四种命题、四种命题间的相互关系

合集下载

高考数学考点突破——集合与常用逻辑用语:命题及其关系、充分条件与必要条件

高考数学考点突破——集合与常用逻辑用语:命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件【考点梳理】1.命题 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系 ①两个命题互为逆否命题,它们有相同的真假性; ②两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件.(2)如果p ⇔q ,那么p 与q 互为充要条件.(3)如果p q ,且q p ,则p 是q 的既不充分也不必要条件.4.集合与充要条件设集合A ={x |x 满足条件p },B ={x |x 满足条件q },则有:(1)若A ⊆B ,则p 是q 的充分条件,若A ⊂≠B ,则p 是q 的充分不必要条件.(2)若B ⊆A ,则p 是q 的必要条件,若B ⊂≠A ,则p 是q 的必要不充分条件.(3)若A =B ,则p 是q 的充要条件.【考点突破】考点一、四种命题的关系及其真假判断【例1】(1) 命题“若4πα=,则tan 1α=”的逆否命题是( ) A.若4πα≠,则tan 1α≠ B.若4πα=,则tan 1α≠C.若tan 1α≠,则4πα≠ D.若tan 1α≠,则4πα=(2) 给出下列命题:①“∃x 0∈R ,x 20-x 0+1≤0”的否定;②“若x 2+x -6≥0,则x >2”的否命题;③命题“若x 2-5x +6=0,则x =2”的逆否命题.其中真命题的个数是( )A.0B.1C.2D.3 [答案] (1)C (2)C[解析] (1)命题“若p ,则q ”的逆否命题是“若⌝q ,则⌝p ”,显然⌝q :tan 1α≠,⌝p :4πα≠,所以该命题的逆否命题是“若tan 1α≠,则4πα≠”. (2) ①的否定是“∀x ∈R ,x 2-x +1>0”是真命题,①正确;②的否命题是“若x 2+x -6<0,则x ≤2”,由x 2+x -6<0,得-3<x <2,∴x ≤2成立,②正确;③由x 2-5x +6=0,得x =2或x =3,原命题是假命题,因此可知逆否命题为假命题,③错误.综上可知,真命题是①,②.【类题通法】1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p ,则q ”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断命题真假的2种方法(1)直接判断:判断一个命题是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(2)间接判断(等价转化):由于原命题与其逆否命题为等价命题,如果原命题的真假不易直接判断,那么可以利用这种等价性间接地判断命题的真假.【对点训练】1. 命题“若a >b ,则a +c >b +c ”的否命题是( )A.若a ≤b ,则a +c ≤b +cB.若a +c ≤b +c ,则a ≤bC.若a +c >b +c ,则a >bD.若a >b ,则a +c ≤b +c[答案] A[解析] 将条件、结论都否定.命题“若a >b ,则a +c >b +c ”的否命题是“若a ≤b ,则a +c ≤b +c ”.2. 原命题:设a ,b ,c ∈R ,若“a >b ”,则“ac 2>bc 2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个D.4个[答案] C[解析] 原命题:若c =0,则不成立,由等价命题同真同假知其逆否命题也为假;逆命题为设a ,b ,c ∈R ,若“ac 2>bc 2”,则“a >b ”.由ac 2>bc 2知c 2>0,∴由不等式的基本性质得a >b ,∴逆命题为真,由等价命题同真同假知否命题也为真,∴真命题共有2个.考点二、充分条件与必要条件的判断【例2】(1) 已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥-1,ln (-x ),x <-1,则“x =0”是“f (x )=1”的( ) A.充要条件 B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 (2) 设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [答案] (1)B (2)B[解析] (1)若x =0,则f (0)=e 0=1;若f (x )=1,则e x=1或ln(-x )=1,解得x =0或x =-e.故“x =0”是“f (x )=1”的充分不必要条件.(2)由2-x ≥0,得x ≤2,由|x -1|≤1,得0≤x ≤2.∵0≤x ≤2⇒x ≤2,x ≤2⇒0≤x ≤2,故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件.【类题通法】充分条件、必要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.【对点训练】1.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 因为由“a =3”可以推出“A ⊆B ”,反过来,由A ⊆B 可以得到“a =3或a =2”,不一定推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件.2.已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 [答案] B[解析] 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.考点三、充分条件、必要条件的应用【例3】已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.[解析] 由x 2-8x -20≤0得-2≤x ≤10,∴P ={x |-2≤x ≤10}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P ,∴⎩⎪⎨⎪⎧ 1-m ≥-2,1+m ≤10,1-m ≤1+m ,∴0≤m ≤3.综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.【变式1】本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解析] 由例题知P ={x |-2≤x ≤10}.若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.【变式2】本例条件不变,若⌝P 是⌝S 的必要不充分条件,求实数m 的取值范围.[解析] 由例题知P ={x |-2≤x ≤10}.∵⌝P 是⌝S 的必要不充分条件,∴P 是S 的充分不必要条件,∴P ⇒S 且S ⇒/ P .∴[-2,10]⊂≠[1-m ,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10, ∴m ≥9,则m 的取值范围是[9,+∞).【类题通法】充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)要注意区间端点值的检验.【对点训练】已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且⌝p 是⌝q 的必要不充分条件,则实数m 的取值范围是________.[答案] [9,+∞)[解析] 法一:由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10,∴⌝p 对应的集合为{x |x >10或x <-2},设A ={x |x >10或x <-2}.由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0),∴⌝q 对应的集合为{x |x >1+m 或x <1-m ,m >0},设B ={x |x >1+m 或x <1-m ,m >0}.∵⌝p 是⌝q 的必要不充分条件, ∴B ⊂≠A ,∴⎩⎪⎨⎪⎧ m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧ m >0,1-m ≤-2,1+m >10,解得m ≥9,∴实数m 的取值范围为[9,+∞).法二:∵⌝p 是⌝q 的必要不充分条件,∴q 是p 的必要不充分条件.即p 是q 的充分不必要条件,由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0). ∴q 对应的集合为{x |1-m ≤x ≤1+m ,m >0}, 设M ={x |1-m ≤x ≤1+m ,m >0},又由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10,∴p 对应的集合为{x |-2≤x ≤10},设N ={x |-2≤x ≤10}.由p 是q 的充分不必要条件知,N ⊂≠M ,∴⎩⎪⎨⎪⎧ m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,解得m ≥9. ∴实数m 的取值范围为[9,+∞).。

命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件1.命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件p ⇒q 且q ppq 且q ⇒p p ⇔qpq 且qp1.下列命题是真命题的为( ) A .若1x =1y ,则x =y B .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2解析:选A 由1x =1y 易得x =y ;由x 2=1,得x =±1;若x =y <0,则x 与y 均无意义; 若x =-2,y =1,虽然x <y ,但x 2>y 2. 所以真命题为A.2.已知集合A ={1,m 2+1},B ={2,4},则“m =3”是“A ∩B ={4}”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A A ∩B ={4}⇒m 2+1=4⇒m =±3,故“m =3”是“A ∩B ={4}”的充分不必要条件.3.已知命题:若m >0,则方程x 2+x -m =0有实数根.则其逆否命题为________________________________________________________________________.答案:若方程x 2+x -m =0无实根,则m ≤01.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.[小题纠偏]1.设x ∈R ,则“x >1”是“x 3>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C ∵x >1,∴x 3>1,又x 3-1>0,即(x -1)(x 2+x +1)>0,解得x >1,∴“x >1”是“x 3>1”的充要条件.2.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________.解析:原命题的条件:在△ABC 中,∠C =90°, 结论:∠A ,∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”. 答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角考点一 命题及其相互关系(基础送分型考点——自主练透)[题组练透]1.命题“若a2>b2,则a>b”的否命题是()A.若a2>b2,则a≤b B.若a2≤b2,则a≤bC.若a≤b,则a2>b2D.若a≤b,则a2≤b2解析:选B根据命题的四种形式可知,命题“若p,则q”的否命题是“若綈p,则綈q”.该题中,p为a2>b2,q为a>b,故綈p为a2≤b2,綈q为a≤b.所以原命题的否命题为:若a2≤b2,则a≤b.2.命题“若x2+3x-4=0,则x=-4”的逆否命题及其真假性为()A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故原命题为假命题,即逆否命题为假命题.3.(易错题)给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中真命题是________.(写出所有真命题的序号)解析:①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.答案:①③[谨记通法]1.写一个命题的其他三种命题时的2个注意点(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.如“题组练透”第3题②易忽视.2.命题真假的2种判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.考点二充分必要条件的判定(重点保分型考点——师生共研)[典例引领]1.设a,b是非零向量,“a·b=|a||b|”是“a∥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A a·b=|a||b|cos〈a,b〉.而当a∥b时,〈a,b〉还可能是π,此时a·b=-|a||b|,故“a·b=|a||b|”是“a∥b”的充分而不必要条件.2.设x∈R,则“|x-2|<1”是“x2+x-2>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A|x-2|<1⇔1<x<3,x2+x-2>0⇔x>1或x<-2.由于{x|1<x<3}是{x|x>1或x<-2}的真子集,所以“|x-2|<1”是“x2+x-2>0”的充分而不必要条件.3.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为p:x+y≠-2,q:x≠-1,或y≠-1,所以綈p:x+y=-2,綈q:x=-1,且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.[由题悟法]充要条件的3种判断方法(1)定义法:根据p⇒q,q⇒p进行判断;(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.[即时应用]1.若p:|x|=x,q:x2+x≥0.则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A设p:{x||x|=x}={x|x≥0}=A,q:{x|x2+x≥0}={x|x≥0或x≤-1}=B,∵A B,∴p是q的充分不必要条件.2.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A当四边形ABCD为菱形时,必有对角线互相垂直,即AC⊥BD;当四边形ABCD中AC⊥BD时,四边形ABCD不一定是菱形,还需要AC与BD互相平分.综上知,“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.考点三充分必要条件的应用………………………(题点多变型考点——纵引横联) [典型母题]已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S 的必要条件,求m的取值范围.[解]由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10},由x∈P是x∈S的必要条件,知S⊆P.则{1-m≤1+m,1-m≥-2,1+m≤10,∴0≤m≤3.所以当0≤m≤3时,x∈P是x∈S的必要条件,即所求m的取值范围是[0,3].[类题通法]根据充要条件求参数的值或取值范围的关键:先合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.[越变越明][变式1] 母题条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.[变式2] 母题条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围. 解:由母题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).本题运用等价法求解,也可先求綈P ,綈S ,再利用集合法列出不等式,求出m 的范围.的必要不充分条件,求m 的取值范围.解:记P ={x |(x -m )2>3(x -m )}={x |(x -m )(x -m -3)>0}={x |x <m 或x >m +3},S ={x |x 2+3x -4<0}={x |(x +4)(x -1)<0}={x |-4<x <1},p 是s 成立的必要不充分条件,即等价于SP .所以m +3≤-4或m ≥1,解得m ≤-7或m ≥1. 即m 的取值范围为(-∞,-7]∪[1,+∞).一抓基础,多练小题做到眼疾手快 1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件[破译玄机]解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.2.命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4解析:选C 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.3.原命题p :“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C 当c =0时,ac 2=bc 2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a ,b ,c ∈R ,若ac 2>bc 2,则a >b ”,它是正确的;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.4.已知p :|x |<2;q :x 2-x -2<0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由x 2-x -2<0,得(x -2)(x +1)<0,解得-1<x <2;由|x |<2得-2<x <2.注意到由-2<x <2不能得知-1<x <2,即由p 不能得知q ;反过来,由-1<x <2可知-2<x <2,即由q 可得知p .因此,p 是q 的必要不充分条件.5.已知集合A ,B ,全集U ,给出下列四个命题: ①若A ⊆B ,则A ∪B =B ; ②若A ∪B =B ,则A ∩B =B ; ③若a ∈(A ∩∁U B ),则a ∈A ; ④若a ∈∁U (A ∩B ),则a ∈(A ∪B ) 其中真命题的个数为( ) A .1B .2C.3D.4解析:选B①正确;②不正确,由A∪B=B可得A⊆B,所以A∩B=A;③正确;④不正确.二保高考,全练题型做到高考达标1.已知复数z=a+3ii(a∈R,i为虚数单位),则“a>0”是“z在复平面内对应的点位于第四象限”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C z=a+3ii=-(a+3i)i=3-a i,若z位于第四象限,则a>0,反之也成立,所以“a>0”是“z在复平面内对应的点位于第四象限”的充要条件.2.命题“a,b∈R,若a2+b2=0,则a=b=0”的逆否命题是()A.a,b∈R,若a≠b≠0,则a2+b2=0B.a,b∈R,若a=b≠0,则a2+b2≠0C.a,b∈R,若a≠0且b≠0,则a2+b2≠0D.a,b∈R,若a≠0或b≠0,则a2+b2≠0解析:选D a=b=0的否定为a≠0或b≠0;a2+b2=0的否定为a2+b2≠0.3.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A.于是“x≠y”是“cos x≠cos y”的必要不充分条件.4.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题是“若x2=1,则x≠1”B.“x=-1”是“x2-x-2=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题是真命题D.“tan x=1”是“x=π4”的充分不必要条件解析:选C由原命题与否命题的关系知,原命题的否命题是“若x2≠1,则x≠1”,即A不正确;因为x2-x-2=0,所以x=-1或x=2,所以由“x=-1”能推出“x2-x-2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即B 不正确;因为由x =y 能推得sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故C 正确;由x =π4能推得tan x =1,但由tan x =1推不出x=π4,所以“tan x =1”是“x =π4”的必要不充分条件,即D 不正确. 5.若条件p :|x |≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( )A .a ≥2B .a ≤2C .a ≥-2D .a ≤-2解析:选A 因为|x |≤2,则p :-2≤x ≤2,q :x ≤a ,由于p 是q 的充分不必要条件,则p 对应的集合是q 对应的集合的真子集,所以a ≥2.6.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:37.设等比数列{a n }的公比为q ,前n 项和为S n ,则“|q |=1”是“S 4=2S 2”的________条件.解析:∵等比数列{a n }的前n 项和为S n ,又S 4=2S 2, ∴a 1+a 2+a 3+a 4=2(a 1+a 2),∴a 3+a 4=a 1+a 2,∴q 2=1⇔|q |=1,∴“|q |=1”是“S 4=2S 2”的充要条件. 答案:充要8.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是[3,8).答案:[3,8)9.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________. 解析:α:x ≥a ,可看作集合A ={x |x ≥a }, ∵β:|x -1|<1,∴0<x <2, ∴β可看作集合B ={x |0<x <2}. 又∵α是β的必要不充分条件, ∴B A ,∴a ≤0. 答案:(-∞,0]10.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 三上台阶,自主选做志在冲刺名校 1.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”解析:选C C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”. 若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0,所以不是真命题.2.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x+a ,x ≤0有且只有一个零点的充分不必要条件是( ) A .a <0 B .0<a <12C.12<a <1 D .a ≤0或a >1解析:选A 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x+a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无交点.数形结合可得,a ≤0或a >1,即函数f (x )有且只有一个零点的充要条件是a ≤0或a >1,应排除D ;当0<a <12时,函数y =-2x +a (x ≤0)有一个零点,即函数f (x )有两个零点,应排除B ;同理,排除C.3.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U =⎩⎨⎧⎭⎬⎫m | m ≤-1或m ≥32. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0即⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0解得m ≥32.又集合⎩⎨⎧⎭⎬⎫m | m ≥32关于全集U 的补集是{m |m ≤-1},所以实数m 的取值范围是(-∞,-1].。

四种命题间的相互关系

四种命题间的相互关系
通过否定命题的结论而导出矛盾来达到肯定命题的结论
此处是命题的否定,要区别于否命题.
反证法的一般步骤: 反设 归谬 结论
(1)假设命题的结论不成立 , 即假设结论的反面成立; (2)从这个假设出发 , 经过推理论证 , 得出矛盾; (3)由矛盾判定假设不正确 , 从而肯定命题的结论正确
例2: 若a2能被2整除,a是整数,
练习2 证明:若p2 + q2 =2,则p + q ≤ 2.
证明:若p+q >2,则
p2+q2= 1 [(p -q)2+(p +q)2] 2
≥ 1(p +q)2> 1×22=2 1
2
2
2
所以p2 + q2≠2. 这表明,原命题的逆否命题为真命题,从而 原命题为真命题.
在数学的证明中,我们会常常用到一种方法 ——反证法.
6. 求证:若一个三角形的两条边不相等, 则这两条边所对的角也不相等.
证明:如果一个三角形的两边所对的角相等, 则这个三角形是等腰三角形, 且这两条边是等腰三角形的两条腰, 也就是说两条边相等. 这就证明了原命题的逆否命题是真命题 所以原命题也是真命题.
课堂小结
1. 四种命题的相互关系:
2. 四种命题的真假性:
求证:a也能被2整除.
证明:假设a不能被2整除,则a必为奇数, 故可令a=2m+1(m为整数), 由此得a2=(2m+1)2=4m2+4m+1=4m(m+1)+1, 此结果表明a2是奇数, 这与题中的已知条件(a2能被2整除)相矛盾 ∴a能被2整除.
练习
1. (2008山东文)给出命题:若函数是幂函数,
观察与分析
(1)若f(x)是正弦函数,则f(x)是周期函数;真 (2)若f(x)是周期函数,则f(x)是正弦函数;假 (3)若f(x)不是正弦函数,则f(x)不是周期函数;假 (4)若f(x)不是周期函数,则f(x)不是正弦函数. 真

四种命题及四种命题间的相互关系

四种命题及四种命题间的相互关系
互逆命题 或_________, 互否命题 其真假性没有关系. ②两个命题为_________
1.判一判(正确的打“√”,错误的打“×”) (1)两个互逆命题的真假性相同.( ) ) )
(2)若两个命题为互否命题,则它们的真假性肯定不相同.( (3)对于一个命题的四种命题,可以一个真命题也没有.( 【解析】(1)错误.两个互逆命题的真假性没有关系.
原命题:若a>b,则a+c>b+c真 逆命题:若a+c>b+c,则a>b真
题的真假没有关系。
原命题:若四边形是正方形,则四边形两对角线垂直。 真 逆命题:若四边形两对角线垂直,则四边形是正方形。假 原命题:若a>b,则ac2>bc2 假 逆命题:若ac2>bc2,则a>b 真
假 原命题:若四边形对角线相等,则四边形是平行四边形。 逆命题:若四边形是平行四边形,则四边形对角线相等。 假
一个命题的条件和结论,分别是另一个命题的结论
和条件,这两个命题就叫做互逆命题。其中一个叫做
原命题,则另一个叫做原命题的逆命题。
原命题:若p,则q
它的逆命题:若q,则p.
例如: 原命题: 若a>b,则a+c>b+c . 它的逆命题:若a+c>b+c,则a>b.
什么叫互否命题?
一个命题的条件和结论,分别是另一个命题的条件
“正难则反”的处理原则:在证明某一个命题的真假性有 困难时,可以证明它的逆否命题为真(假)命题,来间接地证 明原命题为真(假)命题.
【变式训练】证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若 f(a)+f(b)≥f(-a)+f(-b),则a+b≥0. 【解题指南】由于原命题不易证明,可转化为证明其逆否命题为真命题 . 【证明】原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函 数,a,b∈R,若a+b<0, 则f(a)+f(b)<f(-a)+f(-b)”.

(完整)四种命题、四种命题间的相互关系

(完整)四种命题、四种命题间的相互关系

四种命题四种命题间的相互关系1、四种命题的概念,写出某个命题的逆命题、否命题和逆否命题.2、四种命题之间的关系以及真假性之间的联系。

3、会用命题的等价性解决问题.【核心扫描】:1、结合命题真假的判定,考查四种命题的结构。

(重点)2、掌握四种命题之间的相互关系.(重点)3、等价命题的应用。

(难点)1、四种命题的概念(1)互逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题。

其中一个命题叫原命题,另一个叫做原命题的逆命题。

若原命题为“若p,则q”,则逆命题为“若q,则P”。

(2)互否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题。

也就是说,若原命题为“若p,则q”则否命题为“若非p,则非q".(3)互为逆否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题.也就是说,若原命题为“若p,则q",则逆否命题为若非q,则非p.任何一个命题的结构都包含条件和结论,通过条件和结论的不同变换都可以得到这个命题的逆命题、否命题和逆否命题,因而任何一个命题都有逆命题、否命题和逆否命题。

2、四种命题的相互关系3、四种命题的真假性(1)四种命题的真假性,有且仅有下面四种情况:(2)四种命题的真假性之间的关系:①两个命题互为逆否命题,它们有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.在四种命题中,真命题的个数可能会有几种情况?因为原命题与逆否命题,逆命题和否命题互为逆否命题,它们同真同假,所以真命题的个数可能为0,2,4.一般地,用p和q分别表示原命题的条件和结论,用非p和非q分别表示p与q的否定,则四种命题的形式可表示为:原命题:若P,则q;逆命题:若q,则p;否命题:若非P,则非q;逆否命题:若非q,则非 p.(1)关于四种命题也可叙述为:①交换命题的条件和结论,所得的新命题就是原命题的逆命题;②同时否定命题的条件和结论,所得的新命题就是原命题的否命题;③交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题.(2)已知原命题,写出它的其他三种命题:首先,将原命题写成“若p,则q”的形式,然后找出条件和结论,再根据定义写出其他命题.然后,对于含有大前提的命题,在改写时大前提不动。

四种命题间的相互关系 课件

四种命题间的相互关系  课件

它们之间的关系为:
互逆命题
互否命题
互为逆否命题
原命题与逆命题 原命题与否命题 原命题与逆否命题 否命题与逆否命题 逆命题与逆否命题 逆命题与否命题
2.对四种命题真假关系的两点说明 (1)由于一个命题与其逆否命题具有相同的真假性,四种命题中 有两对互为逆否命题,所以四种命题中真命题的个数必须是偶 数,即真命题可能有4个、2个或0个. (2)由于原命题与其逆否命题的真假性相同,所以原命题与其逆 否命题是等价命题,因此,当直接证明原命题困难时,可以转化为 证明与其等价的逆否命题,这种证法是间接证明命题的方法,也 是反证法的一种变通形式.
【拓展提升】原命题与逆否命题等价关系的应用 (1)若一个命题的条件或结论含有否定词时,直接判断命题的真 假较为困难,这时可以转化为判断它的逆否命题的真假. (2)当证明某一个命题有困难时,可以证明它的逆否命题为真 (假)命题,来间接地证明原命题为真(假)命题.
【互动探究】若题2(2)的命题变为: 若a>1,则方程x2+2ax+a2+a-1=0无实数根,如何判断此命题的 真假? 【解析】命题“若a>1,则方程x2+2ax+a2+a-1=0无实数根” 的逆否命题为“若方程x2+2ax+a2+a-1=0有实数根,则 a≤1”,由于Δ=(2a)2-4(a2+a-1)=4(1-a)≥0,得a≤1,故原命 题是真命题.
提示:(1)错误.两个互逆命题的真假性没有关系,可能一个真命 题也没有. (2)正确.原命题的逆命题与原命题的否命题互为逆否命题,真 假性相同,为等价命题. (3)正确.一个命题的四种命题中,可能都是假命题,如若0<x<1, 则x>1,此命题的四种命题均为假命题. 答案:(1)× (2)√ (3)√

高一数学简易逻辑知识点小结

高一数学简易逻辑知识点小结

简易逻辑知识点小结1.命题的四种形式与相互关系原命题:若P则q;逆命题:若q则p;否命题:若┑P则┑q;逆否命题:若┑q则┑p*原命题与逆否命题互为逆否命题,同真假;*逆命题与否命题互为逆否命题,同真假;2.命题的条件与结论间的属性:若qp⇒,则p是q 的充分条件,q是p的必要条件即“前者为后者的充分,后者为前者的必要”。

若qp⇔,则p 是q的充分必要条件,简称p是q的充要条件。

若qp⇒,且q p,那么称p是q的充分不必要条件。

若p q,且q⇒p,那么称p是q的必要不充分条件。

若p q,且q p,那么称p是q的既不充分又不必要条件。

3.逻辑联结词“或”、“且”、“非”这些词叫做逻辑联结词;简单命题:不含有逻辑联结词的命题;复合命题:由简单命题和逻辑联结词“或”、“且”、“非”构成的命题。

复合命题包括:p或q(记作p∨q);p且q(记作p∧q);非p(记作┑q)。

4.“或”、“且”、“非”的真值判断:•“非p”形式复合命题的真假与p的真假相反;•“p且q”(p∧q)形式复合命题当p与q同为真时为真,其他情况时为假;•“p或q”(p∨q)形式复合命题当p与q同为假时为假,其他情况时为真。

5.全称量词与存在量词全称量词:所有的,全部,都,任意一个,每一个等;记作存在量词:存在,至少有一个,有个,有些等;记作全称命题:含有全称量词的命题称为全称命题。

一般形式为:命题P:)x,∀。

全称命题的否命题:∈Mp(x∈∃:。

⌝,p⌝)x(xMP例:命题“所有能被2整除的整数都是偶数”的否定是”存在一个能被2整除的数都不是偶数”存在量词:含有存在量词的命题称为存在性命题。

充要条件

充要条件

(二)充要条件
1、定义1:如果已知p 定义2:如果已知q 定义3:如果既有p q,则说p是q的充分条件。 p,则说p是q的必要条件。 q,又有q p,就记作 p q,
则说p是q的充要条件。
2、从集合角度理解: ①p ②q ③p q,相当于P Q ,即 p,相当于Q P ,即 P Q 或 P、Q Q P 或 P、Q P、Q 有它就行 缺它不行 同一事物
q,又有q p,就记作 p q,
q是p的必要条件。 则说p是q的充要条件。
① 认清条件和结论。 ② 考察p
4、判别技巧:
q和q
p的真假。
① 可先简化命题。 ② 否定一个命题只要举出一个反例即可。 ③ 将命题转化为等价的逆否命题后再判断。
;
/ 引擎通 谷歌推广
q, q
q, q
p
p
(2) p (4) p
q, q q, q
p p
二.新课讲解
(1)若x=y,则x2=y2。(2)有两角相等的三角形是等腰三角形。 (3)ax2+ax+1>0的解集为R,则0<a<4。 (4)若a2>b2,则a>b。 6、在原命题中研究条件对结论的制约程度 在真命题(1)、(2)中,p足以导致q,也就是说条件 p充分了。 在假命题(3)、(4)中条件p不充分。 7、在逆命题中研究结论对条件的依赖程度 在真命题(2)(3)中,p是q成立所必须具备的前提。 在假命题(1)(4)中,p不是q成立所必须具备的前提。
例3、判断下列命题中前者是后者的什么条件?(在 “充分不必要条件、必要不充分条件、充要条件、既不 充分也不必要条件”中选出一种): (1)若x=y,则x2=y2。 (2)有两角相等的三角形是等腰三角形。 (3)ax2+ax+1>0的解集为R,则0<a<4。 (4)若a2>b2,则a>b。 q, q p 前者是后者的充分不必要条件。 答: (1) p (2) p (3) p (4) p q, q q, q q, q p 前者是后者的充要条件。 p 前者是后者的必要不充分条件。 p 前者是后者的既不充分也不必要条件。

四种命题间的相互关系课件PPT

四种命题间的相互关系课件PPT

2.与命题“已知点A,直线l0,l,A∈l0,若l0∥l,则l0唯一”为 互否命题的是( ) (A)已知点A,直线l0,l,A∈l0,若l0唯一,则l0∥l (B)已知点A,直线l0,l,A∈l0,若l0不唯一,则l0∥l (C)已知点A,直线l0,l,A∈l0,若l0不平行于l,则l0不唯一 (D)已知点A,直线l0,l,A∈l0,若l0∥l,则l0不唯一
【想一想】解题2用的什么方法?此种方法的思路是什么? 提示:用的方法是排除法,这种方法的思路是:首先将选择支 进行合理分类,再选择比较简单的一类作出判断,依此判断进 行排除.
互为逆否的命题同真同假的应用 【技法点拨】
命题真假判断的一种策略 当判断一个命题的真假比较困难,或者在判断真假时涉及到分 类讨论时,通常转化为判断它的逆否命题的真假,因为互为逆 否命题的真假是等价的,也就是我们讲的“正难则反”的一种 策略.
互 否
逆否命题 若﹁ q,则﹁p
2.四种命题的真假性 (1)两个命题为互逆命题或互否命题,它们的真假性的关系是: _没__有__关__系__. (2)①原命题与它的逆否命题真假性的关系是:有_相__同__的__真假 性; ②逆命题与否命题真假性的关系是:有_相__同__的__真假性. 综上,互为逆否命题具有相同的_真__假__性__.
1.在四种命题中,只有命题“若p,则q”和“若 p,则 q” 是互否命题吗? 提示:不是,如命题“若q,则p”和“若q,则 p”也是互 否命题.
2.互逆命题的真假性一定不等价吗? 提示:不一定,如命题“若一条直线垂直于一个平面内的任意一 条直线,则这条直线就垂直于这个平面”就和它的逆命题同真.
1.1.3 四种命题间的相互关系
1.认识四种命题间的相互关系及真假关系. 2.会利用命题真假的等价性解决简单问题.

四种命题 四种命题间的相互关系

四种命题 四种命题间的相互关系

否命题:若 m·n≥0,则方程 mx2-x+n=0 没有实数 根,假命题.
逆否命题:若方程 mx2-x+n=0 没有实数根,则 m·n ≥0,真命题.
(2)逆命题:若一条直线经过圆心,且平分弦所对的 弧,则这条直线是弦的垂直平分线,真命题.
否命题:若一条直线不是弦的垂直平分线,则这条直 线不过圆心或不平分弦所对的弧,真命题.
3.四种命题真假性之间的关系 (1)两个命题互为逆否命题时,它们有相同的真假性; (2)两个命题为互逆命题或互否命题时,它们的真假 性没有关系.
温馨提示 在四种命题中,真命题的个数可能为 0,2,4 个,不 会出现奇数个.
1.下列判断中不正确的是( ) A.命题“若 A∩B=B,则 A∪B=A”的逆否命题 为真命题 B.“矩形的两条对角线相等”的否命题为假命题 C.“已知 a,b,m∈R,若 am2<bm2,则 a<b”的逆 命题是真命题 D.“若 x∈N*,则(x-1)2>0”是假命题
解析:A 中,逆否命题“若 A∪B≠A,则 A∩B≠B” 是真命题,正确;B 中,否命题“不是矩形的四边形的两 条对角线不相等”是假命题,正确;C 中,逆命题“已知 a,b,m∈R,若 a<b,则 am2<bm2”是假命题.所以 C 错误,符合题意.D 中,因为 x=1 时,(1-1)2=0,所以 是假命题,正确.
答案:C
2.命题“若 a>b,则 2a>2b-1”的否命题为 ___________________________________________. 解析:否命题为“若¬ p,则¬ q”,则否命题为“若 a≤b,则 2a≤2b-1”. 答案:“若 a≤b,则 2a≤2b-1”
3.下列命题: ①“等边三角形三内角都为 60°”的逆命题; ②“若 k>0,则 x2+2x-k=0 有实根”的逆否命题; ③“全等三角形的面积相等”的否命题; ④“若 ab≠0,则 a≠0”的否命题; 其中真命题的序号为________. 解析:①逆命题“三内角都为 60°的三角形为等边 三角形”,真命题;②逆否命题“若 x2+2x-k=0 没有实 根,则 k≤0”,因为Δ=4+4k<0,所以 k<-1,满足 k

四种命题间的相互关系--优质获奖精品课件 (23)

四种命题间的相互关系--优质获奖精品课件 (23)

写出一个命题的其他三种命题的步骤 (1)分析命题的条件和结论; (2)将命题写成“若 p,则 q”的形式; (3)根据逆命题、否命题、逆否命题各自的结构形式写 出这三种命题. 注:如果原命题含有大前提,在写出原命题的逆命题、 否命题、逆否命题时,必须注意各命题中的大前提不变.
[跟踪训练1] (1)命题“若函数 y=f(x)是幂函数,则它 的图象不过第四象限”与命题“若函数 y=f(x)不是幂函数, 则它的图象过第四象限”的关系是互__否__命__题__.
03随堂达标自测
1.已知 a,b∈R,命题“若 a+b=1,则 a2+b2≥21” 的否命题是( )
A.若 a2+b2<21,则 a+b≠1 B.若 a+b=1,则 a2+b2<12 C.若 a+b≠1,则 a2+b2<12 D.若 a2+b2≥12,则 a+b=1
解析 “a+b=1”,“a2+b2≥21”的否定分别是“a +b≠1”,“a2+b2<12”,故否命题为:“若 a+b≠1,则 a2+b2<12”.
第一章 常用逻辑用语
1互关系
01课前自主预习
【基础导学】 问题引入 我们知道,能够判断真假的语句叫做命题.例如: (1)如果两个三角形全等,那么它们的面积相等; (2)如果两个三角形的面积相等,那么它们全等; (3)如果两个三角形不全等,那么它们的面积不相等; (4)如果两个三角形的面积不相等,那么它们不全等. 问题:命题(2)、(3)、(4)与命题(1)有何关系?
2.命题“若 m=10,则 m2=100”与其逆命题、否命
题、逆否命题这四个命题中,真命题是( )
A.原命题、否命题
B.原命题、逆命题
C.原命题、逆否命题 D.逆命题、否命题

高二数学优质课件精选人教A版选修2-1课件1.1.3四种命题与四种命题间的相互关系

高二数学优质课件精选人教A版选修2-1课件1.1.3四种命题与四种命题间的相互关系
否命题:若一个数不是实数,则它的平方不是非 负数.真命题.
逆否命题:若一个数的平方不是非负数,则这个 数不是实数.真命题.
(2)逆命题:若两个三角形全等,则这两个三角形 等底等高.真命题.
否命题:若两个三角形不等底或不等高,则这两 个三角形不全等.真命题.
逆否命题:若两个三角形不全等,则这两个三角 形不等底或不等高.假命题.
答案:若sinα≠sinβ,则α≠β
5.把命题“当x=2时,x2-3x+2=0”写成“若p, 则q”的形式,并写出它的逆命题、否命题与逆否命题, 并判断它们的真假.
解:原命题:若x=2,则x2-3x+2=0,真命题. 逆命题:若x2-3x+2=0,则x=2,假命题. 否命题:若x≠2,则x2-3x+2≠0,假命题. 逆否命题:若x2-3x+2≠0,则x≠2,真命题.
方法 2:先判断原命题的真假. 因为 a,x 为实数,且关于 x 的不等式 x2+(2a+ 1)x+a2+2≤0 的解集非空. 所以 Δ=(2a+1)2-4(a2+2)≥0,即 4a-7≥0, 解得 a≥74.因为 a≥74,所以 a≥1, 所以原命题为真. 又因为原命题与其逆否命题等价, 所以逆否命题为真.
逆否命题 真 真 假 假
思考感悟 四种命题中真命题的个数可能为多少? 提示:由于互为逆否关系的命题同真同假,真 命题可能有 0 个,2 个或 4 个.
尝试应用
1.若x>y,则x2>y2的否命题是( ) A.若x≤y,则x2>y2 B.若x>y, 则x2<y2 C.若x≤y,则x2≤y2 D.若x<y, 则x2<y2 答案:C
方法 3:利用集合的包含关系求解. 命题 p:关于 x 的不等式 x2+(2a+1)x+a2+2≤0 有非空解集. 命题 q:a≥1. 所以 p:A={a|关于 x 的不等式 x2+(2a+1)x+ a2+2≤0 有实数解}={a|(2a+1)2-4(a2+2)≥0}= {a|a≥74}.

四种命题及其相互关系

四种命题及其相互关系

四种命题及其相互关系学习目标1.了解四种命题的概念,会写出某命题的逆命题、否命题和逆否命题.2.认识四种命题之间的相互关系以及真假性之间的联系.3.会利用逆否命题的等价性解决问题.归纳:上表可知四种命题的真假性之间有如下关系:(1);(2) .要点一 四种命题的概念例1 分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)实数的平方是非负数; (2)若x 、y 都是奇数,则x +y 是偶数。

(3)若220x y +=,则0x y ==; (4)圆的内接四边形的对角互补。

要点二四种命题的关系例2 下列命题:①“若xy=1,则x、y互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“若ac2>bc2,则a>b”的逆命题.其中是真命题的是________.变式2 有下列四个命题:①“若x+y=0,则x,y互为相反数”的否命题;②“若a>b,则a2>b2”的逆否命题;③“若x≤-3,则x2-x-6>0”的否命题;④“同位角相等”的逆命题.其中真命题的个数是________.要点三等价命题的应用例3 判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.变式3 判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.堂堂清:1.命题“若a∉A,则b∈B”的否命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉B C.若b∈B,则a∉A D.若b∉B,则a∉A 2.命题“若A∩B=A,则A∪B=B”的逆否命题是( )A.若A∪B=B,则A∩B=A B.若A∩B≠A,则A∪B≠BC.若A∪B≠B,则A∩B≠A D.若A∪B≠B,则A∩B=A3.命题“若平面向量a,b共线,则a,b方向相同”的逆否命题是________________________,它是________命题(填“真”或“假”).4.给出以下命题:①“若x2+y2≠0,则x、y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题.其中为真命题的是________.同步训练一、基础达标1.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”2.若“x>y,则x2>y2”的逆否命题是( )A.若x≤y,则x2≤y2B.若x>y,则x2<y2C.若x2≤y2,则x≤y D.若x<y,则x2<y23.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A.1 B.2 C.3 D.44.设原命题:若a+b≥2,则a、b中至少有一个不小于1,则原命题与其逆命题的真假情况是()A.原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题5.有下列四个命题,其中真命题有:①“若x+y=0,则x、y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号为( ) A.①②B.②③ C.①③D.③④6.(1)命题“末位是2的整数一定是偶数”的逆命题是“______________”.(2)命题“整数是有理数”的否命题是“________________”.(3)命题“到一个角的两边的距离不相等的点不在该角的平分线上”的逆否命题是“________________”.7.命题“若x=3,y=5,则x+y=8”的逆命题是____________________;否命题是__________________,逆否命题是____________________.8.命题“若a>1,则a>0”的逆否命题是______命题(填“真”或“假”).9.下列命题中:①若一个四边形的四条边不相等,则它不是正方形;②正方形的四条边相等;③若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________;互为否命题的有________;互为逆否命题的有________(填序号).10.写出下列命题的逆命题、否命题、逆否命题,并分别判断其真假.(1)如果两圆外切,那么两圆心距等于两圆半径之和;(2)奇数不能被2整除.(3)已知a、b是实数,若a+b是无理数,则a、b都是无理数(4)已知a,b∈R,若a2>b2,则a>b11.(1)判断命题“已知a,x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.(2)判断命题:“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实根”的逆否命题的真假.。

高中数学 同步教学 四种命题 四种命题间的相互关系

高中数学 同步教学 四种命题 四种命题间的相互关系
否命题:若两个三角形不等底或不等高,则这两个三角形不全等.
逆否命题:若两个三角形不全等,则这两个三角形不等底或不等
高.
(4)逆命题:若x2-3x+2<0,则1<x<2.
否命题:若x≤1或x≥2,
则x2-3x+2≥0.
逆否命题:若x2-3x+2≥0,则x≤1或x≥2.
(5)逆命题:若a=0或b=0,则ab=0.
两个命题之间的关系,具有双向性,而逆否命题指的是一个命题,具
有单向性.
首页
π
3
1
2
【做一做 1】 已知命题 p:若 x= ,则 cos x= ,则命题 p 的逆命题

p 的逆否命题为
;命题 p 的否命题为
;命题
.
1
2
π
3
答案:若 cos x= ,则 x=
π
3
1
2
若 x≠ ,则 cos x≠
1
2
π
3
(填
命题.(填
,其真
首页
思考辨析
判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打
“×”.
(1)有的命题没有逆命题. (
)
(2)在四种命题中,只有原命题与否命题具有互否关系. (
)
(3)互逆命题的真假性一定相反. (
)
(4)在原命题及其逆命题、否命题和逆否命题中,假命题的个数一
定是偶数. (
x,y互为相反数”的否命题是真命题.
(2)法一:“对顶角相等”的逆命题是“若两个角相等,则它们是对顶
角”,是假命题.
法二:“对顶角相等”的否命题是“若两个角不是对顶角,则它们不
相等”,显然是假命题,而逆命题和否命题等价,故“对顶角相等”的逆

四种命题间的相互关系

四种命题间的相互关系

1.1.3四种命题间的相互关系学习目标 1.认识四种命题之间的关系以及真假性之间的联系.2.会利用命题的等价性解决问题.知识点一四种命题间的关系思考原命题与其逆命题、否命题、逆否命题之间是什么关系?答案原命题与其逆命题是互逆关系;原命题与其否命题是互否关系;原命题与其逆否命题是互为逆否关系.梳理四种命题间的关系知识点二四种命题间的真假关系由上表可知四种命题的真假性之间有如下关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.(1)两个互逆命题的真假性相同.(×)(2)原命题的逆命题与原命题的否命题真假性相同.(√)(3)命题“若p,则q”的否命题是“若p,则綈q”.(×)类型一 四种命题间的关系及真假判断例1 判断下列命题的逆命题、否命题与逆否命题的真假. (1)若ab ≤0,则a ≤0或b ≤0; (2)若a 2+b 2=0,则a ,b 都为0. 考点 四种命题的概念 题点 判断四种命题的真假解 (1)逆命题:若a ≤0或b ≤0,则ab ≤0.它为假命题. 逆否命题:若a >0且b >0,则ab >0.它为真命题.所以原命题的逆命题与否命题为假命题,逆否命题为真命题.(2)原命题与其逆命题“若a ,b 都为0,则a 2+b 2=0”均为真命题,所以原命题的逆否命题与否命题也均为真命题.反思与感悟 互为逆否关系的两个命题真假性相同,准确判断两个命题之间的关系是解题的关键.跟踪训练1 下列命题为假命题的是( ) A .“若x 2+y 2≠0,则x ,y 不全为0”的否命题 B .“正三角形都相似”的逆命题C .“若m >0,则x 2+x -m =0有实根”的逆否命题D .“若x -2是有理数,则x 是无理数”的逆否命题 考点 四种命题的概念 题点 判断四种命题的真假 答案 B解析 A 中,原命题的否命题为“若x 2+y 2=0,则x ,y 全为0”,是真命题.B 中,原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形”,是假命题.C 中,原命题的逆否命题为“若x 2+x -m =0无实根,则m ≤0”,∵方程无实根,∴Δ=1+4m <0,∴m <-14,∴原命题的逆否命题是真命题.D 中,原命题的逆否命题为“若x 不是无理数,则x -2不是有理数”,∵x不是无理数,∴x是有理数,又2是无理数,∴x-2是无理数,不是有理数,∴原命题的逆否命题是真命题.类型二 等价命题的应用例2 设m ,n ∈R ,证明:若m 2+n 2=2,则m +n ≤2. 考点 反证法逆否证法 题点 逆否证法证明 将“若m 2+n 2=2,则m +n ≤2”视为原命题, 则它的逆否命题为“若m +n >2,则m 2+n 2≠2”. 因为m +n >2,所以m 2+n 2≥12(m +n )2>12×22=2.所以m 2+n 2≠2,所以原命题得证.反思与感悟 由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的命题具有等价性,因此我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.跟踪训练2 证明:若a 2-4b 2-2a +1≠0,则a ≠2b +1. 考点 反证法和逆否证法 题点 逆否证法证明 命题“若a 2-4b 2-2a +1≠0,则a ≠2b +1”的逆否命题为“若 a =2b +1,则a 2-4b 2-2a +1=0”.由a =2b +1,得a 2-4b 2-2a +1=(2b +1)2-4b 2-2×(2b +1)+1=4b 2+4b +1-4b 2-4b -2+1=0,显然原命题的逆否命题为真命题,所以原命题也为真命题.故原命题得证.1.命题“若(綈p ),则q ”的逆否命题为( ) A .若p ,则(綈q ) B .若(綈q ),则(綈p ) C .若(綈q ),则pD .若q ,则p考点 四种命题的概念 题点 按要求写命题 答案 C2.下列命题为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x =1,则x 2>1”的否命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若x 2>1,则x >1”的逆否命题 考点 四种命题间的相互关系题点 写出四种命题利用四种命题的关系判断真假 答案 A解析 对A ,即判断:若x >|y |,则x >y 的真假,显然是真命题.3.命题“若x >1,则x >0”的逆命题是________________,逆否命题是__________________. 考点 四种命题的概念 题点 按要求写命题答案 若x >0,则x >1 若x ≤0,则x ≤1 4.有下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题; ②“若1a >1b ,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题. 其中是假命题的是________. 考点 四种命题间的相互关系题点 利用四种命题的关系判断真假命题的个数 答案 ①②解析 对于①,其否命题为:若k ≤0,则方程x 2+2x +k =0无实根,显然为假命题;对于②,若a <b ,则1a >1b ,为假命题;③则为真命题,故假命题为①②.5.已知命题p :“若ac ≥0,则二次不等式ax 2+bx +c >0无解”. (1)写出命题p 的否命题; (2)判断命题p 的否命题的真假. 考点 四种命题间的相互关系题点 写出四种命题利用四种命题的关系判断真假解 (1)命题p 的否命题为:“若ac <0,则二次不等式ax 2+bx +c >0有解”. (2)命题p 的否命题是真命题.判断如下: 因为ac <0,所以-ac>0,Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.写一个命题的否命题时,要对命题的条件和结论都进行否定,避免出现不否定条件,而只否定结论的错误.若由p经逻辑推理得出q,则命题“若p,则q”为真;确定“若p,则q”为假时,则只需举一个反例说明即可.一、选择题1.以下说法错误的是()A.如果一个命题的逆命题为真命题,那么它的否命题也必为真命题B.如果一个命题的否命题为假命题,那么它本身一定为真命题C.原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数D.一个命题的逆命题、否命题、逆否命题可以同为假命题考点四种命题间的相互关系题点利用四种命题的关系判断真假答案 B2.一个命题和它的逆命题、否命题、逆否命题中,真命题的个数不可能为()A.0 B.1C.2 D.4考点四种命题间的相互关系题点利用四种命题的关系判断真假命题的个数答案 B解析互为逆否关系的两个命题的真假性相同.3.“若x2-3x+2=0,则x=2”为原命题,则它的逆命题、否命题与逆否命题中真命题的个数是()A.0 B.1C.2 D.3考点四种命题间的相互关系题点利用四种命题的关系判断真假命题的个数答案 C解析只有其逆命题、否命题为真命题.4.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是()A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确考点四种命题间的相互关系题点利用四种命题的关系判断真假答案 A解析设p为“若A,则B”,那么q为“若綈A,则綈B”,r为“若綈B,则綈A”.故q与r为互逆命题.5.命题“若x2>y2,则x>y”的逆否命题是()A.若x<y,则x2<y2B.若x≤y,则x2≤y2C.若x>y,则x2>y2D.若x≥y,则x2≥y2考点四种命题的概念题点按要求写命题答案 B解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.6.给出下列四个命题:①如果一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②如果一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④如果两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为真命题的是()A.①②B.②③C.③④D.②④考点反证法和逆否证法题点逆否证法答案 D解析根据面面垂直的判定定理可知②是真命题;根据面面垂直的性质定理“若两个平面垂直,则在一个平面内垂直于它们的交线的直线必垂直于另一个平面”,可知④是真命题.7.原命题为“若a n+a n+12<a n,n∈N*,则{an}为递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( ) A .真、真、真 B .假、假、真 C .真、真、假D .假、假、假考点 四种命题间的相互关系 题点 利用四种命题的关系判断真假 答案 A解析 从原命题、逆命题的真假入手,a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列,即原命题、逆命题都为真命题,则其逆否命题、否命题也为真命题. 8.有下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题; ④“不等边三角形的三个内角相等”的逆命题. 其中真命题为( )A .①②B .②③C .①③D .③④ 考点 四种命题间的关系题点 利用四种命题的关系判断真假 答案 C解析 ①逆命题为“若x ,y 互为相反数,则x +y =0”,真命题;②否命题为“不全等的三角形的面积不相等”,假命题;③当q ≤1时,Δ=4-4q ≥0,所以原命题是真命题,其逆否命题也是真命题;④逆命题为“三个内角相等的三角形是不等边三角形”,假命题.故选C. 二、填空题9.命题“若a >b ,则ac 2>bc 2(a ,b ∈R )”的否命题的真假性为________.(填“真”或“假”) 考点 四种命题的概念 题点 判断四种命题的真假 答案 真解析 其否命题为:若a ≤b ,则ac 2≤bc 2,它为真命题.10.已知命题p :若a >b >0,则12log a <12log b +1,则命题p 及其逆命题、否命题、逆否命题中真命题的个数为________. 考点 四种命题间的相互关系题点 利用四种命题的关系判断真假命题的个数答案 2解析 ∵a >b >0,∴12log a <12log b ,∴命题p 为真命题,其逆命题为“若12log a <12log b +1,则a >b >0”,∵当a =2,b =2时,12log a <12log b +1成立,而a =b ,∴逆命题为假命题.∵原命题与其逆否命题的真假相同,逆命题与否命题互为逆否命题, ∴命题p 及其逆命题、否命题、逆否命题中真命题的个数为2.11.在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是________.(只填序号) 考点 四种命题间的相互关系 题点 利用四种命题的关系判断真假 答案 ②解析 ①的逆命题是:若四点中任何三点都不共线,则这四点不共面.我们用正方体AC 1为模型来观察:上底面A 1B 1C 1D 1中任何三个顶点都不共线,但A 1,B 1,C 1,D 1四点共面,所以①的逆命题是假命题.②的逆命题是:若两条直线是异面直线,则这两条直线没有公共点.易知其是真命题. 三、解答题12.判断下列命题的真假.(1)对角线不相等的四边形不是等腰梯形; (2)若x ∉A ∩B ,则x ∉A 且x ∉B ; (3)若x 2+y 2≠0,则xy ≠0. 考点 四种命题间的相互关系 题点 利用四种命题的关系判断真假解 (1)该命题的逆否命题是“若一个四边形是等腰梯形,则它的对角线相等”,它为真命题,故原命题为真.(2)该命题的逆否命题是“若x ∈A 或x ∈B ,则x ∈A ∩B ”,它为假命题,故原命题为假. (3)该命题的逆否命题是“若xy =0,则x 2+y 2=0”,它为假命题,故原命题为假. 13.判断命题:“若b ≤-1,则关于x 的方程x 2-2bx +b 2+b =0有实根”的逆否命题的真假.考点四种命题间的相互关系题点利用四种命题的关系判断真假解方法一(利用原命题)因为原命题与逆否命题真假性一致,所以只需判断原命题真假即可.方程判别式为Δ=4b2-4(b2+b)=-4b,因为b≤-1,所以Δ≥4>0,故此方程有两个不相等的实根,即原命题为真,故它的逆否命题也为真.方法二(利用逆否命题)原命题的逆否命题为“若关于x的方程x2-2bx+b2+b=0无实根,则b>-1”.方程判别式为Δ=4b2-4(b2+b)=-4b,因为方程无实根,所以Δ<0,即-4b<0,所以b>0,所以b>-1成立,即原命题的逆否命题为真.四、探究与拓展14.已知命题“非空集合M 中的元素都是集合P 中的元素”是假命题,那么下列命题中真命题的个数为( )①M 中的元素都不是P 的元素;②M 中有不属于P 的元素;③M 中有属于P 的元素;④M 中的元素不都是P 的元素.A .1B .2C .3D .4考点 四种命题间的相互关系题点 利用四种命题的关系判断真假命题的个数答案 B解析 由于“M ⊆P ”为假命题,故M 中至少有一个元素不属于P ,∴②④正确.M 中可能有属于P 的元素,也可能都不是P 的元素,故①③错误.故选B.15.已知条件p :|5x -1|>a >0,其中a 为实数,条件q :12x 2-3x +1>0,请选取一个适当的a 值,利用所给出的两个条件p ,q 分别作为集合A ,B ,构造命题“若A ,则B ”,并使得构造的原命题为真命题,而其逆命题为假命题,这样的一个原命题可以是什么? 考点 四种命题间的相互关系题点 利用四种命题的关系判断真假解 由|5x -1|>a >0,得5x -1<-a 或5x -1>a ,即x <1-a 5或x >1+a 5. 由12x 2-3x +1>0,得2x 2-3x +1>0, 解得x <12或x >1. 为使“若A ,则B ”为真命题,而其逆命题为假命题,则需A B .令a =4,得p :x <-35或x >1, 满足题意,故可以选取a =4,此时原命题是“若|5x -1|>4,则12x 2-3x +1>0”.。

四种命题之间的相互关系

四种命题之间的相互关系

2.四种命题真假旳个数可能为( 答:0个、2个、4个。
)个。
如:原命题:若A∪B=A, 则A∩B=φ。 逆命题:若A∩B=φ,则A∪B=A。 否命题:若A∪B≠A,则A∩B≠φ。 逆否命题:若A∩B≠φ,则A∪B≠A。
(假) (假) (假) (假)
例题讲解
例1:设原命题是:当c>0时,若a>b, 则ac>bc. 写出它旳逆命题、否命题、逆否命题。 并分别判断它们旳真假。
例:证明:若p2+q2=2,则p+q 2
巩固练习;P 9练习
小结:
1、本节内容: (1)四种命题旳关系 (2)四种命题旳真假关系
(3) 一种思想
作业:P10 A组 3(2)、4
(两个命题为互逆命题或互否命题,它们旳真假性 没有关系).
练一练
1.判断下列说法是否正确。 1)一种命题旳逆命题为真,它旳逆否命题不一定为真;(对) 2)一种命题旳否命题为真,它旳逆命题一定为真。 (对) 3)一种命题旳原命题为假,它旳逆命题一定为假。 (错) 4)一种命题旳逆否命题为假,它旳否命题为假。 (错)
3)若f (x)不是正弦函数,则f (x)不是周期函数。 4)若f (x)不是周期函数,则f (x)不是正弦函数。
你能说出其中任意 两个命题之间旳关
系吗?
1、四种命题之间旳 关系
原命题
若p则q
互逆 逆命题
若q则p




否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
2.四种命题旳真假
看下面旳例子:
3、互为逆否命题:假如第一种命题旳条件和 结论分别是第二个命题旳结论旳否定和条件旳否定, 那么这两个命题叫做互为逆否命题。

命题之间的关系及命题真假的判断

命题之间的关系及命题真假的判断

试填表:
原命题 逆命题 真 真 假 假 真 假 假 真 假 否命题 逆否命题 真
1.反证法的定义
• 从命题的结论的反面出发,进行推理,引 出矛盾,从而证明原命题成立,这样的证 明方法叫反证法。
2.反证法证题的步骤:
(1)否定— 假设命题的结论不成立,而假设命题 的反面成立 ,即否定结论 .(若结论的反面有多 种情况时,必须一一加以否定。) (2)推理— 从这个假设和原条件出发,进行推理。 — (3)矛盾— 通过推理,导致矛盾。即得出与已知 条件、定义、公理或明显的事实相矛盾。 (4)肯定— 有矛盾判定假设不成立 ,从而肯定原 命题成立 。
例2:写出下列命题的逆、否、逆否 命题,并判断其真假。
(1) 当c>0时,若a>b,则ac>bc; 解:原命题真; 逆命题:当c >0时,若ac > bc ,则a > b ; 为真; 否命题:当c >0时,若a ≤ b ,则ac ≤ bc ; 为真; 逆否命题:当c >0时,若ac ≤ bc ,则a ≤ b ; 为真。
(2)若a2+b2=0 ,则a、b全为0;
解:原命题为真; 逆命题:若a、b全为0 ,则a2+b2=0;为真; 否命题:若a2+b2≠0,则 a、b不全为0;为真; 逆否命题:若a、b不全为0 ,则a2+b2≠0;为真。 (3) 若a >0,则x2+x-a=0有实根。 解:原命题为真; 逆命题:若x2+x-a=0有实根,则a >0;为假; 否命题:若a ≤0,则 x2+x-a=0没有实根;为假; 逆否命题:若x2+x-a=0没有实根,则a ≤0 ;为真。
结论:
• 两个互为逆否的命题的真假是相同的。即 两个互为逆否的命题的真假是相同的。 两个互为逆否的命题是等价命题。 两个互为逆否的命题是等价命题。 • 解题技巧:(1)若判断一个命题的真假较困 若判断一个命题的真假较困 难时,可转化为判断其逆否命题的真假。 难时,可转化为判断其逆否命题的真假。 • (2)在判断四种命题的真假时,只需判定其 中两个就行了。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四种命题四种命题间的相互关系1、四种命题的概念,写出某个命题的逆命题、否命题和逆否命题。

2、四种命题之间的关系以及真假性之间的联系。

3、会用命题的等价性解决问题。

【核心扫描】:1、结合命题真假的判定,考查四种命题的结构。

(重点)2、掌握四种命题之间的相互关系。

(重点)3、等价命题的应用。

(难点)1、四种命题的概念(1)互逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题。

其中一个命题叫原命题,另一个叫做原命题的逆命题。

若原命题为“若p,则q”,则逆命题为“若q,则P”。

(2)互否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。

如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题。

也就是说,若原命题为“若p,则q”则否命题为“若非p,则非q”。

(3)互为逆否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。

如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题.也就是说,若原命题为“若p,则q”,则逆否命题为若非q,则非p。

任何一个命题的结构都包含条件和结论,通过条件和结论的不同变换都可以得到这个命题的逆命题、否命题和逆否命题,因而任何一个命题都有逆命题、否命题和逆否命题。

2、四种命题的相互关系(2)四种命题的真假性之间的关系:①两个命题互为逆否命题,它们有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.在四种命题中,真命题的个数可能会有几种情况?因为原命题与逆否命题,逆命题和否命题互为逆否命题,它们同真同假,所以真命题的个数可能为0,2,4.一般地,用p和q分别表示原命题的条件和结论,用非p和非q分别表示p与q的否定,则四种命题的形式可表示为:原命题:若P,则q;逆命题:若q,则p;否命题:若非P,则非q;逆否命题:若非q,则非p.(1)关于四种命题也可叙述为:①交换命题的条件和结论,所得的新命题就是原命题的逆命题;②同时否定命题的条件和结论,所得的新命题就是原命题的否命题;③交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题.(2)已知原命题,写出它的其他三种命题:首先,将原命题写成“若p,则q”的形式,然后找出条件和结论,再根据定义写出其他命题。

然后,对于含有大前提的命题,在改写时大前提不动。

如“已知a,b为正数,若a>b,则|a|>|b|”中,“已知a,b为正数”在四种命题中是相同的大前提,写其他命题时都把它作为大前提。

原命题为真,它的逆命题不一定为真;原命题为真,它的否命题不一定为真;原命题为真,它的逆否命题一定为真;原命题的逆命题为真,它的否命题一定为真四种命题的等价关系的应用:判断某个命题的真假,如果直接判断不易,可转化为判断它的逆否命题的真假。

例如带有否定词的命题真假的判断。

因此,证明某一问题时,若直接证明不容易入手,可以通过证明它的逆否命题为真命题来间接地证明原命题为真命题.四种命题之间的转换【例1】写出以下命题的逆命题、否命题和逆否命题.(1)如果直线垂直于平面内的两条相交直线,那么这条直线垂直于平面;(2)如果x>10,那么x>0;(3)当x=2时,x2+x-6=0.思路探索:可先分清命题的条件和结论,写成“若p,则q”的形式,再写出逆命题、否命题和逆否命题。

解:(1)逆命题:如果直线垂直于平面,那么直线垂直于平面内的两条相交直线;否命题:如果直线不垂直于平面内的两条相交直线,那么直线不垂直于平面;逆否命题:如果直线不垂直于平面,那么直线不垂直于平面内的两条相交直线.(2)逆命题:如果x>0,那么x>10;否命题:如果x≤10,那么x≤0;逆否命题:如果x≤0,那么x≤10.(3)逆命题:如果x2+x-6=0,那么x=2;否命题:如果x≠2,那么x2+x-6≠0;逆否命题:如果x2+x-6≠0,那么x≠2.规律方法:1、写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题。

2、在写命题时,为了使句子更通顺,可以适当的添加一些词语,但不能改变条件和结论。

写出下列命题的逆命题、否命题和逆否命题。

(1)垂直于同一平面的两直线平行;(2)若m·n<0,则方程mx2-x+n=0有实根.解(1)逆命题:如果两条直线平行,那么这两条直线垂直于同一个平面.否命题:如果两条直线不垂直于同一平面,那么这两条直线不平行.逆否命题:如果两条直线不平行,那么这两条直线不垂直于同一平面.(2)逆命题:若方程mx2-x+n=0 有实数根,则m·n<0.否命题:若m·n≥0,则方程mx2-x+n=0 没有实数根.逆否命题:若方程mx2-x+n=0 没有实数根,则m·n≥0.题型二四种命题真假的判断【例2】有下列四个命题:①“若x+y=0,则x,y互为相反数”的否命题;②“若a>b,则a2>b2”的逆否命题;③“若x≤-3,则x2-x-6>0”的否命题;④“同位角相等”的逆命题.其中真命题的个数是________.[思路探索] 可先逐一分清两个命题的条件和结论,再利用有关知识判断真假.解析①“若x+y≠0,则x,y不是相反数”,是真命题.②“若a2≤b2,则a≤b”,取a=0,b=-1,a2≤b2,但a>b,故是假命题.③“若x>-3,则x2-x-6≤0”,解不等式x2-x-6≤0可得-2≤x≤3,而x=4>-3不是不等式的解,故是假命题.④“相等的角是同位角”是假命题.答案1规律方法:要判断四种命题的真假:首先,要熟练四种命题的相互关系,注意它们之间的相互性;其次,利用其他知识判断真假时,一定要对有关知识熟练掌握.下列命题中是真命题的是:().A、命题“若0<log a b<1,则0<a<1<b”的逆命题B、命题“若b=3,则b2=9”的逆命题C、命题“当x=2时,x2-3x+2=0”的否命题D、命题“相似三角形的对应角相等”的逆否命题解析对于A,逆命题为“若0<a<1<b,则0<log a b<1”,由对数函数图象得,当0<a<1<b时,log a b<0,∴A为假;B项,逆命题是“若b2=9,则b=3”,它未必成立,因为b可能等于-3,所以B 为假;C项,否命题是“当x≠2时,x2-3x+2≠0”,因为x=1时也可以使x2-3x+2=0成立,所以为假;D项,逆否命题是“两个三角形对应角不相等,则这两个三角形不相似”,因为原命题与逆命题同真假,且原命题为真,所以逆否命题为真,故选D.答案D等价命题的应用判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.审题指导:本题的命题意图是考查逆否命题的应用,由于原命题与它的逆否命题同真同假,所以可写出原命题的逆否命题,再判断其真假,或者由判断原命题的真假得出逆否命题的真假。

[规范解答]法一:原命题的逆否命题:已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.真假判断如下:3分∵抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7,6分若a<1,则4a-7<0.即抛物线y=x2+(2a+1)x+a2+2与x轴无交点.9分所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故原命题的逆否命题为真.12分法二:先判断原命题的真假.因为a,x为实数,且关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,所以Δ=(2a+1)2-4(a2+2)≥0,4分即4a-7≥0,又因为原命题与其逆否命题等价,所以逆否命题为真。

12分由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的命题具有等价性,所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题。

判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.解∵m>0,∴12m>0,∴12m+4>0.∴方程x2+2x-3m=0的判别式Δ=12m+4>0.∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真.又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真.反证法的应用1、反证法的理论基础:反证法就是证明结论的反面不成立,从而证明原结论成立。

由于互为逆否命题的两个命题具有等价性,从逻辑角度看,原命题为真,则它的逆否命题也为真。

在直接证明原命题有困难时,就可转化为证明它的逆否命题成立。

2、反证法的思想方法:命题“若p,则q”的逆否命题是“若非q,则非p”,假设q不成立,即非q成立,由此进行推理,则非p一定成立,这与p成立矛盾,那么就说明“假设q不成立”为假,从而可以导出“若p,则q”为真,达到论证的目的,这就是反证法的思想方法.3、反证法证明命题的步骤:(1)反设:假设命题的结论不成立,即假设结论的否定成立;(2)归谬:从这个假设出发,经过推理论证,得出矛盾;(3)说明:由矛盾判定假设不正确,从而肯定命题的结论正确.否定结论是反证法的第一步,它的正确与否,对于反证法有直接影响.若a2+b2=c2,求证:a,b,c不可能都是奇数。

思路分析:可以证明原命题的逆否命题为真命题,也可以运用反证法。

法一:依题意,就是证明命题“若a2+b2=c2,则a,b,c不可能都是奇数”为真命题。

为此,只需证明其逆否命题“若a,b,c都是奇数,则a2+b2≠c2.”为真命题即可。

∵a,b,c都是奇数,则a2,b2,c2都是奇数。

于是a2+b2为偶数,而c2为奇数,即a2+b2≠c2。

∴原命题的逆否命题为真命题,所以原命题成立。

法二:假设a,b,c都是奇数,则a2,b2,c2都是奇数。

得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,与a2+b2=c2矛盾。

所以假设不成立,从而原命题成立。

方法点评:上述两种证明方法的本质是一致的,只是叙述的格式不同罢了,而以什么方式表达某一数学事实,这仅是阐述理由的外在表现形式,绝不影响数学事实的本质特点。

两种方法相比较,反证法更具有“程式化”特点.注意含有否定词的命题常用反证法证明。

相关文档
最新文档