机械手分拣大小球课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
随着经济不断发展,人们的生活水平不断提高,将PLC应用到分离机的电气控制系统,可实现分离机的自动化控制,降低系统的运行费用。在生产过程中,经常要对流水线上的产品进行分拣,本课程设计拟设计大小球分拣传送机控制系统的PLC设计,采用的德国西门子S7-200 系列(cpu-224)PLC,对机械臂的上下、左右以及抓取运动进行控制,用于分捡大小球的机械装置。我们利用可编程技术,结合相应的硬件装置,控制机械手完成各种动作。
目录
摘要 0
第一章PLC应用系统设计基础知识 (2)
1.1 可编程控制器的产生与发展 (2)
1.2 可编程控制器的用途及特点 (4)
1.3 可编程控制器基本工作原理 (5)
1.4 PLC控制系统设计的原则和内容 (6)
1.5 PLC的选型 (7)
第二章PLC在大小球的分拣系统中的设计 (9)
2.1 大、小球分栋传送机械示意图 (9)
2.2 分拣系统的控制要求 (10)
2.3 大小球分拣的设计思想 (11)
2.4 I/O编址 (12)
2.5 机械手分拣球控制系统的接线图 (13)
第三章软件设计 (14)
3.1 顺序功能图概述 (14)
3.2 机械手分拣大小球控制程序流程图 (15)
3.3 机械手分拣大小球控制程序的梯形图 (17)
3.4 机械手分拣大小球控制程序的指令表 (23)
第四章总结 (27)
参考文献 (28)
第一章PLC应用系统设计基础知识
1.1 可编程控制器的产生与发展
可编程控制器(Programmable Controller,PC),是近几年迅速发展并得到广泛应用的新一代工业自动化控制装置。早期主要用于计数、定时以及开关量的逻辑控制,为了和个人计算机相区别,把可编程控制器缩写为PLC(Programmable Logic Controller )。
国际电工委员会(IEC)于1985年发布的可编程器标准草案中,对可编程控制器的定义如下。“可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计的。它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算数操作的指令,并通过数字式或模拟式的输入和输出,控制各种类型的机械和生产过程。可编程控制器及其有关外围设备,都应按易于与工业系统联成一个整体,易于扩充其功能的原则设计。”
早期的可编程控制器主要有分立元件和中小规模集成电路组成。随着微电子计数和集成电路的发展,特别是微处理器和微计算机的迅速发展,在20世纪70年代中期,美、日、德等国的一些厂家在可编程控制器中开始引入微处理器及其他大规模集成电路芯片,是可编程控制器具有了自诊断功能,可靠性有了大幅提高,性能价格比产生了新的突破。到20世纪80年代可编程控制器都采用了微处理器、
只读存储器、随机存储器或是单片机作为其核心,处理速度大大提高。20世纪90年代末,PLC几乎完全计算机化,速度更快,功能更强,各种智能模块不断被开发出来,不断地扩展着它在各类工业控制过程中的作用。
现在,PLC,不仅能进行逻辑控制,在模拟闭环控制、数字量智能控制。数据采集、监控、通信联网及集散控制系统等各发面都得到了广泛用用。展望未来,可编程控制器在规模和功能上将向两大方向发展:一是大型可编程控制器向高速、大容量和高功能方向发展。二是发展简易经济的超小型可编程控制器,以适应单机控制及小型设备自动化的需要。
1.2 可编程控制器的用途及特点
简要概括PLC的用途如下:
(1)数字量逻辑控制这是PLC应用最广泛的领域,用以取代传统的继电器逻辑控制。含触点的串、并联及组合逻辑控制、定时。计数控制等。可用于单机控制。多机控制、生产自动线控制。
(2)运动控制PLC使用专用运动控制模块,对直线运动或圆周运动的位置、速度和加速度进行控制,可以实现单轴、双轴、三轴和多轴位置控制。
(3)过程控制通过模拟量I/O模块PLC能控制大量的物理参数,如温度、压力、速度和流量等。
(4)数据处理现代可编程控制器具有数学运算、数据传送、转换、查表、排序、微操作等功能。可以完成数据的采集处理。
(5)通信联网可编程控制器通信包括主机与远程I/O之间的通信、多台可编程器之间的通信、可编程控制器与其他智能控制设备,极大地提高了控制的可靠性。
简要概括PLC的特点如下:
(1)可靠性高,抗干扰能力强
(2)配套齐全,适应性强,应用灵活
(3)编程方便,易于使用
(4)功能强,拓展能力强,性价比高
(5)PLC控制系统设计、安装、调试方便
(6)维修方便,维修工作量小
1.3 可编程控制器基本工作原理
可编程控制器有二种基本的工作状态,即运行(RUN)状态和停止(STOP)状态,其中运行状态是执行应用程序的状态,停止状态一般用于程序的编制与修改。在运行状态,可编程控制器通过执行反映控制要求的用户程序来实现控制功能。为了使可编程控制器的输出及时地响应随时可能变化的输入信号,用户不是只执行一次,而是反复不断地重复执行,直至可编程控制器停机或切换到停止工作状
态。
除了执行用户程序之外,在每次循环过程中,可编程控制器还要完成内部处理、通信处理等工作,一次循环和分为(内部处理、通信服务、输入处理、程序执行、输出处理)5个阶段,可编程控制器这种周而复始的循环工作方式称为扫描工作方式。由于计算机执行指令的速度极高,从外部输入/输出关系来看,处理过程似乎是同时完成的。
1.4 PLC控制系统设计的原则和内容
PLC的选择除了应满足技术指标的要求外,还应着重考虑产品的技术支持与售后服务等情况。最大限度地满足被控对象或产生过程的控制要求。对于一些原来用继电接触器线路不易实现的要求,使用PLC后,将很容易实现。
在满足控制要求前提下,力求使控制简单、经济、操作和维护方便。对一些过去较为繁琐的控制可利用PLC的特点加以简化,通过内部程序化外部接线及操作方式,保证控制系统的安全、可靠,同时采取“软件兼施”的办法。
考虑到生产的发展和工艺的改进,选择PLC容量及I/O点数时,应适当留有裕量。一个系统完成后,往往会发现一些原来没有考虑到的问题,或者新提出的问题,如果事先留有裕量。则PLC系统极易修改。同时对日后系统工艺的变更提供方便。当然对于不同的用户,要求的侧重点不同,设计的原则也应有所区别,如果以提高产品和安全为目标,则应将系统可靠性放在设计的重点,设置考虑采取冗余控制系统;如果要求系统改善信息管理,则应将系统通信能力与总线网络设计加以强化;如果系统工艺经常变更,则事先充分考虑。