BD 的中点; (2)求证:CD 是O ⊙的切线;(3)若4sin 5BAD ∠=,O ⊙的半径为5,求DF 的长.【例10】 如图,等腰三角形ABC 中,10AC BC ==,12AB =.以BC 为直径作O ⊙交AB 于点D ,交AC于点G ,DF AC ⊥,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是O ⊙的切线; (2)求sin E ∠的值.一、切线长定理1.如图,PA PB ,分别是O 的切线,A B ,为切点,AC 是O 的直径,已知35BAC ∠=︒,P ∠的度数为( ) A .35︒ B .45︒ C .60︒ D .70︒2.如图,PA PB 、分别切O ⊙于A B ,两点,PC 满足AB PB AC PC AB PC AC PB ⋅-⋅=⋅-⋅,且AP PC ⊥,2PAB BPC ∠=∠,求ACB ∠的度数.3.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠=,8PA =,那么弦AB 的长是( )A .4B .8C.D.P则OP =( )A .50cm B.cm Ccm D.cm5.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D C E ,,.若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是( )A .9B .10C .12D .146.等腰梯形ABCD 外切于圆,且中位线MN 的长为10,那么这个等腰梯形的周长是________.7.如图,PA PB DE 、、分别切O ⊙于A B C 、、,若10PO =,PDE ∆周长为16,求O ⊙的半径.8.如图,PA PB ,切O 于AB ,,MN 切O 于C ,交PA PB ,于M N ,两点,已知8PA =,求PMN ∆的周长.PB P于G,交AB AC、于MN,则BMN∆的周长为______________.10.如图,已知AB是O⊙的直径,BC是和O⊙相切于点B的切线,O⊙的弦AD平行于OC,若2OA=,且6AD OC+=,求CD的长.补充讲义两圆的公切线(选讲自己了解)9.两圆的外公切线(11)求两圆外公切线长:构造外公切线、圆心距、大圆与小圆半径的差为边的特征直角三角形.如图,设大圆的半径为R,小圆的半径为r,两圆的圆心距为d,两外公切线的夹角为α,则两圆的外公切线长为:l=,sin2R rdα-=(12)求两圆内公切线长:构造外公切线、圆心距、大圆与小圆半径的和为边的特征直角三角形.10.两圆的内公切线如图,设大圆的半径为R,小圆的半径为r,两圆的圆心距为d,两外公切线的夹角为α,则两圆的内公切线长l=,sin2R r dα+ =CB AP圆与相似三角形经典证明题1.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3 点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系为.2.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4..Rt.ABC...ACB=90°.D.AB.......BD.....O.AC..E...DE.....BC.......F..BD=BF..1....AC..O....2..BC=6.AB=12...O....5....AB..O......A..O..........C...OC..O..D.BD.....AC.E...AD..1.....CDE..CAD..2..AB=2.AC=2..AE...6. 已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB 于点E..1....AC•AD=AB•AE..2...BD.⊙O....D....E.OB.....BC=2...AC...7.如图所示,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.8. 如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.9. 如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.10......O..AB....OC.AB..CD.OB...F..AB.......E..EF=ED..1....DE..O.....2..OF.OB=1.3..O...R=3.....11....AB .⊙O .....D ......∠BDE =∠CBE .BD .AE ...F .(1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF •DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若PA =AO ,DE =2,求PD 的长和⊙O 的半径.12.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P ,连接AC ,BC ,PB :PC =1:2. (1)求证:AC 平分∠BAD ;(2)探究线段PB ,AB 之间的数量关系,并说明理由; (3)若AD =3,求△ABC 的面积.13.已知,如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BC 于点F ,交⊙O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且∠ODB =∠AEC . (1)求证:BD 是⊙O 的切线; (2)求证:2CE EH EA =⋅; (3)若⊙O 的半径为5,3sin 5A =,求BH 的长.第13题图FH EOC B A。

初中数学圆的知识点及解题技巧

初中数学圆的知识点及解题技巧

初中数学圆的知识点及解题技巧初中数学圆的知识点及解题技巧圆是初中数学中比较重要的一个知识点,也是中考、高考中常出现的题型。

在掌握圆的基本定义和性质之后,还需要掌握圆的重要应用,例如圆的切线和割线等。

下面我们来介绍一下初中数学圆的知识点及解题技巧。

一、圆的基本定义圆是一个平面上所有到一个固定点的距离都相等的点构成的图形。

这个固定点叫作圆心,图形中半径是连接圆心和圆上任意一点的线段,在圆上的点与圆心之间的距离都相等。

二、圆的基本性质1. 圆的直径是圆上任意两点之间的最长距离,也是圆上截取的任何弦中最长的一条。

2. 半径相等的圆互相重合,半径不等的圆不能重合。

3. 圆上的弧度等于它所对的圆心角的度数,也就是说,圆上的角都是弧度制的度数。

4. 在同一圆周上的两个弧所对的圆心角相等。

三、圆的常见元素及解题技巧1. 弦和弧弦是连接圆上任意两点的线段,它截取了圆的一段弧。

弧与弦的关系是:它们所对的圆心角相等。

如果弦把一条弧分成了两段,则这条弧就叫做弦所对的弧。

2. 圆心角以圆心为顶点的角叫作圆心角,它所对的弧叫做圆心角所对的弧。

在同一圆周上,圆心角相等的两个弧所对应的圆弧角度相等。

3. 切线和割线切线和割线是圆和直线的关系。

切线是与圆相切的直线,它在切点处与圆的切点的交点垂直于半径。

而割线则是与圆交于两个不同点的直线,它截取了圆的两段弧。

4. 弧长和扇形弧是圆上的一段弯曲的线段,它所对应的圆心角叫做弧度。

弧分为弧度和弧长两个概念,所以我们经常说到“圆心角的弧度制度数”和“弧长”两个概念。

一个扇形是由一个半径和弧组成,它是一个圆的一部分。

解题技巧:1. 确定中心点和半径,计算圆的周长、面积和弧长。

2. 确定圆心角的度数和弧度制,计算弧长。

3. 确定弦或弦所对的角度数,计算该弦所对应的弧长。

4. 利用切线和割线所对应的角度来计算角度或者其所对应的弧度。

5. 利用圆与线段之间的距离公式来计算圆与线段之间的距离。

四、解题策略和技巧1. 熟记圆的基本定义和性质。

专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)

专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)

专题30 圆的基本性质【知识要点】知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)知识点二垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造RT△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑷圆心;⑸半径,⑹其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。

2024中考数学一轮复习核心知识点精讲—与圆有关的计算

2024中考数学一轮复习核心知识点精讲—与圆有关的计算

2024中考数学一轮复习核心知识点精讲—与圆有关的计算1.掌握弧长和扇形面积计算公式;2.会利用弧长和扇形面积计算公式进弧长和扇形面积的计算考点1:圆内正多边形的计算(1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:2OD BD OB =;(2)正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::OE AE OA =(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =.考点2:扇形的弧长和面积计算扇形:(1)弧长公式:180n Rl π=;(2)扇形面积公式:213602n R S lRπ==n :圆心角R :扇形多对应的圆的半径l :扇形弧长S :扇形面积注意:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.(4)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(5)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量.考点3:扇形与圆柱、圆锥之间联系1、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh rππ+C 1D 1(2)圆柱的体积:2V r hπ=2、圆锥侧面展开图(1)S S S =+侧表底=2Rr r ππ+(2)圆锥的体积:213V r hπ=注意:圆锥的底周长=扇形的弧长(180r 2Rn ΠΠ=)【题型1:正多边形和圆的有关计算】【典例1】(2023•福建)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为,若用圆内接正十二边形作近似估计,可得π的估计值为()A.B .2C .3D .2【答案】C【解答】解:如图,AB是正十二边形的一条边,点O是正十二边形的中心,过A作AM⊥OB于M,在正十二边形中,∠AOB=360°÷12=30°,∴AM=OA=,=OB•AM==,∴S△AOB∴正十二边形的面积为12×=3,∴3=12×π,∴π=3,∴π的近似值为3,故选:C.【变式1-1】(2023•临沂)将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是()A.60°B.90°C.180°D.360°【答案】B【解答】解:由于正六边形的中心角为=60°,所以正六边形绕其中心旋转后仍与原图形重合,旋转角可以为60°或60°的整数倍,即可以为60°,120°,180°,240°,300°,360°,不可能是90°,故选:B.【变式1-2】(2023•安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60°B.54°C.48°D.36°【答案】D【解答】解:∵五边形ABCDE是正五边形,∴∠BAE==108°,∠COD==72°,∴∠BAE﹣∠COD=108°﹣72°=36°,故选:D.【变式1-3】(2023•山西)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M均为正六边形的顶点.若点P,Q的坐标分别为,(0,﹣3),则点M的坐标为()A.(3,﹣2)B.(3,2)C.(2,﹣3)D.(﹣2,﹣3)【答案】A【解答】解:设中间正六边形的中心为D,连接DB.∵点P,Q的坐标分别为,(0,﹣3),图中是7个全等的正六边形,∴AB=BC=2,OQ=3,∴OA=OB=,∴OC=3,∵DQ=DB=2OD,∴OD=1,QD=DB=CM=2,∴M(3,﹣2),故选:A.【变式1-4】(2023•内江)如图,正六边形ABCDEF内接于⊙O,点P在上,点Q是的中点,则∠CPQ 的度数为()A.30°B.45°C.36°D.60°【答案】B【解答】解:如图,连接OC,OD,OQ,OE,∵正六边形ABCDEF,Q是的中点,∴∠COD=∠DOE==60°,∠DOQ=∠EOQ=∠DOE=30°,∴∠COQ=∠COD+∠DOQ=90°,∴∠CPQ=∠COQ=45°,故选:B.【题型2:弧长和扇形面积的有关计算】【典例2】(2023•张家界)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于()A.πB.3πC.2πD.2π﹣【答案】B【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∴==,∵的长==π,∴该“莱洛三角形”的周长是3π.故选:B.【变式2-1】(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π【答案】B【解答】解:∵CA=CB,CD⊥AB,∴AD=DB=AB′.∴∠AB′D=30°,∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==π.故选:B.【变式2-2】(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是()A.m B.m C.m D.(+2)m【答案】C【解答】解:连接AC,BD,AC和BD相交于点O,则O为圆心,如图所示,由题意可得,CD=2m,AD=2m,∠ADC=90°,∴tan∠DCA===,AC==4(m),∴∠ACD=60°,OA=OC=2m,∴∠ACB=30°,∴∠AOB=60°,∴优弧ADCB所对的圆心角为300°,∴改建后门洞的圆弧长是:=(m),故选:C.【变式2-3】(2023•锦州)如图,点A,B,C在⊙O上,∠ABC=40°,连接OA,OC.若⊙O的半径为3,则扇形AOC(阴影部分)的面积为()A.πB.πC.πD.2π【答案】D【解答】解:∵∠ABC=40°,∴∠AOC=2∠ABC=80°,∴扇形AOC的面积为,故选:D.【题型3:有圆有关的阴影面积的计算】【典例3】(2023•广元)如图,半径为5的扇形AOB中,∠AOB=90°,C是上一点,CD⊥OA,CE⊥OB,垂足分别为D,E,若CD=CE,则图中阴影部分面积为()A.B.C.D.【答案】B【解答】解:连接OC,如图所示,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴∠AOB=∠ODC=∠OEC=90°,∴四边形OECD是矩形,∵CD =CE ,∴四边形OECD 是正方形,∴∠DCE =90°,△DCE 和△OEC 全等,∴S 阴影=S △DCE +S 半弓形BCE=S △OCE +S 半弓形BCE=S 扇形COB==,故选:B .【变式3-1】(2023•雅安)如图,某小区要绿化一扇形OAB 空地,准备在小扇形OCD 内种花,在其余区域内(阴影部分)种草,测得∠AOB =120°,OA =15m ,OC =10m ,则种草区域的面积为()A .B .C .D .【答案】B 【解答】解:S 阴影=S 扇形AOB ﹣S 扇形COD ==(m 2).故选:B.【变式3-2】(2023•鄂州)如图,在△ABC中,∠ABC=90°,∠ACB=30°,AB=4,点O为BC的中点,以O为圆心,OB长为半径作半圆,交AC于点D,则图中阴影部分的面积是()A.5πB.5﹣4πC.5﹣2πD.10﹣2π【答案】C【解答】解:连接OD.在△ABC中,∠ABC=90°,∠ACB=30°,AB=4,∴BC=AB=4,∴OC=OD=OB=2,∴∠DOB=2∠C=60°,∴S阴=S△ACB﹣S△COD﹣S扇形ODB=×4×4﹣﹣=8﹣3﹣2π=5﹣2π.故选:C.【变式3-3】(2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为()A.米2B.米2C.米2D.米2【答案】C【解答】解:连结BC,AO,如图所示,∵∠BAC=90°,∴BC是⊙O的直径,∵⊙O的直径为1米,∴AO=BO=(米),∴AB==(米),∴扇形部件的面积=π×()2=(米2),故选:C.【题型4:圆锥的有关计算】【典例4】(2023•东营)如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是()A.3B.4C.5D.6【答案】A【解答】解:设底面半径为R,则底面周长=2πR,圆锥的侧面展开图的面积=×2πR×5=15π,∴R=3.故选:A.【变式4-1】(2022•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是()A.90°B.100°C.120°D.150°【答案】C【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,设圆心角的度数是n度.则=2π,解得:n=120.故选:C.【变式4-2】(2022•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是()A.圆柱的底面积为4πm2B.圆柱的侧面积为10πm2C.圆锥的母线AB长为2.25mD.圆锥的侧面积为5πm2【答案】C【解答】解:∵底面圆半径DE=2m,∴圆柱的底面积为4πm2,所以A选项不符合题意;∵圆柱的高CD=2.5m,∴圆柱的侧面积=2π×2×2.5=10π(m2),所以B选项不符合题意;∵底面圆半径DE=2m,即BC=2m,圆锥的高AC=1.5m,∴圆锥的母线长AB==2.5(m),所以C选项符合题意;∴圆锥的侧面积=×2π×2×2.5=5π(m2),所以D选项不符合题意.故选:C.【变式4-3】(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为()A.10cm B.20cm C.5cm D.24cm【答案】D【解答】解:设母线的长为R,由题意得,πR=2π×12,解得R=24,∴母线的长为24cm,故选:D.一.选择题(共10小题)1.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形的中心角∠COD的度数是()A.72°B.60°C.48°D.36°【答案】A【解答】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为=72°,故选:A.2.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.,πC.2,D.2,【答案】D【解答】解:如图所示,连接OC、OB,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OC=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OB sin∠OBM=4×=2,的长==;故选:D.3.如图,⊙O的半径为1,点A、B、C都在⊙O上,∠B=45°,则的长为()A.πB.πC.πD.π【答案】C【解答】解:∵∠B=45°,∴∠AOC=90°,∵⊙O的半径为1,∴的长===π,故选:C.4.如图,AB是半圆O的直径,C、D是半圆上两点,且满足∠ADC=120°,BC=1,则的长为()A.B.C.D.【答案】A【解答】解:如图,连接OC.∵∠ADC=120°,∴∠ABC=60°,∵OB=OC,∴∠OCB=∠OBC=∠B=60°,OB=OC=BC=1,∴的长为=,故选:A.5.如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π【答案】B【解答】解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.6.若扇形的半径是12cm弧长是20πcm,则扇形的面积为()A.120πcm2B.240πcm2C.360πcm2D.60πcm2【答案】A【解答】解:该扇形的面积为:(cm2).故选:A.7.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°后得到△AB'C',点B经过的路径为弧BB′,若∠BAC=60°,AC=3,则图中阴影部分的面积是()A.B.C.D.3π【答案】C【解答】解:在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=3,∴∠ABC=30°.∴AB=2AC=6.根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′﹣S△ABC==.故选:C.8.如图,四边形ABCD为正方形,边长为4,以B为圆心、BC长为半径画,E为四边形内部一点,且BE⊥CE,∠BCE=30°,连接AE,则阴影部分面积()A.B.6πC.D.【答案】C【解答】解:如图,作EF⊥AB于点F,∵BE⊥CE,∠BCE=30°,∴BE=BC=2,∠CBE=60°,∴CE=BE=2,∠EBF=30°,∴EF=BE=1,∴S阴影=S扇形ABC﹣S△BCE﹣S△ABE=﹣×2×﹣×1=4π﹣2﹣2.故选:C.9.如图,圆锥的母线长为5cm,高是4cm,则圆锥的侧面展开扇形的圆心角是()A.180°B.216°C.240°D.270°【答案】B【解答】解:∵圆锥的母线长为5cm,高是4cm,∴圆锥底面圆的半径为:=3(cm),∴2π×3=,解得n=216°.故选:B.10.已知圆锥的底面半径是4,母线长是5,则圆锥的侧面积是()A.10πB.15πC.20πD.25π【答案】C【解答】解:圆锥的侧面积=×2π×4×5=20π,故选:C.二.填空题(共8小题)11.AB是⊙O的内接正六边形一边,点P是优弧AB上的一点(点P不与点A,B重合)且BP∥OA,AP 与OB交于点C,则∠OCP的度数为90°.【答案】90°.【解答】解:∵AB是⊙O的内接正六边形一边,∴∠AOB==60°,∴=30°,∵BP∥OA,∴∠OAC=∠P=30°,∴∠OCP=∠AOB+∠OAC=60°+30°=90°.故答案为:90°.12.已知正六边形的内切圆半径为,则它的周长为12.【答案】见试题解答内容【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长等于正六边形的半径,设正六边形的半径为a,∴△OAB是等边三角形,∴OA=AB=a,∴OG=OA•sin60°=a×=,解得a=2,∴它的周长=6a=12.故答案为:12.13.如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧,点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路的长度为40πm.【答案】见试题解答内容【解答】解:由题意得,这段弯路的长度为,故答案为:40π.14.已知扇形的圆心角为120°,面积为27πcm2,则该扇形所在圆的半径为9cm.【答案】见试题解答内容【解答】解:∵扇形的圆心角为120°,面积为27πcm2,∴由S=得:r===9cm,故答案为:9cm.15.圆锥的侧面积是10πcm2,底面半径是2cm,则圆锥的母线长为5cm.【答案】见试题解答内容【解答】解:底面半径是2cm,则扇形的弧长是4π.设母线长是l,则×4πl=10π,解得:l=5.故答案为:5.16.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是4 cm.【答案】见试题解答内容【解答】解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故答案为4.17.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是6π.【答案】见试题解答内容【解答】解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积,则阴影部分的面积是:=6π,故答案为:6π.18.如图,将边长相等的正六边形和正五边形拼接在一起,则∠ABC的度数为132°.【答案】见试题解答内容【解答】解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°,∴∠ABC=360°﹣120°﹣108°=132°,故答案为:132.一.选择题(共7小题)1.在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受到中国人的浪漫,如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,“雪花”中心与原点重合,C,F在y轴上,则顶点B的坐标为()A.(4,2)B.(4,4)C.D.【答案】C【解答】解:连接OB,OA,如图所示:∵正六边形是轴对称图形,中心与坐标原点重合,∴△AOB是等边三角形,AO=BO=AB=4,AB⊥x轴,AM=BM,∵AB=4,∴AM=BM=2,∴OM=,∴点B的坐标为:(2,2),故选:C.2.如图,正五边形ABCDE内接于⊙O,点F在弧AE上.若∠CDF=95°,则∠FCD的大小为()A.38°B.42°C.49°D.58°【答案】C【解答】解:如图,连接OE,OD,CE,∵五边形ABCDE是正五边形,∴∠CDE=(5﹣2)×180°÷5=108°,∵∠CDF=95°,∴∠FDE=∠CDE﹣∠CDF=108°﹣95°=13°,∴∠FCE=13°,∵正五边形ABCDE内接于⊙O,∴∠EOD=360°÷5=72°,∴∠ECD==36°,∴∠FCD=∠FCE+∠ECD=36°+13°=49°,故选:C.3.如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D.若⊙O的半径为5,AB=4,则的长是()A.B.C.D.4π【答案】A【解答】解:连接AC,OB,OD,CD,作CF⊥AB于点F,作OE⊥CF于点E,由垂定理可知OD⊥AB于点D,AD=BD==.又OB=5,∴OD===,∵CA、CD所对的圆周角为∠CBA、∠CBD,且∠CBA=∠CBD,∴CA=CD,△CAD为等腰三角形.∴AF=DF==,又四边形ODFE为矩形且OD=DF=,∴四边形ODFE为正方形.∴,∴CE===2,∴CF=CE+EF=3=BF,故△CFB为等腰直角三角形,∠CBA=45°,∴所对的圆心角为90°,∴==.故选:A.4.如图,将直径为4的半圆形分别沿CD,EF折叠使得直径两端点A,B的对应点都与圆心O重合,则图中阴影部分的面积为()A.B.C.D.【答案】A【解答】解:连接AC,OC,OE,BE,由题意得:CD垂直平分OA,∴AC=OC,∴△OAC是等边三角形,同理△BOE是等边三角形,∴∠AOC=∠BOE=60°,∴∠COE=60°,∴弓形AMC、弓形ONC、弓形OPE的面积相等,∵圆的直径是4,∴OA=2,∴扇形OAC的面积==,△OAC的面积=OA2=,∴扇形OCE的面积=扇形OAC的面积=,∴弓形AMC的面积=扇形OAC的面积﹣△OAC的面积=﹣,∴阴影的面积=扇形OCE的面积﹣弓形AMC的面积×2=﹣2×(﹣)=2﹣.故选:A.5.如图,扇形AOB中,∠AOB=90°,点C,D分别在OA,上,连接BC,CD,点D,O关于直线BC 对称,的长为π,则图中阴影部分的面积为()A.B.C.D.【答案】A【解答】解:连接BD、OD,交BC与E,由题意可知,BD=BO,∵OD=OB,∴OD=OB=DB,∴∠BOD=60°,∵∠AOB=90°,∴∠AOD=30°,∵的长为π,∴,∴r=6,∴OB=6,∴OE==3,BE=OB=3,∴CE=OE=,+S△COE﹣S△BOE=+﹣=6π﹣3.∴阴影部分的面积=S扇形BOD故选:A.6.如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是()A.B.C.D.【答案】B【解答】解:如图,连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=8,∵AD∥BO,∴∠OAD=∠AOB=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵△OAD与△ABD与△AOB是等底等高的三角形,∴S阴影=S扇形AOB==π.故选:B.7.如图,一个圆锥的母线长为6,底面圆的直径为8,那么这个圆锥的侧面积是()A.24πB.40πC.48πD.【答案】A【解答】解:根据题意,这个圆锥的侧面积=×8π×6=24π.故选:A.二.填空题(共5小题)8.如图,已知正方形ABCD的边长为4cm,以AB,AD为直径作两个半圆,分别取弧AB,弧AD的中点M,N,连结MC,NC,则图中阴影部分的周长为(4)cm.【答案】(4).【解答】解:解法一:如图,取AD的中点O,连接NO,设CN交AD于点E,∵N是弧AD的中点,∴NO⊥AD,∵CD⊥AD,∴NO∥CD,∴△NOE∽△CDE,∴====,∴OE=OD=,在Rt△NOE中,NE===,∴CM=CN=3NE=2,∵点M,N分别为弧AB,弧AD的中点∴弧AB,弧AD的长度和为2×=2π,∴图中阴影部分的周长为(4)cm.解法二:作NH⊥BC于点H,则CH=2,NH=6,在Rt△NHC中,NC===2,∴CM=CN=2,∵点M,N分别为弧AB,弧AD的中点∴弧AB,弧AD的长度和为2×=2π,∴图中阴影部分的周长为(4)cm.故答案为:(4).9.如图,△ABC是边长为1的等边三角形,曲线CC1C2C3C4…是由多段120°的圆心角所对的弧组成的,其中的圆心为A,半径为AC;的圆心为B,半径为BC1;的圆心为C,半径为CC2;的圆心为A,半径为AC3……,,,,…的圆心依次按点A,B,C循环,则的长是.(结果保留π)【答案】.【解答】解:∵△ABC是边长为1的等边三角形,∴AC=AC1=1,∠CAB=∠ABC=∠BCA=60°,;∴BC2=BC1=AB+AC1=2,CC3=CC2=BC2+AB=3,∠CAC1=∠C1BC2=C2CC3=120°,∴的半径为1;的半径为2;的半径为3;所对的圆心角为120°,∴的半径为n,所对的圆心角为120°,∴所在圆的半径为2023,所对的圆心角为120°,∴的长为.故答案为:.10.如图,已知矩形纸片ABCD,AD=2,,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为.【答案】见试题解答内容【解答】解:cos∠BAE=,∴∠BAE=30°,∴∠DAE=60°,∴圆锥的侧面展开图的弧长为:=π,∴圆锥的底面半径为π÷2π=.11.如图,从一块半径为20的圆形纸片上剪出一个圆心角是90°的扇形ABC,如果将剪下来的扇形ABC围成一个圆锥,则该圆锥的底面半径是.【答案】.【解答】解:连接BC,如图,∵∠BAC=90°,∴BC为⊙O的直径,即BC=20,∴AB=10,设该圆锥的底面圆的半径为r,根据题意得2πr=,解得r=,即该圆锥的底面圆的半径为m.故答案为:.12.如图,AB是圆锥底面的直径,AB=6cm,母线PB=9cm,点C为PB的中点,若一只蚂蚁从A点处出发,沿圆锥的侧面爬行到C点处,则蚂蚁爬行的最短路程为cm.【答案】cm.【解答】解:由题意知,底面圆的直径AB=6cm,故底面周长等于6πcm,设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得6π=,解得n=120°,所以展开图中∠APD=120°÷2=60°,因为半径PA=PB,∠APB=60°,故三角形PAB为等边三角形,又∵D为PB的中点,所以AD⊥PB,在直角三角形PAD中,PA=9cm,PD=cm,根据勾股定理求得AD=(cm),所以蚂蚁爬行的最短距离为cm.故答案为:cm.1.(2023•连云港)如图,矩形ABCD内接于⊙O,分别以AB、BC、CD、AD为直径向外作半圆.若AB=4,BC=5,则阴影部分的面积是()A.π﹣20B.π﹣20C.20πD.20【答案】D【解答】解:如图,连接BD,则BD过点O,在Rt△ABD中,AB=4,BC=5,∴BD2=AB2+AD2=41,S阴影部分=S以AD为直径的圆+S以AB为直径的圆+S矩形ABCD﹣S以BD为直径的圆=π×()2+π×()2+4×5﹣π×()2=+20﹣=20,故选:D.2.(2023•广安)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC为半径画弧,交AB于点E,以点B为圆心,BC为半径画弧,交AB于点F,则图中阴影部分的面积是()A.π﹣2B.2π﹣2C.2π﹣4D.4π﹣4【答案】C【解答】解:在等腰直角△ABC中,∠ACB=90°,AC=BC=2,∴∠A=∠B=45°,+S扇形CBF﹣S△ABC∴阴影部分的面积S=S扇形CAE=×2﹣=2π﹣4.故选:C.3.(2023•上海)如果一个正多边形的中心角是20°,那么这个正多边形的边数为18.【答案】见试题解答内容【解答】解:360°÷20°=18.故这个正多边形的边数为18.故答案为:18.4.(2023•衡阳)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是10.【答案】10.【解答】解:∵多边形是正五边形,∴正五边形的每一个内角为:×180°×(5﹣2)=108°,∴∠O=180°﹣(180°﹣108°)×2=36°,∴正五边形的个数是360°÷36°=10.故答案为:10.5.(2023•宿迁)若圆锥的底面半径为2cm,侧面展开图是一个圆心角为120°的扇形,则这个圆锥的母线长是6cm.【答案】见试题解答内容【解答】解:设圆锥的母线长为x cm,根据题意得=2π•2,解得x=6,即圆锥的母线长为6cm.故答案为6.6.(2023•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为6cm,扇形的圆心角θ为120°,则圆锥的底面圆的半径r为2cm.【答案】2.【解答】解:由题意得:母线l=6,θ=120°,2πr=,∴r=2(cm).故答案为:2.7.(2022•广元)如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为.【答案】.【解答】解:如图,过点O作AB的垂线并延长,垂足为C,交⊙O于点D,连结AO,AD,根据垂径定理得:AC=BC=AB=,∵将⊙O沿弦AB折叠,恰经过圆心O,∴OC=CD=r,∴OC=OA,∴∠OAC=30°,∴∠AOD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠D=60°,在Rt△AOC中,AC2+OC2=OA2,∴()2+(r)2=r2,解得:r=2,∵AC=BC,∠OCB=∠ACD=90°,OC=CD,∴△ACD≌△BCO(SAS),=×π×22=.∴阴影部分的面积=S扇形ADO故答案为:.8.(2023•金华)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为πcm.【答案】π.【解答】解:连接OE,OD,∵OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠C=∠ODB,∴OD∥AC,∴∠EOD=∠AEO,∵OE=OA,∴∠OEA=∠BAC=50°,∴∠EOD=∠BAC=50°,∵OD=AB=×6=3(cm),∴的长==π(cm).故答案为:π.9.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【答案】5;.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.。

2025年中考数学考点分类专题归纳之 圆

2025年中考数学考点分类专题归纳之 圆

2025年中考数学考点分类专题归纳圆知识点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.备注:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.备注:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.4.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.备注:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.知识点二、与圆有关的位置关系1.判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.备注:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点A1,A2……A n在同一个圆上的方法当A1O=A2O=……=A n O=R时,A1,A2……A n在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R,点O到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.知识点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.备注:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.知识点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.备注:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.1.(2024•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB,BD=5,则AH的长为()A.B.C.D.2.(2024•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(2024•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C.D.24.(2024•衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm5.(2024•枣庄)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.86.(2024•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm7.(2024•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.8.(2024•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸9.(2024•日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED 的正切值等于()A.B.C.2 D.10.(2024•巴中)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB 等于()A.B.2 C.2D.311.(2024•赤峰)如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°12.(2024•盘锦)如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°13.(2024•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°14.(2024•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°15.(2024•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°16.(2024•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°17.(2024•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.518.(2024•陇南)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°19.(2024•盐城)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°20.(2024•邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°21.(2024•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.822.(2024•牡丹江)如图,△ABC内接于⊙O,若sin∠BAC,BC=2,则⊙O的半径为()A.3B.6C.4D.223.(2024•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.24.(2024•湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定25.(2024•湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4D.426.(2024•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°27.(2024•宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°28.(2024•重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.529.(2024•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D 在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_______.30.(2024•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为_________.31.(2024•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是______cm.32.(2024•广元)如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C 与的中点D的距离CD=2cm.则此圆环形玉片的外圆半径为___cm.33.(2024•舟山)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________cm.34.(2024•毕节市)如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为_____.35.(2024•随州)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=____度.36.(2024•黑龙江)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=_____.37.(2024•吉林)如图,A,B,C,D是⊙O上的四个点,,若∠AOB=58°,则∠BDC=____度.38.(2024•北京)如图,点A,B,C,D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=_____.39.(2024•绥化)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是________(结果用含π的式子表示).40.(2024•常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是___.41.(2024•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是__.42.(2024•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是______cm.43.(2024•内江)已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=410b,则△ABC的外接圆半径=_.44.(2024•益阳)如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=____度.45.(2024•枣庄)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.46.(2024•徐州)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.。

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。

圆有无数条对称轴,对称轴经过圆心。

圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。

二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。

2. 切线性质:圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。

3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。

4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。

圆锥椭圆的两焦点是圆锥的底面圆心和顶点。

双曲线类似。

三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。

如圆形广场、圆形剧场等。

2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。

这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。

3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。

这些元件的形状和布局对于电子设备的功能和性能有着重要影响。

4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。

对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。

四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。

我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。

2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。

3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。

最新中考数学-一轮复习:与圆有关的位置关系

最新中考数学-一轮复习:与圆有关的位置关系

与圆有关的位置关系基础知识知识点一、点与圆的位置关系1. 点和直线有三种位置关系:①点在圆外,即这个点到圆心的距离大于半径;②点在圆上,即这个点到圆心的距离等于半径;③点在圆内,即这个点到圆心的距离小于半径.2. 用数量关系表示位置关系:⊙O的半径为r,点P到圆心的距离OP=d,则有①点P在⊙O外d>r;②点P在⊙O上d=r;③点P在⊙O内d<r.知识点二、直线和圆的位置关系1.直线和圆的三种位置关系:(1)相离:直线和圆没有公共点,这时我们说这条直线和圆相离.(2)相切:直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.(3)相交:直线和圆有两个公共点,这时我们说这条直线和圆相交.2、直线和圆的位置关系的性质与判断:设圆的半径为r,圆心到直线的距离为d,则:①直线和圆相离 d < r②直线和圆相切 d = r③直线和圆相交 d > r.知识点三、切线的判定定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.在应用定理时,必须先弄清两个条件:一是经过半径的外端;二是垂直于这条半径,两者缺一不可.2. 切线的判定方法有以下几种:①可以直接应用定义:直线与圆有一个公共点时,直线是圆的切线.②圆心到直线的距离等于半径的直线是圆的切线.③切线的判定定理.当已知条件中没有指出圆与直线的公共点时,常运用方法②进行判定;当已知条件中明确指出圆与直线有公共点时,常运用判定定理进行判定.证题方法“有点连半径,无点作垂线”.知识点四、切线的性质定理与切线长定理1. 切线的性质定理:圆的切线垂直于过切点的半径.当已知圆的切线时,常常连接过切点的半径,得两线垂直关系. 2.切线长定理(1)切线长的定义:过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. (2)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等. 知识点五、三角形的外接圆与外心1. 三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外接圆.2. 三角形的外心:三角形外接圆的圆心,是三角形三条边垂直平分线的交点.这个点叫做三角形的外心.3. 三角形外心的性质:①三角形的外心是外接圆的圆心,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的;但一个圆的内接三角形却有无数个,这些三角形的外心重合.知识点六、三角形的内切圆与内心1.三角形的内切圆是指与三角形各边都相切的圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.任意一个三角形都有且只有一个内切圆.但一个圆的外切三角形有无数个.2. 三角形的内心:三角形内切圆的圆心,是三角形三条角平分线的交点,到三角形三边的距离相等. 常见结论:(1)Rt △ABC 的三条边分别为:a 、b 、c (c 为斜边),则它的内切圆的半径2ab cr ; (2)△ABC 的周长为l ,面积为S ,其内切圆的半径为r ,则12S lr . 知识点七、正多边形与圆的关系1. 正多边形的概念:各边相等,各角也相等的多边形叫做正多边形.2. 正多边形与圆的关系可以这样表述:把圆分成n (n≥3)等份,依次连接各分点所得的多边形就是这个圆的内接正n 边形.利用这一关系可以判定一个多边形是否是正多边形或作出一个正多边形.这个圆是这个正多边形的外接圆.正多边形的外接圆的圆心叫做这个正多边形的中心.外接圆的半径叫做这个正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.3. 对称性:①正多边形的轴对称性:正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心.②正多边形的中心对称性:边数为偶数的正多边形是中心对称图形,它的中心是对称中心. ③正多边形的旋转对称性:正多边形都是旋转对称图形,最小的旋转角等于中心角. 典型例题解析例1. 已知点P到⊙O上的点的最短距离为3cm,最长距离为5cm,则⊙O的半径为cm.例2. 已知⊙O的半径长为2cm,如果直线l上有一点P满足PO=2cm,那么直线l与⊙O的位置关系是()A.相切B.相交C.相离或相切D.相切或相交例3. Rt△ABC中,∠C=90°,AC=5,BC=12,如果以点C为圆心,r为半径,且⊙C与斜边AB仅有一个公共点,那么半径r的取值范围是.例4. (朝阳)如图,△MBC中,∠B=90°,∠C=60°,MB=23,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A.2B.3C.2 D.3例5. (葫芦岛)如图,边长为a的正六边形内有一边长为a的正三角形,则SS阴影空白()A.3 B.4 C.5 D.6例6. 如图:⊙I是Rt△ABC的内切圆,∠C=90°,AC=6,BC=8,则⊙I的半径是.例7. (锦州)已知,⊙O为∆ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE 的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.(2)过点O作OH⊥AB,垂足为H,例8. (来宾)如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O 于点E,且∠BAF=2∠CBF,CG⊥BF于点G.连接AE.(1) 直接写出AE与BC的位置关系;(2) 求证:△BCG∽△ACE ;(3) 若∠F=60°,GF=1,求⊙O得半径.巩固训练1. (青岛)直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6 B.r=6 C.r>6 D.r≥62. 在⊙O中,圆心O在坐标原点上,半径为210,点P的坐标为(4,5),那么点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不能确定3. 已知正三角形外接圆半径为3,这个正三角形的边长是()A.2 B.3 C.4 D.54. (天津)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°△放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面5. 如下图,将ABC△,能够完全覆盖这个三角形的最小圆面的半径是________.去覆盖ABC6. (曲靖)如图,正六边形ABCDEF的边长为2,则对角线AE的长是.7. (莱芜)如图,正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A. △CDF的周长等于AD+CDB. FC平分∠BFDC. AC2+BF2=4CD2D. DE2=EF·CE8. (广安)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6,若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次9. (日照)如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数kyx(k≠0)的图象经过圆心P,则k= .10. (德州)如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC,AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.11. (河南)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线P A、PB,切点分别为点A、B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP= cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.12. (抚州)如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别相交于A,B两点,连接AP 并延长分别交⊙P、x轴于点D、点E,连接DC并延长交y轴于点F,若点F的坐标为(0,1),点D的坐标为(6,-1).(1)求证:DC=FC.(2)判断⊙P与x轴的位置关系,并说明理由.(3)求直线AD的解析式.中考预测1. 在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()A.当a=-1时,点B在圆A上B.当a<1时,点B在圆A内C.当a<-1时,点B在圆A外D.当-1<a<3时,点B在圆A内2. 如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A =30°,则∠C的大小是( )A.30°B.45°C.60°D.40°3. 如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3, 0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1 B.1或5 C.3 D.54. 如图,P为⊙O的直径BA延长线上一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD. 已知PC=PD=BC. 下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°. 其中正确的个数为()A. 4个B. 3个C. 2个D. 1个5. ⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2-4x+m=0的两根,当直线l与⊙O相切时,m的值为.6. 直角三角形的两边长分别为16和12,则此三角形的外接圆半径是.7. 已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC只有一个公共点,那么x的取值范围是.8. 如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是__________.(结果保留π)9. 如图,正方形ABCD的边长为2,⊙O的直径为AD,将正方形沿EC折叠,点B落在圆上的F点,则BE的长为.10. 如图,Rt△ABC中,∠ABC=90°.以AB的中点O为圆心、OA长为半径作半圆,交AC于点D.点E为BC的中点,连接DE.(1)求证:DE是该半圆的切线;(2)若∠BAC=30°,DE=2,求AD的长.11.如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.12. 如图,AB 是⊙O 的直径,点C 在⊙O 上,与⊙O 相切, BD ∥AC . (1)图中∠OCD =_______°,理由是_____________________; (2)⊙O 的半径为3,AC =4,求OD 的长.13. 阅读材料:已知,如图(1),在面积为S 的△ABC 中, BC =a ,AC =b , AB =c ,内切圆O 的半径为r.连接OA 、OB 、OC ,△ABC 被划分为三个小三角形. ∵r c b a r AB r AC r BC S S S S OAB OAC OBC )(21212121++=⋅+⋅+⋅=++=△△△.. ∴cb a Sr ++=2.(1)类比推理:若面积为S 的四边形ABCD 存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB =a ,BC =b ,CD =c ,AD =d ,求四边形的内切圆半径r ;(2)理解应用:如图(3),在等腰梯形ABCD 中,AB ∥DC ,AB =21,CD =11,AD =13,⊙O 1与⊙O 2分别为△ABD 与△BCD 的内切圆,设它们的半径分别为r 1和r 2,求21r r 的值.参考答案:巩固训练∵∠ODE=∠DEA=90°,∴OD∥AC,∴11313222 OCES CE DE∆=⨯⨯=⨯=.13. 【解析】 (1)连接OA 、OB 、OC 、OD. ∵AOD COD BOC AOB S S S S S △△△△+++=dr cr br ar 21212121+++=r d c b a )(21+++=。

九年级上圆的知识点总结

九年级上圆的知识点总结

九年级上圆的知识点总结圆是初中数学中的重要内容之一,也是中考的必考知识点。

在九年级上册的数学学习中,我们对圆的相关知识有了较为深入的了解。

下面就让我们来一起总结一下九年级上圆的知识点。

一、圆的基本概念1、圆的定义圆是平面内到定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

2、圆的表示方法通常用“⊙”表示圆,后面加上圆心的字母,如⊙O 表示以 O 为圆心的圆。

3、弦连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,直径是圆中最长的弦。

4、弧圆上任意两点间的部分叫做弧。

弧分为优弧和劣弧,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。

5、等圆和等弧能够完全重合的两个圆叫做等圆。

在同圆或等圆中,能够互相重合的弧叫做等弧。

二、圆的基本性质1、圆的对称性圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。

圆也是中心对称图形,圆心是它的对称中心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

3、圆心角、弧、弦之间的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

圆周角定理的推论:(1)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

(2)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。

三、圆的位置关系1、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:(1)点在圆外⇔ d > r;(2)点在圆上⇔ d = r;(3)点在圆内⇔ d < r。

2、直线与圆的位置关系设圆的半径为 r,圆心到直线的距离为 d,则有:(1)直线与圆相离⇔ d > r;(2)直线与圆相切⇔ d = r;(3)直线与圆相交⇔ d < r。

切线的性质:圆的切线垂直于经过切点的半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考数学圆知识点归纳
1.不在同一直线上的三点确定一个圆。

2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12.①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离dr
13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离dR+r ②两圆外切d=R+r
③.两圆相交R-rr)
④.两圆内切d=R-r(Rr) ⑤两圆内含dr)
21.定理相交两圆的连心线垂直平分两圆的公共弦
22.定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于(n-2)×180°/n
25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长= d-(R-r) 外公切线长= d-(R+r)
32.定理一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课
时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

知道“是这样”,就是讲不出“为什么”。

根本原因还是无“米”下“锅”。

于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。

所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。

要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、
精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。

相关文档
最新文档