大学物理第11章习题答案概论
大学物理(华中科技版)第11章习题解答
第11章习题答案11-1 无限长直线电流的磁感应强度公式为B =μ0I2πa ,当场点无限接近于导线时(即a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。
公式aIB πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。
11-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理∑⎰=⋅ii I l d B 0μ得 0=⋅⎰l d B,说明圆形环路L 内的电流代数和为零,并不是说圆形环路L 上B 一定为零。
10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论:(1)在各条闭合曲线上,各点的磁感应强度B的大小是否相等? (2)在闭合曲线c 上各点的B是否为零?为什么? 解: ⎰μ=⋅al B 08d⎰μ=⋅bal B 08d⎰=⋅cl B 0d(1)在各条闭合曲线上,各点B的大小不相等.(2)在闭合曲线C 上各点B 不为零.只是B的环路积分为零而非每点0=B .11-4 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释?习题11-2图答:弹簧会作机械振动。
当弹簧通电后,弹簧内的线圈电流可看成是同向平行的,而同向平行电流会互相吸引,因此弹簧被压缩,下端会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动11-5 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强度;(2)x 为何值时,B 值最大,并给出最大值B max .解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:rIB π=201μ2/1220)(12x dI +⋅π=μ2导线在P 点产生的磁感强度的大小为: r IB π=202μ2/1220)(12x d I+⋅π=μ1B 、2B的方向如图所示.P 点总场θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B )()(220x dId x B +π=μ,i x dId x B)()(220+π=μ(2) 当0d )(d =xx B ,0d )(d 22=<xx B 时,B (x )最大.由此可得:x = 0处,B 有最大值.11-6 如图所示被折成钝角的长直载流导线中,通有电流I =20 A ,θ=120°,a =2.0 mm ,求A 点的磁感应强度. 解:载流直导线的磁场)sin (sin 4120ββπμ-=dIBA 点的磁感应强度)))90sin(90(sin sin 40000θθπμ--+=a IB习题10-6图y习题10-7图dPr B 1B 2xy 12oxddθ θ)5.01(2/3100.2201037+⨯⨯⨯=--B =1.73⨯10-3T方向垂直纸面向外。
物理学11章习题解答(第三版)
[物理学11章习题解答]11-1如果导线中的电流强度为8.2 a,问在15 s内有多少电子通过导线的横截面?解设在t秒内通过导线横截面的电子数为n,则电流可以表示为,所以.11-2 在玻璃管内充有适量的某种气体,并在其两端封有两个电极,构成一个气体放电管。
当两极之间所施加的电势差足够高时,管中的气体分子就被电离,电子和负离子向正极运动,正离子向负极运动,形成电流。
在一个氢气放电管中,如果在3 s内有2.81018 个电子和1.01018 个质子通过放电管的横截面,求管中电流的流向和这段时间内电流的平均值。
解放电管中的电流是由电子和质子共同提供的,所以.电流的流向与质子运动的方向相同。
11-3 两段横截面不同的同种导体串联在一起,如图11-7所示,两端施加的电势差为u。
问:(1)通过两导体的电流是否相同?(2)两导体内的电流密度是否相同?(3)两导体内的电场强度是否相同?(4)如果两导体的长度相同,两导体的电阻之比等于什么?(5)如果两导体横截面积之比为1: 9,求以上四个问题中各量的比例关系,以及两导体有相同电阻时的长度之比。
解(1)通过两导体的电流相同,。
(2)两导体的电流密度不相同,因为图11-7,又因为,所以.这表示截面积较小的导体电流密度较大。
(3)根据电导率的定义,在两种导体内的电场强度之比为.上面已经得到,故有.这表示截面积较小的导体中电场强度较大。
(4)根据公式,可以得到,这表示,两导体的电阻与它们的横截面积成反比。
(5)已知,容易得到其他各量的比例关系,,,.若,则两导体的长度之比为.11-4两个同心金属球壳的半径分别为a和b(>a),其间充满电导率为的材料。
已知是随电场而变化的,且可以表示为 = ke,其中k为常量。
现在两球壳之间维持电压u,求两球壳间的电流。
解在两球壳之间作一半径为r的同心球面,若通过该球面的电流为i,则.又因为,所以.于是两球壳之间的电势差为.从上式解出电流i,得.11-5一个电阻接在电势差为180 v电路的两点之间,发出的热功率为250w。
大学物理课答案11章
习题1111-1.测量星体表面温度的方法之一是将其看作黑体,测量它的峰值波长m λ,利用维恩定律便可求出T 。
已知太阳、北极星和天狼星的m λ分别为60.5010m -⨯,60.4310m -⨯和60.2910m -⨯,试计算它们的表面温度。
解:由维恩定律:m T b λ=,其中:310898.2-⨯=b ,那么:太阳:362.8981057960.510m bT K λ--⨯===⨯; 北极星:362.8981067400.4310m bT K λ--⨯===⨯;天狼星:362.8981099930.2910m bT K λ--⨯===⨯。
11-2.宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于温度为K 3的黑体辐射,试计算: (1)此辐射的单色辐出度的峰值波长; (2)地球表面接收到此辐射的功率。
解:(1)由m T b λ=,有342.898109.66103m b m T λ--⨯===⨯; (2)由4M T σ=,有:424P T R σπ=⨯地,那么:328494(637010) 5.67103 2.3410P W π-=⨯⨯⨯⨯⨯=⨯。
11-3.在加热黑体过程中,其单色辐出度对应的峰值波长由0.69μm 变化到0.50μm ,求总辐出度改变为原来的多少倍?解:由 b T m =λ 和 4T M σ=可得,63.3)5.069.0()()(440400====m m T T M M λλ11-4.已知000K 2时钨的辐出度与黑体的辐出度之比为259.0。
设灯泡的钨丝面积为2cm 10,其他能量损失不计,求维持灯丝温度所消耗的电功率。
解:∵4P T S σ=⋅黑体,消耗的功率等于钨丝的幅出度,所以,44840.2591010 5.67102000235P S T W ησ--==⨯⨯⨯⨯⨯=。
11-5.天文学中常用热辐射定律估算恒星的半径。
现观测到某恒星热辐射的峰值波长为m λ;辐射到地面上单位面积的功率为W 。
大学物理(下)十一章十二章作业与解答
大学物理(下)十一章十二章作业与解答————————————————————————————————作者:————————————————————————————————日期:第十一章恒定磁场一. 选择题1.在一平面内,有两条垂直交叉但相互绝缘的导线,流经两条导线的电流大小相等,方向如图,在哪些区域中有可能存在磁感应强度为零的点?(A) 在Ⅰ、Ⅲ象限(B) 在Ⅰ、Ⅳ象限(C) 在Ⅱ、Ⅲ象限(D) 在Ⅱ、Ⅳ象限[ ]2. 载流导线在同一平面内,形状如图,在圆心O处产生的磁感应强度大小为(A)(B)(C)(D) [ ]注意见第11章课件最后的总结的那个图,半圆载流回路在圆心处的磁感强度是多少?3. 一圆形回路1及一正方形回路2,圆的直径与正方形边长相等,二者中通有大小相同电流,则它们在各自中心处产生的磁感应强度大小之比为(A) 0.90(B) 1.00(C) 1.11(D) 1.22 [ ]注意教材page304,及课件最后总结的那个图4. 在磁感应强度为的均匀磁场中做一半径为r的半球面S,S边线所在平面的法线方向单位矢量与的夹角为θ,则通过半球面S的磁通量(取半球面向外为正)为(A)(B)(C)(D)[ ]5. 如图,无限长载流直导线附近有一正方形闭合曲面S,当S向导线靠近时,穿过S的磁通量和S上各点的磁感应强度的大小B将(A) 增大,B增强(B) 不变,B不变(C) 增大,B不变(D) 不变,B增强[ ]6. 取一闭合积分回路L,使若干根载流导线穿过它所围成的面,若改变这些导线之间的相互间隔,但不越出积分回路,则(A) 回路L内的电流的代数和不变,L上各点的不变(B) 回路L内的电流的代数和不变,L上各点的改变(C) 回路L内的电流的代数和改变,L上各点的不变(D) 回路L内的电流的代数和改变,L上各点的改变[ ]7. 如图,两根导线ab和cd沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a端流入而从d端流出,则磁感应强度沿闭合路径L的积分等于(A)(B)(C)(D)[ ]8. 一电荷为q的粒子在均匀磁场中运动,下列说法正确的是(A) 只要速度大小相同,粒子所受的洛仑兹力就相同(B) 在速度不变的前提下,若电荷q变为 -q,则粒子受力反向,数值不变(C) 粒子进入磁场后,其动能和动量都不变(D) 洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆[ ]9. 质量为m、电量为q的粒子,以速度v垂直射入均匀磁场中,则粒子运动轨道包围范围的磁通量与磁感应强度的大小之间的关系曲线为[ b ]注意见P317,(11.30)10. 如图,长直载流导线与一圆形电流共面,并与其一直径相重合(两者间绝缘),设长直电流不动,则圆形电流将(A) 向上运动(B) 绕旋转(C) 向左运动(D) 向右运动(E) 不动[ ]11. 磁场中有一载流圆线圈,其既不受力也不受力矩作用,这说明(A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行(B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行(C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直[ ]注意见P325 第二段表述,11.36式12. 用细导线均匀密绕成长为l、半径为a(l >>a)、总匝数为N的螺线管,管内充满相对磁导率为的均匀磁介质,线圈中载有电流I,则管中任一点(A) 磁感应强度大小为(B) 磁感应强度大小为(C) 磁场强度大小为(D) 磁场强度大小为[ ]二. 填空题13.如图,电流元在P点产生的磁感应强度的大小为___________________.14. 真空中有一载有电流I的细圆线圈,则通过包围该线圈的闭合曲面S的磁通量Φ=________________. 若通过S面上某面元的磁通为,而线圈中电流增加为2I时,通过该面元的磁通为,则_______________.0 ; 1︰215. 如图,两平行无限长载流直导线中电流均为I,两导线间距为a,则两导线连线中点P的磁感应强度大小,磁感应强度沿图中环路L的线积分_______________________.0 ;16. 恒定磁场中,磁感应强度对任意闭合曲面的积分等于零,其数学表示式是____________,这表明磁感应线的特征是_________________________. ;闭合曲线17. 一长直螺线管是由直径的导线密绕而成,通以的电流,其内部的磁感应强度大小B =_____________________.(忽略绝缘层厚度)18. 带电粒子垂直磁感应线射入匀强磁场,它做______________运动;带电粒子与磁感应线成300角射入匀强磁场,则它做__________________运动;若空间分布有方向一致的电场和磁场,带电粒子垂直于场方向入射,则它做__________________运动.圆周;螺旋线;变螺距的螺旋线19. 在霍尔效应实验中,通过导电体的电流和的方向垂直(如图).如果上表面的电势较高,则导电体中的载流子带___________电荷;如果下表面的电势较高,则导电体中的载流子带___________电荷.正;负20. 如图,一载流导线弯成半径为R的四分之一圆弧,置于磁感应强度为的均匀磁场中,导线所受磁场力大小为______________,方向为_____________.; y轴正向注意:积分IRBdθ,θ的积分上下限?21. 如图,半径为R的半圆形线圈通有电流I,线圈处在与线圈平面平行指向右的均匀磁场中,该载流线圈磁矩大小为___________,方向____________;线圈所受磁力矩的大小为_________________,方向_____________.;垂直纸面向外;;向上22. 磁场中某点,有一半径为R、载有电流I的圆形实验线圈,其所受的最大磁力矩为M,则该点磁感应强度的大小为_________________.注意见教材324页三. 计算题23. 如图,两长直导线互相垂直放置,相距为d,其中一根导线与z轴重合,另一与x轴平行且在Oxy平面内,设导线中皆通有电流I,求y轴上与两导线等距的P点处的磁感应强度.解:长直载流导线在距其r处的磁感应强度为两长直载流导线在P点产生的磁感应强度方向一沿z轴方向,一沿x轴负方向且方向平行于Oxz平面与Oxy面成45o,如图示。
大学物理学第三版修订版下册第11章答案
习题 11选择题(1 )一圆形线圈在磁场中作以下运动时,那些状况会产生感觉电流()(A)沿垂直磁场方向平移;( B)以直径为轴转动,轴跟磁场垂直;(C)沿平行磁场方向平移;( D)以直径为轴转动,轴跟磁场平行。
[ 答案: B](2)以下哪些矢量场为守旧力场()(A)静电场;( B)稳恒磁场;( C)感生电场;(D)变化的磁场。
[ 答案: A](3)用线圈的自感系数L 来表示载流线圈磁场能量的公式W m 1LI2()2( A )只合用于无穷长密绕线管;( B )只合用于一个匝数好多,且密绕的螺线环;( C )只合用于单匝圆线圈;( D ) 合用于自感系数 L必定的随意线圈。
[ 答案: D](4) 关于涡旋电场,以下说法不正确的选项是():( A)涡旋电场对电荷有作使劲;(B)涡旋电场由变化的磁场产生;( C)涡旋场由电荷激发;( D)涡旋电场的电力线闭合的。
[ 答案: C]11.2填空题(1) 将金属圆环从磁极间沿与磁感觉强度垂直的方向抽出时,圆环将遇到。
[答案:磁力 ](2) 产生动生电动势的非静电场力是,产生感生电动势的非静电场力是,激发感生电场的场源是。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为 l的金属直导线在垂直于平均的平面内以角速度ω 转动,假如转轴的地点在,这个导线上的电动势最大,数值为;假如转轴的地点在,整个导线上的电动势最小,数值为。
[ 答案:端点,1 B l 2;中点,0]2一半径 r =10cm的圆形回路放在 B =的平均磁场中.回路平面与 B 垂直.当回路半径以恒定速率dr=80cm·s-1缩短时,求回路中感觉电动势的大小.dt解 :回路磁通m BS Bπr 2感觉电动势大小d m d(B πr 2)B2πrdr0.40 Vdtdt dt一对相互垂直的相等的半圆形导线组成回路,半径R =5cm ,如题图所示.平均磁场-3T , B 的方向与两半圆的公共直径( 在 Oz 轴上 ) 垂直,且与两个半圆组成相等的B =80× 10 角 当磁场在 5ms 内平均降为零时,求回路中的感觉电动势的大小及方向.解 :取半圆形 cba 法向为 i ,题图πR 2则mB cos12同理,半圆形adc 法向为 j ,则πR 2m 2B cos2∵B 与 i 夹角和 B 与 j 夹角相等,∴ 45则π 2 cosm B Rd m πR 2 cosdB 8 .8910 2Vd td t方向与 cbadc 相反,即顺时针方向.题图如题图所示,载有电流I 的长直导线邻近,放一导体半圆环MeN 与长直导线共面,且端点 MN 的连线与长直导线垂直.半圆环的半径为 b ,环心 O 与导线相距 a .设半圆环以速 度 v 平行导线平移.求半圆环内感觉电动势的大小和方向及 MN 两头的电压U MU N .解 : 作协助线 MN ,则在 MeNM 回路中,沿 v 方向运动时 dm∴MeNM即MeNMNa b dl0 Iv ln a b又∵MNvBcosa b2a b因此 MeN 沿 NeM 方向,大小为Ivlnab2a bM 点电势高于 N 点电势,即U M0 Iva bU Nlnb2 a 题图如题所示,在两平行载流的无穷长直导线的平面内有一矩形线圈. 两导线中的电流方向相反、大小相等,且电流以dI的变化率增大,求:dt(1) 任一时辰线圈内所经过的磁通量;(2) 线圈中的感觉电动势. 解 : 以向外磁通为正则 (1)(2)mb a 0 Il drd a 0 Ildr0Il[ln b a lnd a]b2πrd2πr2πbdd 0l[lndalnba ] dIt πdbdtd2如题图所示, 用一根硬导线弯成半径为r 的一个半圆. 令这半圆形导线在磁场中以频次 f绕图中半圆的直径旋转.整个电路的电阻为R .求:感觉电流的最大值.题图解 :B S Bπr2t 0 )m2 cos(dmπ 2iB rsin( t 0 )dt2∴π2 π 22πf π2 r 2 BfmB rB r 2222 Bf∴ImπrRR如题图所示,长直导线通以电流 I =5A ,在其右方放一长方形线圈,二者共面.线圈长-1垂直于直线平移远离.求:d =0.05mb =0.06m ,宽 a =0.04m ,线圈以速度 v =0.03m ·s 时线圈中感觉电动势的大小和方向.题图解 : AB 、 CD 运动速度 v 方向与磁力线平行,不产生感觉电动势.DA 产生电动势A B) dlvBb vb0 I1(vD2 dBC 产生电动势C B) dlvb0 I2(v 2π(a d )B∴回路中总感觉电动势120Ibv( 1 1 ) 1.6 10 8V π d d a2方向沿顺时针.长度为 l 的金属杆 ab 以速率 v 在导电轨道 abcd 上平行挪动.已知导轨处于平均磁场B 中,B 的方向与回路的法线成60°角 (如题图所示 ), B 的大小为B = kt (k 为正常 ).设时杆t =0位于 cd 处,求:任一时辰 t 导线回路中感觉电动势的大小和方向.解 :mB dS Blvt cos60kt 2lv11klvt 22 2∴dmklvtdt即沿 abcd 方向顺时针方向.题图一矩形导线框以恒定的加快度向右穿过一平均磁场区, B 的方向如题图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系( 设导线框刚进入磁场区时 t =0) .解 : 如图逆时针为矩形导线框正向,则进入时d0, 0 ;dt题图 (a) 题图 (b)在磁场中时d0 , 0;dt出场时d0 , 0,故 I t 曲线如题 10-9 图(b) 所示 .dt题图导线 ab 长为 l ,绕过 O 点的垂直轴以匀角速转动, aO = l磁感觉强度 B 平行于转轴,3如下图.试求:( 1) ab 两头的电势差;( 2) a,b 两头哪一点电势高 ?解: (1)在 Ob 上取 rr dr 一小段2l2B则Ob3 rB drl 29l1 B 同理Oa3rB drl 20 18∴abaO Ob(12)B l 21 B l 21896(2) ∵ab0 即 U a U b∴ b 点电势高.题图如题图所示,长度为 2b 的金属杆位于两无穷长直导线所在平面的正中间,并以速度 v 平行于两直导线运动.两直导线通以大小相等、方向相反的电流 I ,两导线相距 2 a .试求:金属杆两头的电势差及其方向.解:在金属杆上取dr 距左侧直导线为r ,则B dla b 0 Iv 11)dr0 Iv a bAB(v B)a b(lnA2r2a r a b∵AB∴实质上感觉电动势方向从 BA ,即从图中从右向左,∴U ABIvlnaba b题图磁感觉强度为B 的平均磁场充满一半径为 R 的圆柱形空间, 一金属杆放在题图中地点,杆长为2 R ,此中一半位于磁场内、另一半在磁场外.当dB>0时,求:杆两头的感觉电动势的大小dt和方向.解:∵acabbcdabdtdabdt ∴∵1d [3R2 B]3R dBdt44dtd [π2B]π2dB 2R Rdt1212dt[ 3R2π2ac R ] dB412dtdBdt∴ac0 即从a c半径为 R的直螺线管中,有dB>0的磁场,一随意闭合导线abca ,一部分在螺线管内绷直dt成 ab 弦, a , b 两点与螺线管绝缘,如题10-13 图所示.设ab= R,试求:闭合导线中的感觉电动势.解:如图,闭合导线 abca 内磁通量B S π 23R2m B(R)64(π23 R2) dB∴i R64dt∵dB0 dt∴i 0 ,即感觉电动势沿acba ,逆时针方向.题图题图如题图所示,在垂直于直螺线管管轴的平面上搁置导体 ab 于直径地点,另一导体 cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬时管内磁场如题图示方向.试求:(1)ab两头的电势差;(2)cd两点电势高低的状况.解:由E旋 dl dBdS 知,此时 E旋以 O 为中心沿逆时针方向.l dt(1)∵ ab 是直径,在 ab 上到处 E旋与 ab 垂直∴旋 dl 0l∴ ab 0, 有 U a U b(2) 同理,cE dldcd旋∴U d U c 0 即 U c U d题图一无穷长的直导线和一正方形的线圈如题图所示搁置 ( 导线与线圈接触处绝缘 ) .求:线圈与导线间的互感系数. 解: 设长直电流为I ,其磁场经过正方形线圈的互感磁通为2a 0 Ia0 Ia3dr12ln 23a2πr2π∴M12aln 2I 2π两线圈顺串连后总自感为, 在它们的形状和地点都不变的状况下,反串连后总自感为. 试求:它们之间的互感.解: ∵顺串时 LL 1 L 2 2M反串连时 L L 1 L 22M∴L L 4MM L L4 0.15 H题图一矩形截面的螺绕环如题图所示,共有 N 匝.试求:(1) 此螺线环的自感系数;(2) 若导线内通有电流 I ,环内磁能为多少 ? 解:如题图示(1) 经过横截面的磁通为0 NI hdrNIhlnbba2r π2πa磁链N0 N 2Ihb2πlna∴L0 N2hb2πlnIa(2) ∵W m 1LI 22∴0 N 2 I 2hln bW m4πa一无穷长圆柱形直导线,其截面各处的电流密度相等,总电流为 I .求:导线内部单位长度上所储藏的磁能.解:在 rR 时B0 Ir2πR2B 20 I2r 2∴w m2 428 π R取dV 2πrdr ( ∵导线长 l 1 )0 I 2 3 0I2RRr dr则Ww m 2 r dr4πR4 16π。
大学物理学下册答案第11章-大学物理11章答案
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载大学物理学下册答案第11章-大学物理11章答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第11章稳恒磁场习题一选择题B1B2abcdIIIll习题11-1图11-1 边长为l的正方形线圈,分别用图11-1中所示的两种方式通以电流I(其中ab、cd与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ](A),(B),(C),(D),答案:C解析:有限长直导线在空间激发的磁感应强度大小为,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计算,。
故正确答案为(C)。
习题11-2图11-2 两个载有相等电流I的半径为R的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O处的磁感应强度大小为多少? [ ](A)0 (B)(C)(D)答案:C解析:圆线圈在圆心处的磁感应强度大小为,按照右手螺旋定则判断知和的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O处的磁感应强度大小为。
11-3 如图11-3所示,在均匀磁场中,有一个半径为R的半球面S,S边线所在平面的单位法线矢量与磁感应强度的夹角为,则通过该半球面的磁通量的大小为[ ]SRBn习题11-3图(A)(B)(C)(D)答案:C解析:通过半球面的磁感应线线必通过底面,因此。
故正确答案为(C)。
IS习题11-4图11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S,当曲面S向长直导线靠近时,穿过曲面S的磁通量和面上各点的磁感应强度将如何变化?[ ](A)增大,B也增大(B)不变,B也不变(C)增大,B不变(D)不变,B增大答案:D解析:根据磁场的高斯定理,通过闭合曲面S的磁感应强度始终为0,保持不变。
大学物理标准答案第11章
大学物理答案第11章————————————————————————————————作者:————————————————————————————————日期:第十一章 恒定磁场11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C ).11-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π (C )αB r cos π22(D ) αB r cos π2题 11-2 图分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).11-3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ).11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( ) (A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B =(B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B =(C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠(D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠题 11-4 图分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).11-5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).11-6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速.分析 一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由lNecI =,可解出环中的电子数.解 通过分析结果可得环中的电子数10104⨯==ecIlN 11-7 已知铜的摩尔质量M =63.75 g·mol -1,密度ρ =8.9 g · cm -3,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度26.0A mm m j -=⋅ ,求此时铜线内电子的漂移速率v d ;(2) 在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍?分析 一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度m ρn /=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v = .从而可解得电子的漂移速率v d .将电子气视为理想气体,根据气体动理论,电子热运动的平均速率em kTπ8=v 其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.解 (1) 铜导线单位体积的原子数为M ρN n A /=电流密度为j m 时铜线内电子的漂移速率14A s m 1046.4--⋅⨯===eN M j ne j m m d ρv (2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为81042.2π81⨯≈=ed d m kTv v v 室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.11-8 有两个同轴导体圆柱面,它们的长度均为20 m ,内圆柱面的半径为3.0 mm ,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA 电流沿径向流过,求通过半径为6.0 mm 的圆柱面上的电流密度.题 11-8 图分析 如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得rlI j π2=解 由分析可知,在半径r =6.0 mm 的圆柱面上的电流密度2m A μ3.13π2-⋅==rlIj 11-9 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度()RIRR IR B 24202/32220μμ=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRBI 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 11-9 图11-10 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 11-10 图分析 根据叠加原理,点O 的磁感强度可视作由ef 、b e 、fa 三段直线以及ac b 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而b e 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4rl I μB = 其中l 1 、l 2 分别是圆弧ac b 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧ac b 、a d b 又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B . 解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iB B 0.解 (a) 长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O处总的磁感强度为1/4 圆弧电流所激发,故有RIμB 800=B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外.11-12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O 的磁感强度B .题 11-12 图分析 由教材11-4 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度RαI μB π40=,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度R IμB π40=,磁感强度的方向依照右手定则确定.点O 的磁感强度O B 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加. 解 根据磁场的叠加 在图(a)中,k i k k i B RI μR I μR I μR I μR I μπ24π4π44000000--=---= 在图(b)中,k i k i i B RI μR I μR I μR I μR I μπ41π14π44π4000000-⎪⎭⎫ ⎝⎛+-=---= 在图(c )中,k j i B RIμR I μR I μπ4π4830000---= 11-13 如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x ,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为x l xId π2d d 0μ=⋅=ΦS B矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==Φ211200lnπ2d π2d dd d Ilx l xIμμ 11-14 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πRIrμB =在导线外r >R ,I I =∑,因而rIμB 2π0=磁感强度分布曲线如图所示.11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得 r <R 12211ππ12πr R μr B =⋅ 21012πR IrμB =R 1 <r <R 2I μr B 022π=⋅rIμB 2π02=R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-16 如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.题 11-16 图分析 根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而πr 2d ⋅=⋅⎰B l B依照安培环路定理∑⎰=⋅I μ0d l B ,可以解得螺线管内磁感强度的分布.解 依照上述分析,有∑=⋅I μr B 02πr <R 102π1=⋅r B 01=BR 2 >r >R 1NI μr B 022π=⋅rNIμB 2π02=r >R 202π3=⋅r B 03=B在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若112R R R <<- 和R 2 ,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径()1221R R R +=,则环内的磁感强度近似为RNIμB 2π0≈11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πR Irμr B =在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd解 由分析可得单位长度导线内的磁通量4πd 2π0020Iμr R Ir μΦR==⎰11-18 已知地面上空某处地磁场的磁感强度40.410T B -=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯g v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2)洛伦兹力的大小,并与该质子受到的万有引力相比较.题 11-18 图解 (1) 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示. (2) 因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.126p -⨯==g m G因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力.11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解 依照分析m/s 63.0===dBU B E HH v 11-20 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解 根据带电粒子回转半径与粒子运动速率的关系有m /s kg 1012.121⋅⨯===-ReB m p vkeV 35.222==mp E k11-21 从太阳射来的速度为0.80×108m /s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少? 解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v地磁北极附近的回转半径m 2322==eB m R v11-22 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm , b =8.0 cm ,l =0.12 m .题 11-22图分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力.解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dlI I μF π22103=()b d lI I μF +=π22104故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F 合力的方向朝左,指向直导线.11-23 一直流变电站将电压为500k V 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F·m -1,若导线间的静电力与安培力正好抵消.求:(1) 通过输电线的电流;(2) 输送的功率.分析 当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度dIμB π20=,导线单位长度所受安培力的大小BI F B =.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度dελE 0π2=,两导线间单位长度所受的静电吸引力λE F E =.依照题意,导线间的静电力和安培力正好抵消,即0=+E B F F从中可解得输电线中的电流.解 (1) 由分析知单位长度导线所受的安培力和静电力分别为dI μBI F B π220==dεU C λE F E 022π2== 由0=+E BF F 可得dεU C d I μ02220π2π2=解得A 105.4300⨯==μεCUI (2) 输出功率W 1025.29⨯==IU N11-24 在氢原子中,设电子以轨道角动量π2/h L =绕质子作圆周运动,其半径为m 1029.5110-⨯=a .求质子所在处的磁感强度.h 为普朗克常量,其值为s J 1063.634⋅⨯-分析 根据电子绕核运动的角动量π20h a m L ==v可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流v/π20a e T e i ==在圆心处,即质子所在处的磁感强度为02a i μB =解 由分析可得,电子绕核运动的速率π2ma h=v其等效圆电流2020π4/π2ma hev a e i ==该圆电流在圆心处产生的磁感强度T 5.12π82202000===ma heμa i μB 11-25 如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流.题 11-25 图分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有⎰⋅=⋅r H d π2l H ,利用安培环路定理⎰∑=⋅fId l H求出环路内的传导电流,并由H μB =,()H μM r 1-=,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.解 (1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有∑=fπ2I r H对r <R 1221f ππr R I I =∑ 得2112πR IrH =忽略导体的磁化(即导体相对磁导率μr =1),有01=M ,21012πR IrμB =对R 2 >r >R 1I I=∑f得rI H 2π2=填充的磁介质相对磁导率为μr ,有()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2()()2223223ππR r R R I I I f -⋅--=∑ 得()()222322332πR R r r R I H --= 同样忽略导体的磁化,有03=M ,()()2223223032πR R r r R I μB --= 对r >R 30=-=∑I I If得04=H ,04=M ,04=B(2) 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为()()I μR R M I r si 12π112-=⋅= ()()I μR R M I r se 12π222-=⋅=对抗磁质(1r μ<),在磁介质内表面(r =R 1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2 ),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c )所示.。
大学物理答案解析第11章
第十一章 恒定磁场11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C ).11-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22(D ) αB r cos π2题 11-2 图分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).11-3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ).11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( ) (A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B= (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B= (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B≠ (D )⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B≠题 11-4 图分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).11-5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).11-6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速. 分析 一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由lNecI =,可解出环中的电子数.解 通过分析结果可得环中的电子数10104⨯==ecIlN 11-7 已知铜的摩尔质量M =63.75 g·mol -1 ,密度ρ =8.9 g · cm -3 ,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度26.0A mm m j -=⋅ ,求此时铜线内电子的漂移速率v d ;(2) 在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍?分析 一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度m ρn /=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v = .从而可解得电子的漂移速率v d .将电子气视为理想气体,根据气体动理论,电子热运动的平均速率em kTπ8=v 其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.解 (1) 铜导线单位体积的原子数为M ρN n A /=电流密度为j m 时铜线内电子的漂移速率14A s m 1046.4--⋅⨯===eN Mj ne j m m d ρv(2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为81042.2π81⨯≈=ed d m kTv v v 室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的. 11-8 有两个同轴导体圆柱面,它们的长度均为20 m ,内圆柱面的半径为3.0 mm ,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA 电流沿径向流过,求通过半径为6.0 mm 的圆柱面上的电流密度.题 11-8 图分析 如图所示是同轴柱面的横截面,电流密度j对中心轴对称分布.根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得rlI j π2=解 由分析可知,在半径r =6.0 mm 的圆柱面上的电流密度2m A μ3.13π2-⋅==rlIj 11-9 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度()RIRR IR B 24202/32220μμ=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRBI 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 11-9 图11-10 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 11-10 图分析 根据叠加原理,点O 的磁感强度可视作由ef 、be 、fa 三段直线以及acb 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而be 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB = 其中l 1 、l 2 分别是圆弧acb 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb 、a d b 又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B . 解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iB B 0.解 (a) 长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RIμB 800=B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外.11-12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O 的磁感强度B .题 11-12 图分析 由教材11-4 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度RαI μB π40=,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度RIμB π40=,磁感强度的方向依照右手定则确定. 点O 的磁感强度O B 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加. 解 根据磁场的叠加 在图(a)中,k i k k i B RI μR I μR I μR I μR I μπ24π4π44000000--=---= 在图(b)中,k i k i i B RI μR I μR I μR I μR I μπ41π14π44π4000000-⎪⎭⎫ ⎝⎛+-=---= 在图(c )中,k j i B RIμR I μR I μπ4π4830000---= 11-13 如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x ,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为x l xId π2d d 0μ=⋅=ΦS B矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==Φ211200lnπ2d π2d dd d Ilx l xIμμ 11-14 已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πRIrμB =在导线外r >R ,I I =∑,因而rIμB 2π0=磁感强度分布曲线如图所示.11-15有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1)r<R1;(2)R1<r<R2;(3)R2<r<R3;(4)r>R3.画出B-r图线.题11-15 图分析同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r的同心圆为积分路径,πr2d⋅=⋅⎰BlB,利用安培环路定理∑⎰=⋅Iμd lB,可解得各区域的磁感强度.解由上述分析得r<R12211ππ12πrRμrB=⋅2112πRIrμB=R1<r<R2IμrB22π=⋅rIμB2π2=R2<r<R3()()⎥⎦⎤⎢⎣⎡---=⋅IRRRrIμrB2223223ππ2π222322332πRRrRrIμB--=r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-16 如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.题 11-16 图分析 根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而πr 2d ⋅=⋅⎰B l B依照安培环路定理∑⎰=⋅I μ0d l B ,可以解得螺线管内磁感强度的分布.解 依照上述分析,有∑=⋅I μr B 02πr <R 102π1=⋅r B 01=BR 2 >r >R 1NI μr B 022π=⋅rNIμB 2π02=r >R 202π3=⋅r B 03=B在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若112R R R <<- 和R 2 ,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径()1221R R R +=,则环内的磁感强度近似为RNIμB 2π0≈11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πR Irμr B =在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd解 由分析可得单位长度导线内的磁通量4πd 2π0020Iμr R Ir μΦR==⎰11-18 已知地面上空某处地磁场的磁感强度40.410T B -=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯g v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较.题 11-18 图解 (1) 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示. (2) 因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.126p -⨯==g m G因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力.11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解 依照分析m/s 63.0===dBU B E HH v 11-20 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解 根据带电粒子回转半径与粒子运动速率的关系有m /s kg 1012.121⋅⨯===-ReB m p vkeV 35.222==mp E k11-21 从太阳射来的速度为0.80×108 m/s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少? 解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v地磁北极附近的回转半径m 2322==eB m R v11-22 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .题 11-22图分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力.解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dlI I μF π22103=()b d lI I μF +=π22104故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F 合力的方向朝左,指向直导线.11-23 一直流变电站将电压为500kV 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F ·m -1 ,若导线间的静电力与安培力正好抵消.求:(1) 通过输电线的电流;(2) 输送的功率.分析 当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度dIμB π20=,导线单位长度所受安培力的大小BI F B =.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度dελE 0π2=,两导线间单位长度所受的静电吸引力λE F E =.依照题意,导线间的静电力和安培力正好抵消,即0=+E B F F从中可解得输电线中的电流.解 (1) 由分析知单位长度导线所受的安培力和静电力分别为dI μBI F B π220==dεU C λE F E 022π2== 由0=+E BF F 可得dεU C d I μ02220π2π2=解得A 105.4300⨯==μεCUI (2) 输出功率W 1025.29⨯==IU N11-24 在氢原子中,设电子以轨道角动量π2/h L =绕质子作圆周运动,其半径为m 1029.5110-⨯=a .求质子所在处的磁感强度.h 为普朗克常量,其值为s J 1063.634⋅⨯-分析 根据电子绕核运动的角动量π20h a m L ==v 可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流v/π20a e T e i ==在圆心处,即质子所在处的磁感强度为02a i μB =解 由分析可得,电子绕核运动的速率π2ma h=v其等效圆电流2020π4/π2ma hev a e i ==该圆电流在圆心处产生的磁感强度T 5.12π82202000===ma heμa i μB 11-25 如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流.题 11-25 图分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有⎰⋅=⋅r H d π2l H ,利用安培环路定理⎰∑=⋅fId l H求出环路内的传导电流,并由H μB =,()H μM r 1-=,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.解 (1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有∑=fπ2I r H对r <R 1221f ππr R I I =∑ 得2112πR IrH =忽略导体的磁化(即导体相对磁导率μr =1),有01=M ,21012πR IrμB =对R 2 >r >R 1I I=∑f得rI H 2π2=填充的磁介质相对磁导率为μr ,有()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2()()2223223ππR r R R I I I f -⋅--=∑ 得()()222322332πR R r r R I H --= 同样忽略导体的磁化,有03=M ,()()2223223032πR R r r R I μB --= 对r >R 30=-=∑I I If得04=H ,04=M ,04=B(2) 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为()()I μR R M I r si 12π112-=⋅= ()()I μR R M I r se 12π222-=⋅=对抗磁质(1r μ<),在磁介质内表面(r =R 1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2 ),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c )所示.。
大学物理第11章习题答案解析
第11章 电磁感应11.1 基本要求 12别感应电动势的方向。
34567一些简单情况下的磁场能量。
811.2 基本概念 1W qε=23k E :变化的磁场在其周围所激发的电场。
与静电场不同,感生电场的电场线是闭合的,所以感生电场也称有旋电场。
4变化而产生的感应电动势。
5:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。
自感系数L ://m L I N I =ψ=Φ 6L ε:当通过回路的电流发生变化时,在自身回路中所产生的感应电动势。
7M :211212M I I ψψ== 812ε:当线圈2的电流2I 发生变化时,在线圈1中所产生的感应电动势。
9m W :贮存在磁场中的能量。
自感贮存磁能:212m W LI =磁能密度m w :单位体积中贮存的磁场能量22111222m B w μH HB μ===10D d d I dt Φ=s d t∂=∂⎰DS ,位移电流并不表示有真实的电荷在空 间移动。
但是,位移电流的量纲和在激发磁场方面的作用与传导电流是一致的。
11d t∂=∂D j 11.3 基本规律 1(1)楞次定律:感生电流的磁场所产生的磁通量总是反抗回路中原磁通量的改变。
楞 次定律是判断感应电流方向的普适定则。
(2)法拉第电磁感应定律:不论什么原因使通过回路的磁通量(或磁链)发生变化,回路 中均有感应电动势产生,其大小与通过该回路的磁通量(或磁链)随时间的变化成正比,即mi d dtεΦ=-2()BBK AAi εd d ==⨯⎰⎰E l v B l ,若0i ε>,则表示电动势方向由A B →;若0i ε<,则表示电动势方向B A →3m K ls i d Φd εd d dtdt =⋅=-=-⎰⎰BE l S (对于导体回路)BK Ai εd =⎰E l (对于一段导体)4L dIεL dt=- 512212d ΨdIεM dt dt=-=- 6sd ⋅⎰D S =0VdV q ρ=⎰l d ⋅⎰E l = - s d t∂⋅∂⎰BS =0sd ⋅⎰B Sc l sd d t ∂⎛⎫⋅=+⋅ ⎪∂⎝⎭⎰⎰D H l j S11.4 学习指导学习法拉第电磁感应定律要注意,公式中的电动势是整个回路的电动势,式中负号是楞 次定律的要求,用以判断电动势的方向。
大学物理第十一章课后答案
第十一章 电流与磁场11-1 电源中的非静电力与静电力有什么不同?答:在电路中,电源中非静电力的作用是,迫使正电荷经过电源内部由低电位的电源负极移动到高电位的电源正极,使两极间维持一电位差。
而静电场的作用是在外电路中把正电荷由高电位的地方移动到低电位的地方,起到推动电流的作用;在电源内部正好相反,静电场起的是抵制电流的作用。
电源中存在的电场有两种:1、非静电起源的场;2、稳恒场。
把这两种场与静电场比较,静电场由静止电荷所激发,它不随时间的变化而变化。
非静电场不由静止电荷产生,它的大小决定于单位正电荷所受的非静电力,q非F E =。
当然电源种类不同,非F 的起因也不同。
11-2静电场与恒定电场相同处和不同处?为什么恒定电场中仍可应用电势概念? 答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。
但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。
正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。
11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同?电流密度是否相同?电流强度是否相同?为什么?答:此题涉及知识点:电流强度d sI =⋅⎰j s ,电流密度概念,电场强度概念,欧姆定律的微分形式j E σ=。
设铜线材料横截面均匀,银层的材料和厚度也均匀。
由于加在两者上的电压相同,两者的长度又相等,故铜线和银层的场强E相同。
由于铜线和银层的电导率σ不同,根据j E σ=知,它们中的电流密度j 不相同。
电流强度d sI =⋅⎰j s ,铜线和银层的j 不同但相差不太大,而它们的横截面积一般相差较大,所以通过两者的电流强度,一般说来是不相同的。
11-4一束质子发生侧向偏转,造成这个偏转的原因可否是:(1)电场?(2)磁场?(3)若是电场和磁场在起作用,如何判断是哪一种场?答:造成这个偏转的原因可以是电场或磁场。
大学物理课后答案第十一章
第十一章 机械振动一、基本要求1.掌握简谐振动的基本特征,学会由牛顿定律建立一维简谐振动的微分方程,并判断其是否谐振动。
2. 掌握描述简谐运动的运动方程,理解振动位移,振)cos(0ϕω+=t A x 幅,初位相,位相,圆频率,频率,周期的物理意义。
能根据给出的初始条件求振幅和初位相。
3. 掌握旋转矢量法。
4. 理解同方向、同频率两个简谐振动的合成规律,以及合振动振幅极大和极小的条件。
二、基本内容1. 振动 物体在某一平衡位置附近的往复运动叫做机械振动。
如果物体振动的位置满足,则该物体的运动称为周期性运动。
否则称为非周)()(T t x t x +=期运动。
但是一切复杂的非周期性的运动,都可以分解成许多不同频率的简谐振动(周期性运动)的叠加。
振动不仅限于机械运动中的振动过程,分子热运动,电磁运动,晶体中原子的运动等虽属不同运动形式,各自遵循不同的运动规律,但是就其中的振动过程讲,都具有共同的物理特征。
一个物理量,例如电量、电流、电压等围绕平衡值随时间作周期性(或准周期性)的变化,也是一种振动。
2. 简谐振动 简谐振动是一种周期性的振动过程。
它可以是机械振动中的位移、速度、加速度,也可以是电流、电量、电压等其它物理量。
简谐振动是最简单,最基本的周期性运动,它是组成复杂运动的基本要素,所以简谐运动的研究是本章一个重点。
(1)简谐振动表达式反映了作简谐振动的物体位移随时间)cos(0ϕω+=t A x 的变化遵循余弦规律,这也是简谐振动的定义,即判断一个物体是否作简谐振动的运动学根据。
但是简谐振动表达式更多地用来揭示描述一个简谐运动必须涉及到的物理量、、(或称描述简谐运动的三个参量),显然三个参量A ω0ϕ确定后,任一时刻作简谐振动的物体的位移、速度、加速度都可以由对应地t 得到。
2cos()sin(00πϕωωϕωω++=+-=t A t A v )cos()cos(0202πϕωωϕωω±+=+-=t A t A a (2)简谐运动的动力学特征为:物体受到的力的大小总是与物体对其平衡位置的位移成正比、而方向相反,即,它是判定一个系统的运动过程kx F -=是否作简谐运动的动力学根据,只要受力分析满足动力学特征的,毫无疑问地系统的运动是简谐运动。
大学物理第三版第11章部分习题解答
2
(2) 如果用导线把AB两球连接起来再求以上两 点的电势
第11章部分习题解答
解: (1)
q E 2 4 0 r 1
R1 r R2
r R2
R2
q
R1
U1 q
R2
q 4 0 r
第11章 部分习题解答
第11章部分习题解答
P408题11.3.4 如图所示,两个无限大带电平板,电荷面密度 分别为 ,设P为两板间任意一点.(1)求A板上 的电荷在P点产生的场强 E A ; (2)求B板上的电 荷在P点产生的场强 E B ;(3)求A、B两板上的电 荷在P点产生的场强;(4)如果把B板拿走,A板 上的电荷如何分布?求它在P点产生的场强.
1 Q2 We 2 QU 球壳、 2 8 0 R3
Q 1 1 1 We We1 We 2 ( ) 8 0 R1 R2 R3
2
第11章部分习题解答
(2)
1 Q2 We ' QU 球 壳、 2 8 0 R3
2010.5.25
第11章部分习题解答
解: 因为A、B都是无限大带电平板,所以 (1) (2)
EA 2 0
方向向右
EB 2 0
EP E A EB 0
方向向右
(3)
方向向右
第11章部分习题解答
(4) 如果将B板拿走,A上的电荷将均匀分布在 左右两个面上,每一个面上的电荷面密度为 / 2 ,它们在P点产生的场强大小都是 2 E'A 方向向右 2 0 4 0
第11章部分习题解答
证明: 该电容器是由两个 电容分别为 C1 和 C2 的电容器并联而成 的
大学物理答案第11章
第十一章恒定磁场11-1两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A )r R B B 2=(B )r R B B = (C )r R B B =2(D )r R B B 4=分析与解在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C ).11-2一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B )B r 2π (C )αB r cos π22(D )αB r cos π2题 11-2 图分析与解作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).11-3下列说法正确的是( )(A )闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B )闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C )磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D )磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ).11-4在图(a)和(b)中各有一半径相同的圆形回路L1、L2,圆周内有电流I1、I2,其分布相同,且均在真空中,但在(b)图中L2回路外有电流I3,P 1、P 2为两圆形回路上的对应点,则( )(A )⎰⎰⋅=⋅21L L d d l B l B ,21P P B B =(B )⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B =(C )⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠(D )⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠题 11-4 图分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).11-5半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr(μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1--(B )()r I μr π2/1- (C )r I μr π2/-(D )r μI r π2/分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).11-6北京正负电子对撞机的储存环是周长为240m 的近似圆形轨道,当环中电子流强度为8mA 时,在整个环中有多少电子在运行?已知电子的速率接近光速.分析一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由lNec I =,可解出环中的电子数.解通过分析结果可得环中的电子数10104⨯==ecIlN 11-7已知铜的摩尔质量M =63.75g·mol -1,密度ρ=8.9g · cm-3,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度26.0A mm m j -=⋅,求此时铜线内电子的漂移速率v d ;(2)在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍?分析一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ可以推算出铜的原子数密度m ρn /=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v =.从而可解得电子的漂移速率v d .将电子气视为理想气体,根据气体动理论,电子热运动的平均速率em kTπ8=v 其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.解 (1)铜导线单位体积的原子数为M ρN n A /=电流密度为j m 时铜线内电子的漂移速率14A s m 1046.4--⋅⨯===eN M j ne j m m d ρv (2)室温下(T =300K)电子热运动的平均速率与电子漂移速率之比为81042.2π81⨯≈=ed d m kTv v v 室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.11-8有两个同轴导体圆柱面,它们的长度均为20m,内圆柱面的半径为3.0mm,外圆柱面的半径为9.0mm.若两圆柱面之间有10μA电流沿径向流过,求通过半径为6.0mm的圆柱面上的电流密度.题11-8 图分析如图所示是同轴柱面的横截面,电流密度j对中心轴对称分布.根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r的同轴圆柱面上流过的电流I 都相等,因此可得rlIjπ2=解由分析可知,在半径r=6.0mm的圆柱面上的电流密度2mAμ3.13π2-⋅==rlIj11-9如图所示,已知地球北极地磁场磁感强度B的大小为6.0×10-5T.如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?解设赤道电流为I,则由教材第11-4节例2知,圆电流轴线上北极点的磁感强度()RIRRIRB2422/3222μμ=+=因此赤道上的等效圆电流为A1073.1249⨯==μRBI由于在地球地磁场的N极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 11-9 图11-10如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 11-10 图分析根据叠加原理,点O 的磁感强度可视作由ef 、b e 、fa 三段直线以及ac b 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而b e 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4rl I μB = 其中l 1、l 2分别是圆弧ac b 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧ac b 、a d b 又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B . 解由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 11-11如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iB B 0.解 (a)长直电流对点O 而言,有0d =⨯r l I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4圆弧电流所激发,故有RIμB 800=B 0的方向垂直纸面向外.(b)将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0的方向垂直纸面向里.(c )将载流导线看作1/2圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0的方向垂直纸面向外.11-12载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O 的磁感强度B .题 11-12 图分析由教材11-4节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度RαI μB π40=,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度R IμB π40=,磁感强度的方向依照右手定则确定.点O 的磁感强度O B 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加. 解根据磁场的叠加 在图(a)中,k i k k i B RI μR I μR I μR I μR I μπ24π4π44000000--=---= 在图(b)中,k i k i i B RI μR I μR I μR I μR I μπ41π14π44π4000000-⎪⎭⎫ ⎝⎛+-=---= 在图(c )中,k j i B RIμR I μR I μπ4π4830000---= 11-13如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x ,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为x l xId π2d d 0μ=⋅=ΦS B矩形平面的总磁通量ΦΦ⎰=d解由上述分析可得矩形平面的总磁通量⎰==Φ211200lnπ2d π2d dd d Ilx l xIμμ 11-14已知10mm 2裸铜线允许通过50A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R ,2222ππRIr r R I I ==∑,因而 202πRIrμB =在导线外r >R ,I I =∑,因而rIμB 2π0=磁感强度分布曲线如图所示.11-15有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1)r <R 1;(2)R 1<r <R 2;(3)R 2<r <R 3;(4)r >R 3.画出B -r 图线.题 11-15 图分析同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解由上述分析得 r <R 12211ππ12πr R μr B =⋅ 21012πR IrμB =R 1<r <R 2I μr B 022π=⋅rIμB 2π02=R 2<r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-16如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.题 11-16 图分析根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而πr 2d ⋅=⋅⎰B l B依照安培环路定理∑⎰=⋅I μ0d l B ,可以解得螺线管内磁感强度的分布.解依照上述分析,有∑=⋅I μr B 02πr <R 102π1=⋅r B 01=BR 2>r >R 1NI μr B 022π=⋅rNIμB 2π02=r >R 202π3=⋅r B 03=B在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若112R R R <<-和R 2,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径()1221R R R +=,则环内的磁感强度近似为 RNIμB 2π0≈11-17电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析由题11-14可得导线内部距轴线为r 处的磁感强度()202πR Irμr B =在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd解由分析可得单位长度导线内的磁通量4πd 2π0020Iμr R Ir μΦR==⎰11-18已知地面上空某处地磁场的磁感强度40.410T B -=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2)洛伦兹力的大小,并与该质子受到的万有引力相比较.题 11-18 图解 (1)依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示. (2)因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.126p -⨯==g m G因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力. 11-19霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0mm ,磁场为B =0.080T ,毫伏表测出血管上下两端的电压为U H =0.10mV ,血流的流速为多大?题 11-19 图分析血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解依照分析m/s 63.0===dBU B E HH v 11-20带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5cm 的圆弧径迹,测得磁感强度为0.20T,求此质子的动量和动能.解根据带电粒子回转半径与粒子运动速率的关系有m /s kg 1012.121⋅⨯===-ReB m p vkeV 35.222==mp E k11-21从太阳射来的速度为0.80×108m /s的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0×10-7T,此电子回转轨道半径为多大?若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0×10-5T,其轨道半径又为多少? 解由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v地磁北极附近的回转半径m 2322==eB m R v11-22如图(a)所示,一根长直导线载有电流I 1=30A ,矩形回路载有电流I 2=20A .试计算作用在回路上的合力.已知d =1.0cm , b =8.0cm ,l =0.12m .题 11-22图分析矩形上、下两段导线受安培力F 1和F 2的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3和F 4大小不同,且方向相反,因此线框所受的力为这两个力的合力.解由分析可知,线框所受总的安培力F 为左、右两边安培力F 3和F 4之矢量和,如图(b)所示,它们的大小分别为dlI I μF π22103=()b d lI I μF +=π22104故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F 合力的方向朝左,指向直导线.11-23一直流变电站将电压为500k V 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F·m -1,若导线间的静电力与安培力正好抵消.求:(1)通过输电线的电流;(2)输送的功率.分析当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度dIμB π20=,导线单位长度所受安培力的大小BI F B =.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度dελE 0π2=,两导线间单位长度所受的静电吸引力λE F E =.依照题意,导线间的静电力和安培力正好抵消,即0=+E B F F从中可解得输电线中的电流.解 (1)由分析知单位长度导线所受的安培力和静电力分别为dI μBI F B π220==dεU C λE F E 022π2== 由0=+E BF F 可得dεU C d I μ02220π2π2=解得A 105.4300⨯==μεCUI (2)输出功率W 1025.29⨯==IU N11-24在氢原子中,设电子以轨道角动量π2/h L =绕质子作圆周运动,其半径为m 1029.5110-⨯=a .求质子所在处的磁感强度.h 为普朗克常量,其值为s J 1063.634⋅⨯-分析根据电子绕核运动的角动量π20h a m L ==v可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流v/π20a e T e i ==在圆心处,即质子所在处的磁感强度为02a i μB =解由分析可得,电子绕核运动的速率π2ma h=v其等效圆电流2020π4/π2ma hev a e i ==该圆电流在圆心处产生的磁感强度T 5.12π82202000===ma heμa i μB 11-25如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1)空间各区域内的磁感强度和磁化强度;*(2)磁介质表面的磁化电流.题 11-25 图分析电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有⎰⋅=⋅r H d π2l H ,利用安培环路定理⎰∑=⋅fId l H求出环路内的传导电流,并由H μB =,()H μM r 1-=,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.解 (1)取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有∑=fπ2I r H对r <R 1221f ππr R I I =∑ 得2112πR IrH =忽略导体的磁化(即导体相对磁导率μr =1),有01=M ,21012πR IrμB =对R 2>r >R 1I I=∑f得rI H 2π2=填充的磁介质相对磁导率为μr ,有()r I μM r 2π12-=,rI μμB r 2π02= 对R 3>r >R 2()()2223223ππR r R R I I I f -⋅--=∑ 得()()222322332πR R r r R I H --= 同样忽略导体的磁化,有03=M ,()()2223223032πR R r r R I μB --= 对r >R 30=-=∑I I If得04=H ,04=M ,04=B(2)由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为()()I μR R M I r si 12π112-=⋅= ()()I μR R M I r se 12π222-=⋅=对抗磁质(1r μ<),在磁介质内表面(r =R 1),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c )所示.。
大学物理课后习题答案(第十一章)
习题十一11-1 圆柱形电容器内、外导体截面半径分别为1R 和2R (1R <2R ),中间充满介电常数为ε的电介质.当两极板间的电压随时间的变化k t U=d d 时(k 为常数),求介质内距圆柱轴线为r 处的位移电流密度.解:圆柱形电容器电容12ln 2R R l C πε=12ln 2R R lU CU q πε==1212ln ln 22R R r U R R r lU S q D εππε===∴12lnR R r ktDj ε=∂∂=11-2 试证:平行板电容器的位移电流可写成t UCI d d d =.式中C 为电容器的电容,U 是电容器两极板的电势差.如果不是平板电容器,以上关系还适用吗? 解:∵ CU q =S CU D ==0σ∴ CU DS D ==Φ不是平板电容器时 0σ=D 仍成立∴t UCI D d d =还适用.题11-3图11-3 如题11-3图所示,电荷+q 以速度v ϖ向O 点运动,+q 到O 点的距离为x ,在O 点处作半径为a 的圆平面,圆平面与v ϖ垂直.求:通过此圆的位移电流. 解:如题11-3图所示,当q 离平面x 时,通过圆平面的电位移通量)1(222ax x q D +-=Φ[此结果见习题8-9(3)]tUC t ID D d d d d ==Φ∴23222)(2d d a x v qa tI DD +==Φ题11-4图11-4 如题11-4图所示,设平行板电容器内各点的交变电场强度E =720sin t π510V ·m -1,正方向规定如图.试求:(1)电容器中的位移电流密度;(2)电容器内距中心联线r =10-2m 的一点P ,当t =0和t =51021-⨯s 时磁场强度的大小及方向(不考虑传导电流产生的磁场).解:(1)t Dj D ∂∂=,E D 0ε= ∴tt t t E j D ππεπεε50550010cos 10720)10sin 720(⨯=∂∂=∂∂=2m A -⋅ (2)∵⎰∑⎰⋅+=⋅)(0d d S D lSj I l H ϖϖϖϖ取与极板平行且以中心连线为圆心,半径r 的圆周r l π2=,则D j r r H 22ππ=Dj r H 2=0=t 时0505106.3107202πεπε⨯=⨯⨯=rH P 1m A -⋅51021-⨯=t s 时,0=P H11-5 半径为R =0.10m 的两块圆板构成平行板电容器,放在真空中.今对电容器匀速充电,使两极板间电场的变化率为t Ed d =1.0×1013 V ·m -1·s -1.求两极板间的位移电流,并计算电容器内离两圆板中心联线r (r <R )处的磁感应强度Br 以及r =R 处的磁感应强度BR .解: (1)t E t D j D ∂∂=∂∂=0ε 8.22≈==R j S j I D D D πA(2)∵S j I l H SD lϖϖϖϖd d 0⋅+=⋅⎰∑⎰取平行于极板,以两板中心联线为圆心的圆周r l π2=,则22d d 2r t E r j r H D πεππ==∴t Er H d d 20ε=t Er H B r d d 2000εμμ==当R r =时,600106.5d d 2-⨯==t ER B R εμT *11-6 一导线,截面半径为10-2m ,单位长度的电阻为3×10-3Ω·m -1,载有电流25.1 A .试计算在距导线表面很近一点的以下各量:(1)H 的大小;(2)E 在平行于导线方向上的分量; (3)垂直于导线表面的S 分量. 解: (1)∵⎰∑=Il H ϖϖd取与导线同轴的垂直于导线的圆周r l π2=,则I r H =π2 21042⨯==rI H π1m A -⋅(2)由欧姆定律微分形式 E j σ=得21053.7/1/-⨯====IR RS SI jE σ 1m V -⋅(3)∵H E S ϖϖϖ⨯=,E ϖ沿导线轴线,H ϖ垂直于轴线 ∴S ϖ垂直导线侧面进入导线,大小1.30==EH S 2m W -⋅*11-7 有一圆柱形导体,截面半径为a ,电阻率为ρ,载有电流0I .(1)求在导体内距轴线为r 处某点的E ϖ的大小和方向;(2)该点H ϖ的大小和方向;(3)该点坡印廷矢量S ϖ的大小和方向;(4)将(3)的结果与长度为l 、半径为r 的导体内消耗的能量作比较.解:(1)电流密度S I j 00=由欧姆定律微分形式Ej σ=0得2000a I j j E πρρσ===,方向与电流方向一致(2)取以导线轴为圆心,垂直于导线的平面圆周r l π2=,则由⎰⎰=⋅SlS j l H ϖϖϖϖd d 0可得2202a r I r H =π∴202a rI H π=,方向与电流成右螺旋 (3)∵ H E S ϖϖϖ⨯=∴ S ϖ垂直于导线侧面而进入导线,大小为 42202a rI EH S πρ==(4)长为l ,半径为)(a r r <导体内单位时间消耗能量为4220222200121)(a lr I r la r I R I W πρπρ===单位时间进入长为l ,半径为r 导体内的能量422022a lr I rl S W πρπ==21W W =说明这段导线消耗的能量正是电磁场进入导线的能量.*11-8 一个很长的螺线管,每单位长度有n 匝,截面半径为a ,载有一增加的电流i ,求:(1)在螺线管内距轴线为r 处一点的感应电场; (2)在这点的坡印矢量的大小和方向.解: (1)螺线管内ni B 0μ= 由 S t B l E S l ϖϖϖϖd d ⋅∂∂-=⋅⎰⎰取以管轴线为中心,垂直于轴的平面圆周r l π2=,正绕向与B 成右螺旋关系,则22r t B r E ππ∂∂-=∴dt di nr t B r E 220μ-=∂∂-=,方向沿圆周切向,当0d d <t i时,E ϖ与B ϖ成右螺旋关系;当0d d >t i 时,E ϖ与B ϖ成左旋关系。
大学物理第11单元课后习题答案.doc
习题1111.1选择题(1)一圆形线圈在均匀磁场中作下列运动时,哪些情况会产生感应电流()(A)沿垂直磁场方向平移;(B)以直径为轴转动,轴跟磁场垂直;(C)沿平行磁场方向平移;(D)以直径为轴转动,轴跟磁场平彳丁。
[答案:B](2)下列哪些矢量场为保守力场()(A)静电场;(B)稳恒磁场;(C)感生电场;(D)变化的磁场。
[答案:A]⑶用线圈的自感系数L来表示载流线圈磁场能量的公式比”=£厶厂()(A)只适用于无限长密绕线管;(B)只适用于一个匝数很多,且密绕的螺线环;(C)只适用于单匝圆线圈;(D)适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A)涡旋电场对电荷有作用力;(B)涡旋电场由变化的磁场产生;(C)涡旋场山电荷激发;(D)涡旋电场的电力线闭合的。
[答案:C]11.2填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到—o[答案:磁力](2)产生动生电动势的非静电场力是—,产生感生电动势的非静电场力是—,激发感生电场的场源是—。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为/的金属直导线在垂直于均匀的平面内以角速度(»转动,如果转轴的位置在—,这个导线上的电动势最大,数值为—;如果转轴的位置在—,整个导线上的电动势最小,数值为—。
[答案:端点,”中点,0]11.3—半径r =10cm的圆形回路放在B =0. 8T的均匀磁场中.回路平面与鸟垂直.当回路半dr径以恒定速率一=80cm/s收缩时,求回路中感应电动势的大小.dr解:回路磁通^,…=B S = Bn r2感应电动势大d©”dt解:取半圆形cbcz 法向为亍, 则①=—Bcosad ①,d t-nR 2 dBcos a -------- = d/ -8.89 x IO -2V即:S MeN ~ S MN则:fia+b&MN = ]_兀ea(vB sin —) dZ cos^ = -I 2 a cifi ?* =—(B TI r 2) = B2nr — = 0.40dt dt 11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm,如题11.4图所示.均匀磁场 B =80X 10^3T, B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角 a 当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.同理,半圆形adc 法向为j ,则------ B cos a2T 万与亍夹角和鸟与了夹角相等,a = 45°①m = Bn R 2 cos a方向与cbadc 相反,即顺时针方向. 11.5如题10-5图所示,载有电流Z 的长直导线附近,放一导体半圆环MeN 与长直 导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b,环心O 与导 线相距a.设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方 向及MN 两端的电压C/M -U N •解:作辅助线MN,则在MeNM 回路中,沿/方向运动时d<D m = 0• •£MeNM ~ ° 以逆时针为回路正向,严”型d 心丛in 乜<0I 27rl2 龙 a + b解所以%斂沿NeM 方向,大小为:"学山气Ln a-bM 点电势高于N 点电势,即:U M -U N =^ln —2兀 a-b11.6如题10-6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导 线中的电流方向相反、大小相等,且电流以〒的变化率增大,求:dr(1) 任一时刻线圈内所通过的磁通量; (2) 线圈中的感应电动势.解:距长直导线为r 处的磁感应强度大小为:筈 以逆时针为回路正向,则:⑴磁通量:①m = r^Zdr- r^7dr = ^[ln^-ln^] h 2nr h 2nr In bd/c\舟亠曲dQ uJ ri d +a ■ b + a^dluJ di. b(a+d) 亠2n db At2n dt d(a +b)向逆时针11.7如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率/•绕图中半圆的直径旋转.整个电路的电阻为求:感应电流的最大值.① m =B-S = B —cos(a )t + ^)2d ①,” Bnr 2a ) # A= _ -TT = —sin (3/ + 札) at 2『竺也弩2吋"讪11.8如题11-8图所示,长直导线通以电流Z=5A,在其右方放一长方形线圈,两 者共面.线圈长b =0. 06m,宽a=0. 04m,线圈以速度v=0. 03m/s 垂直于直线平移 远离.求:d=0.05m 时线圈中感应电动势的大小和方向.解:AB. CD 运动速度);方向与磁力线平行,不产生感应电动势.以顺 :题10-6解:=Blvt cos 60° = kt 2lv - = -klvt 2 2 2£ = - ^^ = -klvt dt即沿abed 方向顺时针方解:如图逆时针为矩形导线框正向,则时针为回路正向,则:ZM 产生电动势:务订如)•归"盟si 吟・叭如筈0眈产生电动势…2 =加湎小-韵方.•.回路中总感应电动势:£ = £]+£2=如凹(丄-一) = 1.6xl0-8y方向沿2兀 a a+a顺时针11.9长度为/的金属杆ab 以速率v 在导电轨道abed 上平行移动.已知导轨处于均匀磁场直中,为的方向与回路的法线成60°角(如题11.9图所示),鸟的大小为B=kt (k 为正常).设/=0时杆位于cd 处,求:任一时刻/导线回路中感应电动势的大小和方向.11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B 的方向如题11.10图所示.取 逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).题 11. 10 图(a)d<Z>在磁场中时 --- =0, £ = 0;dt d<Z>一出场时 --- > 0 , £<0,故I - t 曲线如题10-9图(b)所不.dt1111导线必长为儿绕过。
大学物理课后习题11第十一章答案
1 1) ,
1
v2 c2
再由题意知
所以有
Ek nm0c2 。
最后得到
( 1 1) n
1
v2 c2
v n2 2n c 。
n 1
*11.11 一个电子的运动速度 v 0.99c ,它的动能是多少?(电子的静
止能量为0.51Mev.)
解:由相对论动能公式
Ek mc2 m0c2 m0c2 ( 1) m0c2 (
间隔为 5s.求:
(1) S 相对于 S 的运动速度.
(2) 乙测得这两个事件发生的地点间的距离.
解: 甲测得 t 4 s, x 0 ,乙测得 t 5 s ,坐标差为 x x2 x1 ′
(1)∴
t
(t
v c2
x)
t
1 t 1 (v)2
c
习题 11
11.1 选择题
(1)在一惯性系中观测,两个事件同时不同地,则在其他惯性系中
观测,他们[
]。
(A)一定同时
(B)可能同时
(C)不可能同时,但可能同地 (D)不可能同时,也
不可能同地
[答案:D ]
(2)在一惯性系中观测,两个事件同地不同时,则在其他惯性系中
观测,他们[
]。
(A)一定同地
(B)可能同地
负号表示
x
2
x1
0
.
11.6 6000m 的高空大气层中产生了一个 介子以速度 v =0.998c 飞向
地球.假定该 介子在其自身静止系中的寿命等于其平均寿命 2×
10-6s.试分别从下面两个角度,即地球上的观测者和 介子静止系中
大学物理课后答案11章-推荐下载
9.66 104 m
;
∴
R 恒星
l
b2
2 m
W
。
11-6.分别求出红光( 7 105 cm ), X 射线( 0.25 A ), 射线(
λ 1.24 102 A )的光子的能量、动量和质量。
解:由公式: E h c , E m c 2 及 P h ,有:
P S T 4 0.25910104 5.67 108 20004 235 W 。
11-5.天文学中常用热辐射定律估算恒星的半径。现观测到某恒星热辐射的峰值波长为 m ; 辐射到地面上单位面积的功率为W 。已测得该恒星与地球间的距离为 l ,若将恒星看作黑 体,试求该恒星的半径。(维恩常量 b 和斯特藩常量 均为己知) 解:由 T恒星 m b , M T 4 ,
6.631034 3108 0.25 1010
6.63 1034 0.256 1015 8.84 1032 kg ; c2 (3108 )2
P
h
hc
6.631034 3108 1.24 1012
6.63 1034 1.24 1012
动能: Ek
c h
0
h
c
hc 0 0
1
2( A)
,
m
0.33051012 5.74105 m / s 。
0
291 eV
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 )]
0.572m
2b 2
x22
ftan[arcsin( 5 1)] 0.583m
2b 2
第十一章 波动光学习题答案
11-26 解: 对第k级明纹有
b sin (2k 1)
2 7 5 600
22
428.6nm
第十一章 波动光学习题答案
11-27
解: 1) 对第k级明纹有
b sin (2k 1)
2
b sin b x (2k 1)
f
2
第一级明纹距中心的距离
3
x1 f 2 b
x11
f
3 2
1
b
3.0mm
x12
f
3 22Biblioteka b5.7mm间距 x1 x12 x11 2.7mm
第十一章 波动光学习题答案
2) 光栅常数为
102 d
105 m
1000
对第k级明纹有 d sin k
d sin d x k
bsin k bsin
第k级暗纹距中心的距离
1
xk
ftank
ftan[arcsin(k )] b2
第一级暗纹距中心的距离
1
x11
ftan[arcsin( )] b2
0.575 0.575m
1
x12
ftan[arcsin( )] b2
0.580 0.580m
第十一章 波动光学习题答案
(3) 光线以300角入射时: b(sin sin)
2) 对第k级明纹有 b(sin sin) (2k 1)
bsin (2k 1) bsin
2
2
第k级明纹距中心的距离
xk
ftank
ftan[arcsin((2k 1)
1 )]
2b 2
第二级明纹距中心的距离
x21
5
ftan[arcsin(
k 0,1,2,
暗纹
d
2
第十一章 波动光学习题答案
11-8 d 1.20m d 0.30mm
中央明纹一侧第5条暗纹与另一侧第5条暗纹间
的距离为22.78mm.
解:
d
暗纹: x (2k 1) , k 0,1...
d
2
2x d 2k 1
d
d d'
2x
2k 1
0.30 1.20
22.78
(1) 垂直入射时:
(a b)sin k
2
2
k a b 3.39
即垂直入射时,最多能看到第三级光谱,7条光谱.
第十一章 波动光学习题答案
(2) 光线以300角入射时:
(a b)(sin sin ) k
(a b)(sin 1) k
k 3, d3 750nm
k 4, d4 1000nm
n3 1.50
k 5, d4 1250nm
由于 dm 1.1m , 故可
观察到四个完整的暗环 .
第十一章 波动光学习题答案
11-24
L
f
衍射角
b
Px
o
解:对第k级明纹有
b sin (2k 1)
2
b sin b x (2k 1)
2b x 2k 1
f
2
f
400nm 760nm
2.25 k 4.75
k 3, 466.7nm k 4, 600nm
第十一章 波动光学习题答案
11-25
L
f
衍射角
b
Px
o
解:1) 对第k级暗纹有 bsin k
b sin b x k
f 第一级暗纹距中心的距离
x1
f
b
1.47 103 m
解:
Δ 2nTa2O5 d 2
(2k 1)
2
k 0,1,
暗纹
A
Ta2 O5
B
由于: AB段共有11条暗纹,
且 A处恰好是一条暗纹.
2nTa2O5 d 10
d 5 1.4m nTa2 O5
第十一章 波动光学习题答案
11-17
解 b d 6.5
b 2
D
d
d
a c
b
D 6.5 1885nm 1.885m
2 4 1
103
nm
632.8nm
红光
第十一章 波动光学习题答案
11-10
C
d
h
D
解 波程差
2d h
D2
极大时 k
(k 1,2,3)
取 k 1
2d h
D2
h D
4d
第十一章 波动光学习题答案
11-12
d
解:
S1 n1
r1
在缝处盖一介质片后,光程
O
r d nd r (n 1)d S2 n2
f
第一级明纹距中心的距离 x1 f d
x11
f
1
d
2.0cm
x12
f
2
d
3.8cm
间距 x1 x12 x11 1.8cm
第十一章 波动光学习题答案
11-28
d
s1 * s 2*
0
f
d 2
l
解 l d dD 4918 m
0 1.22
第十一章 波动光学习题答案
11-31
解:光栅常数为 a b 1 2103 mm 500
2
第十一章 波动光学习题答案
11-20
暗环半径 r kR
(k 0,1,2,)
解 第一和第四暗环的距离
r (k 3)R kR ( k 3 k ) R
r ()
2
r
(r) 2 545.9nm
r
第十一章 波动光学习题答案
11-22
解:
k 明纹
dm
n2 n3
Δ 2n2d
d
(k 1)
第十一章 波动光学习题答案
11-8
d 1.20m d 0.30mm
中央明纹一侧第5条暗纹与另一侧第5条暗纹间 的距离为22.78mm.
第十一章 波动光学习题答案
s1
s d o
s2
r1 r2
r
d'
Bp
x
o
d x d'
k
(2k 1)
k d'
2
加强 减弱 明纹
k 0,1,2,
x
d d ' (2k 1)
2
(k 0,1, 2, )
暗纹
n2 1.20 n3 1.50
dm 1.1m
各明纹处膜厚
dk
k 2n2
k 0,1,2,
第十一章 波动光学习题答案
油膜边缘 k 0, d0 0 明环
dm
n2 1.20
dm 1.1m
k 1, d1 250nm
n2 d k 2, d2 500nm
n3
r2
对于中央点O: (n1 n2 )d 5
d 5 5 8.0m
n1 n2 0.3
第十一章 波动光学习题答案
11-14 解: 透射光加强
Δr
2n2d
(2k 1)
2
dmin 4n2 99.6nm
23
nn21
d
玻璃 n3
n1 n2 n3
第十一章 波动光学习题答案
11-16
第十一章 波动光学习题答案
L
f
衍射角
b
Px
o
2) 对第k级明纹有
b sin (2k 1)
2
b sin b x (2k 1)
f
2
第二级明纹距中心的距离
x2
5 2
f
b
3.68103 m
第十一章 波动光学习题答案
(3) 光线以300角入射时: b(sin sin)
1) 对第k级暗纹有 b(sin sin) k