湿法脱硫系统物料平衡计算资料

合集下载

脱硫物料平衡计算

脱硫物料平衡计算

脱硫物料平衡计算1简化条件以下条件在计算方法中被简化1)不包括吸收塔的热损失2)假设烟气带入的粉尘为零3)假设工艺水和石灰石不含杂质4)假设原烟气和净烟气没有夹带物代入和带出系统5)假设没有除雾器冲洗水6)假设没有泵的密封水7)假设工艺系统是封闭的,没有环境物质的进入和流出2物料平衡计算1)吸收塔出口烟气量G2G2=(G1×(1-mw1)×(P2/(P2-Pw2))×(1-mw2)+G3×(1-0.21/K))×(P2/(P2-Pw2))G1:吸收塔入口烟气流量mw1:入口烟气含湿率P2:烟气压力Pw2:饱和烟气的水蒸气分压说明:Pw2为绝热饱和温度下的水蒸气分压,该值是根据热平衡计算的反应温度,由烟气湿度表查得。

(计算步骤见热平衡计算)2)氧化空气量的计算根据经验,当烟气中含氧量为6%以上时,在吸收塔喷淋区域的氧化率为50-60%。

采用氧枪式氧化分布技术,在浆池中氧化空气利用率ηo2=25-30%,因此,浆池内的需要的理论氧气量为:S=(G1×q1-G2×q2)×(1-0.6)/2/22.41所需空气流量QreqQreq=S×22.4/(0.21×0.3)G3=Qreq×KG3:实际空气供应量K:根据浆液溶解盐的多少根据经验来确定,一般在2.0-3左右。

3)石灰石消耗量计算W1=100×qs×ηsW1:石灰石消耗量qs::入口SO2流量ηs:脱硫效率4)吸收塔排出的石膏浆液量计算W2=172××qs×ηs/SsW2:石膏浆液量Ss:石膏浆液固含量5)脱水石膏产量的计算W3=172××qs×ηs/SgW3:石膏浆液量Sg:脱水石膏固含量(1-石膏含水量)6)滤液水量的计算W4=W3-W2W3:滤液水量7)工艺水消耗量的计算蒸发水量石膏表面水石膏结晶水排放废水.3热平衡计算吸收塔反应温度的计算是基于吸收塔范围的物料(不包括GGH ),假定吸收塔已经处于热稳定状态。

脱硫物料平衡水平衡计算

脱硫物料平衡水平衡计算

脱硫物料平衡水平衡计算引言脱硫是指对燃煤等含硫燃料进行处理,去除其中的硫化物,减少大气中的硫化物排放,减少空气污染。

在脱硫过程中,物料平衡是一个重要的参数,用于计算输入和输出的物料流量以及物料的组成。

本文将介绍脱硫物料平衡的计算方法,并给出一个示例。

脱硫物料平衡的基本原理脱硫过程中的物料平衡是根据质量守恒定律进行计算的。

假设脱硫系统中只有一个输入流和一个输出流,则物料平衡可以表示为以下公式:输入物料 = 输出物料其中,输入物料是指进入脱硫系统的物料流量和组成,输出物料是指离开脱硫系统的物料流量和组成。

脱硫物料平衡的计算方法脱硫物料平衡的计算包括以下几个步骤:1.确定输入流的物料流量和组成:根据实际情况,确定进入脱硫系统的物料流量和组成。

物料的组成可以通过化验等方法测定,一般以百分比的形式表示。

2.确定输出流的物料流量和组成:根据实际情况,确定离开脱硫系统的物料流量和组成。

与输入流相似,输出流的物料组成也以百分比的形式表示。

3.物料平衡计算:根据质量守恒定律,将输入物料和输出物料进行比较,并进行物料平衡计算。

物料平衡计算可以采用以下公式:输入物料 = 输出物料根据物料平衡公式,可以得到进一步的更具体的计算公式,如下所示:输入物料流量 × 输入物料组成 = 输出物料流量 × 输出物料组成根据该公式,可以计算出未知的物料流量或组成。

4.检查和修正:完成物料平衡计算后,应该对结果进行检查,确保计算的准确性。

如果有必要,可以对输入物料和输出物料的流量或组成进行修正,以满足物料平衡公式。

示例下面给出一个脱硫物料平衡的示例,以帮助读者更好地理解物料平衡的计算方法。

假设一个脱硫系统的输入流为500 kg,含硫量为3%;输出流的物料流量和组成未知。

我们需要计算输出流的物料流量和含硫量。

首先,根据已知条件可以得到:输入物料流量 = 500 kg,输入物料含硫量 = 3%然后,假设输出物料流量为X kg,输出物料含硫量为Y%。

湿法1炉1塔脱硫系统物料平衡及设备选型估算

湿法1炉1塔脱硫系统物料平衡及设备选型估算

四 1 3 4 5
脱硫产物计算 CaSO4.2H2O生成量 脱硫产物中飞灰含量 引风机出口飞灰总量 未反应的CaCO3 CaCO3带入的杂质
M4 M5 m2 M6 M7
t/h t/h t/h t/h t/h
Ms/64*M10/1000 m2*2/3 Vtgy-o2*mh M3/(ca/s)*((ca/s)-1)) M3'*(1-P/100)
0 0
总燃烧产物实际湿体积 总燃烧产物实际干体积 总燃烧产物6%O2干体积 Vtgy-O2 烟气含硫量及脱硫量计算 脱硫进口SO2量 脱硫进口SO2实际浓度 要求脱硫量
M Cso2 Ms
kg/h Bj*1000*Sy/100*0.7*64*0.9/22.41 kmol/h M/64 mg/Nm3 M/Vtshy(标态,干基,6%O2) Cso2*22.41/64 ppm kg/h M*η *n/100 kmol/h Ms/64
2677.20 11.84
2)
真空皮带机计算 CaSO4.2H2O生成量 过滤面积 真空泵 M4 t/h Ms/64*M10/1000 16.09 16.29 5212.2
3) 2 1) 2) 3) 4) 5) 6) 7) 8) 六 1
单塔蒸发水量 单塔蒸发水汽体积 脱硫耗水量 脱硫结晶水 石膏表面水 FGD废水 脱硫蒸发水量 清洁冲洗水 泵与风机冷却用水 单套脱硫装置耗水量 总的脱硫装置耗水量 氧化空气量计算 需氧量
Mwe Vwe Mgyc Mgys Mww Mwe Mgyw Mwq Mw Mw'
t/h Nm /h t/h t/h t/h t/h t/h t/h t/h t/h
3
msh1+msh2 Mwe/18*10 *22.4/1000 M4/M10*(2*18) M9*0.1 (Bj*0.063%*1000+(Mgyc+Mgys+Mwe)*1000* 0.000018-Vtgy*0.4*0.000001M9*1000*0.01%)/0.02/1000 估计 估计 Mgyc+Mgys+Mww+Mwe+Mgyw+Mwq n*Mw

湿法脱硫系统物料平衡计算资料

湿法脱硫系统物料平衡计算资料

1湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114℃烟气中SO2浓度:3600mg/Nm3烟气组成:石灰石浓度:96.05%二、平衡计算(1)原烟气组成计算(2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。

温度为70℃。

2、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。

取O/S=4需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。

其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。

氧化空气进口温度为20℃,进塔温度为80℃。

3、②→③(GGH出口→脱硫塔出口):烟气蒸发水量计算:1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。

由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp =0.2520 kcal/kg.℃。

(40℃)Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)=0.2430kcal/kg.℃。

脱硫物料衡算

脱硫物料衡算

湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气阜康2×135MW机组烟气参数(示例)(2)石灰石分子量石灰石粉中CaCO3的含量91.89%,MgCO3含量1.43%,其余惰性物质含量6.68%。

计算石灰石粉平均分子量:CaCO3分子量为:100.09M=1/(91.89%/ M caco3+1.43% /M Mgco3)=106.85二、石膏浆液平衡计算1、脱硫剂的需求量烟气中SO2量=Q标态、干烟气×C SO2×[(21-6)/(21- O2)]/64=24.28kmol/h依次计算出SO3、HCl、HF等酸性物质的量:0.15、0.56、0.41 kmol/h 烟气中SO2等酸性物质脱除量=N SO2+N SO3+N HCl +N HF=25.40 kmol/h需求石灰石量=K钙硫比×M平均分子量×(N SO2×ηSO2+ N SO3×ηSO3+ N HCl×ηHCl /2+ NHF×ηHF/2)=2795.59 kg/hηSO2、ηSO3、ηHCl、ηHF等脱除效率根据工程需要取值。

K钙硫比=1.03(湿法脱硫一般取1.02~1.05)2、脱硫系统总固量方程式:吸收: S02+ H20〈==〉H2S03S03+ H20〈==〉H2S04中和: CaCO3+ H2S03〈==〉CaS03 +CO2+H20CaCO3+H2S04〈==〉CaS04 +2H20Ca(OH)2+2HCl〈==〉CaC12 +CO2+H20氧化: 2CaS03+02〈==〉2CaS04结晶: CaS04+2H20〈==〉CaS04·2H20CaSO4.2H2O分子量为:172.17CaSO3.1/2H2O分子量为:129.15脱硫塔浆池底部含固量应包括以下几部分:石膏(CaSO4.2H2O)、CaSO3.1/2H2O、CaCO3、粉尘、石灰石中杂质、其它(MgCO3、CaF2、MgF2等)详见下表:例如:(以CaSO4.2H2O计算为例)CaSO4.2H2O生成量=[(24.28+0.15)-(0.05+0)] ×172.17×0.997=4180.44kg/h 则:石膏排出量(m石膏)=[4520.36-废水中含固量(m废水)]/90% (1)3、氧化风量计算:氧化风量中O2转移效率按30%计算:Q O2=N SO2×ηSO2/2×22.4/0.21/0.3计算得:Q O2=4316Nm3/h4、蒸发水量的计算烟气喷淋塔烟气换热主要对象为:喷淋浆液中的蒸发水量。

脱硫物料平衡计算详解

脱硫物料平衡计算详解

吸 收 塔
2、固平衡
固平衡(浆液)是脱硫系统中的关键平衡之一,其各 种组分的变化是在吸收塔中进行的,它对于系统的 稳定运行,商品石膏的品质,系统中浆液管道的设计, 石膏旋流器, 皮带脱水机的选择等都具有决定性的 作用。 〈1〉计算原理和方法 计算原则 : 吸收塔内的固体量必须被全部排出系统。 塔内固体主要有:CaCO3,CaSO3· 1/2H2O, CaSO4· 2H2O ,惰性物质,灰及少量的其它物质。
吸收塔
石膏处理系统
G制浆水
Y废水
P滤液返回 氧化风
Qy1原烟气
冲洗水
制浆系统
1、烟气平衡

烟气的平衡与整个系统烟道的布置有很大的关系 , 由于钢烟道会有漏风现象的存在 , 从而伴随着一 定的温降。烟气中酸性物质的存在对系统会有腐 蚀,因此烟气温度的高低对于系统烟道的防腐设 计会有很大影响。如在原烟气侧,经GGH前,温 度较高 120 ℃以上,所以不设防腐设计,而在进 塔烟气管道中由于 SO2 浓度高,温度低;塔出口 烟道中由于温度在系统中最低,水蒸气含量很高, 还有液态水的存在,所以环境条件极恶劣,必须 加强防腐设计。还有烟气中的灰尘物的浓度的高 低,直接影响到烟道和系统设备的磨蚀和防堵的 设计,由于原烟气管路中烟气的粉尘含量大于净 烟气中的粉尘含量,考虑到磨损,其设计的原烟 气气体流速比净烟气的要低。
1、烟气平衡
Qy1 ’ Qy2’ GGH 3%Qy2’ 烟道漏风:Vy+(l+ )Vko(干) 理论空气量:VKO 0.0889(Car 0.375Sar ) 0.256Har 0.0333Oar 式中:Vy-原烟气Nm3/kg; 漏风系数:对于钢烟道, 取0.01/10 米。 VKO 理论空气量Nm3/kg; Car煤所含基碳; Sar煤所含基硫; Har煤所含基氢;Oar煤所含基氧 Qy2 1%Qy1 Qy1

《脱硫物料平衡计算》课件

《脱硫物料平衡计算》课件
目的
通过脱硫物料平衡计算,可以了解脱硫系统的运行状况,优化工艺参数,提高 脱硫效率,降低能耗和物耗,为企业的可持续发展提供支持。
计算方法与步骤
方法
常用的脱硫物料平衡计算方法有质量平衡法、元素平衡法等 。其中,质量平衡法是最常用的一种,通过测量各物料的输 入和输出量,以及系统内部的转化和消耗量,来计算各物料 的平衡状态。
计算参数的确定
计算参数包括原料和产品的成分、反 应温度、压力、反应时间和投料比等 ,这些参数的准确性对计算结果有重 要影响。
需要通过实验测定或工业数据来确定 这些参数,以确保计算的准确性。
计算过程与步骤
计算过程包括收集数据、建立数学模型、设定初始条件和边界条件、进行数值计算 和结果分析等步骤。
需要使用计算机软件进行数值计算,并根据实际需求选择合适的计算方法和数学模 型。
案例二:某化工厂脱硫系统物料平衡计算
总结词
高腐蚀性、高毒性、安全风险
详细描述
该化工厂脱硫系统涉及的物料具有高腐蚀性和高毒性,给计算过程带来了很大的挑战。为了确保安全 ,计算过程中特别考虑了各物料的化学性质和相互反应,以及其对设备和管道的腐蚀作用。同时,对 涉及有毒物料的操作进行了严格的安全风险评估。
生物降解
利用微生物的降解作用将 硫化物转化为无害物质。
脱硫剂的选择与使用
01
02
03
04
氧化锌法
利用氧化锌与硫化物反应生成 锌盐和二氧化硫,达到脱硫目
的。
醇胺法
利用醇胺溶液吸收硫化物,通 过再生释放出硫化氢,达到循
环使用的目的。
活性炭法
利用活性炭的吸附作用将硫化 物吸附在活性炭表面,达到脱
硫目的。
生物脱硫
利用微生物的降解作用将硫化 物转化为无害物质,具有成本

湿法脱硫系统物料平衡计算

湿法脱硫系统物料平衡计算

1湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114℃烟气中SO2浓度:3600mg/Nm3烟气组成:石灰石浓度:96.05%二、平衡计算(1)原烟气组成计算(2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。

温度为70℃。

2、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。

取O/S=4需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。

其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。

氧化空气进口温度为20℃,进塔温度为80℃。

3、②→③(GGH出口→脱硫塔出口):烟气蒸发水量计算:1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。

由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp =0.2520 kcal/kg.℃。

(40℃)Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)=0.2430kcal/kg.℃。

脱硫物料平衡计算学习资料共35页文档

脱硫物料平衡计算学习资料共35页文档

46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
பைடு நூலகம்
脱硫物料平衡计算学习资料
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。

脱硫物料平衡计算

脱硫物料平衡计算

脱硫物料平衡计算一、项目概况二、项目设计条件2.1 FGD装置条件1)规模 75t/h2)燃料煤3)脱硫工艺石灰石-石膏湿法4)吸收剂石灰石5)副产品石膏6)脱水系统真空皮带脱水机7)再加热方式: 无8)烟气量 112000Nm3/h(湿基)×2(100%BMCR)9)FGD入口温度 135℃(设计),141℃(最大)10)FGD入口SO2浓度 40001m3(干基)11)FGD入口粉尘浓度≤200mg/Nm3(干基,6%O2)12)FGD出口温度(进烟囱)≥50℃13)除雾器出口含水量≤75mg/ Nm3(干基)14)吸收剂耗量≤7.8t/h15)工艺水消耗量≤8.6t/h16)副产品石膏含水量≤15%17)电力消耗≤12700kWh/h18)脱硫效率≥92%19)系统可用率≥95%5.1.2 设计条件1)煤质分析项目单位设计煤种校核煤种元素分析Car %59.95 65.71Har % 2.25 2.36Oar %0.57 0.9Nar %0.94 0.74Sar % 2.29 2.29工业分析Var %9.0 7.0Aar %27.03 20.0Mar %7.0 8.0Mad % 2.17 1.67低位发热量kj/kg 21465 24668100%BMCR燃煤消耗量t/h(每台134.89 134.89炉)2)烟气设计条件项目单位100%BMCR 35%BMCR FGD入口烟气流量Nm3/h(湿基) 1256682 517256 FGD入口烟气流量Nm3/h(干基) 1193075 492172 FGD入口烟气温度℃131 103FGD入口烟气压力Pa 0 0粉尘浓度mg/Nm3 180.5 164.6SO2浓度ppm(dry) 1761 1652Nm3/h 2101 813烟气含水量V ol%(dry) 5.06 4.85烟气含氧量V ol%(dry) 7.46 8.29CO2 V ol%(dry) 12.29 11.53N2 V ol%(dry) 80.07 80.01HCL ppm(dry) 25.2 23.0HF ppm(dry) 11.2 10.2资料确认注意事项:1)由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基\湿基,标态\实际态,6%O2\实际O2等),开始计算前一定要核算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。

脱硫物料平衡水平衡计算

脱硫物料平衡水平衡计算

石膏结晶水计算
CaSO4· 2O中结晶水量为: 2H G1= [ηMSO2×172.17×69.01÷(69.01+1)]÷172.17×2×18.02kg/h
CaSO3· 2O结晶水量为: 1/2H G2=[ηMSO2×129.15×1÷(69.01+1)]÷129.15×0.5×18.02kg/h
质量流量kg/h
ηMSO2×172.17×69.01÷(69.01+1) ηMSO2×129.15×1÷(69.01+1) ηMSO2×100.09×(Ca/S-1)
W%
CaCO3
杂质
飞灰 合计
ηMSO2×100.09× Ca/S (1-A)
FGD入口灰量×75%
G固体
100
石膏处理系统固平衡
吸 收 塔
之一,它在相当程度上决定着水平衡。热平 衡中的蒸发水是系统的主要水耗。
由于烟气中含有腐蚀性的酸性气体和水蒸
气的存在,烟气温度的高低,对于系统烟道 的防腐有着直接的影响,它决定了防腐材料 及措施的选择。而烟气温度的高低与吸收塔 的热平衡有很大的关系。
系统热平衡示意图
净 烟 气热 (处理后的烟气) 散 热
净 烟 气带走水 (气、液态)
石膏结晶水
工艺补充水
FGD SYSTEM
石膏带走水
废水
制浆
石膏浆液 系统滤液
塔进口原烟气带水 (气态)
G烟气入口带入水+G工艺补充水+G返塔水量=G烟气出口带出 水+G废水+G脱硫产物最终带出结晶水+G石膏浆液中返回液水

要求的工艺补充水量:公式1
Gw=Y+M zf G石膏结晶水 +G石膏带出水 +G烟气带走水

脱硫物料平衡计算PPT课件

脱硫物料平衡计算PPT课件

05
结论与展望
本讲义的主要内容总结
主要内容
本讲义介绍了脱硫物料平衡计算的基本原理、计算方法和实际应用案例。通过学习,学员 可以掌握如何进行脱硫物料平衡计算,并能够在实际工作中运用所学知识解决相关问题。
重点与难点
重点在于理解脱硫物料平衡计算的基本概念和计算方法,难点在于如何结合实际应用情况 ,灵活运用所学知识解决实际问题。
中,提高计算的智能化水平。
跨学科合作
脱硫物料平衡计算涉及到多个学 科领域,如化学工程、环境工程 等。未来研究可以加强跨学科合 作,综合各学科的优势,推动脱
硫技术的发展。
对实际应用的建议
01
应用场景
脱硫物料平衡计算在火力发电、钢铁、化工等领域有广泛应用。建议企
业在实际生产中重视脱硫技术的应用,加强物料平衡管理,降低污染物
脱硫物料平衡计 算ppt课件
目录
• 引言 • 脱硫物料平衡计算基础知识 • 脱硫物料平衡计算方法 • 实际应用案例分析 • 结论与展望
01
引言
主题简介
• 脱硫物料平衡计算:介绍脱硫物料平衡计算的概念、原理 及其在环境保护和能源利用领域的重要性。
目的和意义
提高环保意识
阐述脱硫物料平衡计算的意义, 强调环境保护和可持续发展的重 要性,提高人们的环保意识。
学习建议
建议学员在掌握基本概念和计算方法的基础上,多做实际案例分析,加深对知识的理解和 运用。
对未来研究的展望
研究方向
随着环保要求的不断提高,脱硫 技术的研究和应用将更加广泛。 未来研究可以进一步探讨脱硫物 料平衡计算的优化方法,提高计
算的准确性和效率。
技术发展
随着新技术的不断涌现,未来可 以考虑将人工智能、大数据等先 进技术应用于脱硫物料平衡计算

石灰石石膏湿法脱硫物料衡算(简单步骤)

石灰石石膏湿法脱硫物料衡算(简单步骤)

石灰石石膏‎湿法脱硫物‎料衡算首先,根据所给的‎烟气成分,计算烟气的‎分子量,烟气的湿度‎等。

其次,要先行计算‎出吸收塔的‎进口及出口‎烟气的状况‎。

1 假定吸收塔‎出口的温度‎T1(如果有GG‎H,则需要先行‎假定两个温‎度,即吸收塔进‎口T0及出‎口温度。

)2 利用假定的‎出口温度,查表可以知‎道对应改温‎度的饱和蒸‎汽压Pas‎。

3 由H as=0.622Pa‎s/(P-Pas)可以求出改‎温度下的饱‎和水湿度4 由已知的进‎口温度T0‎、r0、C H(C H= 1.01+1.88H0)、H0,可以求出T as=T0-(r0*(H as-H0)/(1.01+1.88 H0))(H0:初始烟气的‎湿度,r0=2490)5 如果Tas‎接近于T1,那么这个假‎定温度可以‎接受,若果与假定‎温度相距太‎远,则该温度不‎能接受,需要重新假‎定。

(上述为使用‎试差法的绝‎热饱和计算‎过程,对于技术上‎涉外的项目‎,一般外方公‎司会提供,上面一部分‎的计算软件‎无须人工手‎算的)6 有GGH时‎,假定吸收塔‎出口温度经‎已确定后,判断该温升‎是否符合G‎G H 出口与‎入口的烟温‎差,假如烟温差‎同样适合的‎话,再校验GG‎H的释放热‎量问题。

再次,在确定好吸‎收塔出口气‎体的流量后‎,利用除雾器‎的最大流速‎限值,计算出吸收‎塔的直径。

再根据进口‎烟气限速,计算出烟气‎进口的截面‎积。

7 由提供的液‎气比L/G可以计算‎出,喷淋所需的‎吸收液流量‎。

由这个吸收‎液流量,再按照经验‎停留时间,可以计算出‎循环水箱的‎容积。

同样根据经‎验需要的氧‎化时间及设‎计的氧气上‎升速度,可以计算出‎循环水箱的‎液位高度。

那么就可以‎计算出整个‎吸收塔基循‎环水箱的截‎面积。

8 计算消耗的‎石灰石用量‎由入口的二‎氧化硫浓度‎以及设计的‎二氧化硫脱‎除率可以知‎道脱除的二‎氧化硫。

对于烟气的‎三氧化硫而‎言,其脱除率达‎100%,所以多氧化‎硫物质的脱‎除量可以计‎算出来。

脱硫计算公式比较全

脱硫计算公式比较全

湿法脱硫系统物料平衡计算基础数据(1)待处理烟气烟气量:1234496Nm3/h (wet)、1176998 Nm3/h (dry )烟气温度:114℃3烟气中SO2浓度:3600mg/Nm3 烟气组成:组分分子量Vol% mg/Nm3SO2 64.06 0.113 3600(6%O2)O2 32 7.56(dry)H2O 18.02 4.66CO2 44.0112.28(dry )N2 28.0280.01(dry )飞灰200石灰石浓度:96.05%1)原烟气组成计算组分Vol%(wet) mg/Nm3kg/h Kmol/hSO2 0.1083226(7.56%O2)3797 59.33O2 7.208 127116 3972.38 H2O 4.66 46214 2564.59 CO2 11.708 283909 6452.48 N2 76.283 1177145 42042.89 飞灰200(dry )235合计1638416 55091.67平均分子量(0.108 ×64.06+7.208 ×32+4.66×18.02+11.708×44.01+76.283 ×28.02 )/100=29.74平衡计算2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h ×(1-0.5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。

温度为70℃。

2、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h ,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h 。

取O/S=4需空气量=56.43 ×4/2/0.21=537.14kmol/h ×28.86 (空气分子量)=15499.60kg/h ,约12000Nm3/h 。

石灰石石膏湿法脱硫物料衡算(简单步骤)

石灰石石膏湿法脱硫物料衡算(简单步骤)

石灰石石膏湿法脱硫物料衡算首先,根据所给的烟气成分,计算烟气的分子量,烟气的湿度等。

其次,要先行计算出吸收塔的进口及出口烟气的状况。

1 假定吸收塔出口的温度T1(如果有GGH,则需要先行假定两个温度,即吸收塔进口T0及出口温度。

)2 利用假定的出口温度,查表可以知道对应改温度的饱和蒸汽压P as。

3 由H as=0.622P as/(P-Pas)可以求出改温度下的饱和水湿度4 由已知的进口温度T0、r0、C H(C H= 1.01+1.88H0)、H0,可以求出T as=T0-(r0*(H as-H0)/(1.01+1.88 H0))(H0:初始烟气的湿度,r0=2490)5 如果T as接近于T1,那么这个假定温度可以接受,若果与假定温度相距太远,则该温度不能接受,需要重新假定。

(上述为使用试差法的绝热饱和计算过程,对于技术上涉外的项目,一般外方公司会提供,上面一部分的计算软件无须人工手算的)6 有GGH时,假定吸收塔出口温度经已确定后,判断该温升是否符合GGH 出口与入口的烟温差,假如烟温差同样适合的话,再校验GGH的释放热量问题。

再次,在确定好吸收塔出口气体的流量后,利用除雾器的最大流速限值,计算出吸收塔的直径。

再根据进口烟气限速,计算出烟气进口的截面积。

7 由提供的液气比L/G可以计算出,喷淋所需的吸收液流量。

由这个吸收液流量,再按照经验停留时间,可以计算出循环水箱的容积。

同样根据经验需要的氧化时间及设计的氧气上升速度,可以计算出循环水箱的液位高度。

那么就可以计算出整个吸收塔基循环水箱的截面积。

8 计算消耗的石灰石用量由入口的二氧化硫浓度以及设计的二氧化硫脱除率可以知道脱除的二氧化硫。

对于烟气的三氧化硫而言,其脱除率达100%,所以多氧化硫物质的脱除量可以计算出来。

同样对于氯化氢、氟化氢而言,它们的脱除率一般在95%以上,因此可以计算到这两者的脱除量。

8.1 石灰石的计算消耗量石灰石的消耗量按照钙硫比及脱除氯/氟化物的消耗比可以计算出石灰石的实际消耗量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1MMMMM3M MMM湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114℃烟气中SO2浓度:3600mg/Nm3烟气组成:组分分子量Vol% mg/Nm3SO264.06 0.113 3600(6%O2)O232 7.56(dry)H2O 18.02 4.66CO244.01 12.28(dry)N228.02 80.01(dry)飞灰200 石灰石浓度:96.05%二、平衡计算(1)原烟气组成计算组分Vol%(wet) mg/Nm3kg/h Kmol/hSO20.1083226(7.56%O2)3797 59.33O27.208 127116 3972.38 H2O 4.66 46214 2564.59 CO211.708 283909 6452.48 N276.283 1177145 42042.89 飞灰200(dry)235合计1638416 55091.67平均分子量(0.108×64.06+7.208×32+4.66×18.02+11.708×44.01+76.283×28.02)/100=29.74平均密度 1.327kg/m3(2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。

温度为70℃。

组分Vol%(wet) mg/Nm3kg/h Kmol/hSO20.1083226(7.56%O2)3778 59.03O27.208 126480 3952.52H2O 4.66 45983 2551.78CO211.708 282489 6420.22N276.283 1171259 41832.68飞灰200 234合计1630224 54816.212、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。

取O/S=4需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。

其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。

氧化空气进口温度为20℃,进塔温度为80℃。

3、②→③(GGH出口→脱硫塔出口):烟气蒸发水量计算:1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。

由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp (40℃)=0.2520 kcal/kg.℃。

Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)=0.2430kcal/kg.℃。

Cp空气=(0.2452+0.2430)/2=0.2441 kcal/kg.℃Cp水(20~40℃)=1.0kcal/kg.℃r水(20)=586kcal/kgr水(40)=575kcal/kg(70-40)×1630224+0.2441×15491.12×(80-40)]/[1.0×烟气蒸发水量=[0.2528×(40-20)+(586+575)/2]=20841kg/h=1156.55kmol/h水蒸汽含量=(2551.78+1156.55)/(54816.21+1156.55)=6.63%40℃水蒸汽饱和蒸汽压=0.00737MPa。

烟气总压102000Pa。

40℃烟气饱和水蒸汽含量=0.00737/0.102=7.23%根据以上计算,假设温度下烟气蒸发水量及原烟气含水量之和小于40℃烟气饱和水蒸汽含量。

因此,实际出口温度小于40℃。

2)假设出口温度为35℃烟气蒸发水量=[0.2528×(70-35)×1630224+0.2441×15491.12×(80-35)]/[1.0×(40-20)+(586+575)/2]=24296.6kg/h=1348.31kmol/h水蒸汽含量=(2551.78+1348.31)/(54816.21+1348.31)=6.94%35℃水蒸汽饱和蒸汽压=0.00562MPa。

35℃烟气饱和水蒸汽含量=0.00562/0.102=5.51%根据以上计算,假设温度下烟气蒸发水量及原烟气含水量之和大于35℃烟气饱和水蒸汽含量。

因此,实际出口温度大于35℃,取38.5℃,则烟气蒸发水量为18.02=21873kg/h,其水蒸汽含量=(2551.78+1213.82)/ 1213.82kmol/h×(54816.21+1213.82)=6.72%38.5℃水蒸汽饱和蒸汽压=0.00684MPa。

38.5℃烟气饱和水蒸汽含量=0.00684/0.102=6.71%根据上述计算结果可知,脱硫塔出口温度为38.5℃。

3)反应产生的二氧化碳量G CO2= 44.01×56.43kmol/h=2483.48kg/h4)烟气中夹带水量按烟气总质量的0.005计,夹带量=1630224kg/h ×0.005=8151.12kg/h 5)脱硫塔出口烟气组分组分Vol%(wet) kg/h Kmol/hSO20.004 163 2.54O27.088 126480+3609.58×3/4=129187 4037.10H2O 7.405 45983+21873+8151.12=76007 4217.93CO211.638 282489+2483.48=284972 6475.18N274.134 1171259+11890.02=1183149 42225.16 飞灰234×(1-75%)=58.5合计1673374 56957.91 总烟气量1275857Nm3/h4、③→④(脱硫塔出口→GGH出口):在此过程中新增了原烟气泄漏的0.5%烟气。

组分Vol%(wet) kg/h Kmol/hSO20.005 163+3797×0.5%=182 2.84O27.088 129187+127116×0.5%=129823 4056.96 H2O 7.392 76007+46214×0.5%=76238 4230.75 CO211.370 284972+283909×0.5%=286392 6507.42N274.144 1183149+1177145×0.5%=1189035 42435.22 飞灰58.5+235×0.5%=59.7合计1681730 57233.19 总烟气量12820235、④→⑤(GGH出口→烟囱进口):这一过程烟气量及性质基本不变。

(3)脱硫液及石膏的平衡CaSO4.2H2O分子量为:172.17CaSO3.1/2H2O分子量为:129.15CaCO3分子量为:100.091、脱硫剂的需求量1)烟气中SO2脱除量=56.43kmol/h2)需纯的石灰石量=56.43 kmol/h3)考虑到溶液循环过程中的损失,需加入的石灰石量为=(1+2%)×56.43 kmol/h=57.56kmol/h4)需96.05%的石灰石=57.56×100.09/0.9605=5997.96kg/h其中:CaCO3量=5997.96×0.9605=5761.04kg/h其中:杂质量=5997.96×0.0395=236.92kg/h5)如使用工业水制备30%含固量浆液需水量:0.7=13995.24kg/h5997.96kg/h/0.3×6)如使用 2.6%含固量的脱硫反应塔塔底浆液旋流分离液制备30%含固量浆液需水量为:设2.6%含固量旋流分离液的固体物量为X kg/h,以水平衡可列下式:X/2.6%×(1-2.6%)=(X+5997.96)/30%×(1-30%)X=398.40kg/h水量=398.40/2.6%×(1-2.6%)=14924.68kg/h需2.6%的塔底浆液旋流分离液=398.40+14924.68=15323.08kg/h30%浆液量=14924.68/(1-30%)=21320.97kg/h2、脱硫塔底固体量假设干脱硫产物中CaSO4.2H2O与CaSO3.1/2H2O质量比为0.92:0.01。

其摩尔比为:(0.92/172.17):(0.01/129.15)=69.01:11)CaSO4.2H2O生成量=56.43 ×172.17×69.01×(69.01+1)=9576.78kg/h2)CaSO3.1/2H2O生成量=56.43 ×129.15×1×(69.01+1)=104.10kg/h100.09=112.96kg/h 3)产物中未反应的CaCO3量=5761.04-56.43 ×4)杂质量=236.92kg/h5)脱除下来的飞灰量=234 ×75%=175.50kg/h脱硫塔底固体量=G CaSO4.2H2O +G CaSO3.1/2H2O +G CaCO3+G杂质+G 飞灰=9576.78+104.10+112.96+236.92+175.50=10206.26kg/h 组分质量流量kg/h W% CaSO 4.2H 2O9576.78 93.83 CaSO 3.1/2H 2O104.10 1.02 CaCO 3112.96 1.11 杂质236.92 2.32 飞灰175.50 1.72 合计10206.261003、反应产物中结晶水量1)CaSO 4.2H 2O 中结晶水量=9576.78/172.172×18.02=2004.69kg/h 2)CaSO 3.1/2H 2O 中结晶水量=104.10/129.15×1/2×18.02=7.26kg/h 反应产物中结晶水量为2004.69 + 7.26 = 2011.95kg/h4、除雾器冲洗水冲洗水喷淋密度??(一小时冲洗一次,每次5分钟)除雾器冲洗水=5、脱硫反应后塔底最终排出量物料平衡以不补充新鲜水为条件。

相关文档
最新文档