《地图投影与变换》自测题(附:参考答案)
地图投影试卷B答案
填空题(每题1分,共20分)1、美国采用得所谓通用极球面投影UPS实质上就是正轴等角割方位投影。
2、墨卡托投影具有一个重要得特点就是等角航线。
3、在等面积与等距离圆锥投影公式中分别有常数S与s,S代表得含义就是弧度为1分得从赤道到纬度为φ得球面面积;s代表得含义就是从赤道到到纬度为φ得子午线弧长。
4、在地图投影中,常见得几个字母含义就是m代表沿经线得长度比,n代表沿纬线得长度比,a代表极大值长度比,b代表极小值长度比,μ1代表沿垂直圈得长度比,μ2代表沿等高圈得长度比。
5、我国大比例尺地形图采用得投影为高斯投影。
6、透视投影因视点离球心得距离得大小不同可以分为外心投影,球面投影,球心投影,正射投影。
7、等角圆锥投影、等面积圆锥投影与等距离圆锥投影中极点分别投影后得形状为点,圆弧,圆弧。
8、UTM投影得全称为通用横轴墨卡托投影,它得变形性质为等角。
一、判断题(判断对错,并将错误得进行改正,每题2分,共20分)1、子午圈曲率半径一定不小于卯酉圈曲率半径。
(√)2、地图投影中,一点上长度比只跟这点得位置与方位角有关。
(×)3、在研究地图投影变形时,一般认为长度变形就是其她变形得基础。
(√)4、在墨卡托投影(球心投影)图上两点间得直线距离最短。
(×)5、桑遜投影就是正弦曲线等角(等面积)伪圆柱投影。
(×)6、古德提出将摩尔威德投影进行分瓣得改良方法以减小变形。
(√)7、普通多圆锥投影又称为美国多圆锥投影,投影中央经线为直线,纬线就是与中央经线正交得同轴圆圆弧。
(√)8、1962年联合国于德国波恩举行得世界百万分一国际地图技术会议通过得制图规范,建议用等角圆锥投影替代多圆锥投影作为百万分一地形图得数学基础,以便使世界百万分一地形图与世界百万分一航空图在数学基础上能更好地协调一致。
(√)9、变形椭圆就是(不就是)衡量地图变形得唯一手段。
(×)10、球面投影中小圆与大圆被投影为圆。
投影测试题及答案
投影测试题及答案一、选择题1. 投影的基本方式包括哪几种?A. 正投影B. 斜投影C. 透视投影D. 所有选项2. 在正投影中,物体与投影面的关系有哪些?A. 平行B. 垂直C. 倾斜D. 所有选项3. 透视投影的特点是什么?A. 近大远小B. 近小远大C. 物体形状不变D. 投影线平行二、填空题4. 投影测试中,_______投影可以直观地反映物体的形状和大小。
5. 斜投影与正投影相比,其投影线与投影面之间的角度是_______。
三、简答题6. 简述透视投影与正投影的区别。
四、计算题7. 假设有一个立方体,其顶点坐标为A(0,0,0), B(1,0,0), C(1,1,0), D(0,1,0), E(0,0,1), F(1,0,1), G(1,1,1), H(0,1,1)。
请根据正投影法,计算出该立方体在xy平面上的投影。
五、论述题8. 论述在建筑设计中,透视投影与正投影各自的作用和重要性。
答案:一、选择题1. D2. D3. A二、填空题4. 透视5. 不同三、简答题6. 透视投影与正投影的主要区别在于透视投影能够反映物体的远近关系和深度感,而正投影则不能。
透视投影通常用于艺术作品和建筑设计中,以模拟人眼观察物体的效果。
正投影则主要用于工程技术领域,它能够准确表达物体的尺寸和形状,但不考虑深度。
四、计算题7. 立方体在xy平面上的投影为四个顶点:A(0,0), B(1,0), C(1,1), D(0,1)。
五、论述题8. 在建筑设计中,透视投影能够为设计者和观察者提供一个更加真实和直观的空间感受,有助于评估建筑的视觉效果和空间布局。
正投影则为设计者提供了一种精确表达建筑尺寸和结构关系的方法,便于进行详细的技术计算和施工图的绘制。
两者在建筑设计中相辅相成,共同确保设计的准确性和可行性。
视图、投影与变换测试题及答案(新)
视图、投影与变换一、选择题(将唯一正确的答案填在题后括号内)1.圆形的物体在太阳光的投影下是 ( )A.圆形.B.椭圆形.C.线段.D.以上都可能.2.如图所示的圆台的上下底面与投影线平行,圆台的正投影是 ( )A.矩形.B.两条线段.C.等腰梯形.D.圆环.3.如图摆放的几何体的左视图是( )4.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长.B.小明的影子比小强的影子短.C.小明的影子和小强的影子一样长.D.无法判断谁的影子长.5.“圆柱与球的组合体”如图所示,则它的三视图是( )6.下列左边的主视图和俯视图对应右边的哪个物体( )7.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( ) A.相交. B.平行. C.垂直. D.无法确定.8.在一个晴朗的好天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是( )A.上午.B.中午.C.下午.D.无法确定.9.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( )A. ①②③④B. ④①③②C. ②④③①D. ④③②①10.如图是“马头牌”冰激凌模型图,它的三视图是( )11、在相同的时刻,物高与影长成比例.如果高为1.5米人测竿的影长为2.5米,那么影长为30米的旗杆的高是( )A.20米B.16米C.18米D.15米 12、(2010临沂)如图,下面几何体的俯视图是二、填空题13、在平面直角坐标系中,点A 的坐标是(3,a ),点B 的坐标是(b ,-1),若点A 与点B 关于原点对称,则a =__________,b =__________.14、如图是某几何体的三视图及相关数据,则该几何体的侧面积是__________.15、如图是一个立体图形的三视图,则这个立体图形的名称叫 .16、如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______.主视图 左视图 俯视图 第16题17、如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为 .18.若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图是________________.19.一个正方体的平面展开图如图所示,将它折成正方体后,“保”字对面的字是___________.俯视图左 视 图主 视 图主视图左视图俯视图20.将点A (,0)绕着原点顺时针方向旋转60°得到点B ,则点B 的坐标是 .三、解答题21.与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树。
武汉大学地图投影与变换试卷
武汉大学地图投影与变换试卷
姓名学号分数
一、填空题
.等角航线在地球椭球面上表象为,
在墨卡托投影的图上其表象为。
.在等角圆锥投影中纬线投影半径ρ=K/Uα,其中K的意义为,U=。
.地图投影变换常用的方法有。
.目前我国大地坐标系为大地坐标系。
其地球椭球体参数a=,b=。
.彭纳投影为投影,在
上无变形,等变形线为。
. 子午圈曲率半径和卯酉圈的特点是。
.摩尔威德投影的投影表象是。
.伪方位投影存在性质的投影,其等变形线可设计为。
.桑逊投影的投影特点是。
.地图投影的定义为。
二、判断(对者打√,错者打×)
( ).在方位投影中,投影中心点的变形最小。
( ).在正轴割圆锥投影中,长度比愈小,则变形愈小。
( ).在正轴圆柱投影中,无论是切投影还是割投影,赤道上长度比最小。
( ).多圆锥投影只存在任意投影。
( ).爱凯特投影的极点为点。
三、叙述题
.试述正轴圆锥投影的投影表象、变形分析。
.试述高斯投影的投影条件、投影表象以及变形分析,通用横轴墨卡托投影(投影)
与高斯投影相比较,有哪些优点?它们之间的关系如何?
.试述正轴圆柱投影的投影表象、变形分析。
.我国百万分一地图投影与国际百万分一地图投影有何异同点?
四、推导题
.画图并推导出方位投影的一般公式
.推求由墨卡托投影变换成等角圆锥投影的变换公式
1 / 1。
投影测试题及答案
投影测试题及答案一、单项选择题(每题2分,共10题)1. 投影测试中,哪种类型的测试是让被试者通过完成不完整的句子来揭示其内心想法的?A. 罗夏克墨迹测试B. 句子完成测试C. 主题统觉测试D. 明尼苏达多项人格问卷答案:B2. 在主题统觉测试中,被试者需要做什么?A. 描述图片中的人物B. 完成一系列心理测量问卷C. 讲述图片中的故事D. 识别图片中的颜色答案:C3. 罗夏克墨迹测试中使用的墨迹图片数量是多少?A. 10张B. 20张C. 30张D. 40张答案:A4. 下列哪项不是投影测试的特点?A. 间接性B. 客观性C. 非结构性D. 灵活性答案:B5. 投影测试主要用于评估哪些方面?A. 认知能力B. 人格特征C. 社交技能D. 职业倾向答案:B6. 明尼苏达多项人格问卷属于哪种类型的测试?A. 客观性测试B. 投射性测试C. 自我报告测试D. 行为观察测试答案:C7. 在进行投影测试时,哪种因素可能会影响测试结果?A. 测试环境B. 被试者的心情C. 测试者的指导语D. 所有以上因素答案:D8. 投影测试的结果通常需要哪种专业人员进行解释?A. 心理学家B. 教育家C. 社会学家D. 任何有兴趣的人答案:A9. 主题统觉测试中,被试者对图片的解释可以反映其什么?A. 智力水平B. 人格结构C. 社会地位D. 身体健康状况答案:B10. 罗夏克墨迹测试的创立者是谁?A. 卡尔·荣格B. 汉斯·艾森克C. 罗夏克D. 弗洛伊德答案:C结束语:以上是投影测试题及答案,希望能够帮助您更好地理解和掌握投影测试的相关知识。
地图投影复习题(补充修改版)
一、名词解释地图投影:是利用一定数学方法则把地球表面的经、纬线转换到平面上的理论和方法。
投影变换:是将一种地图投影点的坐标变换为另一种地图投影点的坐标的过程。
极值长度比:通常指沿变形椭圆的长半径a与短半径b的长度比之总称。
曲率半径:曲率的倒数,即某点的弯曲程度。
垂直圈:垂直圈又称地平经圈,指天球上经过天顶的任何大圆。
主法截面:通过A点的法线AL可作出无穷多个法截面,为说明椭球体在某点上的曲率起见,通常研究两个相互垂直的法截面的曲率,这种相互垂直的法截面为主法截面。
长度变形:长度变形又称“长度误差”、“长度变异”、“长度相对变形”,是衡量地图投影变形大小的一种数量指标。
(公式见课本21页2.3式)等角航线:是地球表面上与经线相交成相同角度的曲线。
变形椭圆:地球面上一微分圆投影到平面上一般成为微分椭圆,微分椭圆的任意两相互垂直的直径,投影后为微分椭圆的两共轭直径,且该微分椭圆可以表现投影变形的性质和大小。
面积变形:地球面上无限小面积投影到平面上的大小与它原有面积大小的相对变形。
二、简答题地图投影的目的与意义地图投影是将立体地球上的种种标线及位置,转换到平面方格坐标的一种方式,在投影出来的地图上,无论是长度和面机,都必须与实际长度面积等比例,位子也必须正确,这是地图投影最基本的原则。
地图投影与其他学科的关系地图投影同许多学科和应用技术有着密切的联系1. 与数学:从地图投影的发展来看,它是伴随着数学的发展而前进的;2. 与测量学:天文-大地测量为测制地图提供地球参考椭球体的大小形状及有关参数,并建立大地原点;大地测量学在大地原点的基础上所建立的各级三角点,则需要应用地图投影计算出它们的平面直角坐标;3. 与地图编制:地图编制与地图投影同属于地图学的重要组成部分;4. 与航海、航天、宇宙飞行:等角投影无角度变形适用于航海和航天图;宇宙飞行可以服务于地图投影,并可促使地图投影向新的方向发展。
每种投影的性质,要满足的条件及原因1. 等角投影:要满足的条件是ω=0,m=n,a=b和β=β’;2. 等面积投影:要满足的条件是vp=P-1=0或P=1;3. 等距离投影:要满足的条件是正轴经线长度比m=1,斜轴或横轴垂直圈长度比μ1=1。
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)(满分120 分)一、选择题(每题3分,共30 分)1. 如图放置的圆柱体的左视图为()2.小明从路灯底部走开时,他的影子()A.逐渐变长B. 逐渐变短C.不变D.无法确定3.下面所给几何体的俯视图是()4.小红拿着一块正方形纸板站在阳光下,则正方形纸板的影子不可能是()A.正方形B. 平行四边形C. 圆形D.线段5.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D.不能确定7.下列投影一定不会改变△ABC 的形状和大小的是()A.中心投影B.平行投影C.当△ABC 平行于投影面时的正投影D.当△ABC 平行于投影面时的平行投影8.如图是一个几何体的三视图,则该几何体的展开图可以是()9.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()10.如图是某工件的三视图,则此工件的体积为()A.144π c m3B. 12π c m3C. 36π c m3D.24π c m3二、填空题(每题4 分,共28分)11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是____________.12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:"广场上的大灯泡一定位于两人__________________________.13.如图,三角尺与其在灯光照射下的投影组成位似图形,它们的相似比为2 :5,且三角尺的一边长为8 c m,则这条边在投影中的对应边长为____________________.14. 太阳光线形成的投影称为____________________像手电筒、路灯、台灯的光线形成的投影称为_______________________.15.长方体的主视图、俯视图如图所示,则其左视图面积为____________________.16.一个几何体的三视图如图所示,其中主视图、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的体积为_________________.17.如图,在A 时测得旗杆CD的影长DE是4 m,B时测得的影长DF是8 m,两次的日照光线恰好垂直,则旗杆的高度为______________.三、解答题(一)(每题 6 分,共18 分)18. 画出如图所示几何体的三视图.19.如图,水平放置长方体底面是长为4和宽为2的矩形,它的主视图的面积为12.(1)求长方体的体积;(2)画出长方体的左视图.(用1c m代表1个单位长度)20.如图,小明利用所学的数学知识测量旗杆AB 的高度.(1)请你根据小明在阳光下的投影,画出旗杆AB 在阳光下的投影;(2)已知小明的身高为1.6 m,在同一时刻测得小明和旗杆AB 的投影长分别为0.8 m和6 m,求旗杆AB 的高.四、解答题(二)(每题8分,共24 分)21.一个几何体的三视图如图所示,(1)这个几何体名称是___________;(2)求该几何体的全面积.22.小明把镜子放在离树(AB)8 米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,CD=1.6 米,请你计算树(AB)的高度.23.如图所示为一几何体的三视图.(1)写出这个几何体的名称;(2)若三视图中的长方形的长为10 c m,正三角形的边长为4 c m,求这个几何体的侧面积.五、解答题(三)(每题10 分,共20 分)24. 5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是______________(平方单位);(2)画出该几何体的主视图和左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图;(2)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.参考答案一、1.A 2.A 3.B 4.C 5.A 6.A 7.C 8.A 9.C 10.B 二、11.3 12.之间 13.20c m 14.平行投影 中心投影 15. 3 16.15317.42m 三、18.解:三视图如下图所示:19.解:(1 )12 x 2 =2420.解:(1)如图所示:(2)如图,∵ DE 、AB 都垂直于地面,且光线DF //AC , ∴∠DEF=∠ABC , ∠DFE=∠ACB , ∴ Rt △DEF~Rt △ABC=,=1.60.86DE EF AB BC AB 即 ∴AB=12(m )答:旗杆AB 的高为12 m .四、21.解:(1)圆柱 (2)S 底圆=π·12=π S 侧=2π· 1·3=6π ∴S 全=2π+6π=8π(c m 2)22.解:由题意得∠B=∠D =90° 又由光的反射原理可知∠AEB =∠CED ∴△ABE~△CDE)81.6=2.41,(6=3A B AB B E AB CD DE 即∴米23.解:(1)三棱柱(2)侧面积为:3 x 4 x 10= 120(c m 2) 五、24.解:(1)5 22(2)如图所示:25.解:(1)这个几何体的主视图和左视图如图所示:(2)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。
《地图投影》试卷B
《课程名称》期末考试试卷考试形式:闭卷考试考试时间:120分钟班号学号姓名得分一、名词解释。
(每题6分,共计24分)1、地图投影:2、等变形线:3、长度比:4、主比例尺:二、填空题。
(每空2分,共计20分)1、描述地球椭球体的形状和大小时的参数主要有长半径、短半径、、以及第二偏心率。
2、在斜轴或横轴投影计算中,进行球面坐标换算时,无论地图比例尺大小,都需要将地球按处理。
3、地图投影按变形性质分为:、和。
4、高斯克吕格投影在地球椭球面上采用进行投影的,而通用横墨卡托投影则采用进行投影。
5、地图投影的识别主要考虑的是、以及三个方面的问题。
三、简答题。
(每题5分,共计25分)1、为什么要进行地图投影?2、如何进行地图投影的识别?3、地图投影的主要矛盾是什么?4、地图投影变换的意义和方法有哪些?5、1980年国家大地坐标系和1954年北京坐标系相比较有哪些优缺点?四、计算题。
(每题5分,共计10分)(1)我国某地区的地理坐标是东经114°12′23″,北纬25°44′31″,试问按6°和3°分带计算,该地区在1954北京坐标系下的带号和中央经度分别是多少?(要求写出计算公式)(2)国土资源职业学院主楼的位置为:3 °分带坐标为:2766635、34578596 (1954北京坐标系)6 °分带坐标为:2771733、17881616 (1954北京坐标系)试问按6°和3°分带计算,该地区的带号和中央经度分别是多少?(要求写出计算公式)五、论述题。
(21分)要设计某一区域的地图数学基础,该如何判断说使用的地图投影?。
地图投影判别(练习题)
进阶练习题
2. 如何判断地图投影的类型?
答案:判断地图投影的类型可以通过观察地图上的经纬线形状和分布特点。例如,如果经纬线呈现为直线或近似直线,并且 没有明显的角度或面积变形,则可能是方位投影或圆柱投影;如果经纬线呈现为曲线或折线,并且有明显的角度或面积变形 ,则可能是圆锥投影或多圆锥投影。
进阶练习题
研发更精确的投影算法
随着地理信息系统(GIS)和遥感技术的发展,对地图投 影的精度要求越来越高,需要研发更精确的投影算法以满 足实际需求。
探索新型投影方式
目前常见的投影方式有等角投影、等面积投影和任意投影 等,未来可以探索更多新型的投影方式,以满足不同应用 场景的需求。
考虑地球模型的影响
地球是一个近似于椭球的球体,不同的地球模型对地图投 影的结果会产生影响,未来需要深入研究地球模型对地图 投影的影响,以提高投影精度。
1. 什么是地图投影?
答案:地图投影是将地球表面上的经纬网按照一定的数学法则转绘到平 面上的过程。
2. 地图投影有哪些基本类型?
基础练习题
答案
地图投影的基本类型包括方位投影、圆柱投影、圆锥投影和多圆锥投影等。
答案
等角投影是指保持角度不变的投影方式,其特点是变形小,但面积和长度变形 较大;等面积投影是指保持面积不变的投影方式,其特点是面积不变,但角度 和长度变形较大。
3. 如何纠正地图投影变形?
答案:纠正地图投影变形的方法包括多项式映射、共形映射和物理映射等。具体方法是根据地图的具 体情况和需求,选择合适的纠正方法,对原始地图进行投影变换,以减小或消除投影变形。
进阶练习题
4. 如何应用地图投影于实际工作?
答案:地图投影在实际工作中的应用非常广泛,例如在地理 信息系统、导航、气象预报、军事指挥等领域中都需要用到 地图投影。通过选择合适的地图投影,可以更好地满足实际 工作的需求,提高地图的精度和使用价值。
(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》测试题(包含答案解析)
一、选择题1.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最短的时刻为()A.上午12时B.上午10时C.上午9时30分D.上午8时2.如图所示的立体图形,其俯视图正确的是()A.B.C.D.3.如图所示几何体的俯视图是()A.B.C.D.4.由5个相同的小正方体组成的几何体如图所示,该几何体的主视图是()A.B.C.D.5.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等6.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A.B.C.D.7.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.8.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.9.物体的形状如图所示,则从上面看此物体得到的平面图形是()A.B.C.D.10.矩形木框在阳光照射下,在地面上的影子不可能是()A.B.C.D.11.如右图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位览的小立方体的个数,则从左面乔这个几何体所得到的图形是()A.B.C.D.12.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.二、填空题13.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算该几何体的底面周长为______cm.14.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.15.一个几何体是由一些完全相同的小立方块搭成的,从三个不同的方向看到的情形如图所示,则搭成这个几何体共需这样的小方块______个.16.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.17.如果一个几何体从某个方向看到的平面图形是圆,则该几何体可能是________ (至少填两种几何体)18.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形_____相似.(填“可能”或“不可能”).19.一个几何体的三视图如图所示,则该几何体的体积为________.20.将一个矩形纸片(厚度不计)置于太阳光下,改变纸片的摆放位置和方向,则其留在地面上的影子的形状可能是____.(只需写一个条件)三、解答题21.画出下面立体图形的三视图.【答案】详见解析【分析】根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,分别画出即可.【详解】解:如图所示:【点睛】本题考查了简单组合体的三视图,几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形,考查了学生的空间想象能力.22.如图是由若干个大小相同的小正方体搭成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.【答案】见解析【分析】根据几何体的三视图(主视图、左视图、俯视图)的定义即可得.【详解】画图如下:【点睛】本题考查了三视图,熟练掌握三视图的画法是解题的关键.23.从正面、左面、上面三个方向看该立体图形,请在下面网格中分别画出看到的平面图形.【答案】见解析【分析】从正面看:共有4列,从左往右分别有1,3,1,1个小正方形;从左面看:共有3列,从左往右分别有3,1,1个小正方形;从上面看:共分4列,从左往右分别有1,3,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】考查了作图-三视图,用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.24.画出下列几何体的三视图【答案】见解析【分析】根据主视图是从正面看所得到的图形,俯视图是从上面看所得到的图形,左视图时从左边看所得到的图形画出图形即可.【详解】如图所示:【点睛】本题主要考查了几何体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.25.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,请回答以下问题:(1)该几何体至少是用________个小立方块搭成的,最多是用________个小立方块搭成的;(2)请你画出使用小立方块最少时从左面看到的该几何体的形状图,要求画出所有符合要求的形状图.【答案】(1)6,8;(2)见解析【分析】(1)根据主视图可得,俯视图中第一列中至少一处有2层,俯视图中第一列中最多3处有2层,由此即可判断.(2)根据形状图的定义分三种情形画出图形即可.【详解】解:(1)根据主视图可得,俯视图中第一列中至少一处有2层;所以该几何体至少是用6个小立方块搭成的,根据主视图可得,俯视图中第一列中最多3处有2层;所以该几何体最多是用8个小立方块搭成的,故答案为6,8.(2)所有符合要求的形状图如图所示:【点睛】本题考查了由三视图判断几何体,由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.26.如图,正方形硬纸板的边长为a ,其4个角上剪去的小正方形的边长为b (b <2a ),这样可制作一个无盖的长方体纸盒.(1)这个纸盒的容积为 ;(2)画出这个长方体纸盒的三视图.(在图上用含a 、b 的式子标明视图的长和宽)【答案】(1)b(a ﹣2b)2;(2)详见解析【分析】(1)根据图形,得出底面边长、高,从而得出长方体纸盒体积;(2)脑海中构建立体图形,绘制三视图.【详解】解:(1)由题意知纸盒的底面边长为a﹣2b、高为b,则这个纸盒的容积为b(a﹣2b)2,故答案为:b(a﹣2b)2.(2)如图所示:【点睛】本题考查立体图形的三视图,解题关键是在脑海中构建出立体图形的样子.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用光线与地面的夹角的变换进行判断.【详解】解:上午8时、9时30分、10时、12时,太阳光线与地面的夹角不同,其中12时太阳光线与地面的夹角最大,所以此时向日葵的影子最短.故选:A.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长,中午最短.2.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C.【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.3.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.4.D解析:D【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图有3列,每列小正方形数目分别为2,1,1,故选:D.【点睛】此题主要考查了简单几何体的三视图,主视图是从物体的正面看得到的视图.5.D解析:D【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.故选:D.【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.6.D解析:D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.7.C解析:C【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.8.B解析:B【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.9.C解析:C【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:C.【点睛】本题考查了三视图的知识,理解俯视图是从物体的上面看得到的视图是关键.10.C解析:C【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是梯形.故选:C.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.11.D解析:D【分析】从正面看,得到从左往右2列正方形的个数依次为3, 3;从左面看得到从左往右2列正方形的个数依次为5,1,依此画出图形即可.【详解】解:由题意知:该几何体为:故从左面看为:故选D.【点睛】本题考查三视图,解题关键是得到每列正方形的具体的数目为这列正方体的最多数目.12.C解析:C【解析】试题分析:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选C.考点:1.函数的图象;2.中心投影;3.数形结合.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.4πcm【分析】根据主视图是等腰三角形利用等腰三角形的性质勾股定理求得底边的长这就是圆锥底面圆的直径计算周长即可【详解】如图根据主视图的意义得三角形是等腰三角形∴三角形ABC是直角三角形BC==2∴解析:4πcm.【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.【详解】如图,根据主视图的意义,得三角形是等腰三角形,∴三角形ABC是直角三角形,BC=()2222642AB AC -=-=2,∴底面圆的周长为:2πr=4πcm .故答案为:4πcm .【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键. 14.【分析】由已知三视图为圆柱首先得到圆柱底面半径从而根据圆柱体积=底面积乘高求出它的体积【详解】解:由三视图可知圆柱的底面直径为4高为6∴底面半径为2∴V=πr2h=22×6•π=24π故答案是:24解析:24π【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr 2h=22×6•π=24π,故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.15.5【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】解:综合主视图俯视图左视图底层有4个正方体第二层有1个正方体所以搭成这 解析:5【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:综合主视图,俯视图,左视图,底层有4个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是5,故答案为:5.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.16.72【解析】分析:∵由主视图得出长方体的长是6宽是2这个几何体的体积是36∴设高为h则6×2×h=36解得:h=3∴它的表面积是:2×3×2+2×6×2+3×6×2=72解析:72【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3.∴它的表面积是:2×3×2+2×6×2+3×6×2=72.17.圆锥圆柱球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥圆柱球等故答案为圆锥圆柱球解析:圆锥、圆柱、球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥,圆柱,球等.故答案为圆锥、圆柱、球.18.可能【分析】根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似【详解】解:∵中心投影是由点光源发出的光线形成的投影∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形解析:可能【分析】根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似.【详解】解:∵中心投影是由点光源发出的光线形成的投影,∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形成的两个三角形相似,否则不相似,故答案为:可能.【点睛】本题考查了相似三角形的应用及中心投影的知识,解题的关键是了解中心投影是由点光源发出的光线形成的投影.19.【分析】观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)根据体积等于底面积高计算即可【详解】解:观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)故答案为:【点睛】本题考查三视解析:【分析】观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示),根据体积等于底面积⨯高计算即可.【详解】解:观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示).21122V ππ=⨯=, 故答案为:π.【点睛】本题考查三视图,圆柱的体积公式等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.20.平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻平行物体的投影仍旧平行即可得到正确的答案【详解】矩形在阳光下的投影对边应该是相等的影子的形状可能是矩形正方形平行四边形;故答案 解析:平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得到正确的答案.【详解】矩形在阳光下的投影对边应该是相等的,影子的形状可能是矩形、正方形、平行四边形; 故答案为:平行四边形.【点睛】本题综合考查了平行投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.三、解答题21.无22.无23.无24.无25.无26.无。
2023~2024学年人教版选修7《2.1 地图和地图投影》高频题集
2023~2024学年人教版选修7《2.1 地图和地图投影》高频题集考试总分:91 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 4 小题,每题 3 分,共计12分)1. 王老师退休后选择了生态宜居城市日照居住。
9月23日这天,他从①号住宅楼出发,沿小区健康步道锻炼身体。
据此完成下列各题。
(1)王老师5:58发现自己的影子位于身前并与线路平行。
则其所处位置及其前进方向是()A.甲向东B.乙向南C.丙向西D.丁向北(2)该日王老师行进的过程中,发现某时刻身影长度与身高基本相等,该时刻是()A.10:00B.10:30C.11:00D.11:302. 2020年4月30日,珠峰高程测量首场新闻发布会在珠峰大本营召开,这意味着我国对珠峰高程新一轮测量正式启动。
要准确地测出珠峰高度,那就必须登顶珠峰,4月和5月,风雪天气相对较少,有利于登顶,而5月的登顶条件又优于4月。
下图示意本次珠峰高程测量拟定登顶线路图,图中珠峰大本营位于珠峰的西北方向。
据此完成下列小题。
(1)图示登顶线路中,从甲到乙前进方向大致为()A.正东B.正西C.正南D.正北(2)5月登顶条件优于4月,因为5月()A.白昼更长B.云雾更少C.昼夜温差更大D.冰雪层更稳定(3)甲处冰雪层厚度大于丙处的原因是()A.降雪偏多B.气温偏低C.地处阳坡D.地处山谷3. 亚欧大陆36°N到46°N之间的阿尔卑斯山、大高加索山、昆仑山等众多名山,都盛产优质矿泉水,被誉为“世界黄金水源带”。
昆仑山脉玉珠峰北麓海拔6000m的雪线之上,冰雪慢慢融化,渗入岩层,形成优质的雪山矿泉水。
据此回答下列小题。
(1)“世界黄金水源带”的形成原因有()①纬度高,全年气温低②山地冰川广布,逐渐消融③降水丰富,年积雪量大④森林覆盖率高,利于水体净化⑤有高大山脉分布A.①②B.③④C.②⑤D.④⑤(2)昆仑山的雪山矿泉水()A.水源主要来自太平洋B.水源地将随全球变暖海拔降低C.补给依靠江河、湖泊D.由冰雪下渗经过滤和矿化形成4. 2020年12月29日,我国中东部大部地区迎来大风降温雨雪天气,局地遭遇16℃以上的断崖式降温,中央气象台时隔4年发布最高级别寒潮橙色预警。
《地图投影与变换》考试题(含答案)word版本
《地图投影与变换》考试题(含答案)一.单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在题干前面的括号内。
答案选错或未选者,该题不得分。
每小题1分,共15分)(A)1.在球心投影中A.大圆投影为直线 B.经线投影为圆 C.小圆投影为圆 D.等高圈投影为直线(B)2.在墨卡托投影中,满足A. n=1 B.等角性质 C.m=1 D.经线为椭圆经线(A)3.在彭纳投影中,满足A.极点投影为点 B.等距离 C.经线为直线 D.纬线投影为同心圆(B)4.在等面积圆柱投影中A.极点投影为圆弧 B.经线投影为直线C.等角航行投影为直线 D.纬线投影为圆(C)5.高斯-克吕格投影用于地图投影。
A.世界地图 B.沿纬线延伸区域 C.1:5千至1:50万地形图系列 D.亚洲地图(D)6.在球面投影中,满足A.等高圈投影为直线 B.大圆投影为直线 C.大圆、小圆投影直线 D.等角性质(D)7.伪方位投影存在性质的投影A.等距离 B.等角C.等面积 D.任意(A)8.爱凯特投影满足A.等面积B.纬线投影为圆 C.经线投影为直线 D.经线投影为椭圆(A)9.等角投影条件可以表示为A.a=b B.m*n=1 C.m=n D.m=1(C)10.等距离投影条件可以表示为A.a=b B.θ=90°,m=n C.a=1 或 b=1 D.n=1(B)11.墨卡托投影纬线线上的变形椭圆是A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆C.大小变化、形状不变的微分圆 D.m=1的圆或椭圆(B)12.高斯投影中央经线上的变形椭圆为A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆C.n=1的圆或椭圆 D.m=1的圆或椭圆(C)13.等角圆锥投影中央经线上变形椭圆是A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆C.大小变化、形状不变的微分圆 D.m=1的圆或椭圆(C)14.标准纬线上的变形椭圆是A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆C.大小变化、形状不变的微分圆 D.m=1的圆或椭圆(D)15.任意投影中的变形椭圆是A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆C.大小变化、形状不变的微分圆 D.大小形状均变化的微分椭圆二.多项选择题(从下列各题四个备选答案中选出二至四个正确答案,并将其代号写在空白内处。
北师大版九年级数学上册《第五章投影与视图》单元测试卷及答案
北师大版九年级数学上册《第五章投影与视图》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列是平行投影的是()A.B.C.D.2.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短3.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m4.如图,将一个长方体内部挖去一个圆柱,这个几何体的主视图是()A .B .C .D .5.如图,是一个由铁铸灌成的几何体的三视图,根据图中所标数据,铸灌这个几何体需要的铁的体积为( )A .12πB .18πC .24πD .78π6.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD 为矩形,E F 、分别是AB DC 、的中点.若86AD AB ==,,则这个正六棱柱的侧面积为( )A .483B .96C .144D .963二、填空题7.如图是三角尺在灯泡O 的照射下在墙上形成的影子,现测得30cm 20cm OA AA '==,,这个三角尺的面积与它在墙上形成的影子的面积的比是 .8.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF 长32米,它的影长FD 是3米,同一时测得OA 是274米,则金字塔的高度BO 是米.9.地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而 (增大、变小)10.墙壁CD 上D 处有一盏灯(如图),小明站在A 处测得他的影长与身长相等,都为1.6m ,他向墙壁走1m 到B 处时发现影子刚好落在A 点,则灯泡与地面的距离CD = .11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据计算该几何体的底面周长为cm .12.用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是个.三、解答题13.在学习完投影的知识后,小张同学立刻进行了实践,他利用所学知识测量操场旗杆的高度.(1)如图,请你根据小张(AB)在阳光下的投影(BE),画出此时旗杆(CD)在阳光下的投影.(2)已知小张的身高为1.76m,在同一时刻测得小张和旗杆的投影长分别为0.44m和5.5m,求旗杆的高度.14.如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为.(2)请你在图中画出小亮站立AB处的影子.15.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)画出这个几何体的表面展开图;(3)根据图中的数据,求这个几何体的侧面积.16.如图,是用几个相同的正方体搭出的几何体,请解答下列问题:(1)分别在方格纸中画出从正面、左面、上面看这个几何体时看到的图形;(2)若每个小正方体的棱长为2,要给这个几何体地面以上的部分涂上颜色,求涂色部分的面积;(3)小亮说可以在这个几何体上再摆放上几个相同的小正方体,使新几何体和原几何体分别从上面和从左面看到的形状相同,你觉得他说的对吗?如果你认为小亮说法正确请在下面的方格纸中画出两种添加小正方体后,从正面看到的新几何体的形状图;你认为可以有___________种添加小正方体的方式;满足小亮说法的添加小正方体个数最少可以摆___________个,最多可以摆___________个.如果你认为小亮说法不正确,请说明理由.参考答案题号 1 2 3 4 5 6答案 B B A A B D1.【答案】B【分析】本题考查了平行投影的知识,定义:在一束平行光线照射下形成的投影叫做平行投影.特征:平行投影的投影线是平行的.牢记平行投影的定义是解题的关键.【详解】如图所示,连接影子的顶端和物体的顶端得到投影线,若投影线平行则为平行投影.通过作图可知A、C、D中影子的顶端和物体的顶端连线不平行,只有选项B中影子的顶端和物体的顶端连线平行.故选B.2.【答案】B【分析】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.根据中心投影的特征可得小亮在地上的影子先变短后变长.【详解】解:在小亮从A处径直走到路灯下时,他在地上的影子逐渐变短;当他走到路灯下,再走到B处时,他在地上的影子逐渐变长∴小亮在地上的影子先变短后边长故选:B.3.【答案】A 【详解】∵BE∵AD ∵∵BCE∵∵ACD ∵CB CEAC CD=,即CB CE AB BC DE EC =++ ∵BC=1,DE=1.8,EC=1.2 ∵1 1.21 1.8 1.2AB =++ ∵1.2AB=1.8 ∵AB=1.5m . 故选A . 4.【答案】A【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【详解】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线. 故选:A .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 5.【答案】B【分析】直接利用三视图得出几何体的形状,再利用圆柱体积求法得出答案. 【详解】解:由三视图可得,几何体是空心圆柱,其小圆半径是1,大圆半径是2 则大圆面积为:224ππ⨯=,小圆面积为:21ππ⨯= 故这个几何体的体积为:64624618πππππ⨯-⨯=-=. 故选:B .【点睛】此题主要考查了由三视图判断几何体,正确判断出几何体的形状是解题关键. 6.【答案】D【分析】根据题意,正六边形的边长为AG BG 、,过点G 作GE AB ⊥,则GE 垂直平分AB ,根据正六边形的性质求得AG ,进而求得正六棱柱的侧面积.【详解】解:如图,正六边形的边长为AG BG 、,过点G 作GE AB ⊥∵GE 垂直平分AB由正六边形的性质可知11203032AGB A B AE AB ∠=︒∠=∠=︒==,, ∵ 323,cos30AE AG ===︒正六棱柱的侧面积66238963AG AD =⨯=⨯=故选:D .【点睛】本题考查了三视图,正多边形与圆,解直角三角形,掌握以上知识是解题的关键. 7.【答案】9:25【分析】本题考查了相似三角形的应用.先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形面积的比等于相似比的平方解答即可. 【详解】解:∵30cm 20cm OA AA '==, ∵50cm OA '= ∵:30:503:5OA OA '== ∵三角尺与影子是相似三角形∵三角尺的周长与它在墙上形成的影子的面积的比是9:25 故答案为:9:25. 8.【答案】137【分析】本题考查平行投影,根据同一时刻,物高与影长对应成比例,列出比例式进行求解即可. 【详解】解:由题意,得:EF OBFD OA= 即:323274OB =∵137OB =; 故答案为:137. 9.【答案】变小.【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【详解】连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长,则王涛同学在墙上投影长度随着他离墙的距离变小而变小. 故答案为:变小.【点睛】本题综合考查了中心投影的特点和规律,中心投影的特点是:(1)等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;()2等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.10.【答案】64 15m【分析】利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离即可.【详解】如图:根据题意得:BG=AF=AE=1.6m,AB=1m∵BG//AF//CD∵∵EAF∵∵ECD,∵ABG∵∵ACD∵AE:EC=AF:CD,AB:AC=BG:CD设BC=x m,CD=y m,则CE=(x+2.6)m,AC=(x+1)m∵1.6 1.62.6x y=+1 1.61x y=+解得:x=53,y=6415∵CD=64 15m.∵灯泡与地面的距离为64 15m故答案为:64 15m.11.【答案】4πcm.【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.【详解】如图,根据主视图的意义,得三角形是等腰三角形∵三角形ABC是直角三角形()2222642AB AC--∵底面圆的周长为:2πr=4πcm.故答案为:4πcm.【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键.12.【答案】4【详解】解:由于是粘上的,故每一层交错拿走对角线位置的两个正方体,可得每一层的每一行每一列都要保留一个立方体,故取走的小立方体最多可以是4个.故答案为:413.【答案】(1)见解析(2)旗杆的高度为22m.【分析】本题考查作图-应用与设计作图,设计平行投影,解题的关键是读懂题意,掌握平行投影的特征.(1)连接AE,过C作CF AE∥交BD于F,线段DF即为所求;(2)根据平行投影特征得:1.760.44 5.5CD=,即可解得答案.【详解】(1)解:连接AE,过C作CF AE∥交BD于F,如图:线段DF即为所求;(2)解:根据题意得:1.760.44 5.5CD=解得22CD=∴旗杆的高度为22m.14.【答案】(1)变短;(2)见详解.【分析】(1)先选取B,O之间一点D,分别作出小亮的影子,比较代表影长的线段长度即可得出变化情况即可;(2)连结线段P A,并延长交底面于点E,得到线段BE即可.【详解】解(1)在小亮由B处沿BO所在的方向行走到达O处的过程取点D通过灯光在B处小亮的影长为BE,当小亮走到D处时,小亮的影长为FDBE>FD∵小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短故答案为:变短;(2)如图所示,连结P A,并延长交底面于E,则线段BD为求作小亮的影长.【点睛】本题考查投影知识,从远处向灯光处走去影长的变化,掌握影长变化规律,向灯光走近,影长变短,远离灯光,影长变长,先走近再走远先变短再变长是解题关键.15.【答案】(1)三棱柱(2)见详解(3)272cm【分析】本题考查三视图、几何体的侧面展开图等知识,解题的关键是理解三视图、看懂三视图.(1)根据三视图,即可解决问题;(2)画出正三棱柱的表面展开图即可;(3)侧面展开图是矩形,求出矩形的面积即可.【详解】(1)解:根据三视图可知这个几何体的名称是三棱柱.(2)这个几何体的表面展开图如下:(答案不唯一)(3)这个几何体的侧面积是2⨯⨯=.83372cm16.【答案】(1)见解析(2)108(3)小亮说法正确,图见解析,5,1,3【分析】(1)观察图形可得:从正面看到从左往右依次有小正方形的数量为2、1、3;从左面看到有小正方形的数量为3、1;从上面看到从左往右依次有小正方形的数量为2,2,1,即可求解;(2)先找出每个小正方体所需要涂色的面的个数,再求和即需要涂颜色的面的总数,然后计算出总面积即可;(3)根据从上面和从左面看到的形状相同,添加一个小正方体,可在俯视图中添加,再验证从上面和从左面看到的形状,即可求解.【详解】(1)解∵如图(2)解∵ 2222⨯⨯+⨯⨯+⨯+⨯=6224225222108(3)解∵ 小亮说法正确有5种添加小正方体的方式,如下图其中添加小正方体个数最少可以摆1个,最多可以摆3个.故答案为∵ 5,1,3【点睛】此题主要考查了画三视图,关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.。
地图投影课程考试试卷
中国地质大学网络(成人)教育秋季课程考试试卷考试科目名称:地图投影层次:专升本考试方式:考查一、名词解释1. 等角投影(5分)参考答案:等角投影:在一定范围内,投影面上任何点上两个微分线段组成的角度投影前后保持不变的一类投影。
2. 地球椭球(5分)参考答案:地球椭球:将大地体绕短轴(地轴)飞速旋转,就能形成一个表面光滑的球体,即旋转椭球体,或称为地球椭球体。
3. 平均曲率半径(5分)参考答案:平均曲率半径:椭球面上任意一点的平均曲率半径R等于该点子午圈曲率半径M和卯酉圈曲率半径N的几何平均值。
二、问答题1. 高斯投影建立的三个条件是什么?(5分)参考答案:(1)中央经线和赤道投影后为互相垂直的直线,且为投影的对称轴;(2)投影具有等角性质;(3)中央经线投影后保持长度不变。
解题思路:2. 正轴圆柱投影适用于何种制图区域?(20分)参考答案:通常适用于赤道附近沿纬线延伸的地区。
解题思路:3. 识别一个投影一般应从哪些方面去考虑?(20分)参考答案:(1)投影的种类----属方位.圆柱.圆锥或其他投影;(2)变形性质----属等角.等面积.任意或等距离投影;(3)投影方式----投影面与地球面的关系位置,相切还是相割,中心点和标准线的位置。
解题思路:4. 简述长度变形.面积变形和最大角度变形的含义。
(10分)参考答案:长度比与1之差可衡量长度相对变形;面积比与1之差值可衡量面积相对变形;投影前后两个对应方向角最大变形的表达式为:ω为一点上的最大角度变形。
解题思路:5. 简述圆锥投影建立的思路。
(20分)参考答案:圆锥投影中纬线投影后为同心圆圆弧,经线投影后为相交于一点的直线束,且夹角与经差成正比。
根据变形理论公式得出经纬线长度比就是极值长度比,于是沿经纬线长度比、面积比和最大角度变形及前面圆锥投影的公式可得出圆锥投影的一般公式。
解题思路:6. 在墨卡托投影中,等角航线为何表现为直线?(5分)参考答案:略解题思路:7. 在测量和制图实践中,为何采用一定大小的旋转椭球面来代替地球的自然表面?(5分)参考答案:由于地球的自然表面形状极不规则,无法用数学表达式表达,对于投影计算来说不方便,为了投影计算方便,所以用能代表地球表面的规则的能用数学表达式表达的旋转椭球面代替。
(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》检测卷(有答案解析)(1)
一、选择题1.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最短的时刻为()A.上午12时B.上午10时C.上午9时30分D.上午8时2.如图,是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的个数为n,则n不可能是( )A.9 B.10 C.11 D.123.如图,几何体由6个大小相同的正方体组成,其俯视图...是()A.B.C.D.4.如图所示的几何体的主视图是()A.B.C.D.5.如图所示,该几何体的俯视图是()A.B.C.D.6.如图是某零件的模型,则它的左视图为()A.B.C.D.7.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A.B.C.D.8.如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形从左面观察得到的平面图形是()A.B.C.D.9.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B 的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变10.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体11.若几何体的三视图如图所示,则该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱12.如图是一个由多个相同小正方体堆积而成的几何体从上面看到的形状图,图中所示数字为该位置小正方体的个数,则这个几何体从正面看到的形状图是( )A.B.C.D.二、填空题13.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.14.一个几何体是由一些完全相同的小立方块搭成的,从三个不同的方向看到的情形如图所示,则搭成这个几何体共需这样的小方块______个.15.如图,小芸用灯泡O照射一个矩形相框ABCD,在墙上形成影子A′B′C′D′.现测得OA =20cm,OA′=50cm,相框ABCD的面积为80cm2,则影子A′B′C′D′的面积为_____cm2.16.小芳的房间有一面积为3 m2的玻璃窗,她站在室内离窗子4 m的地方向外看,她能看到窗前面一幢楼房的面积有____m2(楼之间的距离为20 m).17.如图,直角坐标平面内,小明站在点A(﹣10,0)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则小明在y轴上的盲区(即OE的长度)为_____米.18.一个几何体的三视图如图所示,则该几何体的体积为________.19.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形(分别是:主视图,左视图,和俯视图)如图所示,则这一堆方便面共有__________个20.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.三、解答题21.如图所示是由几个小立方体所组成的几何体的从上面看的形状图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的从正面看、从左面看的图形.【答案】答案见解析【分析】直接利用俯视图结合小正方体个数得出左视图和左视图.【详解】解:由题意可得:.【点睛】此题考查几何体的三视图,熟练掌握几何体三视图的视角和图形构成是解题的关键.22.如图是一个几何体从正面和上面看到的图形,求该几何体的体积.(π≈3.14)【答案】45420cm3.【分析】根据主视图和俯视图可知此几何体上面是圆柱,下面是长方体,根据圆柱和长方体的体积公式计算即可得答案.【详解】解:∵主视图上面上长方形,下面是长方形,俯视图中间是圆形,外部是正方形,∴此几何体上面是圆柱,下面是长方体,由图形可知:长方体的长、宽、高分别为30、30、40,圆柱的底面直径为20,高为30,∴该几何体的体积=30×30×40+3.14×(20÷2)2×30=36000+3.14×100×30=36000+9420=45420(cm3).答:几何体的体积是45420cm3.【点睛】本题考查三视图,正确得出该几何体的形状并熟练掌握各几何体的体积公式是解题关键.23.如图,甲是由5个棱长为1cm的小正方体搭成的几何体.(1)请在下面方格纸中分别画出甲的主视图和左视图;(2)该几何体甲的表面积为cm².(3)若用n个同样的正方体搭几何体乙,使其主视图、左视图与甲完全相同,则n的最大值为.【答案】(1)画图见解析;(2)22(3)7【分析】(1)根据主视图和左视图的定义画出图形即可.(2)利用三视图数出六个方向的小正方形的个数,总个数乘一个小正方形的面积即可求解.(3)根据主视图可知这个几何体有2层3列,从左视图看有2层2列,底层最多有6个小正方体,顶层最多有1个,两层的个数相加即可.【详解】(1)如图所示:(2)∵从主视看有4个小正方形,从对面看也有4个,从左视图看有3个小正方形,从对面看也有3个,从俯视图看4个小正方形,从对面看也有4个,∴几何体的表面共有22个小正方形,每个小正方形面积为1cm²,∴该几何体甲的表面积为22cm².(3)∵根据主视图可知这个几何体有2层3列,从左视图看有2层2列,∴结合主视图与左视图,底层最多有6个小正方体,顶层最多有1个,∴乙几何体最多由7个小正方体搭成,n=.∴7【点睛】本题考查三视图,从不同方向看几何体,求小立方块堆砌图形的表面积,并由三视图还原几何体,易错点是由三视图确定立方体的最多块数.24.由12个完全相同的棱长为1cm的小正方体搭成的几何体,如图所示.(1)请画出这个几何体的三视图.(2)请计算它的表面积.42cm.【答案】(1)画图见解析;(2)2【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,2;俯视图有3列,每列小正方数形数目分别为3,3,1.据此可画出图形;(2)利用几何体的形状进而求出其表面积;【详解】(1)S=⨯+++(2)2(677)2=⨯+2202()242cm =答:它的表面积是42cm 2. 【点睛】本题考查了三视图的画法以及表面积的求法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,物体的表面积是指露在外部的所有表面积之和.25.如图1,这是一个由27个同样大小的立方体组成的三阶魔方,体积为27. (1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)如图2,把图1中的正方形ABCD 放到数轴上,使得点A 与−1重合,那么点D 在数轴上表示的数为 .【答案】(1)3;(2)面积为:553)15-【分析】(1)根据立方体的体积公式,直接求棱长即可;(2)根据棱长,求出每个小正方体的边长,进而可得小正方形的对角线,即阴影部分图形的边长,即可得解;(3)用点A 表示的数减去边长即可得解. 【详解】解:(1)设魔方的棱长为x , 则327x =,解得:3x =; (2)棱长为3,∴每个小立方体的边长都是1,∴正方形ABCD 22125+2(5)5ABCD S ∴==正方形;(3)正方形ABCD 5A 与1-重合,∴点D 在数轴上表示的数为:15-故答案为:15- 【点睛】本题主要考查实数与数轴、立方根的综合应用,解决此题的关键是能求出每个小正方形的边长.26.图2是图1中长方体的三视图,若用S 表示面积,22S x x =+主,2S x x =+左,求S 俯.【答案】S 俯232x x =++ 【分析】由主视图和左视图的宽为x ,结合两者的面积得出俯视图的长和宽,从而得出答案. 【详解】∵S 主()222x x x x =+=+,S 左()21x x x x =+=+,∴俯视图的长为:2x +,宽为:1x +,则俯视图的面积为:S 俯()()22132x x x x =++=++.【点睛】本题主要考查了由三视图求边长和面积及整式的混合运算,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用光线与地面的夹角的变换进行判断. 【详解】解:上午8时、9时30分、10时、12时,太阳光线与地面的夹角不同,其中12时太阳光线与地面的夹角最大, 所以此时向日葵的影子最短. 故选:A .【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长,中午最短.2.D解析:D【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个,故最多有3×3+2=11个,故不可能为12个,故选:D.【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.3.C解析:C【分析】细心观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形判定则可.【详解】解:从物体上面看,底层是1个小正方形,上层是并排放4个小正方形.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.A解析:A【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图是一个“L”形的组合图形.故选:A.【点睛】此题考查几何体的三视图,掌握几何体三视图观察的方位及图形形状是解题的关键.5.C解析:C【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,故选:C.【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.6.D解析:D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.D解析:D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.8.B解析:B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选:B.【点睛】本题考查了三视图的知识,左视图是从物体的左侧面看得到的视图.9.A解析:A【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选A.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.10.A解析:A【解析】【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D错误,根据几何体的三视图,三棱柱符合要求,故选A.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.11.D解析:D【解析】【分析】根据两个视图是长方形得出该几何体是柱体,再根据俯视图是三角形,得出几何体是三棱柱.【详解】主视图和左视图是长方形,∴几何体是柱体,俯视图的大致轮廓是三角形,∴该几何体是三棱柱;所以D选项是正确的.【点睛】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.12.C解析:C【解析】【分析】根据俯视图可判断主视图有3列,根据数字可判断每列最多的小正方体的个数,即可得答案.【详解】由俯视图中的数字可得:主视图有3列,从左到右的最大数字分别是:3,3,2.故选C.【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方体数目为俯视图中该列小正方体数字中的最大数字.二、填空题13.【分析】由已知三视图为圆柱首先得到圆柱底面半径从而根据圆柱体积=底面积乘高求出它的体积【详解】解:由三视图可知圆柱的底面直径为4高为6∴底面半径为2∴V=πr2h=22×6•π=24π故答案是:24解析:24【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π,故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.14.5【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】解:综合主视图俯视图左视图底层有4个正方体第二层有1个正方体所以搭成这解析:5【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:综合主视图,俯视图,左视图,底层有4个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是5,故答案为:5.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.500cm2【分析】易得对应点到对应中心的比值那么面积比为对应点到对应中心的比值的平方据此求解可得【详解】解:∵OA:OA′=2:5可知OB:OB′=2:5∵∠AOB=∠A′OB′∴△AOB∽△A′解析:500cm2.【分析】易得对应点到对应中心的比值,那么面积比为对应点到对应中心的比值的平方,据此求解可得.【详解】解:∵OA:OA′=2:5,可知OB:OB′=2:5,∵∠AOB=∠A′OB′,∴△AOB∽△A′OB′,∴AB:A′B′=2:5,∴矩形ABCD的面积:矩形A′B′C′D′的面积为4:25,又矩形ABCD的面积为80cm2,则矩形A′B′C′D′的面积为500cm2.故答案为500cm2.【点睛】本题考查中心投影与位似图形的性质,用到的知识点为:位似比为对应点到对应中心的比值,面积比为位似比的平方.16.108【解析】考点:平行投影;相似三角形的应用分析:在不同时刻同一物体的影子的方向和大小可能不同不同时刻物体在太阳光下的影子的大小在变方向也在改变依此进行分析解答:解:根据题意:她能看到窗前面一幢楼解析:108【解析】考点:平行投影;相似三角形的应用.分析:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.解答:解:根据题意:她能看到窗前面一幢楼房的图形与玻璃窗的外形应该相似,且相似比为246=6,故面积的比为36;故她能看到窗前面一幢楼房的面积有36×3=108m2.点评:本题考查了平行投影、视点、视线、位似变换、相似三角形对应高的比等于相似比等知识点.注意平行投影特点:在同一时刻,不同物体的物高和影长成比例17.5【详解】首先作出BM⊥EO得出△BND∽△BME即可得出再利用已知得出BNBMDN的长即可求出EM进而求出EO即可解:过点B作BM⊥EO交CD于点N∵CD∥EO∴△BND∽△BME∴∵点A(﹣10解析:5【详解】首先作出BM⊥EO,得出△BND∽△BME,即可得出BN DNBM EM=,再利用已知得出BN,BM,DN的长,即可求出EM,进而求出EO即可.解:过点B作BM⊥EO,交CD于点N,∵CD∥EO,∴△BND∽△BME,∴BN DNBM EM=,∵点A(﹣10,0),∴BM=10米,∵眼睛距地面1.5米,∴AB=CN=MO=1.5米,∵DC=2米,∴DN=2﹣1.5=0.5米,∵他的前方5米处有一堵墙DC,∴BN=5米,∴50.510EM=,∴EM=1米,∴EO=1+1.5=2.5米.故答案为2.5.18.【分析】观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)根据体积等于底面积高计算即可【详解】解:观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)故答案为:【点睛】本题考查三视 解析:π【分析】观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示),根据体积等于底面积⨯高计算即可.【详解】解:观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示).21122V ππ=⨯=, 故答案为:π.【点睛】本题考查三视图,圆柱的体积公式等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.19.5【分析】利用三视图得到排数及列数即可得到答案【详解】由三视图可知此摆放体有两排第一排有一列第二排有两列第一排一列有一个第二排两列分别有两个∴1+2+2=5个故答案为:5【点睛】此题考查三视图的应用解析:5【分析】利用三视图得到排数及列数,即可得到答案.【详解】由三视图可知,此摆放体有两排,第一排有一列,第二排有两列,第一排一列有一个,第二排两列分别有两个,∴1+2+2=5个,故答案为:5.【点睛】此题考查三视图的应用,会看三视图的组成特点及分析得到排数列数是解题的关键. 20.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.三、解答题21.无22.无23.无24.无25.无26.无。
(北师大版)哈尔滨市九年级数学上册第五单元《投影与视图》检测题(含答案解析)
一、选择题1.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.2.“津南”幼儿园的小朋友正在玩搭积木的游戏,小南的城堡已经有26cm高,小开拿了一些A正方体木块和B正方体木块过来帮忙,已知A正方体木块高2cm,B正方体木块高bcm,且A、B两种正方体木块数量相同,小开将所有的木块一块接一块的依次叠加上去,现在量得小南的城堡有40cm高,则所有满足要求的整数b的值的和为()A.12 B.15 C.16 D.173.将一个圆柱和一个正三棱柱如图放置,则所构成的几何体的主视图是()A.B.C.D.4.如图1是由大小相同的小正方体搭成的几何体,将它左侧的小正方体移动后得到图2.关于移动前后的几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同5.下列哪个图形,主视图、左视图和俯视图相同的是()A.圆锥B.圆柱C.三棱柱D.正方体6.如图是由四个相同的小正方体组成的立体图形,它的主视图为().A.B.C.D.7.如图,由一些完全相同的小正方体搭成的几何体的左视图和俯视图,则这个几何体的主视图不可能是()A.B.C.D.8.一个几何体是由一些大小相同的小正方体搭成的,其俯视图与左视图如图所示,则搭成该几何体的方式有()种A.2 B.3 C.5 D.69.用相同的小立方块搭成的几何体的三种视图都相同(如图所示),则搭成该几何体的小立方块个数是()A.3个B.4个C.5个D.6个10.由n个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n的最小值为()A.10 B.11 C.12 D.1311.如图,下列关于物体的主视图画法正确的是()A.B.C.D.12.如图,小明从左面看在水平讲台上放置的圆柱形水杯和长方体形粉笔盒看到的是()A.B.C.D.二、填空题13.身高1.5米的小强站在旗杆旁,测得小强和旗杆在地面上的影长分别为2米和16米,则旗杆的高度为___米.14.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为_____cm.15.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米,则电线杆AB长为_____16.用一些大小相同的小正方体搭成一个几何体,使得从正面和上面看到的这个几何体的形状如图所示,那么,组成这个几何体的小正方体的块数至少为____________.17.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为:________.18.将一个矩形纸片(厚度不计)置于太阳光下,改变纸片的摆放位置和方向,则其留在地面上的影子的形状可能是____.(只需写一个条件)19.用正方体小木块搭建成的,下面三个图分别是它的主视图、俯视图和左视图,请你观察它是由___________块小木块组成的.20.如图1所示的是由8个相同的小方块组成的几何体,它的三个视图都是22的正方形若拿掉若干个小方块后,从正面和左面看到的图形如图2所示,则可以拿掉小方块的个数为_____.三、解答题21.用小立方块搭一个几何体,使它从正面和上面看到的形状如图所示,从上面看到形状中小正方形中的字母表示在该位置上小立方块的个数,请问:(1)b=;c=;(2)这个几何体最少由个小立方块搭成,最多由个小立方块搭成;(3)从左面看这个几何体的形状图共有种,请在所给网格图中画出其中的任意一种.【答案】(1)1,3;(2)9,11;(3)4,左视图见解析.【分析】(1)由主视图可知,第二列小立方体的个数均为1,那么b=1;第二列小立方体的个数均为1,那么c=3;(2)第一列小立方体的个数最少为2+1+1,最多为2+2+2,那么加上其它2列小立方体的个数即可;(3)由(2)可知,这个几何体最少由9个小立方块搭成,最多由11个小立方块搭成,所以共有7种情况;其中从左面看该几何体的形状图共有4种;小立方块最多时几何体的左视图有3列,每列小正方形数目分别为3,2,2.【详解】(1)b=1,c=3;(2)这个几何体最少由4+2+3=9个小立方块搭成;这个几何体最多由6+2+3=11个小立方块搭成;(3)能搭出满足条件的几何体共有7种情况,其中从左面看该几何体的形状图共有4种;小立方块最多时几何体的左视图如图所示:故答案为:(1)1,3;(2)9,11;(3)4.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.22.已知一个几何体的三视图如图所示,描述该几何体的形状,并根据图中数据计算它的表面积.(结果精确到1cm2)【答案】6021cm2【分析】根据主视图和侧视图为一个长方形,而俯视图都为一个等腰直角三角形形,故这个几何体为一个直三棱柱.表面积=2个直角边为底长方形的面积+2个等腰直角三角形的面积+1个斜边为底的大长方形面积.【详解】解:∵有2个视图为长方形,∴该几何体为柱体,∵第3个视图为直角三角形,∴该柱体为直三棱柱,∵直角三角形斜边长为:2230+30=302cm,∴表面积为1⨯⨯⨯⨯⨯⨯≈6021cm2.23030+25030+503022【点睛】本题主要考查了由三视图确定几何体和求直三棱柱的表面积,掌握由平面的三视图到空间立体图图形的想象是解题关键23.(1)如图1所示,己知平面上四个点A、B、C、D,用尺规按下列要求作图:①画直线DC;②画射线AC;③画线段AB;④延长线段AB到点E使BE AB=.(不写作法)(2)如图2,请在下面方格纸中分别画出该几何体从不同方向看的视图(画出的图需涂上阴影)【答案】(1)见解析;(2)见解析【分析】(1)如图3,①直线DC即为所求;②射线AC即为所求;③线段AB即为所求;④延长线段AB到E使BE=AB.(2)如图4,即为几何体从不同方向看的视图.【详解】解:(1)如图,①直线DC即为所求;①射线AC即为所求;③线段AB即为所求;④延长线段AB到E使BE AB.图3(2)如图,即为几何体从不同方向看的视图.从正面看:从左面看:从上面看:图4【点睛】本题考查了作图-三视图,解决本题的关键是掌握三视图.24.如图是一些棱长为1cm的小立方块组成的几何体.请你画出从正面看,从左面看,从上面看到的这个几何体的形状图.【答案】见解析【分析】根据三视图的定义画出图形即可.【详解】解:三视图如图所示:【点睛】本题考查作图-三视图,解题的关键是理解三视图的定义,属于中考常考题型.25.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【答案】见解析【分析】根据从三个不同方向看到的小正方形相对位置画图即可.【详解】解:如图所示:【点睛】此题考查的是画三视图,解决此题的关键是根据从三个不同方向看到的小正方形相对位置画图.26.如图是由8个相同的小正方体组成的一个几何体(1)画出几何体从正面看、左面看、上面看的形状图;(2)现量得小立方体的棱长为2cm,现要给该几何体表面涂色(不含底面),求涂上颜色部分的总面积.116cm【答案】(1)见解析(2)2【分析】(1)分别画出几何体图即可;(2)根据题意得涂上颜色的总面积为正反面面积,左右两侧面积,和向上一侧面积,求出总小正方形个数乘以面积即可.【详解】(1)从正面看;从左面看;从上面看.(2)(6×2+6×2+5)×2×2=116(cm2)答:涂色部分面积为116cm2.【点睛】本题考查了立体图形的三视图,及表面积的求法,正确理解三视图的概念,并形成空间图形观念是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据主视图的定义判断即可.【详解】解:这个几何体从正面看到的图形是C,故选:C.【点睛】本题考查三视图的应用,熟练掌握三视图的意义及观察方法是解题关键.2.D解析:D【分析】根据题意可知用A、B正方体磊高了14cm,由于数量相同,假设用了k个A正方体和k个B正方体,则可列式(2+b)k=14,然后经过讨论得出结论即可.【详解】解:城堡原来高26cm,现在高40cm,所以,城堡增加了:40-26=14cm则用A、B正方体磊高了14cm,而A正方体木块高2cm,B正方体木块高bcm,设用了k个A正方体和k个B正方体,则有(2+b)k=14①当k=1时,b=14-2=12cm②当k=2时,b=14252-=cm仅有2种符合题意,∴12+5=17故选:D.【点睛】本题考查了立体图形,解题的关键根据立体图形正确得出A、B立方体木块之间的关系.3.A解析:A【分析】根据主视图是从物体正面看所得到的图形即可解答.【详解】解:根据主视图的概念可知,主视图是从前向后观察物体所得到的图形,上半部分是一个长方形且中间有一条竖实线,下半部分是一个长方形.∴从物体的正面看得到的视图是选项A.故选:A.【点睛】本题考查了简单几何体的主视图,注意主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.4.B解析:B【分析】根据三视图解答即可.【详解】解:图1的三视图为:图2的三视图为:故选:B.【点睛】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.5.D解析:D【分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【详解】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.【点睛】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.6.A解析:A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故答案为:A.【点睛】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.7.A解析:A【分析】由左视图可得出这个几何体有2层,由俯视图可得出这个几何体最底层有4个小正方体.分情况讨论即可得出答案.【详解】解:由题意可得出这个几何体最底层有4个小正方体,有2层,当第二层第一列有1个小正方体时,主视图为选项B;当第二层第二列有1个小正方体时,主视图为选项C;当第二层第一列,第二列分别有1个小正方体时,主视图为选项D;故选:A.【点睛】本题考查的知识点是简单几何体的三视图,根据所给三视图能够还原几何体是解此题的关键.8.C解析:C【分析】根据几何体的俯视图与左视图,可得搭成该几何体的叠加方式,进而即可得到答案.【详解】由题意得:搭成该几何体(俯视图中小正方形中的数字表示在该位置上的小正方体块)的个数的方式如下:,故选C.【点睛】本题主要考查几何体的三视图,掌握三视图的定义,是解题的关键.9.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】依题意可得所以需要4块;故选:B【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.C解析:C【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形即可求出答案.【详解】由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n的最小值是:7+5=12,故选C.【点睛】此题主要考查了由三视图判断几何体,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.11.C解析:C【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C.【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.12.D解析:D【解析】【分析】先细心观察原立体图形中圆柱和长方体的位置关系,找到从左面看所得到的图形即可.【详解】圆柱的左视图是长方形,长方体的左视图是长方形,所以它们的左视图是:故答案选:D.【点睛】本题考查的是简单组合体的三视图,解题时注意:左视图是从物体的左面看得到的视图.要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.二、填空题13.12【分析】根据同一时刻同一地点物高与影长成正比求得答案即可【详解】设旗杆高度为x米根据题意得:解得:x=12故答案为:12【点睛】考核知识点:相似三角形的应用理解相似三角形性质是关键解析:12【分析】根据同一时刻同一地点物高与影长成正比求得答案即可.【详解】设旗杆高度为x米,根据题意得:1.5 162 x解得:x=12,故答案为:12.【点睛】考核知识点: 相似三角形的应用.理解相似三角形性质是关键.14.8【分析】由题意易得△ABC∽△A1B1C1根据相似比求A1B1即可【详解】∵∠ACB=90°BC=12cmAC=8cm∴AB=4cm∵△A1B1C1是△ABC的中心投影∴△ABC∽△A1B1C1∴解析:【分析】由题意易得△ABC∽△A1B1C1,根据相似比求A1B1即可.【详解】∵∠ACB=90°,BC=12cm,AC=8cm,∴,∵△A1B1C1是△ABC的中心投影,∴△ABC∽△A1B1C1,∴A1B1:AB=B1C1:BC=2:1,即A1B1.故答案为【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.15.5【分析】根据题意求出△ECD∽△EAB利用相似三角形的对应边成比例即可解答【详解】∵CD∥AB∴△ECD∽△EAB∴ED:EB=CD:AB∴2:6=15:AB∴AB=45米答:电线杆AB长为45米解析:5【分析】根据题意求出△ECD∽△EAB,利用相似三角形的对应边成比例即可解答.【详解】∵CD∥AB,∴△ECD∽△EAB,∴ED:EB=CD:AB,∴2:6=1.5:AB,∴AB=4.5米.答:电线杆AB长为4.5米.故答案为4.5.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出电线杆AB长.16.8【解析】试题分析:从俯视图中可以看出最底层小正方体的个数及形状从主视图可以看出每一层小正方体的层数和个数从而算出总的个数解:∵俯视图有5个正方形∴最底层有5个正方体由主视图可得第2层最少有2个正方解析:8【解析】试题分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解:∵俯视图有5个正方形,∴最底层有5个正方体,由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;由主视图可得第2层最多有4个正方体,第3层最多有2个正方体;∴该组合几何体最少有5+2+1=8个正方体,最多有5+4+2=11个正方体,故答案为8.考点:由三视图判断几何体.17.DABC【解析】试题分析:根据北半球上太阳光下的影子变化的规律易得答案试题解析:DABC.【解析】试题分析:根据北半球上太阳光下的影子变化的规律,易得答案.试题根据北半球上太阳光下的影子变化的规律,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.可得顺序为DABC.考点:平行投影.18.平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻平行物体的投影仍旧平行即可得到正确的答案【详解】矩形在阳光下的投影对边应该是相等的影子的形状可能是矩形正方形平行四边形;故答案解析:平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得到正确的答案.【详解】矩形在阳光下的投影对边应该是相等的,影子的形状可能是矩形、正方形、平行四边形;故答案为:平行四边形.【点睛】本题综合考查了平行投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.19.10【分析】由俯视图可得该组合几何体最底层小木块的个数由主视图和左视图可得第二层和第三层小木块的个数再相加即可得【详解】俯视图中有6个正方形最底层有6个正方体小木块由主视图和左视图可得:第二层有3个解析:10【分析】由俯视图可得该组合几何体最底层小木块的个数,由主视图和左视图可得第二层和第三层小木块的个数,再相加即可得.【详解】俯视图中有6个正方形,∴最底层有6个正方体小木块,由主视图和左视图可得:第二层有3个正方体小木块,第三层有1个正方体小木块,++=(块),则小木块的总数为63110故答案为:10.【点睛】本题考查了由三视图判断几何体,熟练掌握三视图是解题关键.20.4或5【分析】根据正面和左面看到的图形可知上面一层必须保留左后面的正方体上层其它的正方体拿掉下层已经拿掉正方体的对应位置的正方体保留右前面的正方体其它两个可有可无或者去掉右前方的正方体另外两个保留据解析:4或5【分析】根据正面和左面看到的图形可知,上面一层必须保留左后面的正方体,上层其它的正方体拿掉,下层已经拿掉正方体的对应位置的正方体保留右前面的正方体其它两个可有可无或者去掉右前方的正方体,另外两个保留,据此作答即可.【详解】解:根据题意,拿掉若干个小立方块后,从正面和左面看到的图形如图2所示,所以可拿掉的小方块的个数可为5个或4个.故答案为:4或5.【点睛】本题考查了简单组合体的三视图.主要考查学生的空间想象能力.三、解答题21.无22.无23.无24.无25.无26.无。
(北师大版)济南市九年级数学上册第五单元《投影与视图》测试题(有答案解析)
一、选择题1.观察如图所示的几何体,从左面看到的图形是( )A .B .C .D . 2.如图所示,该几何体的俯视图是( )A .B .C .D .3.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A .4πB .2πC .32πD .π4.如图是由5个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D . 5.如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测. 根据胡老师给出的方向坐标,猜测比较合理的是()A.小明:“早上8点”B.小亮:“中午12点”C.小刚:“下午5点”D.小红:“什么时间都行”6.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.7.物体的形状如图所示,则从上面看此物体得到的平面图形是()A.B.C.D.8.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B 的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变9.由4个小立方体搭成如图所示的几何体,从正面看到的平面图形是()A.B.C.D.10.如图是一个底面为正方形的几何体的实物图,则其俯视图为()A.B.C.D.11.如图是一个由多个相同的小正方体堆成的几何体从上面看得到的平面图形,小正方形中的数字表示在该位置的小正方体的个数,那么从正面看该几何体得到的平面图形是()A.B.C.D.12.下列哪种影子不是中心投影()A.皮影戏中的影子 B.晚上在房间内墙上的手影C.舞厅中霓红灯形成的影子 D.太阳光下林荫道上的树影二、填空题13.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高,,(点A、E、C在同一直线上).已知小明身高EF是1.6m,则楼高AB为______m.14.如图是两棵小树在同一时刻的影子,那么图①是________投影,图②是________投影.15.一块直角三角形板ABC ,∠ACB =90°,BC =12cm ,AC =8cm ,测得BC 边的中心投影B 1C 1长为24cm ,则A 1B 1长为_____cm .16.小明希望测量出电线杆AB 的高度,于是在阳光明媚的一天,他在电线杆旁的点D 处立一标杆CD ,使标杆的影子DE 与电线杆的影子BE 部分重叠(即点E 、C 、A 在一直线上),量得ED =2米,DB =4米,CD =1.5米,则电线杆AB 长为_____17.小刚身高1.72m ,他站立在阳光下的影子长为0.86m ,紧接着他把手臂竖直举 起,影子长为1.15m ,那么小刚举起的手臂超出头顶是_________m .18.写出图中圆锥的主视图名称________.19.如图,电灯P 在横杆AB 的上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2m ,CD =6m ,点P 到CD 的距离是3m ,则P 到 AB 的距离是__________m .20.如果圆柱的侧面展开图是相邻两边长分别为6,12的长方形,那么这个圆柱的体积等于_______(π取3)三、解答题21.如图是一个正三棱柱及俯视图:(1)请分别画出它的主视图、左视图;(2)若4AC =,6AA '=,则左视图的面积为_____________.【答案】(1)见解析;(2)123【分析】(1)观察图形,根据主视图和左视图的定义即可画出图形,注意看不见的线用虚线; (2)过点B 作BD ⊥AC 于点D ,左视图的面积等于BD 乘棱柱的高,利用勾股定理求得BD 即可.【详解】(1)作图如下:(2)如图,∵是正三棱柱,∴△ABC 为等边三角形,AB =AC =4,过点B 作BD ⊥AC 于点D ,∵4AC =,∴2AD =,4AB AC ==, ∴2223BD AB AD -=,则左视图的面积为236123=【点睛】本题考查简单的几何体的三视图,三视图的面积的计算,本题是一个易错题,易错点在将侧视图的宽看成底边的边长.22.画出该几何体的主视图、左视图、俯视图.【答案】见解析【分析】观察图形可知,从正面看到的图形是3列,分别有1,1,2个正方形;从左面看到的图形是2列,分别有2,1个正方形;从上面看到的图形是2行,分别有3,2个正方形;据此即可画图.【详解】解:如图所示:.【点睛】此题考查了从不同方向观察物体和几何体和画简单图形的三视图的方法,是基础题型.23.如图是由10个同样大小的小正方体搭成的几何体.(1)请分别画出它的主视图和俯视图;(2)这个几何体的表面积是________.【答案】(1)见解析;(2)38.【分析】(1)观察可以发现:主视图有3列,每列小正方形数目分别为3,I,2;俯视图有3列,每列小正方形数目分别为3,2,1;(2)分别从各个方向确定可以看到的正方形面数,相加后乘1个面的面积即可.【详解】解:(1)如图所示:(2)(1×1)×(6+6+7+7+6+6)=1×38=38该几何体的表面积是38.故答案为38.【点睛】本题主要考查了几何体的三视图画法以及几何体的表面积,根据立体图形可知主视图、左视图、俯视图确定出有几列且每一列上的有几个正方形成为解答本题的关键.24.如图几何体是由7块小正方体组成的,请画出它从左面看和从上面看的视图.【答案】图形见解析.【分析】主视图有三列,每个小正方形数目分别为1,2,1;左视图有三列,每个小正方形数目分别2,1,1;俯视图有三行,每个小正方形数目分别为1,3,2;由此画出左视图和俯视图即可;【详解】从左面看:从上面看:【点睛】本题考查三视图的正确画法,考查的是空间几何能力,正确理解并掌握三视图是解题的关键.25.如图所示几何体是由几个大小相同的正方体搭成的,请按要求画图.几何体从正面看从左面看从上面看【答案】见解析【分析】根据三视图的定义画出图形即可.【详解】解:如图所示:【点睛】本题考查作图-三视图,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)一木杆按如图1所示的方式直立在地面上,请在图中画出它在阳光下的影子(用线段CD表示);(2)图2是两根标杆及它们在灯光下的影子.请在图中画出光源的位置(用点P表示)【答案】(1)见解析;(2)见解析【分析】(1)根据平行投影的特点作图:过木杆的顶点作太阳光线的平行线;(2)分别过标杆的顶点及其影子的顶点作射线,两条射线的交点即为光源的位置.【详解】解:(1)如图1,CD是木杆在阳光下的影子;(2)如图2,点P是影子的光源,【点睛】平行光线得到的影子是平行光线经过物体的顶端得到的影子;点光源是由两个影子与物高决定;点光源经过物体的顶端也可得到物体在点光源下的影子.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】从左面只看到两列,左边一列3个正方形、右边一列1个正方形,据此解答即可.【详解】解:观察几何体,从左面看到的图形是故选:C.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.2.C解析:C【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,故选:C.【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.3.D解析:D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长⨯圆柱体的高=11ππ⨯⨯= 故答案为:D .【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.4.C解析:C【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:C .【点睛】本题考查了立体图形的左视图问题,掌握立体图形三视图的性质是解题的关键. 5.C解析:C【解析】可根据平行投影的特点分析求解,或根据常识直接确定答案.解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西-西北-北-东北-东,可得应该是下午.故选C .本题考查了平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.6.C解析:C【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C .【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.7.C解析:C【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:C.【点睛】本题考查了三视图的知识,理解俯视图是从物体的上面看得到的视图是关键.8.A解析:A【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选A.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.9.C解析:C【解析】【分析】找到从正面看所得到的图形即可.【详解】解:该几何体的主视图是故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.10.D解析:D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上面看易得到被一条直线分割成两个长方形的正方形.故选D.【点睛】本题考查三视图的知识,俯视图是从物体的上面看得到的视图.11.C解析:C【解析】【分析】找到从正面看所得到的图形即可.【详解】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是1,2,2.故选:C.【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.12.D解析:D【解析】【分析】根据中心投影的性质,找到不是灯光的光源即可.【详解】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,所以太阳光下林荫道上的树影不是中心投影.故选:D.【点睛】解决本题的关键是理解中心投影的形成光源为灯光.二、填空题13.2【解析】【分析】过点D作DN⊥AB可得四边形CDMEACDN是矩形即可证明△DFM∽△DBN从而得出BN进而求得AB的长【详解】解:过点D作DN⊥AB垂足为N交EF于M点∴四边形CDMEACDN是解析:2【解析】【分析】过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.解:过点D作DN⊥AB,垂足为N.交EF于M点,∴四边形CDME、ACDN是矩形,∴AN=ME=CD=1.2m,DN=AC=30m,DM=CE=0.6m,∴MF=EF-ME=1.6-1.2=0.4m,依题意知EF∥AB,∴△DFM∽△DBN,,即:,解得:BN=20,∴AB=BN+AN=20+1.2=21.2,答:楼高为AB为21.2米.【点睛】本题考查了平行投影和相似三角形的应用,是中考常见题型,要熟练掌握.14.平行中心【解析】【分析】两物体若是平行投影则等比例放大或缩小中心投影则不同【详解】图①是平行投影图②是中心投影故答案为:平行中心【点睛】本题考查了平行投影和中心投影的知识关键是掌握平行投影和中心投影解析:平行中心【解析】【分析】两物体若是平行投影,则等比例放大或缩小,中心投影则不同.【详解】图①是平行投影,图②是中心投影.故答案为:平行、中心.【点睛】本题考查了平行投影和中心投影的知识,关键是掌握平行投影和中心投影的特点与不同.15.8【分析】由题意易得△ABC∽△A1B1C1根据相似比求A1B1即可【详解】∵∠ACB=90°BC=12cmAC=8cm∴AB=4cm∵△A1B1C1是△ABC的中心投影∴△ABC∽△A1B1C1∴解析:13【分析】由题意易得△ABC∽△A1B1C1,根据相似比求A1B1即可.【详解】∵∠ACB=90°,BC=12cm,AC=8cm,∴,∵△A1B1C1是△ABC的中心投影,∴△ABC∽△A1B1C1,∴A1B1:AB=B1C1:BC=2:1,即A1B1.故答案为【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.16.5【分析】根据题意求出△ECD∽△EAB利用相似三角形的对应边成比例即可解答【详解】∵CD∥AB∴△ECD∽△EAB∴ED:EB=CD:AB∴2:6=15:AB∴AB=45米答:电线杆AB长为45米解析:5【分析】根据题意求出△ECD∽△EAB,利用相似三角形的对应边成比例即可解答.【详解】∵CD∥AB,∴△ECD∽△EAB,∴ED:EB=CD:AB,∴2:6=1.5:AB,∴AB=4.5米.答:电线杆AB长为4.5米.故答案为4.5.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出电线杆AB长.17.58【解析】设小刚举起的手臂超出头顶xm因为阳光下的身高与影子的长是成比例的所以172:086=(172+x):115解得x=058故答案为058解析:58【解析】设小刚举起的手臂超出头顶xm,因为阳光下的身高与影子的长是成比例的,所以1.72:0.86=(1.72+x):1.15,解得x=0.58,故答案为0.58.18.等腰三角形【解析】主视图是指从正面看圆锥体从正面看是等腰三角形故答案为:等腰三角形解析:等腰三角形【解析】主视图是指从正面看,圆锥体从正面看是等腰三角形,故答案为:等腰三角形.19.1【解析】试题分析:根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可考点:1相似三角形的应用2中心投影解析:1【解析】试题分析:根据AB∥CD,易得,△PAB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.考点:1.相似三角形的应用.2.中心投影.20.36或72【分析】分两种情况:①底面周长为6高为12;②底面周长为12高为6;先根据底面周长得到底面半径再根据圆柱的体积公式计算即可求解【详解】①底面周长为6高为12则体积为:×()2×12=36;解析:36或72【分析】分两种情况:①底面周长为6,高为12;②底面周长为12,高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【详解】①底面周长为6,高为12,则体积为:π×(62π)2×12=36;②底面周长为12,高为6,则体积为:π×(122π)2×6=72.综上所述,这个圆柱的体积可以是36或72.故答案为:36或72.【点睛】本题考查了展开图折叠成几何体,本题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.三、解答题21.无22.无23.无24.无25.无26.无。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.
16.A、B、C 17.A、C 18.A、B 、C 19.A、B 20.C、D
三.
21.过法线的平面与地球椭球所截的面
22.过球心的平面与地球所叫的线
23.球面上的任意一点与天顶(新极)间的球面距离
24.建立一种投影坐标X,Y与另一种投影坐标x,y之间的坐标转换关系式
36.相同点:分幅规定相同,均为单幅投影,投影一致
不同点:标准纬线不同——确定常数的方法不同,写出各自的标准纬线的纬度
37.投影表象3条,变形规律——等变形线、n的变化规律。分切、割两种情形画变形椭圆
七.论述题(每小题10分,共20分)
36.试述我国百万分一地图投影与国际百万分一地图投影有何异同点?
37.试述正轴圆柱投影的投影表象、变形分析,并用变形椭圆来显示在切和割投影中不同性质圆柱投影的变形规律。
参考答案:
一.
1.A 2.B 3.A 4.B 5.C 6.BD 7.D 8.A 9.A 10.C
一.单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在题干前面的括号内。答案选错或未选者,该题不得分。每小题1分,共15分)
()1.在球心投影中
A.大圆投影为直线 B.经线投影为圆 C.小圆投影为圆 D.等高圈投影为直线
()2.在墨卡托投影中,满足
A. n=1 B.等角性质 C.m=1 D.经线为椭圆经线
()6.在球面投影中,满足
A.等高圈投影为直线 B.大圆投影为直线 C.大圆、小圆投影直线 D.等角性质
()7.伪方位投影存在性质的投影
A.等距离 B.等角C.等面积 D.任意
()8.爱凯特投影满足
A.等面积B.纬线投影为圆 C.经线投影为直线 D.经线投影为椭圆
()9.等角投影条件可以表示为
A.a=b B.m*n=1 C.m=n D.m=1
()10.等距离投影条件可以表示为
A.a=b B.θ=90°,m=n C.a=1 或 b=1 D.n=1
()11.墨卡托投影纬线线上的变形椭圆是
A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆
C.大小变化、形状不变的微分圆 D.m=1的圆或椭圆
()12.高斯投影中央经线上的变形椭圆为
A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆
()3.在彭纳投影中,满足
A.极点投影为点 B.等距离 C.经线为直线D.纬线投影为同心圆
()4.在等面积圆柱投影中
A.极点投影为圆弧B.经线投影为直线
C.等角航行投影为直线 D.纬线投影为圆
()5.高斯-克吕格投影用于地图投影。
A.世界地图 B.沿纬线延伸区域C.1:5千至1:50万地形图系列D.亚洲地图
并说明式中K、D、R的意义。
六、简答题(每小题5分,共25分)
31..地图投影的选择应考虑哪些因素?
33.试述高斯投影的投影条件、变形规律。
34.通用横墨卡托与高斯投影相比较,有哪些优点?它们之间的关系如何?
35.试述正轴圆锥投影的投影表象、变形分析。
()15.任意投影中的变形椭圆是
A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆
C.大小变化、形状不变的微分圆 D.大小形状均变化的微分椭圆
二.多项选择题(从下列各题四个备选答案中选出二至四个正确答案,并将其代号写在空白内处。每小题2分,共10分)
16.世界地图常采用
A.摩尔威德投影 B.等差分纬线多圆锥投影
20.等距离投影条件可以表示为
A.a=b B.θ=90°,m=n C.a=1 或 b=1 D.θ=90°,m=1
三.名词解释(每小题3分,共12分)
21.法截面
22.大圆
23.天顶距
24.投影变换
四.判断改错题(对者打√,错者打×并改正,将其答案写在题干前面的括号内。答案选错或未选者,该题不得分。每小题2 分,共10分)
C.正切差分纬线多圆锥投影 D.墨卡托投影
17.高斯-克吕格投影用于地图投影。
A.沿经线延伸区域 B.沿纬线延伸区域 C.1:5千至1:50万地形图系列 D.亚洲地图
18.在桑逊投影中,满足
A.P=1 B.n=1 C.m=1 D.经线投影为正弦曲线
19.等角投影条件可以表示为
A.a=b B.θ=90°,m=n C.m=n D.m=1
四.
25.√ 26.× 27.√ 28.× 29.×
五.30 推导略
六.
31.极区,中纬度地区沿纬线延伸区域,低纬度地区沿纬线延伸区域
32.用途、比例尺、地理位置等
33.投影条件3条,变形规律6条
34.优点减小低纬度地区变形,关系4个表达式
35.投影表象3条,变形规律——等变形线、n的变化规律。
七.
C.n=1的圆或椭圆 D.m=1的圆或椭圆
()13.等角圆锥投影中央经线上变形椭圆是
A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆
C.大小变化、形状不变的微分圆 D.m=1的圆或椭圆
()14.标准纬线上的变形椭圆是
A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆
C.大小变化、形状不变的微分圆 D.m=1的圆或椭圆
()25.在方位投影中,投影中心点的长度比最小;
()26.在割方位投影中,投影中心点变形最小;
()27.在等距离方位投影中,投影中心点自任意点的长度无变形;
()28.在正轴割圆锥投影中,长度比愈小,则变形愈小;
()29.在正轴圆锥投影中,无论是何种性质的投影,极点均投影为圆弧;
五.证明题(8分)
30.试推导出等距离透视双重方位投影的 ,