高中物理步步高必修2《课时作业与单元检测》综合检测(一)

合集下载

高中物理步步高必修2《课时作业与单元检测》第一章 第一节

高中物理步步高必修2《课时作业与单元检测》第一章 第一节

第一章抛体运动第1节曲线运动1.物体运动轨迹是曲线的运动,叫做____________.2.曲线运动的速度的方向:做曲线运动的物体,不同时刻的速度具有不同的________;质点做曲线运动时,在某一位置的速度方向沿曲线在这一点的________方向;因为____________________,所以它的速度方向____________,所以曲线运动是变速运动.3.当运动物体所受合外力的方向与速度方向______________时,物体做直线运动,若方向________,则做加速直线运动,若方向________,则做减速直线运动.当运动物体所受合外力的方向与速度方向______________时,物体做曲线运动.4.物体受到力的作用,会产生加速度,当加速度的方向与速度方向________________ 时,物体做直线运动,当加速度方向与速度方向________________时,物体做曲线运动.5.关于曲线运动,下列说法正确的是()A.曲线运动一定是变速运动B.曲线运动的速度方向不断地变化,但速度大小可以不变C.曲线运动的速度方向可能不变D.曲线运动的速度大小和方向一定同时改变6.下列说法中正确的是()A.物体受到的合外力方向与速度方向相同时,物体做加速直线运动B.物体受到的合外力方向与速度方向成锐角时,物体做曲线运动C.物体受到的合外力方向与速度方向成钝角时,物体做减速直线运动D.物体受到的合外力方向与速度方向相反时,物体做减速直线运动【概念规律练】知识点一曲线运动的概念1.关于曲线运动的速度,下列说法正确的是()A.速度的大小与方向都在时刻变化B.速度的大小不断发生变化,速度的方向不一定发生变化C.速度的方向不断发生变化,速度的大小不一定发生变化D.质点在某一点的速度方向沿曲线在这一点的切线方向2.图1某质点沿如图1所示的曲线abcde运动,则在a、b、c、d、e各点上,质点速度方向大致相同的两点是()A.a点与c点B.b点与d点C.c点与e点D.b点与e点知识点二物体做曲线运动的条件3.关于曲线运动,下列说法正确的是()A.物体在恒力作用下不可能做曲线运动B.物体在变力作用下一定做曲线运动C.做曲线运动的物体,其速度大小一定变化D.速度大小和加速度大小均不变的运动(不为零)可能是曲线运动【方法技巧练】一、运动轨迹与力的方向间关系的应用4.图2如图2所示,物体在恒力F的作用下沿曲线从A运动到B.这时突然使它所受的力反向, 大小不变,即由F变为-F.在此力作用下,关于物体以后的运动情况,下列说法正确的是()A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线由B返回A5.图3小钢球m以初速度v0在光滑水平面上运动,后受到磁极的侧向作用力而做曲线运动,从M点运动到N点,如图3所示,过轨迹上M、N两点的切线划分了四个区域,由此可知, 磁铁可能处在哪个区域()A.①区B.③区C.②或④区D.均不可能二、判断物体是否做曲线运动的方法6.下列说法不正确的是()A.物体在恒力作用下可能做曲线运动B.物体在变力作用下不可能做曲线运动C.做曲线运动的物体,其速度方向与加速度的方向不在同一直线上D.物体在变力作用下有可能做曲线运动1.做曲线运动的物体,在运动过程中,一定变化的物理量是()A.速率B.速度C.加速度D.合外力2.下列说法正确的是()A.做曲线运动的物体的速度方向不是物体的运动方向B.做曲线运动的物体在某点的速度方向即为该点轨迹的切线方向C.做曲线运动的物体速度大小可以不变,但速度方向一定改变D.速度大小不变的曲线运动是匀速运动3.一质点(用字母O表示)的初速度v0与所受合外力的方向如图所示,质点的运动轨迹用虚线表示,则所画质点的运动轨迹中可能正确的是()4.一质点做曲线运动,在运动的某一位置,它的速度方向、加速度方向以及所受合外力的方向之间的关系是()A.速度、加速度、合外力的方向有可能都相同B.加速度方向与合外力的方向一定相同C.加速度方向与速度方向一定相同D.速度方向与合外力方向可能相同,也可能不同5.物体受到几个力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做()A.静止B.匀变速直线运动C.曲线运动D.匀速直线运动6.做曲线运动的质点,其轨迹上某一点的加速度方向()A.就在通过该点的曲线的切线方向上B.与通过该点的曲线的切线垂直C.与物体在该点所受合力方向相同D.与该点瞬时速度的方向成一定夹角7.下列说法不正确的是()A.判断物体是做曲线运动还是直线运动,应看合外力方向与速度方向是否在一条直线上B.静止物体在恒定外力作用下一定做直线运动C.判断物体是做匀变速运动还是非匀变速运动应看所受合外力是否恒定D.匀变速运动的物体一定沿直线运动8.关于质点做曲线运动,下列描述中正确的是()A.做曲线运动的质点,瞬时速度的方向在曲线的切线方向上B.质点做曲线运动时受到的合力一定是变力C.质点做曲线运动时所受合力的方向与速度方向一定不在同一直线上D.质点做曲线运动时速度的大小一定是时刻在变化的9.在弯道上高速行驶的赛车,突然后轮脱离赛车.关于脱离了的后轮的运动情况,下列说法正确的是()A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时后轮前进的方向做直线运动,离开弯道D.上述情况都有可能图410.如图4所示,小钢球m以初速度v0在光滑水平面上运动时,受到磁极的侧向作用力而做图示的曲线运动到D点,从图可知磁极的位置及极性可能是()A.磁极在A位置,极性一定是N极B.磁极在B位置,极性一定是S极C.磁极在C位置,极性一定是N极D.磁极在B位置,极性无法确定11.如图5所示图5为一质点在恒力F作用下在xOy平面上从O点运动到B点的轨迹,且在A点时的速度v A与x轴平行,则恒力F的方向可能是()A.沿+x方向B.沿-x方向C.沿+y方向D.沿-y方向12.一个质点受到两个互成锐角的恒力F1和F2的作用,由静止开始运动.若运动中保持二力方向不变,但让F1突然增大到F1+ΔF,则质点以后()A.一定做匀变速曲线运动B.可能做匀变速直线运动C.一定做匀变速直线运动第一章抛体运动第1节曲线运动课前预习练1.曲线运动2.方向切线切线方向不断变化不断变化3.在一条直线上相同相反不在同一直线上4.在一条直线上不在同一直线上5.AB[曲线运动速度的方向不断变化,而速度的大小可以变,也可不变,A、B对.]6.ABD[物体受到的合外力的方向与速度方向不在一条直线上时做曲线运动.B对,C 错.]课堂探究练1.CD2.B[由题意知物体沿曲线由a向e运动,由各点的瞬时速度方向沿曲线在该点的切线方向可知,b、d两点的速度方向大致相同.]3.D[物体做曲线运动的条件是所受合力方向与速度方向不在一条直线上,所以恒力和变力均有可能使物体做曲线运动;做曲线运动的物体,速度方向一定发生变化,大小不一定变化,故只有D正确.]4.ABD[由AB段曲线向下弯曲可知,物体受到的力F的方向一定是指向AB弯曲的一侧.当力F突然反向时,在B点的速度方向瞬时未变,但在-F的作用下,速度方向要发生改变,向上侧偏转,故曲线Bc是可能的.图中Bb是撤去力F、物体沿切线运动的情况.图Ba是力F继续作用的结果.物体在-F 作用下不可能沿原曲线由B返回A.]方法总结力是改变物体运动状态的原因,物体做曲线运动时,一定向受力的一侧弯曲.5.D[由物体做曲线运动的条件可知,小球受到的吸引力应指向轨迹的凹侧,故①、②、③、④区都不可能,故选项D正确.]6.B[物体做曲线运动的条件是:物体所受合外力的方向与它的速度方向不在同一条直线上,这里合外力并未限定是变力还是恒力.物体可以受一个力,也可以受多个力,所以受力可以是恒力,也可以是变力,所以A、D正确,B错误.据牛顿第二定律可知,加速度方向与合外力方向一致,故可判断C也正确.故选B.]方法总结(1)在判断一个物体是否做曲线运动时,应首先分析物体的受力,确定其合力的方向与速度方向是否在一条直线上,若是则做直线运动,否则做曲线运动.(2)做曲线运动的物体速度是否变大决定于所受外力中沿切线方向的分力,如果该力与速度v同向,则物体速度变大,反之则变小.课后巩固练1.B[做曲线运动的物体,其速度沿切线方向,由于曲线在各点切线方向不同,故物体在做曲线运动的过程中速度的方向一定变化,但速度的大小即速率不一定变化,由于速度是矢量,方向变了,速度即变了.做曲线运动的物体所受合外力与速度不共线,但合外力可以是恒力,加速度可以恒定,综上所述B正确.]2.BC[速度方向就是运动方向,故A错;曲线运动的速度方向为该点的切线方向,速度方向一定改变,所以B、C对;由于速度方向改变且速度是矢量,所以曲线运动一定是变速运动,D错.]3.A4.B[质点做曲线运动时,速度方向沿轨迹的切线方向且与合外力方向不在同一直线上,而据牛顿第二定律知加速度方向与合外力的方向相同,故选B.]5.BCD6.CD[加速度的方向与合外力的方向始终是相同的,加速度的方向与速度的方向无关,但与物体速度的变化量的方向有关,与该点的瞬时速度的方向成一夹角,正确选项为C、D.]7.ABC[当合外力方向与速度方向在一条直线上时,物体做直线运动,当它们方向有一夹角时,物体做曲线运动,故A、B对.物体受的合外力恒定时,就做匀变速运动,合外力不恒定就做非匀变速运动,可见匀变速运动可能是直线运动也可能是曲线运动,故C对,D错.]8.AC[质点做曲线运动受到的合力可以是变力,也可以是恒力,故B错误;质点做曲线运动,速度方向一定变化,但速度大小可以是不变的,故D错误.]9.C[赛车沿弯道行驶,任一时刻赛车上任何一点的速度方向都是赛车运动的曲线轨迹上对应点的切线方向.被甩出的后轮的速度方向就是甩出点轨迹的切线方向,车轮被甩出后,不再受到车身的约束,只受到与速度方向相反的阻力作用(重力和地面对车轮的支持力相平衡),车轮做直线运动.]10.D[钢球受磁极的吸引力而做曲线运动,运动轨迹只会向吸引力的方向偏转,因而磁极位置只可能在B点而不可能在图中的A点或C点.又磁极的N极或S极对钢球都有吸引力,故极性无法确定.]11.D[根据做曲线运动的物体所受合外力指向曲线内侧的特点,质点在O点的受力方向可能沿+x方向或-y方向,而由A点可以推知恒力方向不能沿+x方向,但可以沿-y方向,所以D项正确.]12.A[质点是受两恒力F1和F2的作用,从静止开始沿两个力的合力方向做匀加速直线运动,当F1发生变化后,F1+ΔF和F2的合力大小和方向与原合力F合相比均发生了变化,如右图所示,此时合外力仍为恒力,但方向与原来的合力方向不同,即与速度方向不相同,所以此后物体将做匀变速曲线运动,故A正确.]。

高中物理步步高必修2《课时作业与单元检测》配套课件第一章 学案2

高中物理步步高必修2《课时作业与单元检测》配套课件第一章 学案2

本 学
的速度为 v 船,河宽为 d.小船渡河问题的处理方法:船渡河
案 栏
时,船的实际运动(即相对于河岸的运动)可以看成是随水以


速度 v 水漂流的运动和以速度 v 船相对于静水的划行运动的合

运动.这两个分运动互不干扰,各自独立,且具有等时性.
学习·探究区
1.渡河时间最短的问题
当船头垂直于河岸航行时渡河时间最短,
开 关
叫 位移的分解 ,位移的合成与分解都遵循 平行四边形
定则.
学习·探究区
学案2
本 一、位移和速度的合成与分解
学 案
[问题设计]
栏 目
1.在小船过河的例子中,小明欲驾驶船到达对岸,但发现小船到
开 关
达了对岸下游的某一位置,此过程中小船参与了几个运动?
答案 小船参与了两个运动,即船向对岸的运动(船划行的运
C. cos θ
B.vsin θ v
D. sin θ
自我·检测区
学案2
4.在漂流探险中,探险者驾驶摩托艇想上岸休息.假设江岸
是平直的,江水沿江向下游流去,水流速度为 v1,摩托艇在
本 学
静水中的航速为 v2,原来地点 A 离岸边最近处 O 的距离为
案 栏
d.若探险者想在最短时间内靠岸,则摩托艇登陆的地点离 O
学习·探究区
学案2
解析 船的实际运动是沿直线水平向左运动,设船速为 v 船,
则绳与船的连接点 O 的实际速度也是 v 船.
它产生了两个效果:一个是 O 点沿绳子方
向的运动,另一个是绕滑轮做顺时针方向

学 的转动,绳子在 O 点与水平方向的夹角 α
案 栏
逐渐增大.因此,可将 O 点(船)的运动分解为一个沿绳移动方向

高中物理步步高必修2《课时作业与单元检测》配套课件目录

高中物理步步高必修2《课时作业与单元检测》配套课件目录

下进一入页
《课时作业与单元检测》Word版文档
第二章 匀速圆周运动
第1节 圆周运动 第2节 匀速圆周运动的向心力和向心加速度 第3节 圆周运动的实例分析 第4节 圆周运动与人类文明(略)
习题课 单元检测
下进一入页
《课时作业与单元检测》Word版文档
第三章 万有引力定律
第1节 天体运动 第2节 万有引力定律 第3节 万有引力定律的应用 第4节 人造卫星 宇宙速度 习题课 单元检测
下进一入页
习题部分Word版文档
第四章 机械能和能源
训练1 功 训练2 习题课:功的计算 训练3 功率 训练4 势能 训练5 动能 动能定理 训练6 研究合外力做功和动能变化的关系 训练7 习题课:动能定理 训练8 机械能守恒定律 训练9 习题课:机械能守恒定律 训练10 学生实验:验证机械能守恒定律 训练11 能量的开发与利用 章末检测
下进一入页
课堂学案配套课件 第五章 经典力学的成就与局限性
学案1 经典力学的成就与局限性 学案2 了解相对论(选学) 初识量子论(选学)
返回进总入目录
习题部分Word版文档
第一章 抛体运动
训练1 曲线运动 训练2 运动的合成与分解 训练3 平抛运动 训练4 学生实验:研究平抛运动 训练5 斜抛运动(选学) 章末检测
第五章 经典力学的成就与局限性
第1节 经典力学的成就与局限性 第2节 了解相对论 第3节 初识量子论 综合检测(一) 综合检测(二)
返回进总入目录
物理·必修2(教科版)
进进入入
本工具包包含以下内容: 多媒体课件:成书课堂学案部分PPT课件 Word版题库:成书习题部分Word版文档 部分课件为Flash、PPT、视频文件结合制作,请先点击安装 Flash播放器、视频播放器,以保证顺利观看。

高中物理步步高必修2《课时作业与单元检测》配套课件第二章 学案1

高中物理步步高必修2《课时作业与单元检测》配套课件第二章 学案1

学习·探究区
学案1
一、线速度
本 学
[问题设计]
案 栏
如图 1 所示为自行车的车轮,A、B 为辐
目 开
条上的两点,已知它们到轴的距离分别为

rA=8 cm,rB=20 cm.它们随轮一起转动,
回答下列问题:
1.A、B 两点的速度方向如何?它们做的
图1
运动是匀速运动还是变速运动?
答案 两点的速度方向均沿圆周的切线方向.由于速度方向
学习·探究区
学案1
【例 1】 关于匀速圆周运动,下列说法正确的是 ( ABD )
A.匀速圆周运动是变速运动

B.匀速圆周运动的速率不变
学 案
C.任意相等时间内通过的位移相等


D.任意相等时间内通过的路程相等


解析 由线速度定义知,速度的大小不变,也就是速率不变,
但速度方向时刻改变,故 A、B 对;做匀速圆周运动的物体
周运动 100 m,试求物体做匀速圆周运动时:
(1)线速度的大小;

(2)角速度的大小;
学 案
(3)周期的大小.
栏 目
解析 本题考查了对圆周运动的各物理量的理解.
开 关
(1)依据线速度的定义式 v=ΔΔst可得
v=ΔΔst=11000 m/s=10 m/s
(2)依据 v=ωr 可得,ω=vr=1200 rad/s=0.5 rad/s.



图6
答案 线速度、角速度、周期存在着定量关系:vA=vB, TTAB=rr12=nn12,ωωBA=rr21=nn21.
学习·探究区
学案1
【例 3】 如图 7 所示的皮带传动装置(传动皮带是绷紧的且运

2025高考物理步步高同步练习必修2模块综合试卷(一)

2025高考物理步步高同步练习必修2模块综合试卷(一)

2025高考物理步步高同步练习必修2模块综合试卷(一)(时间:75分钟满分:100分)一、单项选择题:共10题,每题4分,共40分.每题只有一个选项最符合题意.1.如图1所示为质点做匀变速曲线运动轨迹的示意图,质点运动到D点(D点是曲线的拐点)时速度方向与加速度方向恰好互相垂直,则质点从A点运动到E点的过程中,下列说法中正确的是()图1A.质点经过C点的速率比D点的大B.质点经过C点时的加速度方向与速度方向的夹角小于90°C.质点经过D点时的加速度比B点的大D.质点从B到E的过程中加速度方向与速度方向的夹角先增大后减小答案 A解析因为质点做匀变速曲线运动,所以加速度恒定,C项错误.在D点时加速度方向与速度方向垂直,故知加速度方向向上,合力方向也向上,所以质点从C到D的过程中,合力方向与速度方向夹角大于90°,合力做负功,动能减小,v C>v D,A项正确,B项错误.从B至E的过程中,加速度方向与速度方向夹角一直减小,D项错误.2.如图2所示,在皮带传送装置中,皮带把物体P匀速传送至高处,在此过程中,下列说法正确的是()图2A.摩擦力对物体做正功B.支持力对物体做正功C.重力对物体做正功D.合外力对物体做正功答案 A解析摩擦力方向平行皮带向上,与物体运动方向相同,故摩擦力做正功,A对;支持力始终垂直于速度方向,不做功,B错;重力对物体做负功,C错;合外力为零,做功为零,D 错.3.(2021·浙江杭州市余杭中学高一月考)近几年各学校流行跑操.在通过圆形弯道时每一列的连线沿着跑道;每一排的连线是一条直线且必须与跑道垂直;在跑操过程中,每位同学之间的间距保持不变.如图3为某中学某班学生以整齐的步伐通过圆形弯道时的情形,此时此刻()图3A.同一列的学生的线速度相同B.同一列的学生受到的向心力相同C.同一排外圈的学生比内圈的学生线速度更大D.同一排的学生受到的向心加速度相同答案 C解析通过圆形弯道时,由于同一列的学生的线速度方向不同,所以线速度不同,A错误;通过圆形弯道时,向心力指向圆心,同一列的学生受到的向心力的方向不同,B错误;各位学生以整齐的步伐通过圆形弯道时,因每一排的连线是一条直线,且与跑道垂直,相当于共轴转动,所以全班同学的角速度相同,根据v=ωr,由同一排外圈的学生比内圈的学生转动半径大,同一排外圈的学生比内圈的学生线速度更大,C正确;根据a=rω2可知,同一排的学生的转动半径不同,同一排的学生受到的向心加速度不相同,D错误.4.(2020·浙江卷)如图4所示,卫星a、b、c沿圆形轨道绕地球运行.a是极地轨道卫星,在地球两极上空约1 000 km处运行;b是低轨道卫星,距地球表面高度与a相等;c是地球同步卫星,则()图4A.a、b的周期比c大B .a 、b 的向心力一定相等C .a 、b 的速度大小相等D .a 、b 的向心加速度比c 的小答案 C解析 卫星环绕地球做匀速圆周运动,万有引力提供其做圆周运动的向心力,由公式G Mm r 2=m 4π2T 2r 得T =2πr 3GM,则a 、b 的周期比c 的小,A 错误;由于a 、b 的质量关系未知,则a 、b 的向心力大小无法确定,B 错误;由公式G Mm r 2=m v 2r得v =GM r ,a 、b 的速度大小相等,C 正确;由公式G Mm r 2=ma 得a =G M r2,a 、b 的向心加速度比c 的向心加速度大,D 错误. 5.(2021·江苏南通市高一月考)将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直墙面上,如图5所示.不计空气阻力,则下列说法正确的是( )图5A .从抛出到撞墙,第二次球在空中运动的时间较短B .篮球两次抛出时速度的竖直分量第一次小于第二次C .篮球两次撞墙的速度可能相等D .抛出时的速度大小,第一次一定比第二次小答案 A解析 由于两次篮球均垂直撞在竖直墙面上,则篮球被抛出后的运动可以看作是平抛运动的逆运动,加速度都为g .在竖直方向上h =12gt 2,因为h 1>h 2,则t 1>t 2,因为水平位移相等,根据x =v 0t 知撞墙的速度v 01<v 02,即第二次撞墙的速度大;由v y =gt 可知两次抛出时速度的竖直分量第一次大于第二次,故A 正确,B 、C 错误;根据平行四边形定则知,抛出时的速度v =v 02+2gh ,第一次的水平初速度小,而上升的高度大,则无法比较抛出时的速度大小.故D 错误.6.(2020·百校联盟模拟)质量为1 kg 的小物体在竖直向上的拉力F 作用下由静止开始运动,拉力F 随物体上升高度h 的变化规律如图6所示,重力加速度g 取10 m/s 2,不计空气阻力,则物体上升3 m 时的速度大小为( )图6A .4 5 m/sB .2 5 m/sC .4 3 m/sD .2 3 m/s答案 B解析 由动能定理可知W F -mgh =12m v 2,又因F -h 图像的图线与横轴围成的“面积”表示拉力做的功,则W F =40 J ,代入数据可解得v =2 5 m/s ,选项B 正确.7.(2019·天津卷)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”,如图7所示.已知月球的质量为M 、半径为R .探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的( )图7A .周期为4π2r 3GMB .动能为GMm 2RC .角速度为Gm r 3 D .向心加速度为GM R2 答案 A解析 嫦娥四号探测器环绕月球做匀速圆周运动时,万有引力提供其做匀速圆周运动的向心力,有GMm r 2=mω2r =m v 2r =m 4π2T 2r =ma ,解得ω=GM r 3、v =GM r 、T =4π2r 3GM 、a =GM r 2,则嫦娥四号探测器的动能为E k =12m v 2=GMm 2r,由以上可知A 正确,B 、C 、D 错误. 8.(2020·唐山一中高一期末)两轮平衡车(如图8所示)深受年轻人的喜爱,它的动力系统由电池驱动,能够输出的最大功率为P 0,小明驾驶平衡车在水平路面上沿直线运动,受到的阻力恒为F f .已知小明和平衡车的总质量为m ,从启动到达到最大速度的整个过程中,小明和平衡车可视为质点,不计小明对平衡车做的功.设平衡车启动后的一段时间内是由静止开始做加速度为a 的匀加速直线运动,则( )图8A .平衡车做匀加速直线运动过程中能达到的最大速度为v =P 0F f +maB .平衡车运动过程中所需的最小牵引力为F =maC .平衡车达到最大速度所用的时间t =P 0(F f +ma )aD .平衡车能达到的最大行驶速度v 0=P 0F f +ma答案 A解析 平衡车做匀加速直线运动过程中,由牛顿第二定律可得F 牵-F f =ma ,则平衡车做匀加速直线运动过程中能达到的最大速度为v =P 0F 牵=P 0F f +ma,选项A 正确;当平衡车的加速度为零时,牵引力最小,F =F f ,选项B 错误;平衡车由静止匀加速达到v 所用的时间为v a=P 0(F f +ma )a,匀加速结束后,平衡车可减小牵引力,减小加速度,最后当牵引力等于阻力时达到最大速度,此时v 0=P 0F f ,可知平衡车达到最大速度所用的时间t 大于P 0(F f +ma )a,选项C 、D 错误.9.(2020·全国卷Ⅱ)如图9,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h .若摩托车经过a 点时的动能为E 1,它会落到坑内c 点.c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点.E 2E 1等于( )图9A .20B .18C .9.0D .3.0答案 B解析 摩托车从a 点做平抛运动到c 点,水平方向:h =v 1t 1,竖直方向:h =12gt 12,可解得v 1=gh 2,动能E 1=12m v 12=mgh 4;摩托车从a 点做平抛运动到b 点,水平方向:3h =v 2t 2,竖直方向:0.5h=12gt22,解得v2=3gh,动能E2=12m v22=92mgh,故E2E1=18,B正确.10.(2020·福州市二模)将一小球以初速度v0水平抛出,不计空气阻力,小球轨迹如图10甲所示,按此轨迹制作一条光滑轨道,并将轨道固定在竖直面内,如图乙所示.现把质量为m 的小球套在轨道上,从轨道顶点O由静止开始下滑,已知当地重力加速度为g,则沿该轨道下滑的小球()图10A.做平抛运动B.机械能不守恒C.下滑高度为h时,重力的瞬时功率为mg2ghD.与图甲中的小球相比,下滑相同高度时,耗时较长答案 D解析因为小球除受重力作用,还受光滑轨道弹力的作用,所以不做平抛运动,但机械能守恒,选项A、B错误;下滑高度为h时,重力的瞬时功率小于mg2gh,所以选项C错误;与题图甲中的小球相比,题图乙中的小球在竖直方向的加速度总小于重力加速度g,所以耗时较长,选项D正确.二、非选择题:共5题,共60分.其中第12题~第15题解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分;有数值计算时,答案中必须明确写出数值和单位.11.(8分)(2019·北京卷改编)用如图11甲所示装置研究平抛运动.将白纸和复写纸对齐重叠并固定在竖直的硬板上.钢球沿斜槽轨道PQ滑下后从Q点飞出,落在水平挡板MN上.由于挡板靠近硬板一侧较低,钢球落在挡板上时,钢球侧面会在白纸上挤压出一个痕迹点.移动挡板,重新释放钢球,如此重复,白纸上将留下一系列痕迹点.图11(1)下列实验条件必须满足的有________.A.斜槽轨道光滑B.斜槽轨道末段水平C.挡板高度等间距变化D.每次从斜槽上相同的位置无初速度释放钢球(2)为定量研究,建立以水平方向为x轴、竖直方向为y轴的坐标系.a.取平抛运动的起始点为坐标原点,将钢球静置于Q点,钢球的________(选填“最上端”“最下端”或者“球心”)对应白纸上的位置即为原点;在确定y轴时________(选填“需要”或者“不需要”)y轴与重垂线平行.b.若遗漏记录平抛轨迹的起始点,也可按下述方法处理数据:如图乙所示,在轨迹上取A、B、C三点,AB和BC的水平间距相等且均为x,测得AB和BC的竖直间距分别是y1和y2,则y1y2________13(选填“大于”“等于”或者“小于”).可求得钢球平抛的初速度大小为________(已知当地重力加速度为g,结果用上述字母表示).答案(1)BD(2分)(2)a.球心(1分)需要(1分)b.大于(2分)xgy2-y1(2分)解析(1)因为本实验是研究平抛运动,只需要每次实验都能保证钢球做相同的平抛运动,即每次实验都要保证钢球从同一高度无初速度释放并水平抛出,没必要要求斜槽轨道光滑,因此A错误,B、D正确;挡板高度可以不等间距变化,故C错误.(2)a.因为钢球做平抛运动的轨迹是其球心的轨迹,故将钢球静置于Q点,钢球的球心对应白纸上的位置即为坐标原点(平抛运动的起始点);在确定y轴时需要y轴与重垂线平行.b.由于平抛的竖直分运动是自由落体运动,故相邻相等时间内竖直方向上位移之比为1∶3∶5…,故两相邻相等时间内竖直方向上的位移之比越来越大.因此y1y2大于13;由y2-y1=gT2,x=v0T,联立解得v0=x gy2-y1.12.(12分)(2019·天津卷)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功.航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图12甲所示.为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图乙,AB长L1=150 m,BC水平投影L2=63 m,图中C点切线方向与水平方向的夹角θ=12˚(sin 12°≈0.21).若舰载机从A点由静止开始做匀加速直线运动,经t =6 s到达B点进入BC.已知飞行员的质量m=60 kg,g=10 m/s2,求:图12(1)舰载机水平运动的过程中,飞行员受到的水平力所做的功W ;(2)舰载机刚进入BC 时,飞行员受到竖直向上的压力F N 多大.答案 (1)7.5×104 J (2)1.1×103 N解析 (1)舰载机由静止开始做匀加速直线运动,设其刚进入上翘甲板时的速度为v ,则有v 2=L 1t①(2分) 根据动能定理,有W =12m v 2-0②(2分) 联立①②式,代入数据,得W =7.5×104 J ③(2分)(2)设上翘甲板所对应的圆弧半径为R ,根据几何关系,有L 2=R sin θ④(2分)由牛顿第二定律,有F N -mg =m v 2R⑤(2分) 联立①④⑤式,代入数据,得F N =1.1×103 N .(2分)13.(12分)(2021·江苏盐城市高一期中)如图13所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,该圆弧轨道与一粗糙直轨道CD 相切于C ,OC 与OB 的夹角为53°,一质量为m 的小滑块从P 点由静止开始下滑,PC 间距离为R ,滑块在CD 上所受滑动摩擦力为重力的0.3倍,重力加速度为g (sin 53°=0.8,cos 53°=0.6).求:图13(1)滑块从P 点滑到B 点的过程中,重力势能减少多少;(2)滑块第一次经过B 点时对轨道的压力大小;(3)为保证滑块不从A 处滑出,PC 之间的最大距离是多少.答案 (1)1.2mgR (2)2.8mg (3)0.6 m解析 (1)设PC 间的垂直高度为h 1,由几何关系得h 1=R sin 53°=0.8RCB 间的竖直高度h 2=R -R cos 53°=0.4RPB 间高度差h =h 1+h 2=1.2R所以滑块从P 滑到B 减少的重力势能为ΔE p =mgh =1.2mgR (3分)(2)在B 点,由牛顿第二定律知F N -mg =m v 2R (1分) 从P 到B ,由动能定理mgh -0.3mgR =12m v 2-0(2分) 联立解得F N =2.8mg (1分)据牛顿第三定律滑块第一次经过B 点时对轨道的压力大小F N ′=F N =2.8mg .(2分)(3)设PC 之间的最大距离为L 时,滑块第一次到达A 时速度为零,则对整个过程应用动能定理mgL sin 53°+mgR (1-cos 53°)-mgR -0.3mgL =0(2分)代入数值解得L =0.6 m(1分)14.(13分)(2021·重庆八中高一期中)第24届冬奥会将于2022年在我国的北京和张家口举行,跳台滑雪是冬奥会最受欢迎的比赛项目之一.如图14为一简化后的跳台滑雪的雪道示意图,包括助滑坡AC 和着陆坡CD .助滑坡由AB 和BC 组成,AB 是长为L 的长直斜坡,坡度(即与水平面的夹角)为θ=37°,BC 为半径为L 3的圆弧滑道,两者相切于B 点,过圆弧滑道最低点C 的切线水平.着陆坡CD 坡度α=30°.现有一运动员连同滑雪装备总质量为m ,从A 点由静止滑下,通过C 点水平飞出,飞行一段时间落到着陆坡CD 上的E 点,测得CE 间距离为4L 3,不计空气阻力,取sin 37°=35,cos 37°=45,重力加速度为g ,求:图14(1)运动员到达C 点的速度大小;(2)运动员到达C 点时对滑道的压力;(3)运动员由A 滑到C 点过程中,雪坡阻力对运动员所做的功.答案 (1)gL (2)4mg ,方向竖直向下(3)-16mgL 解析 (1)C 到E 的过程,运动员做平抛运动,设运动员在C 点的速度为v 0竖直方向43L sin 30°=12gt 2(2分) 解得t =4L 3g(1分) 水平方向v 0t =43L cos 30°(2分) 解得v 0=gL (1分)(2)在C 点,由牛顿第二定律有F N -mg =m v 0213L (2分) 解得F N =4mg (1分)根据牛顿第三定律得F N ′=F N =4mg ,方向竖直向下(2分)(3)运动员由A 到C 的过程,根据动能定理有mg [L sin 37°+L 3(1-cos 37°)]+W f =12m v 02 (1分) 解得W f =-16mgL .(1分) 15.(15分)(2021·江苏徐州市高一期中)如图15甲所示,一根轻质弹簧左端固定在竖直墙面上,右端放一个可视为质点的小物块,小物块的质量为m =0.4 kg ,当弹簧处于原长时,小物块静止于O 点.现对小物块施加一个外力F ,使它缓慢移动,将弹簧压缩至A 点,压缩量为x =0.1 m ,在这一过程中,所用外力F 与压缩量的关系如图乙所示.然后撤去F 释放小物块,让小物块沿桌面运动,设小物块与桌面间的滑动摩擦力等于最大静摩擦力,小物块离开水平面做平抛运动,下落高度h =0.8 m 时恰好垂直击中倾角θ为37°的斜面上的C 点,sin 37°=0.6,g 取10 m/s 2.求:图15(1)小物块到达桌边B 点时的速度大小;(2)小物块到达C 点时重力的功率;(3)在压缩弹簧的过程中,弹簧的最大弹性势能;(4)O 点至桌边B 点的距离L .答案 (1)3.0 m/s (2)16 W (3)2.3 J (4)0.4 m解析 (1)物块由B 到C 做平抛运动,竖直方向根据自由落体运动的规律可得h =12gt 2(1分) 解得t =0.4 s物块在C 点垂直击中斜面,根据运动的合成与分解可得tan 37°=v 0gt(2分) 解得物块做平抛运动的初速度v 0=3.0 m/s则小物块到达桌边B 点时的速度大小v B =v 0=3.0 m/s(1分)(2)小物块到达C 点时竖直方向的速度v y 2=2gh (2分)解得v y =4 m/s小物块到达C 点时重力的功率P =mg v y =16 W(1分)(3)由题图乙可知,当力F 增大到1.0 N 时物体开始运动,所以物块与桌面间的滑动摩擦力F f =1.0 N(1分)题图乙中,图线与x 轴所围成面积表示推力做的功,故在压缩弹簧的过程中,推力做的功W =12×(47.0+1.0)×0.1 J =2.4 J(1分) 压缩过程中,由功能关系得W -F f x -E p =0(2分)解得弹簧的最大弹性势能E p =2.3 J(1分)(4)物块从A 到B 的过程中,由功能关系得E p -F f (x +L )=12m v B 2 (2分) 解得L =0.4 m .(1分)模块综合试卷(二)(时间:75分钟 满分:100分)一、单项选择题:共10题,每题4分,共40分.每题只有一个选项最符合题意.1.下列说法正确的是( )A .两个匀变速直线运动的合运动一定是匀变速直线运动B .做圆周运动的物体受到的合力不一定指向圆心C .一对摩擦力做功的代数和为零D .物体竖直向上运动,其机械能一定增加答案 B解析两个匀变速直线运动,若合加速度方向与合初速度方向相同,则合运动为匀变速直线运动,若合加速度方向与合初速度方向有夹角,则合运动为匀变速曲线运动,选项A错误;物体做匀速圆周运动时,合力一定指向圆心,若物体做变速圆周运动,则合力不指向圆心,选项B正确;一对滑动摩擦力做功的代数和为负值,选项C错误;物体竖直向上运动时,若受到除重力以外的向上的外力,则机械能增加,若受到除重力以外的向下的外力,则机械能减少,若除重力外不受到外力,则机械能不变,选项D错误.2.(2020·潮州高级中学高一期末)在一次飞行表演中,一架“歼-20”战斗机先水平向右,再沿曲线ab向上(如图1),最后沿陡斜线直入云霄.设飞行路径在同一竖直面内,飞行速率不变.则沿曲线ab飞行时,战斗机()图1A.所受合外力为零B.速度方向不断变化C.竖直方向的分速度逐渐减小D.水平方向的分速度不变答案 B解析战斗机做曲线运动,速度方向发生变化,所受合外力不为零,A错误,B正确.战斗机的飞行速度大小v不变,与水平方向的夹角θ增大,则v y=v sin θ增大,即战斗机竖直方向的分速度逐渐增大,C错误.战斗机的飞行速度大小v不变,与水平方向的夹角θ增大,则v x=v cos θ减小,即战斗机水平方向的分速度逐渐减小,D错误.3.火箭发射回收是航天技术的一大进步,如图2所示,火箭在返回地面前的某段运动可看成先匀速后减速的直线运动,最后撞落在地面上,不计火箭质量的变化,则()图2A .火箭在匀速下降过程中,机械能守恒B .火箭在减速下降过程中,携带的检测仪器处于失重状态C .火箭在减速下降过程中合力做功等于火箭机械能的变化D .火箭着地时,火箭对地面的作用力大于自身的重力答案 D解析 匀速下降阶段,火箭所受的阻力等于重力,除了重力做功外,还有阻力做功,所以机械能不守恒,选项A 错误;在减速下降阶段,加速度向上,所以处于超重状态,选项B 错误;火箭着地时,做减速运动,加速度向上,处于超重状态,则地面对火箭的作用力大于火箭的重力,由牛顿第三定律知,火箭对地面的作用力大于自身的重力,选项D 正确;合外力做功等于动能的改变量,选项C 错误.4.设行星绕太阳的运动是匀速圆周运动,金星自身的半径是火星的n 倍,质量为火星的k 倍.不考虑行星自转的影响,则( )A .金星表面的重力加速度是火星的k n倍 B .金星的“第一宇宙速度”是火星的k n倍 C .金星绕太阳运动的加速度比火星小D .金星绕太阳运动的周期比火星大答案 B解析 根据g =GM R 2可知,g 金g 火=M 金M 火·R 火2R 金2=k n 2,选项A 错误;根据v =GM R 可知,v 金v 火=k n ,选项B 正确;根据a =GM 太r 2可知,轨道半径越大,加速度越小,选项C 错误;由r 3T2=常量可知,轨道半径越大,周期越长,选项D 错误.5.用竖直向上、大小为30 N 的力F ,将2 kg 的物体从沙坑表面由静止提升1 m 时撤去力F ,经一段时间后,物体落入沙坑,测得落入沙坑的深度为20 cm.若忽略空气阻力,g 取10 m/s 2,则物体克服沙坑的阻力所做的功为( )A.20 J B.24 J C.34 J D.54 J答案 C解析对全程应用动能定理,有Fh+mgd-W克f=0,解得物体克服沙坑的阻力所做的功W=34 J,选项C正确.克f6.(2021·浙江绍兴市高一期中)2021年2月11日除夕,中国“天问一号”探测器飞行202天抵近火星时,主发动机长时间点火“踩刹车”,“大速度增量减速”,从而被火星引力场捕获,顺利进入近火点高度约400千米、周期约10个地球日、倾角约10°的大椭圆环火轨道,成为我国第一颗人造火星卫星,于2021年5月着陆巡视器成功实施软着陆.如图3,“天问一号”在P点被火星捕获后,假设进入大椭圆环火轨道Ⅲ,一段时间后,在近火点Q点火制动变轨至中椭圆环火轨道Ⅱ运行,再次经过近火点Q点火制动变轨至近火圆轨道Ⅰ运行.下列说法正确的是()图3A.在地球上发射“天问一号”环火卫星速度必须大于16.7 km/sB.“天问一号”在轨道Ⅲ上运行的周期小于在轨道Ⅱ上运行的周期C.“天问一号”在P点的机械能大于在轨道Ⅰ上Q点的机械能D.“天问一号”分别经过轨道Ⅲ、Ⅱ、Ⅰ上Q点的加速度大小不相等答案 C解析“天问一号”能够摆脱地球引力的束缚到达火星且没有飞出太阳系,所以在地球上发射“天问一号”环火卫星速度必须大于第二宇宙速度且小于第三宇宙速度,即16.7 km/s>v>11.2 km/s,故A错误;轨道Ⅲ的半长轴比轨道Ⅱ的半长轴长,根据开普勒第三定律可知发“天问一号”在轨道Ⅲ上运行的周期大于在轨道Ⅱ上运行的周期,故B错误;“天问一号”从P点到轨道Ⅰ上Q点的运动过程中需要经历点火制动,发动机对卫星做负功,所以“天问一号”在P点的机械能大于在轨道Ⅰ上Q点的机械能,故C正确;“天问一号”分别经过轨道Ⅲ、Ⅱ、Ⅰ上Q点时所受万有引力大小相等,所以加速度大小相等,故D错误.7.如图4所示为可视为质点的排球从O点水平抛出后,只在重力作用下运动的轨迹示意图.已知排球从O点到a点与从a点到b点的时间相等,则()图4A.排球从O点到a点和从a点到b点重力做功之比为1∶1B.排球从O点到a点和从a点到b点重力做功的平均功率之比为1∶3C.排球运动到a点和b点时重力的瞬时功率之比为1∶3D.排球运动到a点和b点时的速度大小之比为1∶2答案 B解析排球抛出后,在竖直方向上做自由落体运动,在最初的相同时间内竖直方向运动的位移大小之比为1∶3,则排球从O点到a点和从a点到b点竖直方向运动的位移大小之比为1∶3,重力做功之比为1∶3,重力做功的平均功率之比为1∶3,选项A错误,B正确;由v y=gt得排球落到a点和b点时的竖直速度大小之比为1∶2,又P=mg v y,可得重力的瞬时功率之比为1∶2,选项C错误;排球落到a点和b点的竖直速度大小之比为1∶2,水平速度相同,根据v=v x2+v y2,可知排球运动到a点和b点时的速度大小之比不为1∶2,选项D错误.8.(2021·云南临沧一中模拟)如图5所示为一种叫作“魔盘”的娱乐设施,当转盘转动很慢时,人会随着“魔盘”一起转动,当“魔盘”转动到一定速度时,人会“贴”在“魔盘”竖直壁上,而不会滑下.若魔盘半径为r,人与魔盘竖直壁间的动摩擦因数为μ,重力加速度为g,最大静摩擦力等于滑动摩擦力,在人“贴”在“魔盘”竖直壁上随“魔盘”一起运动过程中,下列说法正确的是()图5A.人随“魔盘”转动过程中受重力、弹力、摩擦力和向心力作用B.如果转速变大,人与器壁之间的摩擦力变大C.如果转速变大,人与器壁之间的弹力不变D.“魔盘”的转速一定不小于12πgμr答案 D解析人随“魔盘”转动过程中受重力、弹力和摩擦力作用,向心力由弹力提供,故A错误;人在竖直方向受到重力和摩擦力,二力平衡,则知转速变大时,人与器壁之间的摩擦力不变,故B错误;如果转速变大,由F=mrω2知,人与器壁之间的弹力变大,故C错误;人恰好“贴”在“魔盘”上有,mg=F fmax,F N=mr(2πn)2,又F fmax=μF N,解得转速为n=12πg μr ,故“魔盘”的转速一定不小于12πgμr,故D正确.9. (2021·浙江宁波市期末)如图6为中国女排队员比赛中高抛发球,若球离开手时正好在底线中点正上空3.50 m处,速度方向水平且与底线垂直.已知每边球场的长和宽均为9 m,球网高2.25 m,不计空气阻力(g=10 m/s2,0.7=0.84).为了使球能落到对方场地,下列发球速度大小可行的是()图6A.15 m/s B.17 m/sC.20 m/s D.25 m/s答案 C解析发球后球做平抛运动,设球刚好过网所用时间为t1,发球速度为v1,则球在竖直方向的位移h1为发球高度减去球网高度,水平方向位移x1=9 m,根据公式h=12gt2,得t1=2h1g=2×(3.50-2.25)10s=0.5 s,则v1=x1t1=90.5m/s=18 m/s若发球速度小于18 m/s,球不能过网,不能落入对方场地;设球刚好落在对方底线中点所用时间为t2,发球速度为v2,则球在竖直方向的位移h2=3.50 m,水平方向的位移x2=(9+9) m=18 m,则t2=2h2g =2×3.5010s≈0.84 s,。

高中物理步步高必修2《课时作业与单元检测》配套课件第一章 学案4

高中物理步步高必修2《课时作业与单元检测》配套课件第一章 学案4


联立①②得 v0=2 gL=2 10×1.6×10-2 m/s=0.80 m/s
小球在 b 点的竖直分速度 vy= v ac=32Lt

联立①③得 vy=1.5 gL=0.60 m/s
小球在 b 点的合速度 v= v0 2+vy 2=1.0 m/s
答案 (1)B (2)2 gL 0.80 m/s 1.0 m/s

(4)用刻度尺测量某点的 x、y 两个坐标,代入 y=ax2 中,求


出常量 a.

目 开
(5)测量其他几个点的 x、y 坐标,代入上式,看是否满足,

如果在误差允许范围内满足,就说明该曲线为抛物线.
2.结论:平抛运动的轨迹是一条抛物线,其运动可以看成是
水平方向的匀速直线运动和竖直方向的自由落体运动的合
学案4
学案 4 学生实验:研究平抛运动
本 [学习目标定位]
学 案
1.学会用实验的方法描绘平抛运动的轨迹.

目 开
2.会判断平抛运动的轨迹是抛物线.

3.会计算平抛运动的初速度.
知识·储备区
学案4


案 1.平抛运动可以分解为水平方向的匀速直线运动和竖直方向

目 开
的自由落体运动,其速度分别为 vx= v0 ,vy= gt ,位移
目 开
运动的轨迹.将它描在背后的纸上,进行分析处理.
关 3.用频闪照相法拍摄运动轨迹
数码照相机每秒拍下小球做平抛运动时的
十几帧或几十帧照片.将照片上不同时刻
的小球的位置连成平滑曲线便得到了小球
的运动轨迹.如图 3 所示
图3
学习·探究区
学案4

高中物理步步高必修2《课时作业与单元检测》第四章 第1节

高中物理步步高必修2《课时作业与单元检测》第四章 第1节

第四章机械能和能源第1节功1.物体受到______的作用,并在力的方向上发生了________,这个力就对物体做了功.功的公式:________,功的单位:________,符号是______.功是______(矢、标)量.2.正功和负功:根据W=Fx cos α可知(1)当α=________时,W=0.即当力F和位移x________时,力对物体不做功.这种情况,物体在力F的方向上没有发生位移.(2)当________≤α<________时,W>0.即当力F跟位移x的夹角为______(锐、钝)角时,力F对物体做正功,这时力F是______(动、阻)力,所以,______(动、阻)力对物体做正功.(3)当________<α≤________时,W<0.即当力F跟位移x的夹角为______(锐、钝)角时,力F对物体做负功,这时力F是______(动、阻)力,所以,______(动、阻)力对物体做负功.一个力对物体做负功,又常说成“物体________这个力做功”(取绝对值).3.总功的计算:总功的计算有如下方法(1)W合=________(α为F合与位移x的夹角).(2)W合=W F1+W F2+…+W Fn(即总功为各个分力所做功的__________).4.在下面哪些情况下,人对书本的作用力F做了功()A.F竖直向上,书本保持静止B.F竖直向上,人与书本沿水平方向匀速运动C.F沿水平方向,书本保持静止D.F竖直向上,人与书本竖直向上做匀速运动5.足球运动员飞起一脚用60 N的力将足球踢出,足球沿草地运动了40 m后停止运动,关于运动员对足球做功的情况,下列说法正确的是()A.运动员对足球做功2 400 JB.运动员对足球没有做功C.运动员对足球做了功,但无法确定其大小D.以上说法都不对6.一个力对物体做了负功,则说明()A.这个力一定阻碍物体的运动B.这个力不一定阻碍物体的运动C.这个力与物体运动方向的夹角α>90°D.这个力与物体运动方向的夹角α<90°图17.如图1所示,两个互相垂直的力F1和F2作用在同一物体上,使物体运动,物体通过一段位移时,力F1对物体做功4 J,力F2对物体做功3 J,则力F1和F2的合力对物体做功为()A.7 JB.1 JC.5 JD.3.5 J【概念规律练】知识点一功的理解1.下列关于做功的说法中正确的是()A.凡是受力的作用的物体,一定有力对物体做功B.凡是发生了位移的物体,一定有力对物体做功C.只要物体受力的同时又有位移发生,就一定有力对物体做功D.只要物体受力且在力的方向上发生了位移,就一定有力对物体做功2.用水平恒力F 作用于质量为M 的物体上,使之在光滑的水平面上沿力的方向移动距 离x ,恒力做功为W 1.再用该恒力作用于质量为m (m <M )的物体上,使之在粗糙的水平面上移动同样距离x ,恒力做功为W 2,则两次恒力做功的关系是( ) A.W 1>W 2 B.W 1<W 2 C.W 1=W 2 D.无法判断 知识点二 功的正负3.下列说法中正确的是( ) A.功是矢量,正、负表示方向B.功是标量,正、负表示外力对物体做功还是物体克服外力做功C.力对物体做正功还是做负功,取决于力和位移的方向关系D.力做功总是在某过程中完成的,所以功是一个过程量 知识点三 公式W =Fx cos α的应用4.如图2所示,一个人用与水平方向成60°的力F =40 N 拉一木箱,在水平地面上沿 直线匀速前进了8 m,则图2(1)拉力F 对木箱所做的功是________ J. (2)摩擦力对木箱所做的功是________ J. (3)外力对木箱所做的总功是________ J. 5.如图3所示,图3用恒定的拉力F 拉置于光滑水平面上的质量为m 的物体,由静止开始运动时间t ,拉力 F 斜向上与水平面夹角为θ=60°.如果要使拉力做的功变为原来的4倍,在其他条件不变的情况下,可以将( )A.拉力变为2FB.时间变为2tC.物体质量变为m2D.拉力大小不变,但方向改为与水平面平行 【方法技巧练】 一、合力的功的计算 6.如图4所示,图4质量为m 的物体静止在倾角为θ的斜面上,物体与斜面的动摩擦因数为μ.现使斜面水平向左匀速移动距离x .试求:(1)摩擦力对物体做的功(物体与斜面相对静止); (2)斜面对物体的弹力做的功; (3)重力对物体做的功;(4)斜面对物体做的功是多少?各力对物体所做的总功是多少?二、变力做功的计算方法7.图5人在A点拉着细绳通过一定滑轮吊起质量m=50 kg的物体,如图5所示,开始时绳与水平方向夹角为60°,当人匀速拉着重物由A点沿水平方向运动s=2 m到达B点时绳与水平方向成30°.求人对绳的拉力做了多少功?(g取10 m/s2)1.如图6所示,图6质量为M的物体,受水平力F的作用,在粗糙的水平面上运动,下列说法中不正确的是()A.如果物体做加速直线运动,F一定对物体做正功B.如果物体做减速直线运动,F一定对物体做负功C.如果物体做匀速直线运动,F一定对物体做正功D.如果物体做减速直线运动,F可能对物体做负功2.人以20 N的水平恒力推着小车在粗糙的水平面上前进了5.0 m,人放手后,小车又前进了2.0 m才停下来,则小车在运动过程中,人的推力所做的功为()A.100 JB.140 JC.60 JD.无法确定3.以一定的速度竖直向上抛出一小球,小球上升的最大高度为h,空气的阻力大小恒为F,则从抛出至落回出发点的过程中,空气阻力对小球做的功为()A.0B.-FhC.-2FhD.-4Fh4.关于作用力与反作用力做功的关系,下列说法正确的是()A.当作用力做正功时,反作用力一定做负功B.当作用力不做功时,反作用力也不做功C.作用力与反作用力所做的功一定是大小相等D.作用力做正功时,反作用力也可以做正功5.关于摩擦力对物体做功,以下说法中正确的是()A.滑动摩擦力总是做负功B.滑动摩擦力可能做负功,也可能做正功C.静摩擦力对物体一定做负功D.静摩擦力对物体总是做正功6.图7如图7所示,物体A、B叠放着,A用绳系在固定的墙上,用力F拉着B右移.用F1、F AB、F BA分别表示绳中拉力、A对B的摩擦力和B对A的摩擦力,则下面叙述中正确的是()A.F做正功,F AB做负功,F BA做正功,F1不做功B.F、F BA做正功,F AB、F1不做功C.F做正功,F AB做负功,F BA和F1不做功D.F做正功,F AB做负功,F BA做正功,F1做负功7.图8如图8所示,质量为m的滑块放在光滑斜面上,斜面与水平面间的摩擦力不计,当滑块从斜面顶端滑到斜面底端的过程中()A.重力对滑块做正功B.滑块受到斜面的支持力与斜面垂直,所以支持力对滑块不做功C.斜面对滑块的支持力对滑块做负功D.滑块对斜面的压力对斜面做正功图98.新中国成立前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,原理图如图9所示,假设驴拉磨的平均用力大小为500 N,运动的半径为1 m,则驴拉磨转动一周所做的功为()A.0B.500 J图109.质量为5×103kg的汽车,由静止开始沿平直公路行驶,当速度达到一定值后,关闭发动机滑行,v-t图象如图10所示,则在汽车行驶的整个过程中,发动机做功为________;汽车克服摩擦力做功为________.图1110.如图11所示,滑轮和绳的质量及摩擦不计,用力F提升原来静止的质量为m=10 kg的物体,使其以大小为a=2 m/s2的加速度匀加速上升,求前3 s内力F做的功.(取g=10 m/s2)11.如图12所示,图12一个质量m=2 kg的物体,受到与水平方向成37°角斜向上方的拉力F1=10 N,在水平地面上移动的距离x=2 m.物体与地面间的滑动摩擦力F2=4.2 N,求外力对物体所做的总功.12.如图13所示,图13一质量为m=2.0 kg的物体从半径为R=5.0 m的圆弧的A端,在拉力作用下沿圆弧缓慢运动到B端(圆弧AB在竖直平面内).拉力F大小不变始终为15 N,方向始终与物体在该点的切线成37°角.圆弧所对应的圆心角为60°,BO边为竖直方向,g取10 m/s2.求这一过程中:(1)拉力F做的功.(2)重力mg做的功.(3)圆弧面对物体的支持力N做的功.(4)圆弧面对物体的摩擦力f做的功.第四章 机械能和能源第1节 功课前预习练1.力 位移 W =Fx cos α 焦耳 J 标2.(1)90° 垂直 (2)0° 90° 锐 动 动 (3)90° 180° 钝 阻 阻 克服3.(1)F 合x cos α (2)代数和4.D5.C [足球运动员对足球做了功使足球发生运动,但60 N 的力与40 m 的位移不对应同一过程,故无法确定功的大小,选C.]6.AC [力对物体做负功,说明该力对物体来说是阻力,其方向与物体运动方向的夹角大于90°,故选A 、C.]7.A [合力做的功等于它的各个分力做功的代数和,即4 J +3 J =7 J.] 课堂探究练1.D [做功的两个必要条件是:力和物体在力的方向上发生位移,也就是说,只有力或只有位移,是不符合做功条件的,故A 、B 错误;若物体发生位移的同时也受力的作用,但力与位移垂直时,此力并不做功,故C 错,D 对.]2.C [在粗糙水平面上移动的距离跟在光滑水平面上移动的距离相同,对力F 做的功来说是相同的,即W 1=W 2=Fx .]点评 求功时,必须要明确哪个力在哪个过程中做的功.根据功的定义,力F 所做的功只与F 的大小及在F 方向上发生的位移大小有关,与物体是否受其他力及物体的运动状态等其他因素均无关.3.BCD [理解功的概念,功有正、负之分,但功是标量,此处易误解.]4.(1)160 (2)-160 (3)0解析 (1)拉力F 对木箱所做的功为W 1=Fx cos 60°=40×8×12J =1.6×102 J.(2)摩擦力f 对木箱所做的功为W 2=fx cos 180°=F cos 60°·x cos 180°=40×12×8×(-1) J=-1.6×102 J.(2)外力对木箱做的总功为W =W 1+W 2=1.6×102 J +(-1.6×102 J)=0或者F 合=0(因为匀速直线运动),W =F 合·x =0.点评 求恒力做功的关键是找准力F 、位移x 、夹角α,再应用公式W =F 合·x =0求解即可.5.ABD [本题要讨论的是恒力做功的问题,所以选择功的计算公式,要讨论影响做功大小的因素变化如何影响功的大小变化,比较快捷的思路是先写出功的通式,再讨论变化关系.位移x =12at 2=12F cos 60°m t 2,W =Fx ·cos 60°=F 2cos 2 60°2mt 2,当F ′=2F 时,W ′=4W ,当t ′=2t 时,W ′=4W ;当m ′=12m 时,W ′=2W ;当θ=0°时,W ′=4W ,由此可知,C 错,A 、B 、D对.]6.见解析解析 物体受力情况如图所示,物体受到重力mg ,摩擦力f 和支持力N 的作用,物体相对斜面静止,物体相对地面水平向左匀速移动x ,这些力均为恒力,故可用W =Fx cos α计算各力的功.根据物体平衡条件,可得f=mg sin θ,N=mg cos θ,(1)W f=f·x cos (180°-θ)=-mgx sin θ·cos θ.(2)W N=N·x cos (90°-θ)=mgx sin θ·cos θ.(3)W G=G·x cos 90°=0.(4)N与f的合力与G等大反向,即物体所受斜面的力对物体做功为0,或W N+W f=0.合力对物体做的总功W总=W G+W f+W N=0+(-mgx sin θcos θ)+mgx sin θcos θ=0,或物体受力平衡,F合=0,则W总=F合x cos θ=0.方法总结计算几个力的总功,通常有以下两种不同的处理方法:(1)虽然力、位移都是矢量,但功是标量,所以几个力的总功等于各个力所做功的代数和.若以W1、W2、W3……W n分别表示力F1、F2、F3…F n所做的功(含正功与负功),则这些力所做的总功为W总=W1+W2+W3+…W n.(2)求出物体所受的合外力,根据公式W合=F合x cos α求合外力做的功,则物体所受的外力做的总功为W总=W合=F合x cos α.7.732 J解析设滑轮距地面的高度为h,则h(cot 30°-cot 60°)=s人由A走到B的过程中,重物G上升的高度Δh等于滑轮右侧绳子增加的长度,即Δh=hsin 30°-hsin 60°人对绳子做的功为:W=GΔh代入数据可得:W≈732 J.方法总结求变力做功的方法有以下几种:(1)平均值法:当力F的大小发生变化,但F、x成线性关系时,可以代入F的平均值计算F做的功.(2)图象法:变力做的功W可用F-x图线中所包围的面积表示.x轴上方的面积表示力对物体做的正功的多少,x轴下方的面积表示力对物体做的负功的多少.(3)分段法(或微元法):当力的大小不变,力的方向时刻与速度同向(或反向)时,把物体的运动过程分为很多小段,这样每一小段可以看成直线,先求力在每一小段上的功,再求和即可.(4)化变为恒法:有时候表面看起来是变力做功,但是经过适当变换可以转换成恒力做功.课后巩固练1.BD[无论物体是加速还是减速,F、v夹角都为零,则F都对物体做正功,A、C对,B、D 错.]2.A[人的推力作用在小车上的过程中,小车发生的位移是5.0 m,故该力做功为W=Fx cos α=20×5.0×cos 0° J=100 J.]3.C[从全过程看,空气的阻力为变力,但将整个过程分为两个阶段:上升阶段和下落阶段,小球在每个阶段上受到的阻力都是恒力,且总是跟小球运动的方向相反,空气阻力对小球总是做负功.全过程空气阻力对小球做的功等于两个阶段所做的功的代数和,即W=W上+W下=(-Fh)+(-Fh)=-2Fh.]4.D[由功的公式W=Fx cos α可知W大小、正负取决于F、x、α大小,作用力、反作用力虽然大小相等,方向相反,但是作用在两个物体上,两物体对地的位移大小、方向关系不确定,故作用力、反作用力做功的关系不确定,A、B、C错,D对. ]5.B[静摩擦力和滑动摩擦力都可以对物体做正功,也都可以对物体做负功.]6.C[F拉B向右移动,对B做正功;B移动时,F AB水平向左,对B做负功;F1和F BA对A 不做功,因为A处于静止状态,在力的方向上位移为零.]7.ACD[当滑块从顶端滑至底端时,由于接触面光滑,斜面将向右移动一段距离,如图所示.重力对滑块做正功,尽管斜面对滑块的支持力垂直于斜面,但滑块的位移方向与斜面不平行,即支持力N 与位移的夹角大于π2.所以斜面对滑块的支持力对滑块做负功,很容易分析,滑块对斜面的压力对斜面做正功.]8.D [由于F 的方向始终保持与作用点的速度方向一致,因此F 做功不为零,可否定A 答案.可把圆周划分成很多小段研究,当各小段的弧长Δx i 足够小(Δx i →0)时,在这Δx i 内F 的方向可看做与该小段的位移方向重合,故W F =F ·Δx 1+F ·Δx 2+F ·Δx 3+…=F ·2πR =1 000π J .]9.1.5×106 J 1.5×106 J解析 由v -t 图象可得后40 s 内汽车做匀减速运动,其加速度大小a =2040m/s 2=0.5 m/s 2,由牛顿第二定律求得汽车所受摩擦力f =ma =5×103×0.5 N =2.5×103N又由v -t 图象可得整个过程中汽车通过的位移x =60×202m =600 m,所以汽车克服摩擦力做功W f =f ·x =2.5×103×600 J =1.5×106 J,整个过程:W F =W f ,可求得发动机做功W F =1.5×106 J.10.1 080 J解析 物体受到两个力的作用:拉力F ′和重力mg ,其中F ′=2F ,由牛顿第二定律得 F ′-mg =ma所以F ′=m (g +a )=10×(10+2) N =120 N.则F =12F ′=60 N.物体从静止开始运动,3 s 内的位移为 x =12at 2=12×2×32 m =9 m. 方法一 力F 的作用点为绳的端点,而在物体发生9 m 位移的过程中,绳的端点的位移为2x =18 m,所以,力F 做的功W =F ·2x =60×18 J =1 080 J.方法二 本题还可用等效法求力F 做的功.由于滑轮和绳的质量及摩擦均不计,所以拉力F 做的功和拉力F ′对物体做的功相等, 即W F =W F ′=F ′x =120×9 J =1 080 J. 11.7.6 J解析 本题考查了对合力做功的求解,常用方法有以下两种: 解法一 拉力F 1对物体所做的功W 1=F 1x cos 37°=16 J 摩擦力F 2对物体所做的功为: W 2=F 2x cos 180°=-8.4 J外力对物体所做的总功W =W 1+W 2=7.6 J. 解法二 物体受到的合力为:F 合=F 1cos 37°-F 2=10×45N -4.2 N =3.8 N所以外力对物体所做的总功 W =F 合x =3.8×2 J =7.6 J.12.(1)62.8 J (2)-50 J (3)0 (4)-12.8 J解析 (1)将圆弧AB 分成很多小段x 1,x 2,…,x n ,拉力在每小段上做的功为W 1,W 2,…,W n ,因拉力F 大小不变,方向始终与物体在该点的切线成37°角,所以:W 1=Fx 1cos 37°,W 2=Fx 2cos 37°,…,W n =Fx n cos 37°,所以W F =W 1+W 2+…+W n =F cos 37°(x 1+x 2+…+x n )=F cos 37°·π3R =20π J =62.8 J(2)重力mg 做的功W G =-mgR (1-cos 60°)=-50 J(3)物体受的支持力N 始终与物体的运动方向垂直,所以W N =0.(4)因物体在拉力F 作用下缓慢移动,合外力做功为零,所以W F +W G +W f =0.所以 W f =-W F -W G =(-62.8+50) J =-12.8 J。

2025高中物理《课时作业》人教版必修第二册单元素养评价(一)

2025高中物理《课时作业》人教版必修第二册单元素养评价(一)

2025高中物理《课时作业》人教版必修第二册单元素养评价(一)单元素养评价(一)第五章抛体运动[合格性考试]时间:60分钟满分:65分一、选择题(本题共9小题,每小题3分,共27分)1.物体做曲线运动的条件为()A.物体运动的初速度不为零B.物体所受合外力为变力C.物体所受的合外力的方向与速度的方向不在同一条直线上D.物体所受的合外力的方向与加速度的方向不在同一条直线上2.关于曲线运动,以下说法中正确的是()A.做曲线运动的物体所受合力可以为零B.合力不为零的运动一定是曲线运动C.曲线运动的速度大小一定是改变的D.曲线运动的加速度一定不为零3.在第23届冬奥会闭幕式上“北京八分钟”的表演中,轮滑演员在舞台上滑出漂亮的曲线轨迹(如图所示).在此过程中轮滑演员的()A.速度始终保持不变B.运动状态始终保持不变C.速度方向沿曲线上各点的切线方向D.所受合力方向始终与速度方向一致4.中国舰载机歼- 15飞机在我国第一艘航母“辽宁舰”上顺利完成起降飞行训练.若舰载机起飞速度是60 m/s,起飞仰角是14°,则舰载机起飞时的水平速度和竖直速度的大小是(取sin 14°=0.24,cos 14°=0.97)()A.14.4 m/s58.2 m/s B.58.2 m/s14.4 m/sC.8.4 m/s42.8 m/s D.42.8 m/s8.4 m/s5.飞盘自发明之始的50~60年间,由于运动本身的新奇、活泼、变化、具挑战性、男女差异小、没有场地限制等的诸多特点,吸引了男女老少各年龄层的爱好者.如图,某一玩家从1.25 m的高度将飞盘水平投出,请估算飞盘落地的时间()A.0.3 s B.0.4 sC.0.5 s D.3 s6.如图所示,一艘炮艇沿长江由西向东快速行驶,在炮艇上发射炮弹射击北岸的目标.要击中目标,射击方向应()A.对准目标B.偏向目标的西侧C.偏向目标的东侧D.无论对准哪个方向都无法击中目标7.在麦收时常用拖拉机拉着一个圆柱形的石磙子在场院里压麦秸.如果石磙子在拖拉机的牵引力F的作用下做曲线运动,且速度逐渐增大.图中虚线表示它的运动轨迹,那么关于石磙子经过某点P时受到拖拉机对它的牵引力F的方向,在选项图几种情况中可能正确的是()8.如图所示,某同学将一篮球斜向上抛出,篮球恰好垂直击中篮板反弹后进入篮筐,忽略空气阻力,若抛射点沿远离篮板方向水平移动一小段距离,仍使篮球垂直击中篮板相同位置,且球不会与篮筐相撞,则下列方案可行的是()A.增大抛射速度,同时减小抛射角B.减小抛射速度,同时减小抛射角C.增大抛射角,同时减小抛出速度D.增大抛射角,同时增大抛出速度9.摩托车跨越表演是一项惊险刺激的运动,受到许多极限运动爱好者的喜爱.假设在一次跨越河流的表演中,摩托车离开平台时的速度为24 m/s,刚好成功落到对面的平台上,测得两岸平台高度差为5 m,如图所示.若飞越中不计空气阻力,摩托车可以近似看成质点,g取10 m/s2,则下列说法错误的是()A.摩托车在空中的飞行时间为1 sB.河宽为24 mC.摩托车落地前瞬间的速度大小为10 m/sD.若仅增加平台的高度(其他条件均不变),摩托车依然能成功跨越此河流二、实验题(本题共2小题,共14分)10.(5分)某物理实验小组采用如图所示的装置研究平抛运动.某同学每次都将小球从斜槽的同一位置由静止释放,并从斜槽末端水平飞出.改变水平挡板的高度,就改变了小球在板上落点的位置,从而可描绘出小球的运动轨迹.该同学设想小球先后三次做平抛运动,将水平挡板依次放在图中1、2、3的位置,且1与2的间距等于2与3的间距.若三次实验中小球从抛出点到落点的水平位移依次为x1、x2、x3,忽略空气阻力的影响,则下面分析正确的是________(填选项前的字母).A.x2-x1=x3-x2B.x2-x1<x3-x2C.x2-x1>x3-x2D.无法判断(x2-x1)与(x3-x2)的大小关系11.(9分)在“探究平抛运动的特点”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:A.让小球多次从斜槽上的同一位置滚下,在一张印有小方格的纸上记下小球碰到铅笔笔尖的一系列位置,如图乙中所示的A、B、C、D.B.按图甲所示安装好器材,注意斜槽末端________,记下小球在槽口时球心在纸上的水平投影点O和过O点的竖直线.C.取下白纸以O为原点,以竖直线为y轴,以小球抛出时初速度的方向为x轴建立平面直角坐标系,用平滑曲线画出小球做平抛运动的轨迹.(1)完成上述步骤,将正确的答案填在横线上.(2)上述实验步骤的合理顺序是________.(3)图乙所示的几个实验点中,实验点B偏差较大的原因可能是________.A.小球滚下的高度较其他几次高B.小球滚下的高度较其他几次低C.小球在运动中遇到其他几次没有遇到的阻碍D.小球开始滚下时,实验者已给它一个初速度三、计算题(本题共2小题,共24分)12.(10分)如图所示,一小球从平台上水平抛出,恰好落在平台前一倾角为α=53°的斜面顶端并刚好沿斜面下滑,已知平台到斜面顶端的高度为h=0.8 m,取g=10 m/s2.求:(1)小球水平抛出的初速度v0;(2)斜面顶端与平台边缘的水平距离x.(sin 53°=0.8,cos 53°=0.6)13.(14分)如图所示,小红在练习“套环”(套环用单匝细金属丝做成)游戏,要将套环套上木桩.若小红每次均在O点将套环水平抛出.O为套环最右端,已知套环直径为D=15 cm,抛出点O距地面高度H=1.35 m,O点与木桩之间的水平距离d=2.0 m,木桩高度h=10 cm,g取10 m/s2,求:(1)套环从抛出到落到木桩最上端等高处经历的时间;(2)套环落到木桩最上端等高处时的竖直速度;(3)若不计木桩的粗细,为能让套环套中木桩,小红抛出套环的初速度范围.[等级性考试]时间:30分钟满分:35分14.(5分)如图所示,在斜面顶端a处以速度v a水平抛出一小球,经过时间t a恰好落在斜面底端c处.今在c点正上方与a等高的b处以速度v b水平抛出另一小球,经过时间t b 恰好落在斜面的三等分点d处.若不计空气阻力,下列关系式正确的是()A.t a=32t b B.t a=3t bC.v a=32v b D.v a=32v b15.(5分)(多选)2019年央视春晚加入了非常多的科技元素,在舞台表演中还出现了无人机(如图甲所示).现通过传感器将某台无人机上升向前追踪拍摄的飞行过程转化为竖直向上的速度v y及水平方向速度v x与飞行时间t的关系图像如图乙、丙所示.则下列说法正确的是()A.无人机在t1时刻处于超重状态B.无人机在0~t2时间内沿直线飞行C.无人机在t2时刻上升至最高点D.无人机在t2~t3时间内做匀变速运动16.(5分)(多选)广场上很流行一种叫“套圈圈”的游戏,将一个圆环水平扔出,套住的玩具作为奖品.某小孩和大人直立在界外,在同一竖直线上不同高度处分别水平抛出圆环,恰好套中前方同一玩具.假设圆环的运动可以简化为平抛运动,则()A.大人抛出的圆环运动时间较短B.大人应以较小的速度抛出圆环C.小孩抛出的圆环发生的位移较大D.大人和小孩抛出的圆环单位时间内速度的变化量相等17.(10分)如图所示,河宽d=120 m,设小船在静水中的速度为v1,河水的流速为v2.小船从A点出发,在渡河时,船身保持平行移动.第一次出发时船头指向河对岸上游的B 点,经过10 min,小船恰好到达河正对岸的C点;第二次出发时船头指向河正对岸的C点,经过8 min,小船到达C点下游的D点,求:(1)小船在静水中的速度v1的大小;(2)河水的流速v2的大小;(3)在第二次渡河时小船被冲向下游的距离s CD.18.(10分)水平地面上有一高h=4.2 m的竖直墙,现将一小球以v0=6.0 m/s的速度,从离地面高H=5.0 m的A点水平抛出,球以大小为10 m/s的速度正好撞到墙上的B点,不计空气阻力,不计墙的厚度.重力加速度g取10 m/s2,求:(1)小球从A到B所用的时间t;(2)小球抛出点A到墙的水平距离s和B离地面的高度h B;(3)若仍将小球从原位置沿原方向抛出,为使小球能越过竖直墙,小球抛出时的初速度大小应满足什么条件?单元素养评价(二)第六章圆周运动[合格性考试]时间:60分钟满分:65分一、选择题(本题共9小题,每小题3分,共27分)1.如图所示,小球在一细绳的牵引下,在光滑水平桌面上绕绳的另一端O做匀速圆周运动.关于小球的受力情况,下列说法中正确的是()A.只受重力和支持力的作用B.只受重力和向心力的作用C.只受重力、支持力和拉力的作用D.只受重力、支持力、拉力和向心力的作用2.一辆轿车正在通过如图所示的路段,关于该轿车在转弯的过程中,下列说法正确的是()A.轿车的速度大小不一定变化B.轿车处于平衡状态C.轿车加速度的方向一定沿运动轨迹的切线方向D.轿车加速度的方向一定垂直于运动轨迹的切线方向3.市内公共汽车在到达路口转弯时,车内广播中就要播放录音:“乘客们请注意,前面车辆转弯,请拉好扶手”,这样可以()A.主要是提醒站着的乘客拉好扶手,以免车辆转弯时可能向转弯的内侧倾倒B.主要是提醒站着的乘客拉好扶手,以免车辆转弯时可能向转弯的外侧倾倒C.提醒包括坐着和站着的全体乘客均拉好扶手,以免车辆转弯时可能向前倾倒D.提醒包括坐着和站着的全体乘客均拉好扶手,以免车辆转弯时可能向后倾倒4.如图所示,小物块从半球形碗边的a点下滑到b点,碗内壁粗糙.物块下滑过程中速率不变,下列说法中正确的是()A.物块下滑过程中,所受的合力为0B.物块下滑过程中,所受的合力越来越大C.物块下滑过程中,加速度的大小不变,方向时刻在变D.物块下滑过程中,摩擦力大小不变5.如图所示,自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径R B=4R A、R C=8R A.当自行车正常骑行时,A、B、C三轮边缘的向心加速度的大小之比a A:a B:a C等于()A.1:1:8B.4:1:4C.4:1:32 D.1:2:46.如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动.当圆筒的角速度增大以后,物体仍然随圆筒一起匀速转动而未滑动,则下列说法正确的是() A.物体所受弹力增大,摩擦力也增大了B.物体所受弹力增大,摩擦力减小了C.物体所受弹力和摩擦力都减小了D.物体所受弹力增大,摩擦力不变7.如图所示,在光滑杆上穿着两个小球m1、m2,且m1=2m2,用细线把两球连起来,当杆匀速转动时,两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离r1与r2之比为()A.1:1 B.1: 2C.2:1 D.1:28.如图所示,质量m=2.0×104 kg的汽车以不变的速率先后驶过凹形桥面与凸形桥面,两桥面的圆弧半径均为60 m,如果桥面承受的压力不超过3.0×105 N,g=10 m/s2,则汽车允许的最大速率是()A.10 3 m/s B.10 6 m/sC.30 m/s D.1015 m/s9.如图所示,质量为m 的小球固定在杆的一端,在竖直面内绕杆的另一端做圆周运动.当小球运动到最高点时,瞬时速度v =12Lg ,L 是球心到O 点的距离,则球对杆的作用力是( )A.12mg 的拉力B.12mg 的压力 C .零 D.32mg 的压力二、实验题(本题共2小题,共14分)10.(6分)控制变量法是物理实验探究的基本方法之一.如图是用控制变量法探究向心力大小与质量m 、角速度ω和半径r 之间关系的实验情境图,其中:(1)探究向心力大小与质量m 之间关系的是图________; (2)探究向心力大小与角速度ω之间关系的是图________.11.(8分)为了探究物体做匀速圆周运动时,向心力与哪些因素有关,某同学进行了如下实验:如图甲所示,绳子的一端拴一个沙袋,绳上离沙袋L 处打一个绳结A,2L 处打另一个绳结B .请一位同学帮助用秒表计时.如图乙所示,做了四次体验性操作.操作1:手握绳结A ,使沙袋在水平面内做匀速圆周运动,每秒运动1周,体验此时绳子拉力的大小.操作2:手握绳结B ,使沙袋在水平面内做匀速圆周运动,每秒运动1周,体验此时绳子拉力的大小.操作3:手握绳结A ,使沙袋在水平面内做匀速圆周运动,每秒运动2周,体验此时绳子拉力的大小.操作4:手握绳结A ,沙袋的质量增大到原来的2倍,使沙袋在水平面内做匀速圆周运动,每秒运动1周,体验此时绳子拉力的大小.(1)操作2与操作1中,体验到绳子拉力较大的是________; (2)操作3与操作1中,体验到绳子拉力较大的是________; (3)操作4与操作1中,体验到绳子拉力较大的是________;(4)总结以上四次体验性操作,可知物体做匀速圆周运动时,向心力大小与________有关.A .半径B .质量C.周期D.线速度的方向三、计算题(本题共2小题,共24分)12.(12分)如图所示,桥面为圆弧形的立交桥AB横跨在水平路面上,桥长L=200 m,桥高h=20 m,可认为桥两端A、B与水平路面的连接处是平滑的.一质量m=1 040 kg的小汽车冲上立交桥,到达桥顶时的速度为15 m/s.已知重力加速度g=10 m/s2.(1)求小汽车通过桥顶时对桥面的压力大小.(2)若小汽车通过桥顶处的速度为1026 m/s,则之后小汽车将做何种运动?13.(12分)如图所示,用一根长为l =1 m 的细线,一端系一质量为m =1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ= 37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T .(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,结果可用根式表示)(1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?[等级性考试]时间:30分钟 满分:35分14.(5分)(多选)如图所示,一个匀速转动的半径为r 的水平圆盘上放着两个木块M 和N ,木块M 放在圆盘的边缘处,木块N 放在离圆心13r 的地方,它们都随圆盘一起运动.比较两木块的线速度和角速度,下列说法正确的是( )A .两木块的线速度相等B .两木块的角速度相等C .M 的线速度是N 的线速度的3倍D .M 的角速度是N 的角速度的3倍15.(5分)(多选)如图所示,物体P 用两根长度相等、不可伸长的细线系于竖直杆上,它随杆转动,若转动角速度为ω,则( )A .ω只有超过某一值时,细线AP 才有拉力B .细线BP 的拉力随ω的增大而不变C .细线BP 的张力一定大于细线AP 的张力D .当ω增大到一定程度时,细线AP 的张力大于细线BP 的张力16.(5分)(多选)如图所示,一个固定在竖直平面内的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后经过0.3 s 又恰好垂直撞击倾角为45°的斜面,已知半圆形管道的半径为R =1 m ,不计空气阻力,小球可看作质点且质量为m =1 kg ,g 取10 m/s 2.则( )A.小球在斜面上的相碰点C与B点的水平距离是0.45 mB.小球在斜面上的相碰点C与B点的水平距离是0.9 mC.小球经过管道的B点时,小球对管道有向下的作用力D.小球经过管道的B点时,受到管道的作用力F N B的大小是1 N17.(9分)动画片《熊出没》中有这样一个情节:某天熊大和熊二中了光头强设计的陷阱,被挂在树上(如图甲所示),聪明的熊大想出了一个办法,让自己和熊二荡起来使绳断裂从而得救,其过程可简化为如图乙所示的模型,设悬点为O,离地高度为H=6 m,两熊可视为质点且总质量m=500 kg,重心为A,荡下过程重心到悬点的距离l=2 m且保持不变,绳子能承受的最大张力为F T=104 N,光头强位于距离O点水平距离s=5 m的B点处,不计一切阻力,设某次熊大和熊二刚好在向右摆到最低点时绳子恰好断裂,结果可以保留根号,重力加速度g取10 m/s2.求这个过程中:(1)绳子恰好断裂瞬间熊大和熊二的速度为多大?(2)它们的落地点离光头强的距离为多少?(3)它们落地时的速度为多大?18.(11分)如图所示,平台上的小球从A点水平抛出,恰能无碰撞地进入光滑的斜面BC,经C点进入光滑水平面CD时速率不变,最后进入悬挂在O点并与水平面等高的弧形轻质筐内.已知小球质量为m,A、B两点高度差为h,BC斜面高为2h,倾角α=45°,悬挂弧筐的轻绳长为3h,小球看成质点,轻质筐的重力忽略不计,弧形轻质筐的大小远小于悬线长度,重力加速度为g,试求:(1)B点与抛出点A的水平距离;(2)小球运动到C点的速度大小;(3)小球进入轻质筐后瞬间,小球所受弹力的大小.单元素养评价(三)第七章万有引力与宇宙航行[合格性考试]时间:60分钟满分:65分一、选择题(本题共11小题,每小题3分,共33分)1.下列说法正确的是()A.牛顿发现了万有引力定律,他被称为“称量地球质量”第一人B.卡文迪什测出引力常量的值,让万有引力定律有了实际意义C.相对论和量子力学,否定了经典力学D.天王星是通过计算发现的新天体,被人们称为“笔尖下发现的行星”2.三种宇宙速度分别是7.9 km/s、11.2 km/s、16.7 km/s,则表明()A.物体绕地球做匀速圆周运动的最小速度是7.9 km/sB.物体绕地球做匀速圆周运动的最小速度是11.2 km/sC.物体绕地球做匀速圆周运动的最大速度是7.9 km/sD.物体绕太阳转动的最大速度是7.9 km/s3.世界上各式各样的钟:砂钟、电钟、机械钟、光钟和生物钟.既然运动可以使某一种钟变慢,它一定会使所有的钟都一样变慢.这种说法是()A.对的,对各种钟的影响必须相同B.不对,不一定对所有的钟的影响都一样C.A和B分别说明了两种情况下的影响D.以上说法全错4.为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的“嫦娥一号”卫星绕月球经过一年多的运行,完成了预定任务,于2009年3月1日16时13分成功撞月.图示为“嫦娥一号”卫星撞月的模拟图,卫星在控制点①开始进入撞月轨道,假设卫星绕月球做圆周运动的轨道半径为R,周期为T,引力常量为G.根据题中信息,下列说法中正确的是()A.可以求出月球的质量B.可以求出月球对“嫦娥一号”卫星的引力C .“嫦娥一号”卫星在控制点①处应加速D .“嫦娥一号”在地面的发射速度大于11.2 km/s5.我国实施“嫦娥三号”的发射和落月任务,进一步获取月球的相关数据.如果该卫星在月球上空绕月做匀速圆周运动,经过时间t ,卫星行程为s ,卫星与月球中心连线扫过的角度是1弧度,引力常量为G ,根据以上数据估算月球的质量是( )A.t 2Gs 3B.s 3Gt 2C.Gt 2s 3D.Gs 3t2 6.假设有一星球的密度与地球相同,但它表面处的重力加速度是地球表面重力加速度的4倍,则该星球的质量是地球质量的( )A.14B .4倍C .16倍D .64倍 7.三颗人造地球卫星A 、B 、C 绕地球做匀速圆周运动,如图所示,已知m A =m B <m C ,则对于三颗卫星,正确的是( )A .运行线速度关系为v A =vB =vC B .运行周期关系为T A >T B =T C C .向心力大小关系为F A =F B <F CD .半径与周期关系为R 3A T 2A =R 3B T 2B =R 3CT 2C8.金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a 金、a 地、a 火,它们沿轨道运行的速率分别为v 金、v 地、v 火.已知它们的轨道半径R 金<R 地<R 火,由此可以判定( )A .a 金>a 地>a 火B .a 火>a 地>a 金C .v 地>v 火>v 金D .v 火>v 地>v 金 9.“嫦娥五号”探测器预计在2019年发射升空,自动完成月面样品采集后从月球起飞,返回地球,带回约2 kg 月球样品.某同学得到了一些信息,如表格中的数据所示,则地球和月球的密度之比为( )地球和月球的半径之比 4地球表面和月球表面的重力加速度之比 6A.23B.32 C .4 D .610.某星球直径为d ,宇航员在该星球表面以初速度v 0竖直上抛一个物体,物体上升的最大高度为h ,若物体只受该星球引力作用,则该星球的第一宇宙速度为( )A.v 02 B .2v 0d h C.v 02h d D.v 02d h11.2019年4月10日9时许,包括中国在内,全球多地天文学家同步公布了黑洞“真容”.这是人类第一次凝视曾经只存在于理论中的天体——黑洞,一种体积极小、质量极大的天体,如同一个宇宙“吞噬之口”,连光也无法逃逸.在两个黑洞合并过程中,由于彼此间的强大引力作用,会形成短时间的双星系统.如图所示,黑洞A、B可视为质点,它们围绕连线上O点做匀速圆周运动,且AO大于BO,不考虑其他天体的影响.下列说法错误的是()A.黑洞A做圆周运动的向心力大小等于B做圆周运动的向心力大小B.黑洞A的质量大于B的质量C.黑洞A的线速度大于B的线速度D.两黑洞之间的距离越大,A的周期越大二、计算题(本题共3小题,共27分)12.(7分)有一星球的密度与地球的密度相同,但它表面处的重力加速度是地面上重力加速度的4倍,则该星球的质量是地球质量的多少倍?13.(8分)地球的公转轨道接近圆,但彗星的运动轨道则是一个非常扁的椭圆,天文学家哈雷曾经在1682年跟踪过一颗彗星,他算出这颗彗星轨道的半长轴约等于地球轨道半径的18倍,并预言这颗彗星将每隔一定时间就会出现,哈雷彗星最近出现的时间是1986年,请你根据开普勒第三定律估算,它下次飞近地球是哪一年?14.(17分)已知地球半径为R ,地球表面重力加速度为g ,不考虑地球自转的影响. (1)推导第一宇宙速度v 1的表达式;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h ,求卫星运行周期T ;(3)若已知火星的质量和半径分别为地球的110和12,则火星表面的重力加速度与地球表面重力加速度之比为多少?[等级性考试]时间:40分钟 满分:35分15.(5分)(多选)如图所示,在火星与木星轨道之间有一小行星带,假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动,下列判断正确的是( )A .小行星带内的小行星都具有相同的角速度B .小行星带内侧小行星的向心加速度大于外侧小行星的向心加速度C .各小行星绕太阳运动的周期均小于一年D .要从地球发射卫星探测小行星带,发射速度应大于地球的第二宇宙速度16.(5分)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A .1 hB .4 hC .8 hD .16 h 17.(5分)(多选)我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射.量子卫星成功运行后,我国在世界上首次实现卫星和地面之间的量子通信,构建天地一体化的量子保密通信与科学实验体系.假设量子卫星轨道在赤道平面,如图所示.已知量子卫星的轨道半径是地球半径的m 倍,同步卫星的轨道半径是地球半径的n 倍,图中P 点是地球赤道上一点,由此可知( )A .同步卫星与量子卫星的运行周期之比为n 3m3B .同步卫星与P 点的速度之比为1nC.量子卫星与同步卫星的速度之比为n mD.量子卫星与P点的速度之比为n3 m18.(20分)地球A和某一行星B的半径之比为R1:R2=1:2,平均密度之比为ρ1:ρ2=4:1.若地球表面的重力加速度为10 m/s2,则:(1)行星B表面的重力加速度是多少?(2)若在地球表面以某一初速度竖直上抛的物体最大高度可达20 m,那么在行星B表面以相同的初速度竖直上抛一物体,经多少时间该物体可落回原地?(空气阻力不计)。

高中物理步步高必修2《课时作业与单元检测》第一章 第2节

高中物理步步高必修2《课时作业与单元检测》第一章 第2节

第2节运动的合成与分解1.如果一个物体实际发生的运动产生的效果跟另外两个运动共同产生的效果相同,这一实际发生的运动叫这两个运动的__________,这两个运动叫这一实际运动的__________.2.一个物体同时发生两个方向的位移,它的效果可以用______________来替代,同样物体运动的合位移可以用________________来替代.由分位移求合位移叫________________,由合位移求分位移叫________________.位移的合成与分解遵从________________.3.合运动和分运动对应的时间是________的,并且两个分运动是________的,彼此互不影响.4.关于运动的合成,下列说法中不正确的是()A.合运动的速度不一定比每个分运动的速度大B.两个匀速直线运动的合运动也一定是匀速直线运动C.只要两个分运动是直线运动,那么合运动也一定是直线运动D.两个分运动的运动时间一定与它们合运动的运动时间相等5.下列说法正确的是()A.合运动和分运动互相影响,不能独立进行B.合运动的时间一定比分运动的时间长C.合运动和分运动具有等时性,即同时开始、同时结束D.合运动的位移大小等于两个分运动位移大小之和6.关于运动的合成与分解,下列说法正确的是()A.合运动的速度大小等于分运动的速度大小之和B.物体的两个分运动若是直线运动,则它的合运动一定是直线运动C.两个分运动是直线运动,合运动可能是直线运动,也可能是曲线运动D.若合运动是曲线运动,则其分运动至少有一个是曲线运动【概念规律练】知识点一合运动与分运动1.对于两个分运动的合运动,下列说法中正确的是()A.合运动的速度一定大于两个分运动的速度B.合运动的速度一定大于某一个分运动的速度C.合运动的方向就是物体实际运动的方向D.由两个分速度的大小就可以确定合速度的大小2.关于运动的合成与分解,下列说法不正确的是()A.由两个分运动求合运动,合运动是唯一确定的B.由合运动分解为两个分运动,可以有不同的分解方法C.物体做曲线运动时,才能将这个运动分解为两个分运动D.任何形式的运动,都可以用几个分运动代替知识点二分运动的独立性及分运动与合运动的等时性3.小船以一定的速率垂直河岸向对岸划去,当水流匀速时,它渡河的时间、发生的位移与水速的关系是()A.水速小时,位移小,时间亦小B.水速大时,位移大,时间亦大C.水速大时,位移大,但时间不变D.位移、时间大小与水速大小无关4.如图1所示,图1一名92岁的南非妇女从距地面大约2 700米的飞机上,与跳伞教练绑在一起跳下,成为南非已知的年龄最大的高空跳伞者.假设没有风的时候,落到地面所用的时间为t,而实际上在下落过程中受到了水平方向的风的影响,则实际下落所用时间()A.仍为tB.大于tC.小于tD.无法确定【方法技巧练】一、两个直线运动的合运动的性质的判断方法5.关于运动的合成,下列说法正确的是()A.两个直线运动的合运动一定是直线运动B.两个不在一条直线上的匀速直线运动的合运动一定是直线运动C.两个匀加速直线运动的合运动一定是直线运动D.一个匀速直线运动与一个匀变速直线运动的合运动可能仍是匀变速直线运动6.图2如图2所示,竖直放置的两端封闭的玻璃管中注满清水,内有一个红蜡块能在水中以速度v匀速上浮.红蜡块从玻璃管的下端匀速上浮的同时,使玻璃管水平匀加速向右运动, 则蜡块的轨迹可能是()A.直线PB.曲线QC.曲线RD.无法确定二、绳或杆关联速度问题的分析方法7.图3如图3所示,用绳牵引小船靠岸,若收绳速度为v1,在绳子与水平方向夹角为α的时刻, 船的速度v多大?8.图4如图4所示,一根刚性的直杆AB沿着水平地面和竖直墙滑动.当杆与水平地面的夹角为θ时,杆B端的速度大小为v,此时杆A端的速度大小为多少?三、小船渡河问题的分析方法9.小船在200 m宽的河中渡河,水流速度是2 m/s,船在静水中的航速是4 m/s,求:(1)当小船的船头始终朝正对岸时,它将在何时、何处到达对岸?(2)要使小船到达正对岸,应如何行驶?耗时多少?1.关于互成角度的两个初速度不为零的匀变速直线运动的合运动,下列说法正确的是()A.一定是直线运动B.一定是曲线运动C.可能是直线运动,也可能是曲线运动D.以上说法均不正确2.一只船以一定的速度垂直河岸向对岸行驶,当河水流速恒定时,下列所述船所通过的路程、渡河时间与水流速度的关系,正确的是()A.水流速度越大,路程越长,时间越长B.水流速度越大,路程越短,时间越长C.水流速度越大,路程与时间都不变D.水流速度越大,路程越长,时间不变3.在平直铁路上以速度v0匀速行驶的列车车厢中,小明手拿一钢球将其从某高处释放, 探究其下落的规律,通过实验,下列结论得到验证的是()A.由于小球同时参与水平方向上的匀速运动和竖直方向上的下落运动,落点应比释放点的正下方偏前一些B.由于列车以v0的速度向前运动,小球落点应比释放点的正下方偏后一些C.小球应落在释放点的正下方,原因是小球不参与水平方向上的运动D.小球应落在释放点的正下方,原因是小球在水平方向上速度也为v04.若一个物体的运动是由两个独立的分运动合成的,则()A.若其中一个分运动是变速运动,另一个分运动是匀速直线运动,则物体的合运动一定是变速运动B.若两个分运动都是匀速直线运动,则物体的合运动一定是匀速直线运动(两分运动速度大小不等)C.若其中一个分运动是匀变速直线运动,另一个分运动是匀速直线运动,则物体的运动一定是曲线运动D.若其中一个分运动是匀加速直线运动,另一个分运动是匀减速直线运动,则合运动可以是曲线运动5.某人骑自行车以10 m/s的速度在大风中向东行驶,他感到风正以同样大小的速率从北方吹来,实际上风的速度是()A.14 m/s,方向为北偏西45°B.14 m/s,方向为南偏西45°C.10 m/s,方向为正北D.10 m/s,方向为正南6.图5如图5所示,在水平地面上做匀速直线运动的汽车,通过定滑轮用绳子吊起一个物体, 若汽车和被吊物体在同一时刻的速度分别为v1和v2,则下面说法正确的是()A.物体做匀速运动,且v2=v1B.物体做加速运动,且v2>v1C.物体做加速运动,且v2<v1D.物体做减速运动,且v2<v17.如图6所示,一块橡皮用细线悬挂于O点,用铅笔靠着线的左侧水平向右匀速移动, 运动中始终保持悬线竖直,则橡皮运动的速度()图6A.大小和方向均不变B.大小不变,方向改变8.图7一人一猴玩杂技,如图7所示.直杆AB长12 m,猴子在直杆上由A向B匀速向上爬, 同时人用鼻子顶着直杆水平匀速运动.在10 s内,猴子由A运动到B,而人也由甲位置运动到了乙位置.已知x=9 m,求:(1)猴子对地的位移;(2)猴子对人的速度和猴子对地的速度.9.如图8所示,(a)图表示某物体在x轴方向上的分速度的v-t图象,(b)图表示该物体在y轴方向上的分速度的v-t图象.求:图8(1)物体在t=0时的速度;(2)t=8 s时物体的速度;(3)t=4 s时物体的位移.第2节运动的合成与分解课前预习练1.合运动分运动2.合位移两个分位移位移的合成位移的分解平行四边形定则3.相同独立4.C[合运动的速度可能比分运动的速度大,也可能比分运动的速度小,A对.两个匀速直线运动的合速度肯定是恒定的,所以肯定是匀速直线运动,B对.如果两个分运动的合速度与合加速度不在一条直线上,则物体做曲线运动,C错.分运动、合运动具有等时性,D对.]5.C6.C[合运动和分运动之间满足平行四边形定则,故A错.合运动是直线运动还是曲线运动,取决于v合的方向和a合的方向的关系.若v合的方向与a合的方向共线,则合运动为直线运动,反之为曲线运动,故B、D错,C正确.]课堂探究练1.C[合速度的大小可以大于分速度的大小,也可以小于分速度的大小,还可以等于分速度的大小,故A、B两项均错.仅知道两个分速度的大小,无法画出平行四边形,则不能求出合速度的大小,故D项错.合运动就是物体的实际运动,合运动的方向即为物体实际运动的方向,故选项C正确.]2.C3.C[小船渡河时参与了顺水漂流和垂直河岸横渡两个分运动,由运动的独立性原理和等时性知,小船的渡河时间等于河的宽度与垂直河岸的分速度之比,由于船“以一定速率垂直河岸向对岸划去”,垂直河岸的分速度即为船速,故渡河时间一定.水速大,水流方向的分位移就大,合位移也就大,反之则合位移小.]4.A[依据合、分运动的独立性、等时性,t不变,A正确.]5.BD[对于两个匀速直线运动,其加速度均为零.因此,无论这两个分运动在同一直线上还是互成角度,它们的合运动仍是匀速直线运动,B正确;一个匀速直线运动与一个匀变速直线运动合成,如果这两个分运动在一条直线上,则合运动的加速度与速度也在一条直线上了,物体仍做匀变速直线运动,D正确;但若这两个分运动互成角度,合运动的加速度方向与合速度方向就不在一条直线上了,物体将做曲线运动,故A错误;两个匀加速直线运动合成,当合加速度a与合初速度v在一条直线上时,物体做直线运动,反之,物体做曲线运动,C错误.]6.B[红蜡块在竖直方向上做匀速直线运动,在水平方向上做匀加速直线运动,所受合力水平向右,合力与合初速度不共线,红蜡块的轨迹应为曲线,A错误;由于做曲线运动的物体所受合力应指向弯曲的一侧,B正确,C、D错误.]方法总结(1)根据合加速度是否恒定判定合运动是匀变速运动还是非匀变速运动,若合加速度不变且不为零,则合运动为匀变速运动,若合加速度变化,则为非匀变速运动.(2)根据合加速度与合初速度是否共线判断合运动是直线运动还是曲线运动.若合加速度与合初速度在同一直线上,则合运动为直线运动,否则为曲线运动.7.v1 cos α解析 船速v 是合速度,这个速度产生两个效果,一是沿绳方向的速度v 1,二是垂直绳方向的速度v 2,如图所示,从图中可知:v =v 1cos α.8.v cot θ解析 设杆A 端的速度大小为u ,将v 、u 分别沿杆和垂直于杆的方向进行分解,根据速度投影定理,v 、u 沿杆方向的投影相等,则v cos θ=u sin θ,所以u =v cos θsin θ=v cot θ.方法总结 不能伸长的绳(杆)端点的速度的求解方法:①对端点的速度正交分解(沿绳(杆)和垂直于绳(杆)).②沿绳(杆)的分速度大小相等.9.(1)50 s 在正对岸下游100 m 处靠岸 (2)船头与上游河岸成60°角 57.7 s解析 (1)小船渡河的时间等于垂直河岸分运动的时间t =d v 船=2004s =50 s 沿河流方向的位移:x 水=v 水t =2×50 m =100 m,即在正对岸下游100 m 处靠岸. (2)要使小船到达正对岸,即合速度垂直河岸,如图所示则cos θ=v 水v 船=24=12,所以θ=60°,即船头与河岸成60°角,渡河时间:t ′=d v 合=dv 船sin θ=2004sin 60°s =57.7 s.课后巩固练 1.C [将两个运动的初速度合成、加速度合成,如右图所示.当a 与v 重合时,物体做直线运动;当a 与v 不重合时,物体做曲线运动,由于题目没有给出两个运动的初速度和加速度的具体数值及方向,故以上两种情况均有可能,C 正确.]2.D [从运动的独立性考虑.设河宽为d ,船速为v 1,水流速度为v 2,渡河时间为t ,船沿水流方向通过的路程为L ,当船垂直河岸方向渡河时,这几个物理量的关系为t =dv 1,L =v 2t ,船实际通过的路程为s =d 2+L 2,故水流速度越大,船通过的路程越长,但时间不变.]3.D4.ABD [变速运动和匀速直线运动的合运动,其速度必然是变化的,因此A 正确;两个分运动都是匀速直线运动,其合速度一定是恒定的,所以物体的合运动一定是匀速直线运动,因此B 正确;如果匀速直线运动和匀变速直线运动在一条直线上,其合运动仍是直线运动;只有当这两个分运动不在一条直线上时,合运动才是曲线运动,故C 错误;如果匀加速直线运动和匀减速直线运动不在一条直线上,且其合速度的方向与合加速度的方向(合力方向)不在一条直线上,此时合运动为曲线运动,故D 正确.]5.A [如右图所示,人的速度为v 人,风的速度为v 风,在人的行驶方向上感觉不到风,说明风在人的行驶方向上与人同速,仅感觉到从北方吹来的风,则v 人=v 风sin θ,v =v 风cos θ,tan θ=v 人v =1,θ=45°,v 风=2v 人=14 m/s.]6.C [把车速v 1按右图进行分解,则v 1′=v 2,而v 1′=v 1cos θ,所以v 2<v 1,车向左运动,θ角减小,cos θ增大,所以v 2增大,故C 正确.]7.A [由于始终保持悬线竖直,所以橡皮水平方向上的运动速度与铅笔的速度相同,橡皮在竖直方向上运动的速度大小应等于水平速度大小,所以橡皮的合运动仍为匀速直线运动,选项A 正确.]8.(1)15 m (2)1.2 m/s 1.5 m/s解析 (1)由题意知,猴子参与了水平方向和竖直方向的两个分运动,且x =9,y =12,则猴子的合位移即为对地位移,即x 2+y 2=92+122 m =15 m ;(2)猴子竖直方向上的速度即为其对人的速度,故v y =y t =1210m/s =1.2 m/s猴子沿水平方向的速度为v x =x t =910m/s =0.9 m/s则猴子的合速度即为猴子对地的速度,有v =v 2x +v 2y = 1.22+0.92m/s =1.5 m/s. 9.(1)3 m/s (2)5 m/s (3)4 10 m解析 根据图象可以知道,物体在x 轴方向上以3 m/s 的速度做匀速直线运动,在y 轴方向上做初速度为0、加速度为0.5 m/s 2的匀加速直线运动,合运动是曲线运动.(1)在t =0时,物体的速度v =v 2x 0+v 2y 0=3 m/s.(2)在t =8 s 时,物体沿x 轴方向的速度为3 m/s,物体沿y 轴方向的速度为4 m/s,所以物体的速度为v =v 2x 8+v 2y 8=5 m/s.(3)在4 s 的时间内物体在x 轴方向发生的位移为x =12 m,物体在y 轴方向发生的位移为y =12at 2=4 m,所以4 s 内物体发生的位移为x 2+y 2=4 10 m.。

高中物理步步高必修2《课时作业与单元检测》第四章 第5节 课时一

高中物理步步高必修2《课时作业与单元检测》第四章 第5节 课时一

第5节 机械能守恒定律课时一 机械能守恒定律及其应用1.将螺母挂在铁架台上,螺母由高处释放,螺母向下摆动的过程中,重力做______功,动能________,重力势能________,在螺母向上摆动的过程中,重力做______功,动能________,重力势能______,并且上升的高度与释放点的高度______.2.在自由落体运动或抛体运动中,物体从高为h 1的A 处运动到高为h 2的B 处,重力做功等于重力势能的变化的负值,即________________,此过程也可由动能定理得到.重力做功等于物体动能的变化,即W =________,所以有E p1-E p2=E k2-E k1,即E p1+E k1=________.3.在只有________________做功的物体系统内,动能与势能会发生相互________,但机械能的总量保持不变,这叫做机械能________定律,其表达式可以写成E k1+E p1=__________或E k2-E k1=____________.4.关于机械能守恒定律的适用条件,下列说法正确的是( ) A.只有重力和弹力作用时,机械能才守恒B.当有其他外力作用时,只要合外力为零,机械能就守恒C.当有其他外力作用时,只要其他外力不做功,机械能就守恒D.炮弹在空中飞行不计阻力时,仅受重力作用,所以爆炸前后机械能守恒 5.图1从h 高处以初速度v 0竖直向上抛出一个质量为m 的小球,如图1所示.若取抛出处物体 的重力势能为0,不计空气阻力,则物体着地时的机械能为( )A.mghB.mgh +12m v 20C.12m v 20D.12m v 20-mgh 6.质量均为m 的甲、乙、丙三个小球,在离地面高为h 处以相同的动能在竖直平面内 分别做平抛、竖直下抛、沿光滑斜面下滑的运动,则( ) A.三者到达地面时的速率相同 B.三者到达地面时的动能相同 C.三者到达地面时的机械能相同 D.三者同时落地【概念规律练】知识点一 机械能守恒的判断1.机械能守恒的条件中“只有重力对物体做功”这句话的意思是( ) A.物体只能受重力的作用,而不能受其他力的作用B.物体除受重力以外,还可以受其他力的作用,但其他力不做功C.只要物体受到的重力做了功,物体的机械能就守恒,与其他力做不做功无关D.以上说法均不正确2.如图2所示,下列关于机械能是否守恒的判断正确的是( )图2A.甲图中,物体A 将弹簧压缩的过程中,A 机械能守恒B.乙图中,在大小等于摩擦力的拉力作用下沿斜面下滑时,物体B 机械能守恒C.丙图中,不计任何阻力时,A 加速下落,B 加速上升过程中,A 、B 组成的系统机械 能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒 知识点二 机械能守恒定律 3.如图3所示,图3在地面上以速度v 0抛出质量为m 的物体,抛出后物体落到比地面低h 的海平面.若以地 面为参考平面且不计空气阻力,则( ) A.物体落到海平面时的重力势能为mgh B.重力对物体做的功为mghC.物体在海平面上的动能为12m v 20+mghD.物体在海平面上的机械能为12m v 20图44.假设过山车在轨道顶点A 无初速度释放后,全部运动过程中的摩擦均可忽略,其他 数据如图4所示,求过山车到达B 点时的速度.(g 取10 m/s 2)【方法技巧练】一、链条类问题的分析方法5.如图5所示,图5总长为L的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A、B相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?二、系统机械能守恒问题的分析方法6.如图6所示,图6A、B两球质量分别为4m和5m,其间用轻绳连接,跨放在光滑的半圆柱体上(半圆柱体的半径为R).两球从水平直径的两端由静止释放.已知重力加速度为g,圆周率用π表示.当球A到达最高点C时,求:球A的速度大小.三、机械能守恒定律的综合应用7.如图7所示,图7质量不计的轻杆一端安装在水平轴O上,杆的中央和另一端分别固定一个质量均为m的小球A和B(可以当做质点),杆长为l,将轻杆从静止开始释放,不计空气阻力.当轻杆通过竖直位置时,求:小球A、B的速度各是多少?1.关于物体机械能是否守恒的叙述,下列说法中正确的是()A.做匀速直线运动的物体机械能一定守恒B.做匀变速直线运动的物体,机械能一定不守恒C.外力对物体做功等于零时,机械能一定守恒D.若只有重力对物体做功,机械能一定守恒2.如图8所示,图8物体在斜面上受到平行于斜面向下的拉力F作用,沿斜面向下运动,已知拉力F的大小恰好等于物体所受的摩擦力,则物体在斜面上的运动过程中()A.做匀速运动B.做匀加速运动C.机械能保持不变D.机械能减小3.图9如图9所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中, 下列关于机械能的叙述中正确的是()A.重力势能和动能之和总保持不变B.重力势能和弹性势能之和总保持不变C.动能和弹性势能之和保持不变D.重力势能、弹性势能和动能之和总保持不变4.图10在下列几个实例中,机械能守恒的是()A.在平衡力作用下运动的物体B.在竖直平面上被细线拴住做匀速圆周运动的小球C.在粗糙斜面上下滑的物体,下滑过程中受到沿斜面向下的拉力,拉力大小等于滑动摩擦力D.如图10所示,在光滑水平面上压缩弹簧过程中的小球5.如图11所示,图11一个小孩从粗糙的滑梯上加速滑下,对于其机械能的变化情况,下列判断正确的是()A.重力势能减小,动能不变,机械能减小B.重力势能减小,动能增加,机械能减小C.重力势能减小,动能增加,机械能增加D.重力势能减小,动能增加,机械能不变6.如图12所示,图12一根长为l1的橡皮条和一根长为l2的绳子(l1<l2)悬于同一点,橡皮条的另一端系一A球, 绳子的另一端系一B球,两球质量相等,现从悬线水平位置(绳拉直,橡皮条保持原长)将两球由静止释放,当两球摆至最低点时,橡皮条的长度与绳子长度相等,此时两球速度的大小为()A.B球速度较大B.A球速度较大C.两球速度相等D.不能确定图137.在足球比赛中,甲队队员在乙队禁区附近主罚定位球,并将球从球门右上角贴着球门 射入,如图13所示.已知球门高度为h ,足球飞入球门时的速度为v ,足球质量为m , 不计空气阻力和足球大小,则该队员将足球踢出时对足球做的功为( ) A.12m v 2 B.mgh +12m v 2 C.mgh D.12m v 2-mgh8.图14如图14所示,两个34圆弧轨道固定在水平地面上,半径R 相同,A 轨道由金属凹槽制成,B 轨道由金属圆管制成,均可视为光滑轨道.在两轨道右侧的正上方分别将金属小球A 和B 由静止释放,小球距离地面的高度分别用h A 和h B 表示,对于下述说法中正确的是 ( )A.若h A =h B ≥2R ,则两小球都能沿轨道运动到最高点B.若h A =h B =3R 2,由于机械能守恒,两小球在轨道上升的最大高度均为3R2C.适当调整h A 和h B ,均可使两小球从轨道最高点飞出后,恰好落在轨道右端口处D.若使小球沿轨道运动并且从最高点飞出,A 小球的最小高度为5R2,B 小球在h B >2R的任何高度均可 9.如图15所示,图15在一直立的光滑管内放置一轻质弹簧,上端O 点与管口A 的距离为2x 0,一质量为m 的 小球从管口由静止下落,将弹簧压缩至最低点B ,压缩量为x 0,不计空气阻力,则( ) A.小球运动的最大速度大于2gx 0B.小球运动中的最大加速度为g2C.弹簧的劲度系数为mgx 0图16如图16所示,将一根长L=0.4 m的金属链条拉直放在倾角θ=30°的光滑斜面上,链条下端与斜面下边缘相齐,由静止释放后,当链条刚好全部脱离斜面时,其速度大小为________.(g取10 m/s2)11.如图17所示,图17质量为m的木块放在光滑的水平桌面上,用轻绳绕过桌边的定滑轮与质量为M的砝码相连.已知M=2m,让绳拉直后使砝码从静止开始下降h(小于桌高)的距离,木块仍没离开桌面,则砝码的速度为多少?12.图18如图18所示,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经3.0 s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50 kg.不计空气阻力.(取sin 37°=0.60,cos 37°=0.80,g取10 m/s2)求:(1)A点与O点的距离L;(2)运动员离开O点时的速度大小;(3)运动员落到A点时的动能.第5节 机械能守恒定律课时一 机械能守恒定律及其应用课前预习练1.正 增加 减少 负 减少 增加 相同2.W =-(E p2-E p1) E k2-E k1 E p2+E k23.重力或弹力 转化 守恒 E k2+E p2 E p1-E p24.C [机械能守恒的条件是只有重力或弹力做功,也就是物体可以受其他力作用,只要其他力不做功或做功之和为零即可,故A 、B 均错,C 正确.在炮弹爆炸过程中,爆炸时产生的化学能转化为机械能,机械能不守恒,D 错.]5.C [初态时机械能为12m v 20,由于只有重力做功,机械能守恒,物体在任意时刻机械能都是这么大,故C 正确.]6.ABC [只有重力做功,机械能守恒,mgh +E k1=E k2=12m v 2,A 、B 、C 对.]课堂探究练1.B [只有重力对物体做功指的是物体除受重力外,还可以受其他力作用,但其他力不做功,只有重力做功,故B 对,A 、C 、D 错.]2.BCD [甲图中重力和弹力做功,物体A 和弹簧组成的系统机械能守恒,但物体A 机械能不守恒,A 错.乙图中物体B 除受重力外,还受支持力、拉力、摩擦力,但除重力之外的三个力做功的代数和为零,机械能守恒,B 对.丙图中绳子张力对A 做负功,对B 做正功,代数和为零,A 、B 组成的系统机械能守恒,C 对.丁图中小球的动能不变,势能不变,机械能守恒,D 对.]点评 判断机械能是否守恒时,对单个物体就看是否只有重力(或弹力)做功,或者虽受其他力,但其他力不做功;对两个或几个物体组成的系统,就看是否只有重力或系统内弹力做功,若有其他外力或内力做功(如内部有摩擦等)且代数和不为零,则系统机械能不守恒.3.BCD [物体抛出后运动的全过程机械能守恒,以地面为参考平面,物体的机械能表示为12m v 20,也等于全过程中任意位置的机械能,D 正确;由动能定理知:mgh =12m v 2-12m v 20,所以在海平面上的动能为mgh +12m v 20,C 正确;重力做的功W G =mgh ,所以B 正确;到达海平面时的重力势能E p =-mgh ,A 错误.所以正确答案为B 、C 、D.]点拨 明确物体抛出后运动的全过程机械能守恒,注意重力势能的相对性. 4.70 m/s解析 由题意可知,过山车在运动过程中仅有重力做功,故其机械能守恒.以圆周轨道的最低点所在平面为零势能参考平面,由机械能守恒定律得mgh A =mgh B +12m v 2Bv B =2g (h A -h B )=2×10×(7.2-3.7) m/s =70 m/s.5.gL 2解析 铁链在运动过程中,只有重力做功,机械能守恒.这里提供两种解法. 解法一 (利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为E 1=ρLg ·L 4=14ρgL 2末态的机械能为E 2=12m v 2=12ρL v 2根据机械能守恒定律有E 2=E 1即12ρL v 2=14ρgL 2 解得铁链刚脱离滑轮时的速度v =gL2. 解法二 (利用ΔE k =-ΔE p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ′部分移到了AA ′的位置.重力势能的减少量-ΔE p =12ρLg ·L 2=14ρgL 2动能的增加量ΔE k =12ρL v 2根据机械能守恒定律有E k =-ΔE p ,即12ρL v 2=14ρgL 2解得铁链刚脱离滑轮时的速度v = gL2.方法总结 对于绳索、链条之类的物体,由于发生形变,其重心位置相对物体来说并不是固定不变的,确定重心的位置,常是解决该类问题的关键.可以采用分段法求出每段的重力势能,然后求和即为整体的重力势能;也可采用等效法求出重力势能的改变量.利用ΔE k =-ΔE p 列方程时,不需要选取参考平面,且便于分析计算.6.13Rg (5π-8) 解析 由机械能守恒,有5mg ·2R π4-4mgR =12(4m +5m )v 2解得v =13Rg (5π-8).方法总结 系统机械能守恒的表达式形式有三种:(1)系统初态的机械能等于末态的机械能,即E A 初+E B 初=E A 末+E B 末;(2)系统减少的重力势能等于增加的动能,即ΔE k 增=ΔE p 减;(3)A 增加的机械能等于B 减少的机械能,即ΔE A 增=ΔE B 减 .7.35gl 2 35gl解析 对A 、B (包括轻杆)组成的系统,由机械能守恒定律ΔE p 增=ΔE k 减,得mg l 2+mgl =12m v 2A +12m v 2B①又因A 、B 两球的角速度ω相等,则v A =ωl2②v B =ωl ③联立①②③式,代入数据解得v A =35gl ,v B =2 35gl .课后巩固练1.D [机械能守恒的条件是只有重力或弹簧弹力做功,而与物体的运动状态无关.]2.BC3.D4.C [在平衡力作用下物体的运动是匀速运动,动能保持不变,但如果物体的势能发生变化,则机械能变化,A 错;在竖直平面上做匀速圆周运动的小球,其动能不变,势能不断变化,总的机械能不守恒,B 错;在粗糙斜面上下滑的物体,在下滑过程中,除重力做功外,滑动摩擦力和拉力都做功,但两个力所做功的代数和为零,所以小球机械能守恒,C 正确;在小球压缩弹簧的过程中,小球动能减少、势能不变,所以机械能不守恒(但球和弹簧组成的系统机械能守恒),D 错.答案为C.]5.B [下滑时高度降低,则重力势能减小,加速运动,动能增加,摩擦力做负功,机械能减小,B 对,A 、C 、D 错.]6.A7.B [运动员将球踢出时做的功等于足球获得的动能,根据动能定理得W =12m v 20;足球从被运动员以速度v 0踢出到飞入球门的过程中,只有重力做功,机械能守恒,则12m v 20=mgh +12m v 2,故W =12m v 20=mgh +12m v 2.不要把踢球做的功误看做只等于足球入门时的动能或足球增加的重力势能.]8.D [小球从A 轨道滑出,则在最高点处需满足m v 2R>mg ,又由机械能守恒定律得mgh A =mg ·2R +12m v 2,得h A >52R .小球从B 轨道滑出只需h B >2R 即可.]9.AD10. 6 m/s解析 由机械能守恒定律有ΔE k 增=ΔE p 减,即 12m v 2=mg (L 2sin θ+L2),解得v = 6 m/s. 11.233gh 解析 在砝码下降h 的过程中,系统增加的动能为ΔE k 增=12(M +m )v 2系统减少的重力势能为ΔE p 减=Mgh由ΔE k 增=ΔE p 减得12(M +m )v 2=Mgh解得v =2Mgh M +m =233gh .12.(1)75 m (2)20 m/s (3)32 500 J解析 (1)运动员在竖直方向做自由落体运动,有L sin 37°=12gt 2A 点与O 点的距离L =gt 22sin 37°=75 m(2)设运动员离开O 点时的速度为v 0,运动员在水平方向做匀速直线运动,即L cos 37°=v 0t解得v 0=L cos 37°t=20 m/s(3)根据机械能守恒,取A 点为重力势能零点,运动员落到A 点时的动能为E k A =mgh +12m v 20=32 500 J.。

高中物理步步高必修2《课时作业与单元检测》第一章 习题课

高中物理步步高必修2《课时作业与单元检测》第一章 习题课

习题课基础练1.关于做平抛运动的物体,下列说法中正确的是( ) A.物体只受重力作用,做的是a =g 的匀变速运动 B.初速度越大,物体在空间的运动时间越长C.物体在运动过程中,在相等的时间间隔内水平位移相等D.物体在运动过程中,在相等的时间间隔内竖直位移相等 2.关于平抛运动,下列说法正确的是( )A.从同一高度,以大小不同的速度同时水平抛出两个物体,它们一定同时着地,但抛 出的水平距离一定不同B.从不同高度,以相同的速度同时水平抛出两个物体,它们一定不能同时着地,抛出 的水平距离也一定不同C.从不同高度,以不同的速度同时水平抛出两个物体,它们一定不能同时着地,抛出 的水平距离也一定不同D.从同一高度,以不同的速度同时水平抛出两个物体,它们一定不能同时着地,抛出 的水平距离也一定不同3.做平抛运动的物体,每秒的速度增量总是( ) A.大小相等,方向相同 B.大小不等,方向不同 C.大小相等,方向不同 D.大小不等,方向相同4.飞机以150 m/s 的水平速度匀速飞行,某时刻让A 球落下,相隔1 s 又让B 球落下, 不计空气阻力,在以后的运动过程中,关于A 、B 两球相对位置的关系,下列结论中正 确的是( )A.A 球在B 球的前下方B.A 球在B 球的后下方C.A 球在B 球的正下方5 m 处D.以上说法都不对5.在高处以初速度v 0水平抛出一粒石子,当它的速度由水平方向变化到与水平方向夹 角为θ的过程中,石子水平位移的大小为( ) A.v 20sin θg B.v 20cos θgC.v 20tan θgD.v 20cot θg6.如图1所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体 与斜面接触时速度与水平方向的夹角φ满足( )图1A.tan φ=sin θB.tan φ=cos θC.tan φ=tan θD.tan φ=2tan θ7.物体做平抛运动时,它的速度方向与水平方向的夹角α的正切值tan α随时间t 变化 的图象是下列图中的( )提升练8.图2如图2所示,从倾角为θ的斜面上A 点,以水平速度v 0抛出一个小球,不计空气阻力, 它落到斜面上B 点时所用的时间为( ) A.2v 0sin θgB.2v 0tan θgC.v 0sin θ2gD.v 0tan θ2g9.图3如图3所示,A 、B 两质点以相同的水平初速度v 0抛出,A 在竖直面内运动,落地点为 P 1,B 沿光滑斜面运动,落地点为P 2,不计阻力,比较P 1、P 2在x 轴方向上距抛出点的 远近关系及落地时速度的大小关系,正确的是( ) A.P 2较远B.P 1、P 2一样远C.A 落地时速率大D.A 、B 落地时速率一样大 10.图4平抛运动可以分解为水平和竖直方向上的两个直线运动,在同一坐标系中作出这两个分 运动的v -t 图线,如图4所示,若平抛运动的时间大于2t 1,下列说法中正确的是( ) A.图线2表示竖直分运动的v -t 图线B.t 1时刻的速度方向与初速度方向夹角为30°C.t 1时刻的位移方向与初速度方向夹角的正切值为12车突然刹车,刹车的加速度大小是4 m/s 2,致使书包从架上落下,忽略书包与架子间的 摩擦及空气阻力,g 取10 m/s 2,则书包落在车上距车后壁________ m 处.12.为了清理堵塞河道的冰凌,空军实施投弹爆破.飞机在河道上空高H 处以速度v 0水平匀速飞行,投掷下炸弹并击中目标,求炸弹从刚脱离飞机到击中目标所飞行的水平距离及击中目标时的速度大小.(不计空气阻力)13.图5如图5所示,射击枪水平放置,射击枪与目标靶中心位于离地面足够高的同一水平线上, 枪口与目标靶之间的距离x=100 m,子弹射出的水平速度v=200 m/s,子弹从枪口射出的瞬间,目标靶由静止开始释放,不计空气阻力,重力加速度g取10 m/s2,求:(1)从子弹由枪口射出开始计时,经多长时间子弹击中目标靶?(2)目标靶由静止开始释放到被子弹击中,下落的距离h为多少?14.A、B两个小球由柔软的细线相连,线长l=6 m;将A、B球先后以相同的初速度v0 =4.5 m/s,从同一点水平抛出(先A后B),相隔时间Δt=0.8 s.(1)A球抛出后经多少时间,细线刚好被拉直?(2)细线刚被拉直时,A、B球的水平位移(相对于抛出点)各多大?(g取10 m/s2)习题课1.AC2.AB [根据平抛运动的规律,水平位移x =v 1t ,竖直位移y =12gt 2,所以落地时间由抛出高度决定,水平位移由抛出高度和初速度共同决定,所以A 、B 正确.]3.A4.D5.C6.D [物体从斜面顶端抛出落到斜面上,平抛运动过程位移与水平方向的夹角等于斜面倾角θ,即tan θ=y x =12gt2v 0t =gt2v 0,而落到斜面上时的速度方向与水平方向的夹角正切值tan φ=v y v x=gtv 0,所以tan φ=2tan θ,D 项正确.] 7.B [由平行四边形定则可知tan α=v y v 0,而v y =gt ,所以tan α=gv 0t ,tan α与t 成正比,所以B正确.]8.B [设小球从抛出至落到斜面上的时间为t ,在这段时间内水平位移和竖直位移分别为x =v 0t ,y =12gt 2,如图所示,由几何关系知tan θ=y x =12gt2v 0t ,所以t =2v 0gtan θ.]9.AD10.AC [平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,故A 对;由v -t 图象可知,t 1时刻,水平和竖直分速度相等,所以t 1时刻的速度方向与初速度方向夹角为45°,B 错;设t 1时刻速度方向与初速度方向夹角为φ,位移方向与初速度方向夹角为θ,则由推论知tan φ=2tan θ,C 对;由v -t 图象可知,2t 1时刻,v y =2v 0,tan φ=2,故tan θ=1,即2t 1时刻的位移方向与初速度方向夹角为45°.]11.0.72解析 书包从架上落下后做的是平抛运动,其下落时间为t =2hg =0.6 s,它在水平方向上的位移x 1=v 0t =16×0.6 m =9.6 m.对汽车来说它刹车后经t 2=v 0a=4 s 停下来,所以在0.6 s内汽车的位移x 2=v 0t -12at 2=8.88 m,所以书包应落在距汽车后壁Δx =x 1-x 2=0.72 m 处.12.v 02Hgv 20+2gH 解析 设炸弹从刚脱离飞机到击中目标所用时间为t ,水平运动的距离为x ,由平抛运动的规律H =12gt 2①x =v 0t ②联立①和②,得x =v 02Hg③设炸弹击中目标时的速度为v ,竖直方向的速度分量为v y v y =gt ④v =v 20+v 2y ⑤ 联立①④⑤,得 v =v 20+2gH13.(1)0.5 s (2)1.25 m解析 (1)子弹做平抛运动,它在水平方向的分运动是匀速直线运动,设子弹经t 时间击中目标靶,则t =x v代入数据得t =0.5 s(2)目标靶做自由落体运动,则h =12gt 2代入数据得h =1.25 m14.(1)1 s (2)A 球的水平位移为4.5 m,B 球的水平位移为0.9 m 解析 (1)两球水平方向位移之差恒为4.5×0.8 m =3.6 m,A 、B 球在竖直方向的位移差随时间变化,当竖直方向位移差与水平方向位移差的合位移差等于6 m 时绳刚好被拉直.由水平方向位移差3.6 m,绳子长6 m,可以求得竖直方向位移差为h 时绳刚好被拉直. h =62-3.62 m =4.8 m,有 12gt 2-12g (t -0.8 s)2=4.8 m,得t =1 s. (2)细线刚被拉直时,A 球的水平位移为4.5×1 m =4.5 m,B 球的水平位移为4.5×(1-0.8) m =0.9 m.。

高中物理步步高必修2《课时作业与单元检测》第三章 第1节

高中物理步步高必修2《课时作业与单元检测》第三章 第1节

第三章 万有引力定律 第1节 天体运动1.托勒密认为________是宇宙的中心,而且是静止不动的,太阳、月亮以及其他行星都绕________运动.哥白尼提出日心说,他认为________是宇宙的中心,而且是静止不动的,地球和其他行星都绕太阳运动. 2.开普勒行星运动定律(1)开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是________,太阳处在所 有椭圆的一个________上.(2)开普勒第二定律(面积定律):从太阳到行星的连线在相等的时间内扫过相等的 ________.(3)开普勒第三定律(周期定律):行星轨道______________与________________的比值是一个常量,即r3T2=k ,比值k 是一个对于所有行星都相同的常量.3.日心说的代表人物是( ) A.托勒密 B.哥白尼 C.布鲁诺 D.第谷4.关于天体的运动,以下说法正确的是( ) A.天体的运动毫无规律,无法研究B.天体的运动是最完美、最和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都围绕太阳运动 5.下列说法正确的是( )A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动B.太阳是静止不动的,地球和其他行星都绕太阳转动C.地球是绕太阳运动的一颗行星D.日心说和地心说都是错误的6.已知两个行星的质量m 1=2m 2,公转周期T 1=2T 2,则它们绕太阳运动的轨道的半长 轴之比为( ) A.r 1r 2=12 B.r 1r 2=21C.r 1r 2= 34D.r 1r 2=134【概念规律练】 知识点一 日心说1.日心说被人们所接受的原因是( )A.以地球为中心来研究天体的运动有很多无法解决的问题B.以太阳为中心,许多问题都可以解决,行星运动的描述也变得简单了C.地球是围绕太阳转的D.太阳总是从东面升起从西面落下 知识点二 开普勒行星运动定律2.关于行星的运动,以下说法正确的是( ) A.行星轨道的半长轴越长,自转周期越大 B.行星轨道的半长轴越长,公转周期越大 C.水星的半长轴最短,公转周期最长D.海王星离太阳“最远”,绕太阳运动的公转周期最长3.对于开普勒关于行星的运动公式r 3/T 2=k ,以下理解正确的是( ) A.k 是一个与行星无关的常量 B.r 代表行星运动的轨道半径 C.T 代表行星运动的自转周期 D.T 代表行星运动的公转周期 【方法技巧练】一、行星公转周期的计算方法4.2006年8月24日晚,国际天文学联合会大会投票,通过了新的行星定义,冥王星被排除在行星行列之外,太阳系行星数量由九颗减为八颗.若将八大行星绕太阳运行的轨道粗略A.80年B.120年C.164年D.200年二、用开普勒行星运动定律分析天体运动问题的方法5.人造地球卫星运动时,其轨道半径为月球轨道半径的13,由此知卫星运行周期大约是( )A.1~4天B.4~8天C.8~16天D.大于16天1.关于行星绕太阳运动的下列说法中正确的是( ) A.所有行星都在同一椭圆轨道上绕太阳运动 B.行星绕太阳运动时太阳位于行星轨道的中心处 C.离太阳越近的行星的运动周期越长D.所有行星轨道半长轴的三次方跟公转周期的二次方的比值都相等2.把火星和地球绕太阳运行的轨道视为圆周,由火星和地球绕太阳运动的周期之比可求得( )A.火星和地球的质量之比B.火星和太阳的质量之比C.火星和地球到太阳的距离之比D.火星和地球绕太阳运行速度大小之比3.设月球绕地球运动的周期为27天,则月球中心到地球中心的距离r 1与地球的同步卫星到地球中心的距离r 2之比即r 1∶r 2为( )A.3∶1B.9∶1C.27∶1D.18∶14.宇宙飞船围绕太阳在近似圆周的轨道上运动,若其轨道半径是地球轨道半径的9倍, 则宇宙飞船绕太阳运行的周期是( ) A.3年 B.9年 C.27年 D.81年5.哈雷彗星绕太阳运动的轨道是比较扁的椭圆,下面说法中正确的是( )A.彗星在近日点的速率大于在远日点的速率B.彗星在近日点的角速度大于在远日点的角速度C.彗星在近日点的向心加速度大于在远日点的向心加速度D.若彗星周期为75年,则它的半长轴是地球公转半径的75倍6.某图1行星绕太阳运行的椭圆轨道如图1所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的大,则太阳是位于()A.F2B.AC.F1D.B7.太阳系的八大行星的轨道均可以近似看成圆轨道.下面4幅图是用来描述这些行星运动所遵循的某一规律的图象.图中坐标系的横轴是lg(T/T0),纵轴是lg(R/R0);这里T和R 分别是行星绕太阳运行的周期和相应的圆轨道半径.T0和R0分别是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是()图2美国计划2021年开始每年送15 000名游客上太空旅游.如图2所示,当航天器围绕地球做椭圆运行时,近地点A的速率________(填“大于”、“小于”或“等于”)远地点B的速率.9.太阳系中除了八大行星之外,还有许多也围绕太阳运行的小行星,其中有一颗名叫“谷神”的小行星,质量为 1.00×1021kg,它运行的轨道半径是地球轨道半径的 2.77倍, 试求出它绕太阳一周所需要的时间是多少年?第三章万有引力定律第1节天体运动课前预习练1.地球 地球 太阳2.(1)椭圆 焦点 (2)面积 (3)半长轴的三次方 公转周期的二次方3.B4.D [天体的运动,特别是太阳系中的八大行星绕太阳运行的轨道都是椭圆,而非圆周;太阳的东升西落是由地球自转引起的.]5.CD [地球和太阳都不是宇宙的中心,地球在绕太阳公转,是太阳的一颗行星,A 、B 错,C 对.地心说是错误的,日心说也是不正确的,太阳只是浩瀚宇宙中的一颗恒星,D 对.与地心说相比,日心说在天文学上的应用更广泛、更合理些.它们都没有认识到天体运动遵循的规律与地球表面物体运动的规律是相同的,但都是人类对宇宙的积极的探索性认识.]6.C [由r 3T 2=k 知(r 1r 2)3=(T 1T 2)2=4,则r 1r 2=34,故选C.]课堂探究练 1.B2.BD [根据开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,即r 3/T 2=k .所以行星轨道的半长轴越长,公转周期就越大;行星轨道的半长轴越短,公转周期就越小.特别要注意公转周期和自转周期的区别,例如:地球的公转周期为一年,而地球的自转周期为一天.]3.AD [由开普勒第三定律可知,行星运动公式r 3T2=k 中的各个量r 、T 、k 分别表示行星绕太阳做椭圆运动的半长轴、行星绕太阳做椭圆运动的公转周期、一个与行星无关的常量,因此,正确选项为A 、D.周期T 是指公转周期,而非自转周期.]4.C [设海王星绕太阳运行的轨道半径为r 1,周期为T 1,地球绕太阳公转的轨道半径为r 2,周期为T 2(T 2=1年),由开普勒第三定律有r 31T 21=r 32T 22,故T 1= r 31r 32·T 2≈164年.]方法总结 (1)对题目的求解应视条件而定,本题中用轨道半径替代了半长轴,从解题结果可以进一步理解离太阳越远公转周期越大的结论.(2)地球的公转周期是一个重要的隐含条件,可以先将太阳系中的其他行星和地球公转周期、公转半径相联系,再利用开普勒第三定律分析其他行星的运动.5.B [设人造地球卫星和月球绕地球运行的周期分别为T 1和T 2,其轨道半径分别为r 1和r 2,根据开普勒第三定律有r 31T 21=r 32T 22,则人造地球卫星的运行周期为T 1=(r 1r 2)3T 2=(13)3×27天=27天≈5.2天,故选B.]方法总结 开普勒行星运动定律也适用于人造地球卫星,圆形轨道可作为椭圆轨道的一种特殊形式;T 月≈27天,这是常识,为题目的隐含条件.课后巩固练1.D [所有行星绕太阳运动的轨道都是椭圆,但不是同一轨道,太阳处在椭圆的一个焦点上,故A 、B 错.所有行星轨道半长轴的三次方跟公转周期的二次方的比值都相等,离太阳越近的行星其运动周期越短,故C 错,D 对.]2.CD [由于火星和地球均绕太阳做圆周运动,由开普勒第三定律有r 3T2=k ,k 为常量,又v=2πrT,则可知火星和地球到太阳的距离之比和运行速度大小之比,所以C 、D 选项正确.] 3.B [由开普勒第三定律有r 31T 21=r 32T 22,所以r 1r 2= 3T 21T 22= 3(T 1T 2)2= 3(271)2=91,选项B 正确.]4.C [由开普勒第三定律r 31T 21=r 32T 22得T 2=(r 2r 1)32·T 1=932×1年=27年,故C 项正确.]5.ABC [由开普勒第二定律知:v 近>v 远、ω近>ω远,故A 、B 正确;由a 向=v 2r知a 近>a 远,故C 正确;由开普勒第三定律得r 3T 2=r 3地T 2地,当T =75T 地时,r =3752r 地≠75r 地,故D 错.]点评 题目的求解方法应视具体情况而定,由于将地球绕太阳的运动视为圆周运动,因此开普勒第三定律中的半长轴可用地球公转半径替代.6.A [根据开普勒第二定律:对任意一个行星来说,行星与太阳的连线在相等时间内扫过相等的面积,因为行星在A 点的速率比在B 点大且太阳处在椭圆轨道的焦点上,所以太阳位于F 2.]7.B [由开普勒第三定律有R 30T 20=R 3T 2,则⎝⎛⎭⎫R R 03=⎝⎛⎭⎫T T 02,即3lg R R 0=2lg T T 0,因此lg R R 0-lg T T 0图线为过原点的斜率为23的直线,故B 项正确.]8.大于解析 根据开普勒第二定律:对任意一个行星来说,行星与太阳的连线在相等的时间内扫过相等的面积,由此可得知近地点A 的速率大于远地点B 的速率.9.4.6年 解析 由开普勒第三定律可得T 星=r 3星r 3地·T 地= 2.773×1年=4.6年.。

【新步步高】2014-2015学年高一物理人教版必修2单元检

【新步步高】2014-2015学年高一物理人教版必修2单元检

章末检测(时间:90分钟满分:100分一、选择题 (本题共 10个小题,每小题 4分,共 40分1.关于曲线运动,下列说法正确的是 (A .做曲线运动的物体速度方向时刻改变,所以曲线运动是变速运动B .做曲线运动的物体,受到的合外力方向在不断改变C .只要物体做圆周运动,它所受的合外力一定指向圆心D .物体只要受到垂直于初速度方向的恒力作用,就一定能做匀速圆周运动2.关于向心力的下列说法中正确的是 (A .向心力不改变做圆周运动物体速度的大小B .做匀速圆周运动的物体,其向心力是不变的C .做圆周运动的物体,所受合力一定等于向心力D .做匀速圆周运动的物体,所受的合力为零3. 雨滴由高层建筑的屋檐边自由下落, 遇到水平方向吹来的风. 关于雨滴的运动, 下列判断正确的是 (A .风速越大,雨滴下落的时间越长B .无论风速多大,雨滴下落的时间不变C .风速越大,雨滴落地时的速度越大D .无论风速多大,雨滴落地时的速度都不变4.某人在距地面某一高度处以初速度 v0水平抛出一物体,落地速度大小为 2v0,则它在空中的飞行时间及抛出点距地面的高度为 (3v09v23v03v200 , 2g4g2g4g3v03v2v0v200, D. g2gg2g5.图 1如图 1所示,在水平地面上做匀速直线运动的汽车,通过定滑轮用绳子吊起一个物体,若汽车和被吊物体在同一时刻的速度分别为 v1和 v2,则下面说法正确的是 (A .物体做匀速运动,且 v2=v1B .物体做加速运动,且 v2>v1C .物体做加速运动,且 v2<v1D .物体做减速运动,且 v2<v16.在抗洪抢险中,战士驾驶摩托艇救人.假设江岸是平直的,洪水沿江向下游流去,水流速度为 v1,摩托艇在静水中的航速为 v2,战士救人的地点 A 离岸边最近处 O 的距离为 d. 如果战士想在最短时间内将人送上岸, 则摩托艇登陆的地点离 O 点的距离为 ( dv2dv1dv2 B. 0 C. D. v2v1v2-v17.有一种玩具的结构如图 2所示,。

人教版高中物理必修第二册章末综合测评1答案

人教版高中物理必修第二册章末综合测评1答案

章末综合测评(一)1 2 3 4 5 6 7 8 9 10 CDDBCDBABABBC1.C [物体受到变力作用时,若合力方向与速度方向共线,则物体做直线运动,A 错误;物体受到恒力作用时,若合力方向与速度方向有夹角,则物体做曲线运动,B 错误,C 正确;如果合力方向与速度方向相反,则物体的速度减为零后反向加速运动,D 错误。

]2.D [小船沿AC 方向做匀加速直线运动,沿AB 方向做匀速直线运动,AB 方向的匀速直线运动和AC 方向的匀加速直线运动的合运动为曲线运动,合外力沿AC 方向指向曲线运动轨迹的凹侧,故选项D 正确。

]3.D [根据平抛运动的规律Δv =gt ,可得Δv 与t 成正比,Δv 与t 的关系图线为一条过原点的倾斜直线,选项D 正确。

]4.B [如图所示,绳子与水平方向的夹角为θ,将小车的速度沿绳子方向和垂直于绳子方向分解,小车沿绳子方向的速度等于P 的速度,根据平行四边形定则得v P =v cos θ,故B 正确,A 、C 、D 错误。

]5.C [根据2h =12gt 12,得t 1=√4hg ,则L =v 0t 1=v 0√4hg ,同理由h =12gt 22,得t 2=√2h g ,则s =2v 0t 2=2v 0√2h g ,所以L =√22s ,选项C 正确。

]6.D [由题意可将水从喷水口中水平喷出后的运动看成平抛运动,竖直方向做自由落体运动,水平方向做匀速直线运动,则竖直方向有h =12gt 2,得t =√2hg ,可知水从喷出到落入池中的时间由喷水口高度决定,与喷水速度无关,所以喷水口高度一定,水从喷出到落入池中的时间一定,故A 错误,D 正确。

水平方向有x =v 0t =v 0√2hg ,则知喷水口高度一定,喷水速度越大,水喷得越远;喷水速度一定,喷水口高度越高,水喷得越远,故B 、C 错误。

]7.B [由题意知球在空中做平抛运动,根据h =12 gt 2,得时间t =√2hg =√2×0.510s =√110 s ,球刚要落到球拍上时竖直分速度v y =gt =10×√110 m/s =√10 m/s ,根据平行四边形定则知,速度的大小v =v y cos 60°=2√10 m/s ,故B 正确,A 、C 、D 错误。

章末检测卷(一)步步高高中物理必修二

章末检测卷(一)步步高高中物理必修二

章末检测卷(一)(时间:90分钟 满分:100分)一、单项选择题(本题共6小题,每小题4分,共24分)1.一质点在某段时间内做曲线运动,则在这段时间内( )A.速度一定在不断改变,加速度也一定不断改变速度一定在不断改变,加速度也一定不断改变B.速度可以不变,但加速度一定不断改变速度可以不变,但加速度一定不断改变C.质点不可能在做匀变速运动质点不可能在做匀变速运动D.质点在某点的速度方向一定是曲线上该点的切线方向质点在某点的速度方向一定是曲线上该点的切线方向答案 D解析 物体做曲线运动的条件是合力的方向与速度方向不在同一直线上,故速度方向时刻改变,所以曲线运动是变速运动,其加速度不为零,但加速度可以不变,例如平抛运动,就是匀变速运动.故A、B、C错误.曲线运动的速度方向时刻改变,质点在某点的速度方向一定是曲线上该点的切线方向,故D正确.180°))的一个匀速直线运动和一个匀变速直线运动的合运动,下列2.关于互成角度(不为0和180°说法正确的是( )A.一定是直线运动一定是直线运动B.一定是曲线运动一定是曲线运动C.可能是直线,也可能是曲线运动可能是直线,也可能是曲线运动D.以上答案都不对以上答案都不对答案 B解析 两运动的合运动的速度方向在两个分运动速度方向所夹的某一方向上,而运动物体的合加速度沿着原匀变速直线运动的方向,也就是说运动物体的合加速度与它的速度方向不在同一条直线上,物体一定做曲线运动,B对,A、C、D错.3.游泳运动员以恒定的速率垂直于河岸渡河,当水速突然变大时,对运动员渡河时间和经历的路程产生的影响是( )A.路程变大,时间延长路程变大,时间延长B.路程变大,时间缩短路程变大,时间缩短C.路程变大,时间不变路程变大,时间不变D.路程和时间均不变路程和时间均不变答案 C解析 运动员渡河可以看成是两个运动的合运动:垂直河岸的运动和沿河岸的运动.运动员以恒定的速率垂直河岸渡河,在垂直河岸方向的分速度恒定,由分运动的独立性原理可知,渡河时间不变;但是水速变大,沿河岸方向的运动速度变大,因时间不变,则沿河岸方向的分位移变大,总路程变大,故选项C 正确.4.(2015·浙江·17)如图1所示为足球球门,球门宽为L .一个球员在球门中心正前方距离球门s 处高高跃起,将足球顶入球门的左下方死角(图中P 点).球员顶球点的高度为h ,足球做平抛运动(足球可看成质点,忽略空气阻力),则( )图1A.足球位移的大小x =L 24+s 2 B.足球初速度的大小v 0=g2h (L 24+s 2) C.足球末速度的大小v =g 2h (L 24+s 2)+4gh D.足球初速度的方向与球门线夹角的正切值tan θ=L2s答案 B解析 足球位移大小为x =(L 2)2+s 2+h 2=L 24+s 2+h 2,A 错误;根据平抛运动规律有:h =12gt 2,L 24+s 2=v 0t ,解得v 0=g 2h (L 24+s 2),B 正确;根据动能定理mgh =12m v 2-12m v 20可得v =v 20+2gh =g 2h (L 24+s 2)+2gh ,C 错误;足球初速度方向与球门线夹角正切值tan θ=s L 2=2sL ,D 错误.5.如图2所示,某人向对面的山坡上水平抛出两个质量不等的石块,分别落到A 、B 两处.不计空气阻力,则落到B 处的石块( )图2A.初速度大,运动时间短初速度大,运动时间短B.初速度大,运动时间长初速度大,运动时间长C.初速度小,运动时间短初速度小,运动时间短D.初速度小,运动时间长初速度小,运动时间长 答案 A解析 由于B 点在A 点的右侧,说明水平方向上B 点的距离更远,而B 点距抛出点竖直方向上的距离较小,故运动时间较短,二者综合说明落在B 点的石块的初速度较大,故A 正确,B 、C 、D 错误.6.如图3所示,我某集团军在一次空地联合军事演习中,离地面H 高处的飞机以水平对地速度v 1发射一颗炸弹轰炸地面目标P ,反应灵敏的地面拦截系统同时以初速度v 2竖直向上发射一颗炮弹拦截(炮弹运动过程看作竖直上抛),设此时拦截系统与飞机的水平距离为x ,若拦截成功,不计空气阻力,则v 1、v 2的关系应满足( )图3A.v 1=H x v 2B.v 1=v 2xHC.v 1=x H v 2D.v 1=v 2答案 C解析 炸弹离开飞机做平抛运动,若恰好被拦截,则水平位移x =v 1t ,得t =xv 1,这段时间内炸弹下落的距离为h 1=12gt 2=gx 22v 21,拦截炮弹上升的高度为h 2=v 2t -12gt 2=v 2x v 1-gx 22v 21,h 1+h 2=H ,解得v 1=x H v 2,C 项正确.二、多项选择题(本题共4小题,每小题5分,共20分)7.某地发生地震,一架装载救灾物资的直升飞机,以10m /s 的速度水平飞行,在距地面180 m 的高度处,欲将救灾物资准确投放至地面目标,若不计空气阻力,g 取10 m/s 2,则( ) A.物资投出后经过6s 到达地面目标到达地面目标 B.物资投出后经过18s 到达地面目标到达地面目标 C.应在距地面目标水平距离60m 处投出物资处投出物资 D.应在距地面目标水平距离180m 处投出物资处投出物资 答案 AC解析 物资投出后做平抛运动,其落地所用时间由高度决定,t =2h g=6s ,A 项正确,B 项错误;抛出后至落地的水平位移为x =v t =60m ,C 项正确,D 项错误.8.如图4所示,蹲在树枝上的一只松鼠看到一个猎人正在用枪水平瞄准它,就在子弹出枪口时,开始逃跑,松鼠可能的逃跑方式有下列四种.在这四种逃跑方式中,松鼠不能逃脱厄运而被击中的是(设树枝足够高,忽略空气阻力)( )图4A.自由落下自由落下B.竖直上跳竖直上跳C.迎着枪口,沿AB 方向水平跳离树枝方向水平跳离树枝D.背着枪口,沿AC 方向水平跳离树枝方向水平跳离树枝 答案 ACD解析 射出的子弹做平抛运动,根据平抛运动的特点,竖直方向做自由落体运动,所以无论松鼠以自由落下,迎着枪口沿AB 方向水平跳离树枝,还是背着枪口沿AC 方向水平跳离树枝,竖直方向运动情况都与子弹相同,一定被打中,不能逃脱厄运而被击中的是A 、C 、D. 9.物体以v 0的速度水平抛出,当其竖直分位移与水平分位移大小相等时,以下说法正确的是( )A.竖直分速度与水平分速度大小相等竖直分速度与水平分速度大小相等B.瞬时速度的大小为5v 0C.运动时间为2v 0gD.运动位移的大小为22v 2g 答案 BCD解析 设从抛出到竖直分位移与水平分位移大小相等时所需时间为t ,根据平抛运动规律知,竖直分位移y =12gt 2,水平分位移x =v 0t ,竖直方向的分速度为v y =gt ,由题设知x =y ,以上各式联立解得:t =2v 0g ,v y =2v 0,x =y =2v 20g ,所以瞬时速度的大小为v =v 2y +v 2x =5v 0,运动位移的大小为s =x 2+y 2=22v 2g ,故选B 、C 、D.10.如图5为湖边一倾角为30°的大坝的横截面示意图,水面与大坝的交点为O .一人站在A 点处以速度v 0沿水平方向扔小石块,已知AO =40m ,忽略人的身高,不计空气阻力.下列说法正确的是( )图5A.若v 0>18m/s ,则石块可以落入水中,则石块可以落入水中B.若v 0<20m/s ,则石块不能落入水中,则石块不能落入水中C.若石块能落入水中,则v 0越大,落水时速度方向与水平面的夹角越小越大,落水时速度方向与水平面的夹角越小D.若石块不能落入水中,则v 0越大,落到斜面上时速度方向与斜面的夹角越大越大,落到斜面上时速度方向与斜面的夹角越大 答案 AC解析 石块做平抛运动刚好落入水中时,x AO sin30°=12gt 2,x AO cos30°=v 0t ,解得v 0≈17.3m/s ,选项A 正确,B 错误;设落水时速度方向与水平面的夹角为α,tan α=v y v 0=2ghv 0,v 0越大,落水时速度方向与水平面的夹角越小,选项C 正确;若石块不能落入水中,设落到斜面上时速度方向与水平方向的夹角为β,在斜面上tan30°=12gt 2v 0t =gt 2v 0,故tan β=gt v 0=2tan30°,可知β为定值与v 0无关,故选项D 错误. 三、填空题(本题共2小题,共12分)11.(6分)某研究性学习小组进行如下实验:如图6所示,在一端封闭的光滑细玻璃管中注满清水,水中放一个红蜡做成的小圆柱体R .将玻璃管的开口端用胶塞塞紧后竖直倒置且与y 轴重合,在R 从坐标原点以速度v 0=3cm /s 匀速上浮的同时,玻璃管沿x 轴正方向做初速度为零的匀加速直线运动.同学们测出某时刻R 的坐标为(4,6),此时R 的速度大小为________cm/s.R 在上升过程中运动轨迹的示意图是________.(R 视为质点)图6答案 5 丁解析 红蜡块有水平方向的加速度,所受合外力指向曲线的内侧,所以其运动轨迹应如丁图所示因为竖直方向匀速,由y =6cm =v 0t 知t =2s ,水平方向x =v x2·t =4cm ,所以v x =4cm/s ,因此此时R 的速度大小v =v 2x+v 20=5cm/s.12.(6分)用频闪照相技术拍下的两小球运动的频闪照片如图7所示.拍摄时,光源的闪光频率为10Hz ,a 球从A 点水平抛出的同时,b 球自B 点开始下落,点开始下落,背景的小方格为相同的正方形背景的小方格为相同的正方形.重力加速度g 取10m/s 2,不计阻力.图7(1)根据照片显示的信息,下列说法中正确的是________. A.只能确定b 球的运动是自由落体运动球的运动是自由落体运动B.不能确定a 球沿竖直方向的运动是自由落体运动球沿竖直方向的运动是自由落体运动C.只能确定a 球沿水平方向的运动是匀速直线运动球沿水平方向的运动是匀速直线运动D.可以断定a 球的运动是水平方向的匀速直线运动和竖直方向的自由落体运动的合运动球的运动是水平方向的匀速直线运动和竖直方向的自由落体运动的合运动 (2)根据照片信息可求出a 球的水平速度大小为________m/s ;当a 球与b 球运动了________s 时它们之间的距离最小. 答案 (1)D (2)1 0.2解析 (1)因为相邻两照片间的时间间隔相等,水平位移相等,知小球在水平方向上做匀速直线运动,竖直方向上的运动规律与b 球运动规律相同,知竖直方向上做自由落体运动.故D 正确,A 、B 、C 错误.(2)根据Δy =gT 2=10×0.01m =0.1m.所以2L =0.1m ,所以平抛运动的初速度v 0=2L T =0.1m0.1s =1m/s.因为两球在竖直方向上都做自由落体运动,所以竖直方向上位移之差恒定,当小球a 运动到与b 在同一竖直线上时,距离最短,则t =4L v 0=0.21s =0.2s.四、计算题(本题共4小题,共44分解答应写出必要的文字说明、方程式和重要演算步骤,有数值计算的,答案中必须明确写出数值和单位)13.(10分)从高为H =80m 的楼顶以某水平速度抛出一个石块,落地点距楼的水平距离为120m ,(g 取10m/s 2)求:求: (1)石块的初速度大小;石块的初速度大小;(2)石块着地时的速度v . 答案 (1)30m/s(2)50m/s ,方向与水平方向的夹角为53° 解析 (1)石块的运动时间 t =2H g=2×8010s =4s石块的初速度 v 0=x t =1204m /s =30 m/s(2)石块着地时竖直方向的速度v y =gt =40m/s石块着地时的速度大小v =v 20+v 2y =50m/s 着地时的速度与水平方向的夹角为θ 则tan θ=v y v 0=43,θ=53°14.(10分)如图8所示,一名跳台滑雪运动员经过一段时间的加速滑行后从O 点水平飞出,经过3s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m =50kg.不计空气阻力(sin37°=0.6,cos37°=0.8;g 取10m/s 2).求:求:图8(1)A 点与O 点的距离L ; (2)运动员离开O 点时的速度大小. 答案 (1)75m (2)20m/s解析 (1)运动员在竖直方向做自由落体运动,有L sin37°=12gt 2,L =gt 22sin37°=75m.(2)设运动员离开O 点时的速度为v 0,运动员在水平方向的分运动为匀速直线运动,有L cos37°=v 0t ,即v 0=L cos37°t =20m/s.15.(12分)如图9所示,斜面体ABC 固定在地面上,小球p 从A 点沿斜面静止下滑.当小球p 开始下滑时,另一小球q 从A 点正上方的D 点水平抛出,两球同时到达斜面底端的B 点.已知斜面AB 光滑,长度L =2.5m ,斜面倾角为θ=30°30°..不计空气阻力,g 取10m/s 2.求:求:图9(1)小球p 从A 点滑到B 点的时间;点的时间;(2)小球q 抛出时初速度的大小和D 点离地面的高度h . 答案 (1)1s (2)534m/s 5m解析 (1)设小球p 从斜面上下滑的加速度为a , 受力分析得:mg sin θ=ma设小球p 从A 点滑到B 点的时间为t ,L =12at 2解得t =1s.(2)小球q 的运动为平抛运动:h =12gt 2=5mL cos θ=v 0t 解得v 0=534m/s.16.(12分)如图10所示,在粗糙水平台阶上静止放置一质量m =1.0kg 的小物块,它与水平台阶表面的动摩擦因素μ=0.25,且与台阶边缘O 点的距离s =5m.在台阶右侧固定了一个14圆弧挡板,圆弧半径R =52m ,以O 点为原点建立平面直角坐标系.现用F =5N 的水平恒力拉动小物块,已知重力加速度g =10m/s 2.图10(1)为使小物块不能击中挡板,求拉力F 作用的最长时间;作用的最长时间;(2)若小物块在水平台阶上运动时,水平恒力一直作用在小物块上,当小物块过O 点时撤去拉力,求小物块击中挡板上的位置的坐标. 答案 (1)2s (2)x =5m ,y =5m解析 (1)为使小物块不会击中挡板,设拉力F 作用最长时间t 1时,小物块刚好运动到O 点. 由牛顿第二定律得:F -μmg =ma 1 解得:a 1=2.5m/s 2减速运动时的加速度大小为:a 2=μg =2.5m/s 2由运动学公式得:s =12a 1t 21+12a 2t 22而a 1t 1=a 2t 2 解得:t 1=t 2=2s(2)水平恒力一直作用在小物块上,由运动学公式有: v 20=2a 1s解得小物块到达O 点时的速度为:v 0=5m/s 小物块过O 点后做平抛运动. 水平方向:x =v 0t 竖直方向:y =12gt 2又x 2+y 2=R 2解得位置坐标为:x =5m ,y =5m.。

高中物理步步高必修2《课时作业与单元检测》配套课件第四章 学案1

高中物理步步高必修2《课时作业与单元检测》配套课件第四章 学案1

本 学 案 栏 目 开 关
解析 四种情况下,F、x 都相同,由公式 W=Fxcos α 可知, cos α 越小,力 F 做的功越少,D 中 cos α 最小,故选 D.
自我·检测区
学案1
4.如图 4 所示是甲、乙二人拉一木箱沿直线(图中的虚线)匀速 运动的俯视图.已知二力互相垂直,甲对木箱的拉力为 60.0 N, 乙对木箱的拉力为 45.0 N,木箱移动的距离为 10.0 m.求:
A.W1>W2
B.W1<W2
C.W1=W2
D.无法判断
解析 物体沿力的方向运动,恒力做功就是指力 F 做的功,
根据 W=Fxcos α,两次做功中的 F、x、α 均相同,所以两
次 F 做功相同,即 W1=W2.
学习·探究区
学案1
二、功的正负
[问题设计]

功是标量,但因为力和位移的夹角不同,使功有正、负之


D.重力不做功,拉力做正功,合力做正功
解析 匀速吊起重物,物体受到的拉力与重力相平衡.在吊
起过程中,根据 W=Fxcos α 知,重力做负功,拉力做正功,
合力做功为 0.C 正确.
自我·检测区
学案1
3.如图所示,力 F 大小相同,物体沿水平面运动的位移 x 也
相同,下列哪种情况 F 做功最少
(D)
WN=mgcos θ·x·cos (90°+θ)=-12mgxsin 2θ,
(2)W=WG+WN+Wf=0
答案 见解析
学习·探究区
本 学 案 栏 目 开 关
学案1
自我·检测区
学案1
1.根据力对物体做功的条件,下列说法中正确的是 ( )

2023新教材高中物理课时跟踪检测一曲线运动新人教版必修第二册

2023新教材高中物理课时跟踪检测一曲线运动新人教版必修第二册

课时跟踪检测(一)曲线运动A组—重基础·体现综合1.(多选)物体做曲线运动时,其加速度( )A.一定不等于0 B.可能不变C.一定改变D.一定不变解析:选AB 物体做曲线运动的条件是其所受合力的方向与速度方向不在同一条直线上,故合力一定不为0,其加速度必定不为0,故A正确。

但其所受的合力可能是恒力,也可能是变力,故B正确,C、D错误。

2.如图1所示,一质点由M点向N点做曲线运动,当它通过P点时,其速度v和加速度a的方向关系可能正确的是( )图1解析:选C 做曲线运动的物体的加速度的方向与其所受的合力的方向一致。

由曲线运动中物体所受合力的方向与其运动轨迹的关系可知,物体的加速度的方向也一定指向轨迹的凹侧,而速度的方向一定是沿轨迹上该点的切线方向,故C正确。

3.如图2所示,车辆通过某路段时,对汽车运动的分析中可能正确的是( )A.汽车做直线运动B.汽车做曲线运动C.汽车做匀变速曲线运动D.汽车运动的加速度可能是不变的图2解析:选B 根据汽车的运动轨迹特点,可判断汽车做的是曲线运动,从题图中可以看出,汽车通过该路段时,连续拐了两个相反方向的弯,根据物体做曲线运动的轨迹总是弯向其所受合力方向的那一侧的特点,说明该运动中合力是变化的,因此汽车做的应该是非匀变速曲线运动,故B正确,A、C、D错误。

4.在曲线运动中,如果运动物体的速率保持不变,那么( )A.其加速度的方向就是曲线在这一点的切线方向B.其加速度大小不变,方向与物体运动方向一致C.其加速度大小不变,某点的加速度方向与曲线该点的切线方向一致D.其加速度大小和方向由物体在该点所受合外力决定,加速度方向与曲线上这一点的切线方向垂直解析:选D 根据牛顿第二定律可得曲线运动的加速度大小和方向是由物体受到的合外力决定的,对于运动物体的速率保持不变的曲线运动,其加速度方向与曲线上这一点的切线方向垂直,故D正确。

5.下列说法中不正确的是( )A.物体受到的合外力方向与速度方向相同时,物体做加速直线运动B.物体受到的合外力方向与速度方向成锐角时,物体做曲线运动C.物体受到的合外力方向与速度方向成锐角时,物体做减速直线运动D.物体受到的合外力方向与速度方向相反时,物体做减速直线运动解析:选C 当物体的运动方向与其所受合外力方向在同一条直线上时,物体做直线运动,运动方向与合外力方向相同时物体做加速直线运动,运动方向与合外力方向相反时物体做减速直线运动,故A、D正确。

高一物理必修二综合检测卷含答案人教版

高一物理必修二综合检测卷含答案人教版

高中物理必修二综合检测卷(时间75分钟,满分100分)一、单项选择题(本题有8小题,每小题4分,共32分)1.如图所示,高速摄像机记录了一名擅长飞牌、射牌的魔术师的发牌过程,虚线是飞出的扑克牌的运动轨迹,则扑克牌所受合力F与速度v关系正确的是()2.某质点绕圆轨道做匀速圆周运动,下列说法中正确的是()A.因为它的速度大小始终不变,所以它做的是匀速运动B.该质点速度大小不变,但方向时刻改变,是变速运动C.该质点速度大小不变,处于平衡状态D.该质点做的是变速运动,所受合外力保持不变3.汽车在公路上行驶时一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm,当该型号的轿车在高速公路上匀速行驶时,驾驶员面前速度计的指针指在“120 km/h”上,可估算出该车轮的转速近似为(π取3.14)()A.1 000 r/sB.1 000 r/minC.1 000 r/hD.2 000 r/s4.杂技演员表演“水流星”,在长为1.6 m的细绳的一端,系一个与水的总质量为m=0.5 kg的大小不计的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通过最高点时的速率为4 m/s,则下列说法正确的是(g取10 m/s2)()A.“水流星”通过最高点时,有水从容器中流出B.“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零C.“水流星”通过最高点时,处于完全失重状态,不受力的作用D.“水流星”通过最高点时,绳子的拉力大小为5 N5.汽车在平直公路上以速度v0匀速行驶,发动机功率为P0.快进入闹市区时司机减小了油门,使汽车的功率立即减小一半并保持该功率继续行驶.下列四个图像中,哪个正确表示了从司机减小油门开始,汽车的速度与时间的关系图像()6.如图所示,a、b是两颗绕地球做匀速圆周运动的人造地球卫星,它们距地面的高度分别是R和2R(R为地球半径).下列说法中正确的是()A.a、b的线速度大小之比是2∶1B.a、b的周期之比是1∶2 2C.a、b的角速度大小之比是36∶4D.a、b的向心加速度大小之比是9∶27.如图所示,有一半径为r=0.5 m的粗糙半圆轨道,A与圆心O等高,有一质量为m=0.2 kg的物块(可视为质点),从A点静止滑下,滑至最低点B时的速度为v=1 m/s,取g=10 m/s2,下列说法正确的是()A.物块过B点时,对轨道的压力大小是0.4 NB.物块过B点时,对轨道的压力大小是2.0 NC.A到B的过程中,克服摩擦力做的功为0.9 JD.A到B的过程中,克服摩擦力做的功为0.1 J8.一质量为m的小球,用长为l的轻绳悬挂于O点,小球在水平拉力F作用下,从平衡位置P点缓慢地移动到Q点,如图所示,重力加速度为g,则拉力F所做的功为()A.mgl cos θB.mgl(1-cos θ)C.Fl cos θD.Fl sin θ二、多项选择题(本题共4小题,每小题4分,共16分)9.质量为m 的小球(不计大小)由轻绳a 和b 分别系于一竖直轻质细杆的A 点和B 点,如图所示,当轻杆绕轴OO ′以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,a 绳与水平方向成θ角,b 绳沿水平方向且长为l ,则下列说法正确的是( )A.a 绳的张力不可能为零B.a 绳的张力随角速度的增大而增大C.若角速度ω>g l tan θ,b 绳将出现弹力D.若b 绳突然被剪断,则a 绳的弹力一定发生变化10.质量为m 的物体,静止在倾角为θ的斜面上,斜面沿水平方向向右匀速移动了距离l ,如图所示.物体始终相对斜面静止,则下列说法正确的是( )A.重力对物体做正功B.合力对物体做功为零C.摩擦力对物体做负功D.支持力对物体做正功11.航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图所示.关于航天飞机的运动,下列说法中正确的有( )A.在轨道Ⅱ上经过A 的速度小于经过B 点的速度B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度12.如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度大小为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( )A.重力势能增加了34mghB.克服摩擦力做功14mgh C.动能损失了32mgh D.机械能损失了12mgh三、实验题(每空2分,共14分)13.某物理兴趣小组在做“探究平抛运动的特点”的实验时,分成两组,其中一个实验小组让小球做平抛运动,用频闪照相机对准方格背景照相,拍摄到如图所示的照片,已知每个小方格边长为10 cm,当地的重力加速度g取10m/s2,其中第4点处的位置被污迹覆盖.(1)若以拍摄的第1点为坐标原点,以水平向右和竖直向下为正方向建立直角坐标系,被拍摄的小球在第4点的位置坐标为(________cm,________cm);(2)小球平抛的初速度大小为________m/s;(3)另一个实验小组的同学正确地进行了实验并正确地描绘了运动轨迹,测量了轨迹上的不同点的坐标值,根据所测得的数据以y为纵轴,x2为横轴,在坐标纸上画出对应的图像为过原点的直线,并测出直线斜率为2,则平抛运动的初速度v0=________ m/s.14.某同学利用图所示装置“验证小球摆动过程中机械能守恒”,实验中小球摆到最低点时恰好与桌面接触但没有弹力,D处(箭头所指处)放一锋利的刀片,细线到达竖直位置时能被割断,小球做平抛运动落到地面,P是一刻度尺.该同学方案的优点是只需利用刻度尺测量A位置到桌面的高度H、桌面到地面的高度h及小球平抛运动的水平位移x即可.(1)测量A位置到桌面的高度H应从________(填“球的上边沿”“球心”或“球的下边沿”)开始测.(2)实验中多次改变H值并测量与之对应的x值,利用作图像的方法去验证.为了直观地表述H和x 的关系(图线为直线),若用横轴表示H,则纵轴应表示________.(填“x”“x2”或“x”)(3)若小球下摆过程中机械能守恒,则h、H和x的关系为H=________.四、计算题(15题12分,16题12分,17题14分,共38分)15.如图所示,半径为R、内径很小的光滑半圆管竖直放置,两个质量均为m的小球A、B从水平地面上以不同速率进入管内,A通过最高点C时,对管壁上部的压力为3mg,B通过最高点C时,对管壁下部的压力为0.75mg.g为重力加速度,忽略空气阻力,求A、B两球落地点间的距离.16.如图所示,一可以看成质点的质量m=2 kg的小球以初速度v0沿光滑的水平桌面飞出后,恰好从A点沿切线方向进入圆弧轨道,BC为圆弧竖直直径,其中B为轨道的最低点,C为最高点且与水平桌面等高,圆弧AB对应的圆心角θ=53°,轨道半径R=0.5 m.已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g取10 m/s2.(1)求小球的初速度v0的大小;(2)若小球恰好能通过最高点C,求在圆弧轨道上摩擦力对小球做的功.17.如图所示,质量不计的硬直杆的两端分别固定质量均为m的小球A和B,它们可以绕光滑轴O在竖直面内自由转动.已知OA=2OB=2l,将杆从水平位置由静止释放.(重力加速度为g)(1)在杆转动到竖直位置时,小球A、B的速度大小分别为多少?(2)在杆转动到竖直位置的过程中,杆对A球做了多少功?(3)在杆刚转到竖直位置的瞬间,杆对B球的作用力为多大?是推力还是拉力?高中物理必修二 综合检测答案(时间75分钟,满分100分)一、单项选择题1.A2.B3.B4.B5.C6.C7.C8.B二、多项选择题9.AC 10.BCD 11.ABC 12.CD三、实验题13. (1)60 60 (2)2 (3)10214.(1)球的下边沿(2)x 2(3)x 24h四、计算题 15.解析 两个小球在最高点时,受重力和管壁的作用力,这两个力的合力提供向心力,离开轨道后两球均做平抛运动,A 、B 两球落地点间的距离等于它们平抛运动的水平位移之差.对A 球由牛顿第二定律得3mg +mg =m v 2A R解得A 球通过最高点C 时的速度大小为v A =2gR对B 球由牛顿第二定律得mg -0.75mg =m v 2B R解得B 球通过最高点C 时的速度大小为v B =gR 2A 、B 球做平抛运动的时间相同,由2R =12gt 2可得t =2×2R g =2R g 两球做平抛运动的水平分位移分别为x A =v A t =4Rx B =v B t =RA 、B 两球落地点间的距离Δx =x A -x B =3R .16.解析 (1)在A 点由平抛运动规律得:v A =v 0cos 53°=53v 0 小球由桌面到A 点的过程中,由动能定理得mg (R +R cos θ)=12m v A 2-12m v 02 联立得:v 0=3 m/s ;(2)若小球恰好能通过最高点C ,在最高点C 处有mg =m v 2C R,小球从桌面运动到C 点的过程中,由动能定理得W f =12m v C 2-12m v 02 代入数据解得W f =-4 J.17.解析 (1)小球A 和B 及杆组成的系统机械能守恒.设转到竖直位置的瞬间A 、B 的速率分别为v A 、v B ,杆旋转的角速度为ω,有mg ·2l -mgl =12m v A 2+12m v B 2 v A =2lω,v B =lω联立解得v B =10gl 5,v A =210gl 5(2)对A 球,由动能定理得mg ·2l +W =12m v A 2 联立解得W =-65mgl (3)在杆刚转到竖直位置的瞬间,设杆对B 球有向下的拉力F ,根据向心力公式有mg +F =m v 2B l ,解得F =-35mg 负号表示杆对B 球的作用力方向与假设方向相反,即向上,所以对B 球的作用力为推力.。

步步高必修2《课时作业与单元检测》第1章 1.1.2

步步高必修2《课时作业与单元检测》第1章 1.1.2

1.1.2简单组合体的结构特征【课时目标】1.正确认识由柱、锥、台、球组成的简单几何体的结构特征.2.能运用这些结构特征描述现实生活中简单物体的结构.1.定义:由____________________组合而成的几何体叫做简单组合体.2.组合形式一、选择题1.如图,由等腰梯形、矩形、半圆、圆、倒三角形对接形成的轴对称平面图形,若将它绕轴l旋转180°后形成一个组合体,下面说法不正确的是()A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点2.右图所示的几何体是由哪个平面图形通过旋转得到的()3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥4.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体是由() A.一个圆台、两个圆锥构成B.两个圆台、一个圆锥构成C.两个圆柱、一个圆锥构成D.一个圆柱、两个圆锥构成5.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥组合体D.不能确定6.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是()A.(1)(2) B.(1)(3)C.(1)(4) D.(1)(5)二、填空题7.下列叙述中错误的是________.(填序号)①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.8.如图所示为一空间几何体的竖直截面图形,那么这个空间几何体自上而下可能是__________________.9.以任意方式截一个几何体,各个截面都是圆,则这个几何体一定是________.三、解答题10.如图是一个数学奥林匹克竞赛的奖杯,请指出它是由哪些简单几何体组合而成的.11.如图所示几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.能力提升12.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是()13.已知圆锥的底面半径为r,高为h,且正方体ABCD-A1B1C1D1内接于圆锥,求这个正方体的棱长.组合体的结构特征有两种组成:(1)是由简单几何体拼接而成;(2)是由简单几何体截去一部分构成.要仔细观察组合体的组成,柱、锥、台、球是最基本的几何体.1.1.2简单组合体的结构特征答案知识梳理1.简单几何体2.截去或挖去一部分作业设计1.A2.A3.D4.D5.A6.D [一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分.]7.①②③④ 8.圆台和圆柱(或棱台和棱柱) 9.球体10.解 将该几何体分解成简单几何体可知,它是由一个球、一个四棱柱和一个四棱台组合而成.11.解 先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:12.B 13.解 如图所示,过内接正方体的一组对棱作圆锥的轴截面,设圆锥内接正方体的棱长为x ,则在轴截面中,正方体的对角面A 1ACC 1的一组邻边的长分别为x 和2x .因为△V A 1C 1∽△VMN , 解得2x 2r =h -x h ,所以2hx =2rh -2rx ,解得x =2rh2r +2h .即圆锥内接正方体的棱长为2rh 2r +2h.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合检测(一)(时间:90分钟满分:100分)一、选择题(本题共10个小题,每小题4分,共40分)1.下列说法正确的是()A.做曲线运动的物体,速度的方向必定变化B.速度变化的运动必定是曲线运动C.加速度恒定的运动不可能是曲线运动D.加速度变化的运动必定是曲线运动2.如图1所示,图1一轻杆一端固定在O点,另一端固定一小球,在竖直平面内做圆周运动,通过最高点时,由于球对杆有作用力,使杆发生了微小形变,关于杆的形变量与球在最高点时的速度大小关系,正确的是()A.形变量越大,速度一定越大B.形变量越大,速度一定越小C.形变量为零,速度一定不为零D.速度为零,可能无形变3.下列关于地球同步通信卫星的说法中,正确的是()A.为避免同步通信卫星在轨道上相撞,应使它们运行在不同的轨道上B.同步通信卫星定点在地球上空某处,各个同步通信卫星的角速度相同,但线速度可以不同C.不同国家发射同步通信卫星的地点不同,这些卫星轨道不一定在同一平面内D.同步通信卫星只能运行在赤道上空某一恒定高度上4.已知甲、乙两行星的半径之比为a,它们各自的第一宇宙速度之比为b,则下列结论正确的是()A.甲、乙两行星的质量之比为b2a∶1B.甲、乙两行星表面的重力加速度之比为b2∶aC.甲、乙两行星各自的卫星的最小周期之比为a∶bD.甲、乙两行星各自的卫星的最大角速度之比为a∶b5.节日燃放礼花弹时,要先将礼花弹放入一个竖直的炮筒中,然后点燃礼花弹的发射部分,通过火药剧烈燃烧产生的高压燃气,将礼花弹由炮筒底部射向空中.礼花弹在炮筒中被击发过程中,克服重力做功W1,克服炮筒阻力及空气阻力做功W2,高压燃气对礼花弹做功W3,则礼花弹在炮筒内运动的过程中(设礼花弹发射过程中质量不变)()A.礼花弹的动能变化量为W3+W2+W1B.礼花弹的动能变化量为W3-W2-W1C.礼花弹的机械能变化量为W3-W1D.礼花弹的机械能变化量为W3-W26.在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,那么在他减速下降高度为h的过程中,g为当地的重力加速度.下列说法正确的是()A.他的动能减少了FhB.他的重力势能减少了mghC.他的机械能减少(F-mg)hD.他的机械能减少了Fh7.如图2所示,图2有一个半径为R 的光滑圆轨道,现给小球一个初速度,使小球在竖直面内做圆周运动, 则关于小球在过最高点的速度v ,下列叙述中正确的是( ) A.v 的极小值为 gRB.v 由零逐渐增大,轨道对球的弹力逐渐增大C.当v 由 gR 值逐渐增大时,轨道对小球的弹力也逐渐增大D.当v 由 gR 值逐渐减小时,轨道对小球的弹力逐渐增大8.长为L 的细绳,一端系一质量为m 的小球,另一端固定于某点,当绳竖直时小球静止,再给小球一水平初速度v 0,使小球在竖直平面内做圆周运动,并且刚好能过最高点,则下列说法中正确的是( )A.小球过最高点时速度为零B.小球开始运动时绳对小球的拉力为m v 20LC.小球过最高点时绳对小球的拉力为mgD.小球过最高点时速度大小为 Lg9.一宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可 称体重的台秤上.用R 表示地球的半径,g 表示地球表面处的重力加速度,g ′表示宇宙飞船所在处的地球引力加速度,N 表示人对台秤的压力,下列正确的是( )A.g ′=0B.g ′=R 2r 2gC.N =0D.N =m Rrg10.如图3甲所示,一物块在t =0时刻,以初速度v 0从足够长的粗糙斜面底端向上滑行,物块速度随时间变化的图象如图乙所示,t 0时刻物块到达最高点,3t 0时刻物块又返回底端.由此可以确定( )图3A.物块返回底端时的速度B.物块所受摩擦力的大小C.斜面倾角θD.3t 0题号 1 2 3 4 5 6 7 89 10 答案11.(8分)如图4所示,某同学在研究平抛运动的实验中,在小方格纸上画图4出小球做平抛运动的轨迹以后,又在轨迹上取出a 、b 、c 、d 四个点(轨迹已擦去).已知小方格纸的边长L =2.5 cm.g 取10 m/s 2.请你根据小方格纸上的信息,通过分析计算完成下面几个问题:(1)根据水平位移,求出小球平抛运动的初速度v 0=________. (2)从抛出点到b 点所经历的时间是________.12.(8分)某学习小组做探究“合力的功和物体速度变化关系”的实验装置.如图5甲所示,图中小车是在一条橡皮筋作用下弹出,沿木板滑行,这时,橡皮筋对小车做的功记为W .当用2条、3条、……,完全相同的橡皮筋并在一起进行第2次、第3次、……实验时,使每次实验中橡皮筋伸长的长度都保持一致.每次实验中小车获得的速度由打点 计时器所打的纸带测出.甲 乙图5(1)在正确操作情况下,打在纸带上的点,并不都是均匀的,为了测量小车获得的速度, 应选用纸带的________部分进行测量(根据图6所示的纸带回答):图6n n n 测定的数据在图6乙所示的坐标系中作出相应的图象,验证理论的正确性.三、计算题(本题共4个小题,满分44分)13.(10分)我国在2008年10月24日发射了“嫦娥一号”探月卫星.同学们也对月球有了更多的关注.(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,月 球绕地球的运动可近似看作匀速圆周运动,试求月球绕地球运动的轨道半径.(2)若宇航员随登月飞船登陆月球后,在月球表面某处以速度v 0竖直向上抛出一个小球, 经过时间t ,小球落回抛出点.已知月球半径为r ,万有引力常量为G ,试求出月球的质量M 月.14.(10分)已知地球半径为R ,地球表面重力加速度为g ,不考虑地球自转的影响.(1)推导第一宇宙速度v 1的表达式;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h ,求卫星的运行周期T .15.(12分)起重机把重物由静止开始匀加速提升了3.2 m,重物的重力势能增加了 1.6×104J,动能增加了640 J(取g =10 m/s 2).求: (1)重物达到3.2 m 处的速度大小;(2)在匀加速过程中,起重机对重物做功的最大功率;(3)如果保持这个最大功率不变,起重机提升重物的最大速度.图716.(12分)如图7所示,ABDO 是处于竖直平面内的光滑轨道,AB 是半径为R =15 m 的14圆周轨道,半径OA 处于水平位置,BDO 是直径为15 m 的半圆轨道,D 为BDO 轨道的中央.一个小球P 从A 点的正上方距水平半径OA 高H 处自由落下,沿竖直平面内的轨道运动,离开AB 轨道时对轨道末端B 点的压力大小等于其重力的133倍.取g =10 m/s 2.求:(1)H 的大小;(2)试讨论此球能否到达BDO 轨道的O 点,并说明理由;(3)小球从H 高处自由落下沿轨道运动后再次落到轨道上的速度大小是多少?综合检测(一)1.A [在曲线运动中,运动质点在任一点的速度方向就是通过这一点的曲线的切线方向,所以曲线运动的速度方向一定变化,故A 正确;速度是矢量,若速度大小变化,方向不变,且速度方向与加速度方向在一条直线上,物体就做变速直线运动,故B 错;物体做曲线运动的条件是加速度方向与速度方向不在一条直线上,而不是要求加速度是否为恒量,故C 错;加速度是矢量,若加速度方向不变,只是大小发生变化,且加速度方向与速度方向在一条直线上,物体就做变速直线运动,故D 错.选项A 正确.]2.C [在最高点杆对小球的弹力可能向上,可能向下,由T +mg =m v 2R,分析得A 、B 不对.当T =0时,mg =m v2R,故v ≠0,所以C 项正确.当v =0时,T =mg 且T 向上,故D 错误.]3.D [由于地球同步卫星的公转周期与地球自转周期相同,这就决定了地球同步卫星必须在赤道平面内,而且它的角速度、轨道半径、线速度等各个量是唯一确定的,与卫星的其他量无关.]4.ABC5.BD [由动能定理可知,所有力对物体做的总功等于物体动能的变化,故B 正确;由机械能守恒定律知,系统机械能的改变只有靠重力和系统内的弹力以外的其他力做功才能实现,本题中是靠燃气推力、炮筒阻力及空气阻力做功使礼花弹的机械能发生改变的,所以D 项正确.]6.BD [动能变化量应等于合外力做的总功ΔE k =-(F -mg )h ,A 错误.重力势能变化量应等于重力做的功ΔE p =-mgh ,B 正确.机械能的变化量应等于除重力外的其他力所做功ΔE =-Fh ,D 正确.]7.CD [因为轨道内壁下侧可以提供支持力,故最高点的最小速度可以为零.若在最高点v >0且较小时,球做圆周运动所需的向心力由球的重力跟轨道内壁下侧对球向上的力N 1的合力共同提供,即mg -N 1=m v 2R,当N 1=0时,v =gR ,此时只有重力提供向心力.由此知,速度在0<v <gR 时,轨道内壁下侧的弹力随速度的增大(减小)而减小(增大),故D 正确.当v >gR 时,球的向心力由重力跟轨道内壁上侧对球的向下的弹力N 2共同提供,即mg +N 2=m v 2R,当v 由gR逐渐增大时,轨道内壁上侧对小球的弹力逐渐增大,故C 项正确.]8.D [在最高点mg =m v 2L ,v =gL ,A 错D 对;在最低点T -mg =m v 20L ,T =mg +m v 20L,B 错;小球过最高点时绳拉力为零,C 错.]9.BC [由万有引力定律得G Mm R 2=mg ,G Mm r 2=mg ′,解得g ′=R 2r2g ,故选项B 是正确的.因绕地球做匀速圆周运动的宇宙飞船处于完全失重状态,故选项C 是正确的.]10.AC [物块在上滑与下滑过程中,通过位移数值相等,由x =12at 2结合图象知a 上=4a 下,又因为v 0=a 上t 0,v =a 下·2t 0,则v =v 02,A 正确.再由g sin θ+μg cos θ=4(g sin θ-μg cos θ)=v 0t 0可解得sin θ=5v 08gt 0,C 正确.因为物块的质量未知,故B 、D 项不能获得.]11.(1)1 m/s (2)0.075 s 12.(1)G J (2)v 2n 如下图所示13.(1) 3gR 2T 24π2 (2)2v 0r 2Gt解析 (1)根据万有引力定律和向心力公式G MM 月R ′2=M 月(2πT )2R ′,mg =G MmR 2,解得R ′= 3gR 2T 24π2(2)设月球表面处的重力加速度为g 月,根据题意v 0=g 月 t 2,g 月=GM 月r2解得M 月=2v 0r2Gt14.(1)v 1=gR (2)2πR (R +h )3g解析 (1)设卫星的质量为m ,地球的质量为M ,地球表面处物体质量为m ′在地球表面附近满足G Mm ′R2=m ′g则GM =R 2g ①卫星做圆周运动的向心力等于它受到的万有引力则m v 21R =G Mm R2 ② 将①式代入②式,得到v 1=Rg . (2)卫星受到的万有引力为F =G Mm (R +h )2=mgR 2(R +h )2③由牛顿第二定律得F =m 4π2T2(R +h ) ④③④式联立解得T =2πR (R +h )3g.15.(1)1.6 m/s (2)8.32×103 W (3)1.66 m/s解析 (1)由12m v 2=640 J,mgh =1.6×104 J,得v =1.6 m/s,mg =5 000 N.(2)由动能定理得Fh -mgh =12m v 2,得F =5.2×103 N,又P =F v ,故P m =8.32×103 W.(3)速度最大时F =mg ,又P =F v m ,得v m =1.66 m/s.16.(1)10 m (2)小球可以通过最高点O 点,理由见解析 (3)17.3 m/s解析 (1)小球从H 高处自由落下,进入轨道做圆周运动,小球受重力和轨道的支持力作用.设小球通过B 点时的速度为v B ,通过AB 轨道末端B 点时轨道对小球的支持力为F B (大小等于小球对轨道的压力),根据牛顿第二定律和向心力公式得F B -mg =m v 2B R ,则F B =133mg小球从P 点落下沿光滑轨道运动的过程中,机械能守恒,有mg (H +R )=12m v 2B解得H =23R =10 m.(2)设小球沿竖直轨道运动能够到达最高点O 的最小速度为v min ,则有mg =m v 2minR /2小球至少应从H 0高处落下,下落过程机械能守恒,有mgH 0=12m v 2min,解得H 0=14R由于H >H 0,所以小球可以通过最高点O 点.(3)小球从H 高处自由落下沿轨道运动,通过O 点时的速度为v 0,由机械能守恒定律得mgH =12m v 20解得v 0=10 2 m/s小球通过O 点后做平拋运动,设小球经过时间t 落到AB 圆弧轨道上,速度大小为v ,建立如右图所示的坐标系,有x =v 0ty =12gt 2 且x 2+y 2=R 2v =v 20+(gt )2联立解得t =1 s(负解舍去)v =10 3 m/s =17.3 m/s.。

相关文档
最新文档