转炉少渣工艺技术分析

转炉少渣工艺技术分析
转炉少渣工艺技术分析

转炉少渣工艺技术分析

摘要:阐述了少渣炼钢的工艺路线,分析了转炉少渣吹炼的供气制度、造渣制度、温度制度、合金化制度等,介绍了国内外几家钢厂典型的少渣炼钢工艺及其冶金效果,指出少渣炼钢是未来炼钢的主要发展方向。

关键词:转炉;少渣炼钢;工艺制度

Progress and Prospect of Less Slag Steelmaking Process

Abstract:The paper summarizes the process line of less slag steelmaking,and analyzes the system of gas supplying,slagging and alloying,that 0f the temperature and SO on.of less slag blowing in converter.introduces the typical processes of less slag steelmaking and its metallurgical effects of seven steel plants at home and abroad,meanwhile,points out that less slag steelmaking is the main development direction of the steelmaking in the future.

Key words:converter;less 8lag steelmaking;process system

铁水“三脱”使传统炼钢工艺发生了显著变化,在铁水预处理阶段进行脱硅、脱磷和脱硫,使炼钢转炉的主要功能转变为调温和脱碳,同时炼钢渣量减少,形成了少渣炼钢工艺。由于少渣炼钢用的铁水硅含量很低,造渣用石灰加入量明显减少,降低了渣料消耗和能耗,喷溅少,铁损低,减少了污染物的排放。同时,因渣量少,氧的利用效率高,吹炼终点钢水中氧含量低,余锰高,合金元素收得率较高,从而降低了生产成本。另外,少渣炼钢工艺终点命中率高,改善了钢水的纯净度,为生产超纯净钢创造了条件。

1 少渣炼钢工艺路线

常见的转炉炼钢工艺路线有四种。第一种是传统的炼钢工艺,欧美各国的炼钢厂多采用这种模式,即铁水先脱硫预处理后,再转炉炼钢。通常转炉炼钢渣量占金属量的10%以上,转炉渣中FeO含量在17%左右。此外,渣中还含有约8%的铁珠,该工艺钢铁料消耗高。第二种炼钢工艺是先在铁水沟、混铁车或铁水罐内进行铁水“三脱”预处理,然后在复吹转炉进行少渣炼钢,这种工艺的不足之处是脱磷前必须先脱硅,废钢比低(≤5%),脱磷渣碱度过高,难于利用。第三种炼钢工艺是20世纪90年代中后期日本各大钢厂试验研究成功的转炉铁水脱磷工艺,该工艺解决了超低磷钢的生产难题。与第二种工艺路线的明显区别是脱磷预处理移到转炉内进行,转炉内自由空间大,反应动力学条件好,生产成本较低。具体工艺是采用两座转炉双联作业,一座脱磷,另一座接受来自脱磷炉的低磷铁水脱碳[1、2],即“双联法”。典型的双联法工艺流程为:高炉铁水_+铁水预脱硫-+转炉脱磷_+转炉脱碳_+炉外精炼.+连铸。由于受设备和产品的限制,也有在同一座转炉上进行铁水脱磷和脱碳的操作模式,类似传统的“双渣法”。第四种炼钢工艺是对第三种炼钢工艺进行了改进,与第三种工艺的明显不同是将部分脱碳渣(约8%)返回脱磷转炉,脱磷后的铁水进入脱碳转炉脱碳。该工艺是目前渣量最少、最先进的转炉生产纯净钢的工艺路线。在上述四种转炉炼钢工艺路线中,后三种炼钢工艺铁水经过“三脱”预处理后再脱碳炼钢,能够做到少渣操作。四种

转炉炼钢工艺路线的渣量比较见图1。从图l可以看出,后三种炼钢工艺的吨钢渣量低于70 kg/t。

国外专家认为,少渣炼钢是在转炉炼钢时,每吨金属料加入的石灰量低于20 kg,脱碳炉每吨钢水的渣量低于30 kg。值得指出的是,如果将脱磷转炉每吨金属料产生的20~40 kg脱磷渣也视为炼钢渣,那么少渣炼钢工艺流程的总渣量约为50-70 kg。总之,转炉少渣炼钢必须以铁水预处理为前提条件。铁水“三脱”预处理后,铁水中的硅、磷和硫含量基本上达到了炼钢吹炼终点的要求。对少渣炼钢脱碳转炉操作而言,操作任务发生了变化,工艺制度也要进行调整。

2 工艺制度分析

2.1供气制度

少渣炼钢脱碳转炉全过程顶吹氧枪枪位采用“高一低一低”三段式控制较为合理。由于入炉铁水硅、锰含量较低,碳氧反应提前,渣量很少,前期枪位低会造成金属喷溅。同时硅的减少给炼钢初期成渣带来困难,采用较高枪位操作便于快速成渣,增加吹炼前期渣中氧化铁的含量,然后根据化渣情况逐步降低枪位。与常规吹炼相比,少渣吹炼前期氧气流量应适当降低,吹炼后期加大底吹气体流量有利于减少铁损和提高锰的收得率。

2.2造渣制度

转炉少渣吹炼时,生石灰及其它造渣材料在吹炼开始或吹炼中期投入。一般不加萤石,转炉化渣不良时,可投少量萤石帮助化渣。如铁水硅没有达到控制目标,配加适量的软硅石,700 kg软硅石相当于铁水中0.10%的硅生成的Si02。铁水经“三脱”预处理后,少渣吹炼应结合留渣操作。日本君津炼钢厂冶炼低碳铝镇静钢时,采用少渣吹炼,吨钢造渣剂消耗降至7.2 kg,如果全部采用低磷铁水(P≤0.050%)冶炼,吨钢造渣材料的单耗也只有12.4 kg。NKK福山厂开发的少渣炼钢技术,其渣量控制在吨钢30 kg。新日铁室兰钢厂使用“三脱”铁水炼钢,吨钢石灰消耗20 kg,转炉总渣量减少了50%。我国宝钢和太钢采用“三脱”铁水进行少渣炼钢试验,结果总渣量减少了50%。但是,神户制钢在进行少渣吹炼时,发现连续3炉以上均采用吨钢渣量小于20 kg的少渣量操作,炉衬上几乎不附着熔渣,耐火材料易受到侵蚀,从而影响转炉炉龄。因此,神户制钢将渣量控制在每吨钢40 kg左右。在降低造渣料消耗的前提下,为了保护炉衬、覆盖钢液、减少金属喷溅,采取的有效措施是留渣操作。出钢后,将前一炉的高温、高碱度、高氧化性的终渣留一部分(吨钢约10 kg左右)于炉内,加入少量石灰或白云石,

然后兑铁炼钢。新日铁君津厂和神户制钢就是采用留渣操作补充渣量的冶炼方法。

2.3温度制度

采用“三脱”铁水吹炼时,确定温度制度的关键在于合理选用造渣料和废钢用量,以平衡因铁水温度降低和放热反应元素(硅和磷等)减少而导致的热量改变。一般通过减少造渣料和废钢用量就可实现热平衡。“三脱”铁水少渣吹炼时,停吹温度平均为l 657℃,而只进行脱硫的铁水预处理吹炼时,停吹温度平均为l 655℃。

2.4炉内部分合金化

应用“三脱”铁水实现少渣炼钢后,造渣料消耗大幅度减少。如果有富余的热量,可实现锰矿或铬矿直接合金化。如日本钢管公司采用的炉内锰矿合金化工艺,通过控制碱度,降低渣中T·Fe,使低碳钢水终点锰含量达到l%,锰的收得率大于70%。另外,日本的新13铁、JFE、住友金属和神户制钢的炼钢厂在生产含锰低于1.5%的合金钢时,采用锰矿直接代替全部锰铁合金,取得了较好的经济效益。

3 典型的少渣炼钢工艺

日本发明的转炉脱磷少渣炼钢工艺方法主要有JFE福山制铁所的LD—NRP法(双联法)、住友金属的SRP法(双联法)、神户制钢的H炉(专用转炉)、新日铁的LD—ORP法(双联法)和MURC法(双渣法)。

宝钢开发的BRP技术在其一炼钢、二炼钢和不锈钢分厂应用,取得了较好的效果。

3.1JFE福山制铁所

福山制铁所是13本粗钢产量最高的厂家(1080万t/a),设有两个炼钢厂(第二炼钢厂和第三炼钢厂),第三炼钢厂有两座320 t顶底复吹转炉,采用LD—NRP工艺,一座转炉脱磷,另一座脱碳;转炉在炉役前期用于脱碳,炉役后期用于脱磷,脱碳转炉炉龄低于脱磷转炉。转炉脱磷能力为450万t/a。1999年开始,该厂铁水全部采用转炉脱磷预处理。

脱磷转炉指标:吹炼时间为10 min;废钢比为7%~10%;氧气流量为30 000 m3/h,底吹气体为3 000 m3/h;石灰消耗为lO~15 kg/t。

脱碳转炉指标:石灰消耗5~6 kg/t;炉龄约

7 000炉。

第二炼钢厂有3座250 t顶底复吹转炉,采用传统的“三脱”工艺,“三脱”处理能力为420万t/a

3.2住友金属鹿岛制铁所

鹿岛制铁所有两个炼钢厂,第一炼钢厂有3座250 t转炉,采用本公司发明的SRP 法炼钢;第二炼钢厂有两座250 t转炉,采用常规冶炼工艺。

第一炼钢厂一座转炉脱磷,另两座转炉脱碳(二吹一),脱磷铁水富余25%运送给第二炼钢厂。脱磷转炉指标:吹炼时间为8 min;冶炼周期为22 rain;废钢比为10%(加轻废钢);出铁温度为1 350 oC,渣量为40 kg/t。

脱碳转炉指标:吹炼时间为14 min;冶炼周期为30 min;锰矿用量为15 kg/t(Mn回收率30%一40%);渣量为20 kg/t(以干渣方式回收)。

3.3住友金属和歌山制铁所

住友金属和歌山制铁所年产粗钢390万t。炼钢生产采用“双联法”(sne),铁水全部经转炉脱磷处理。该厂脱磷转炉与脱碳转炉设在不同跨间,脱磷转炉和脱

碳转炉的吹炼时间分别为9—12 min,转炉炼钢的冶炼周期控制在20 rain以内。一个转炉炼钢车间给三台连铸机供钢水,是目前世界炼钢生产节奏最快的钢厂。和歌山制铁所“双联法”(SRP)的优点是:建立起高效率、低成本、大批量生产纯净钢的平台,显著改善IF钢抗二次加工脆化和热轧钢板低温冲击韧性等性能;炼铁生产可以采用较高磷含量的低价位铁矿石,铁水磷含量放宽至0.10%一0.15%,降低了矿石采购成本;炼钢时使用锰矿石取代MnFe合金;炼钢渣量显著降低,脱碳炉渣可返回用于脱磷转炉;脱磷炉渣不经蒸汽稳定化处理,可直接铺路;加快了大型转炉的生产节奏,与高拉速连铸机相匹配;工序紧凑。3.4神户制钢

由于神户制钢生产的高碳钢比例较大,转炉的脱磷负荷大,铁水脱磷、脱硫预处理用H炉(专用转炉),处理过程分两步进行:首先用喷吹法在高炉出铁沟对铁水进行脱硅处理,用撇渣器去除脱硅渣后,将铁水再兑入H炉进行脱磷、脱硫处理。脱磷时喷吹石灰系渣料、同时顶吹氧气,脱磷后再喷人苏打粉系渣料脱硫。经预处理的铁水再装入转炉进行脱碳。

用H炉进行铁水脱磷、脱硫处理具有如下特征:H炉内空间大,进行铁水预处理时,炉内反应效率高、反应速度快,可在较短的时间内连续完成脱磷、脱硫处理;可以用块状生石灰和转炉渣代替部分脱磷渣;脱磷过程中添加部分锰矿,可提高脱磷效率,增加了铁水中的锰含量。

3.5新日铁君津制铁所

新日铁君津制铁所有两个炼钢厂,第一炼钢厂和第二炼钢厂均采用KR法脱硫(S ≤0.002%)。第一炼钢厂有3座230 t复吹转炉;第二炼钢厂有两座300 t复吹转炉,第二炼钢厂采用LD—ORP法和MURC法两种工艺炼钢。

LD—ORP法渣量少、可生产高纯净钢。脱磷转炉弱供氧,大渣量,碱度为2.5—3.0,温度为l 320一l 350℃,纯脱磷时间约为9—10 min,冶炼周期约20 min,废钢比通常为9%,为了提高产量,目前废钢比已达到11%一14%,经脱磷后钢水(P≤0.020%)兑人脱碳转炉,总收得率>92%。转炉的复吹寿命约4 000炉。脱碳转炉强供氧,渣量少,冶炼周期为28—30 min,脱碳转炉不加废钢。从脱磷至脱碳结束的总冶炼周期约为50 min。恰好与连铸机的浇铸周期相匹配。

3.6新日铁室兰制铁所和大分制铁所

新日铁室兰制铁所(两座270 t LD—OB转炉)和大分制铁所(3座370 t复吹转炉)受设备和产品的限制,难以采用“双联法”工艺,为此采用了新日铁开发的MURC 技术,在同一转炉进行铁水脱磷预处理和脱碳吹炼,类似传统炼钢的“双渣法”。前期脱磷渣一般倒出50%,脱碳渣可直接留在炉内用于下一炉脱磷吹炼;MURC 工艺冶炼周期约33—35 min,室兰制铁所和大分制铁所全部采用MURC工艺。.MURC设备为多功能复合吹炼转炉,在同一座转炉中可连续脱硅、脱磷、除渣和脱碳。工艺过程是:铁水在转炉中脱硅、脱磷后倒炉放渣,保留铁水,然后造脱碳渣进行脱碳,脱碳后出钢,脱碳渣留在转炉内用于下一炉铁水脱硅和脱磷。3.7 中国宝钢

2002年宝钢开始进行BRP技术研究。到2005年11月,采用BRP工艺生产了l 500多炉钢。宝钢转炉脱磷渣量约为20一40 kg/t,采用少渣冶炼时,转炉脱碳渣量约为15 kg/t,如脱碳炉渣全部返回脱磷炉使用,则渣中铁的50%可以在炼钢工艺循环利用。

BRP项目开发的工艺路线可适应不同钢种的需求,物流畅通,工序匹配合理。采用优化后的富锰矿熔融还原工艺与复合渣返回转炉冶炼工艺,不但可降低成

本,经济效益也很显著。BRP工艺对于拓展品种、提高钢水质量、提升产品的市场竞争力以及实现效益最大化有重要作用。2004年6月10日,采用BRP技术连续生产4炉超纯净抗HIC X60管线钢(用1930连铸机浇注),五大杂质元素含量见表1。由表1可见,4炉钢五大杂质元素含量之和均小于0.010%。

表2 BRP技术连续生产的4炉抗HIC X60管线钢的化学成分(质量分数) %

炉次P S TO N H 总计

1 0.003 0.0004 0.0024 0.0031 0.0001 0.009

2 0.004 0.0005 0.0016 0.0032 0.0001 0.0094

3 0.003 0.000

4 0.0012 0.0024 0.0001 0.0071

4 0.004 0.0006 0.0011 0.0029 0.0001 0.0087

平均0.0035 0.0005 0.0016 0.0029 0.0001 0.0086

4少渣炼钢与常规炼钢对比

宝钢二炼钢250 t转炉系统已实现100%的铁水进行预处理,其中35%的铁水进行脱磷处理,处理后三脱铁水中磷含量小于0.025%,硫含量小于0.003%,因而减轻了转炉脱磷负担。一炼钢300 t转炉系统曾将原脱硫车间的2号处理线改建为处理能力为30万t的铁水三脱预处理线,但因喷溅严重、处理周期长、温降大等种种原因未在生产上应用。为了降低成本,扩大品种,提高钢的质量,同时也为了摸清一炼钢厂实施少渣吹炼时,在生产组织、工序成本、工艺组织等方面的情况,以便为今后全面实现分段炼钢打下基础,宝钢在实验室热模拟实验基础上,在一炼钢300 t转炉上进行少渣吹炼及锰矿熔融还原的工业性试验,以期掌握少渣吹炼工艺的特点和规律,并在转蒋晓放工程师1969年生1991年毕业于东北大学现从事炼钢专业电话26647421炉中有效利用锰矿。

4.1少渣炼钢的理论分析

锰的氧化及还原是钢铁冶炼过程的基本反应之一,氧气转炉内锰的氧化反应为:

[Mn]+(FeO)=(MnO)+Fe(1)????(1)

lgKMm=lg(aMnO/aMn*aFeO)=6440/T-2.95

在钢铁冶金理论的发展过程中,渣钢间锰的行为已有不少学者进行过研究,这些研究结果对氧化锰熔融还原反应机理的评价有多种假设。目前,比较一致的看法是氧化锰还原反应的整个过程由三个反应串联而成:

(MnO)+Fe(1)=(FeO)+[Mn]????(2)

(FeO)+CO(g)=Fe(1)+C02(g)???(3)

C02+[c]=2CO(g)????????(4)

总反应的表达式为:

(MnO)+[C]=[Mn]+CO(g)????(5)

显然,反应(3)和(4)的组合正是熔融氧化铁的间接还原反应,而反应(2)被称为铁锰的交换反应,实质上可看成是Fe、Mn的竞争氧化还原反应。在转炉炼钢的冶炼中期,由于碳的强烈氧化,钢液中氧浓度降低,(Fe0)大量减少,渣中(MnO)也随之减少,使得钢液中的[Mn]含量回升,形成回锰现象。这表明当渣中(FeO)含量与温度一定时,渣中(Mn0)含量越高,钢中回锰量就越多。

4.2少渣吹炼的冶金效果分析

4.2.1脱碳

从原理上分析,由于铁水[si]含量低,吹炼时脱碳反应可以加速,又因吹炼过程和末期的脱碳速度分别取决于[0]和[c]扩散,而少渣吹炼时的渣层较薄,顶吹氧气的能量可以高效率地传到熔池,提高熔池的搅拌效果,促进熔池中[O]和[c]的扩散,从而有利于提高脱碳速度及缩短冶炼时间。但在实际试验期间,为保证脱磷要造好渣,氧气流量放小了,由表2可见,少渣吹炼的平均时间为17.2 min,要长于吹炼单脱硫铁水的平均时间(16.2 min),这是今后要亟待解决的问题。

4.2.2脱磷

表2列出了三脱铁水的少渣吹炼与单脱硫铁水吹炼的脱磷有关数据,可见少渣吹炼终点平均[P]比单脱硫铁水吹炼时低0.0023%。这是因为少渣操作时成渣快、渣层薄、炉渣的脱磷能力过剩,脱碳速度快、熔池搅拌效果好、钢渣反应充分,改善了脱磷反应的动力学条件,使脱磷反应更趋于平衡。在技术规程规定的出钢温度下,把渣中(T.Fe)和炉渣碱度控制在23%和3.5以上,可以使终点[P]容易地控制在0.010%以下。图1表示了转炉终点停吹磷含量与铁水磷含量的关系,可见二者的关联不明显。图2表示了脱磷率与辅料加入量的关系,可见增加转炉渣量无疑是有利于脱磷的。图3表示了脱磷率与终渣中(T.Fe)的关系,可见关系不明显,原因可能是碱度、渣量等对脱磷的影响更大。

4.2.3脱硫

少渣吹炼的平均入炉[s]是0.0042%,吹炼终点平均倒炉[s]是0.0105%,而吹炼单脱硫铁水的终点平均倒炉[s]是0.0112%,见表2,回硫的原因是原材料带入了硫。表明与吹炼单脱硫铁水相比,转炉少渣吹炼对钢中硫含量没有不利影响。

4.2.4锰收得率

图4给出了少渣吹炼时锰收得率与辅料加入量的关系,可见随着辅料加入量的减少,锰收得率有明显的提高。

4.2.5渣中铁损

尽管少渣吹炼会使进入废气粉尘中的铁损和终渣中的铁粒含量有所增加,而且以较高枪位吹炼会使(T.Fe)含量提高(实际试验期间(T.Fe)与吹炼单脱硫铁水持平),但是由于渣量的大幅度减少,总的结果仍然是铁损得以改善。由表3可见,与吹炼单脱硫铁水相比,少渣吹炼的铁损吨钢减少12.7 kg。

下面从铁水条件、转炉吹炼情况等方面,将转炉少渣吹炼的试验数据与普通单脱硫铁水常规吹炼实绩(同期生产实绩数据)进行分类比较,详见表1~表3。

由表1可知,经三脱处理后铁水磷含量大幅度下降,最低甚至达到0.018%,三脱处理后硫含量也基本与单脱硫铁水一致;采用此三脱铁水吹炼,使带人转炉内的总磷量大幅度下降,比起单脱硫铁水平均下降0.053%,减轻了转炉脱磷的负荷,避免了转炉采用大量精炼炉渣进行脱磷、硫的造渣作业,因此从铁水成分尤其是磷、硫含量上,磷、硫降低了,钢水成分能够满足冶炼工艺要求,而且不同程度地提高了钢水的纯净度。转炉采用三脱铁水少渣吹炼在辅料单耗、转炉渣量和铁损

此三脱铁水完全能满足转炉少渣吹炼的需要。从表1中还看出,三脱铁水处理温降比单脱硫铁水大89℃,此温降基本用于铁水脱磷处理,因此如何缩短脱磷处理时间、减少脱磷处理粉剂消耗,直接影响到处理中铁水温降量,影响到入炉铁水温度。另外由表1还可看到三脱铁水中硅含量为痕迹,对转炉吹炼化渣作业而言,开吹后势必前期碱度过高导致起渣慢、成渣难,转炉必须增加额外硅源和助熔剂化渣(试验中采用软硅石和萤石)。

三脱铁水少渣吹炼与单脱硫铁水常规吹炼在入炉铁水条件、转炉停吹成分和温度以及吹炼时间的对比见表2。由于三脱处理工艺对鱼雷罐内的铁水高度有要求,所以

无法满足一罐铁水对一个铁水包的要求;又限于生产组织的困难,也无法炉炉满足二罐三脱铁水对一个铁水包的要求,因此采取一罐三脱铁水为主拼少许单脱硫铁水的受铁方式。从铁水包分析值看此种受铁方式对三脱铁水成分影响不大。考虑到三脱铁水热量的不足,转炉冶炼三脱铁水采用90%的铁水比,为此三脱铁水与单脱硫铁水的吹炼比较均在90%铁水比条件下进行的。

由表2可以看出,采用三脱铁水少渣吹炼,钢水收得率比单脱硫铁水常规吹炼时提高了,停吹方面与转炉采用单脱硫铁水常规吹炼的对比见表3。

由表3数据可知,采用三脱铁水后,因铁水带入转炉内的总磷量的下降,致使转炉避免了造大量精炼炉渣进行脱磷的作业,由此石灰、轻烧等造渣材料的消耗大幅度下降(吹炼三脱铁水所消耗的石灰与轻烧量仅为单脱硫铁水的三分之一);同时由于造渣材料的减少,进一步使终渣量减少(吨钢渣量平均减少60 kg),由此带来的好处就是渣中铁损量的下降、钢水收得率的提高;而且由于三脱铁水含硅量极低,因此碳的氧化要比单脱硫铁水早,故吹炼中耗氧量也比单脱硫铁水少。

5 发展前景展望

据统计,转炉脱碳渣用于另一座转炉脱磷的“双联法”,每生产1 t钢水的钢铁料消耗比传统方法减少24。3 kg,石灰消耗减少40%,每吨钢成本降低约70元。转炉采用少渣冶炼工艺,可显著提高铁水的收得率,经济效益显著。由于少

渣炼钢用铁水硅含量很低,造渣用石灰加入量明显减少,降低了渣料消耗和能耗,减少了污染物的排放。因转炉内渣量少,氧的利用率高,吹炼终点钢水中含氧量低。余锰高,减少喷溅,铁损少,合金元素收得率较高,从而降低了生产成本。少渣炼钢工艺缩短了冶炼时间,提高了转炉作业率和生产能力,延长了转炉炉龄。提高了转炉终点命中率。改善了钢水的纯净度,为生产超纯净钢创造了条件。国内外的研究和实践表明,少渣炼钢工艺适于大量、经济地生产纯净钢。钢铁产量的迅猛增长,必然会受到资源、能源和环境的限制。少渣炼钢工艺钢铁料消耗低,有利于缓解国内铁矿资源的紧张状况,应用前景可观。

参考文献

[1]Z Liu,K Cai.Putty Steel Production Technology[J].Iron&Steel,2000,

(2):64—69.

[2]卢春生,陈骥.转炉脱磷脱碳冶炼工艺及其物流参数解析[J].冶金研究,2005,

(1):130—135.

[3]孔礼明.转炉双联法冶炼工艺及其特点[J].上海金属,2005,(3):44—46.

[4]崔健,郑贻裕,朱立新.宝钢纯净钢生产技术进步[J].中国24冶金,2004,

(7):1—6.

[5]余志祥,郑万.洁净钢的生产实践[J].炼钢,2000,(3):11一15.

[6]康复,陆志新,蒋晓放,等.宝钢BRP技术的研究与开发[J].钢铁,2005,(3):

25—28.

[7]蒋晓放,陈兆平宝钢转炉少渣炼钢的实践[J].宝钢技术,2003,(1):5-8

[8]康复,陆志新.蒋晓放.钟志敏宝钢BRP技术的研究与开发[J].钢铁,

2005(3).

[9]杨治争,曹同友.锰矿直接还原合金化模型与实验研究[J].武钢技术,

2009(4).

[10]卢春生.宝钢炼钢厂转炉脱磷工艺物流参数解析及温度模型的开发

[学位论文]硕士 2005.

转炉炼钢过程工艺控制的发展与展望要求

转炉炼钢过程工艺控制的发展与展望要求 发表时间:2018-12-31T11:57:53.667Z 来源:《建筑学研究前沿》2018年第28期作者:亓传军[导读] 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力。山东泰山钢铁有限公司不锈钢炼钢厂技术科山东莱芜 271100 摘要:在转炉冶炼控制方面,钢厂关注更多的是终点钢水是否合格,但随着日益增加的市场竞争压力和环境要求,钢厂希望尽可能实现节能降耗,减少气体排放,而过程控制的优化是实现这一目标的有效手段。通过对转炉炼钢过程进行优化控制,使炼钢进程以合理的方式进行,使辅料和能源消耗最小化,才能使企业在市场经济条件下更具竞争力,并且过程控制也是转炉全自动控制发展的重要部分。文章 重点就转炉炼钢过程工艺控制的发展与展望进行研究分析,以供参考。关键字:转炉炼钢;工艺技术;发展对策;未来展望 引言 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力,工艺优化,不但可以降低成本,同时提高炼钢企业的年产量,节省各项资源的消耗,最大限度地提高了企业的经济效益。各项技术指标的提高,进一步优化炼钢工艺,带动炼钢业的经济发展。 1转炉炼钢工艺的目的 转炉冶炼主要是将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。按照配料要求,先把废钢等装入炉内,然后倒入铁水,并加入适量的造渣材料(如生石灰等)。加料后把氧气喷枪从炉顶插入炉内,吹入氧气(纯度大于99%的高压氧气流),使它直接跟高温的铁水发生氧化反应,除去杂质。用纯氧代替空气可以克服由于空气里的氮气的影响而使钢质变脆,以及氮气排出时带走热量的缺点。在除去大部分硫、磷后,当钢水的成分和温度都达到要求时,即停止吹炼,提升喷枪,准备出钢。出钢时使炉体倾斜,钢水从出钢口注入钢水包里,同时加入脱氧剂进行脱氧和调节成分。钢水合格后,可以浇成钢的铸件或钢锭,钢锭可以再轧制成各种钢材。氧气顶吹转炉在炼钢过程中会产生大量棕色烟气,它的主要成分是氧化铁尘粒和高浓度的一氧化碳气体等。因此,必须加以净化回收,综合利用,以防止污染环境。从回收设备得到的氧化铁尘粒可以用来炼钢;一氧化碳可以作化工原料或燃料;烟气带出的热量可以副产水蒸气。此外,炼钢时生成的炉渣也可以用来做钢渣水泥,含磷量较高的炉渣,可加工成磷肥等。氧气顶吹转炉炼钢法具有冶炼速度快、炼出的钢种较多、质量较好,以及建厂速度快、投资少等许多优点。但在冶炼过程中都是氧化性气氛,去硫效率差,昂贵的合金元素也易被氧化而损耗,因而所炼钢种和质量就受到一定的限制。 2转炉炼钢过程工艺控制现状 针对当前钢铁行业所面临的处境,提高市场竞争力、降低炼钢生产成本势在必行。而在炼钢生产中,金属炉料成本约占炼钢生产总成本的80%以上,所以抓好金属炉料成本是控制炼钢生产成本的关键。为进一步减少金属炉料消耗,炼钢厂通过探索,优化炉料结构,改进炉前冶炼工艺和优化合金料的使用,采用少渣炼钢工艺、改进吹氧工艺、引用低成本合金等措施,有效地降低金属炉料消耗、氧耗和合金成本,达到降低生产成本的目的,增加了企业经济效益。近年来,炼钢厂通过完善溅渣护炉、低铁水比冶炼、高效转炉、低耐材消耗达到了转炉炼钢厂生产工艺的优化组合。 3转炉炼钢过程工艺控制的发展对策3.1优化入炉料结构,合理使用好铁矿石有数据测得,与原材料成分相近的高炉铁水和铁块的实际金属收得率约为93%和92%,自产废钢和社会废钢的金属收得率约为97%和88%。根据铁钢产能的平衡及铁水废钢价格,通过热平衡和物料平衡计算,优化了入炉料结构。实际炉料结构中采用增大入炉原料中铁水比例,降低废钢配比,增加矿石使用量的工艺措施,可有效地提高炉料金属收得率,降低金属料消耗。为了尽量增加矿石用量,提高矿石还原效果和减少吹炼过程中矿石加入量过多对冶炼的影响,在实际生产中,对矿石加入工艺进行了调整。在转炉溅渣及加废钢后,根据铁水的条件直接将2/3左右的矿石加入炉内后再兑铁,在兑铁过程中与废钢搅拌以促进部分矿石的还原。在保证化渣效果和避免喷溅的原则下,尽量保证剩余矿石早加和均匀加入,以保证矿石化渣还原时间和效果。吹炼中期采用分批少量加入控制,避免吹炼中期加入量集中造成的喷溅,吹炼后期严禁加矿石,避免矿石加入过晚造成熔化还原效果差和炉渣氧化性强对脱氧合金化的影响。 3.2优化冶炼工艺,减少炉渣铁耗和氧耗3.2.1优化吹炼工艺,减少喷溅和氧耗喷溅是造成铁耗损失的主要原因之一,为消除或减轻喷溅采取了以下措施:根据天车限载的要求,进一步降低装入量,使转炉装入量得到合理控制,适当提高了炉容比,有效地保证了炉内有效工作容积,以利于减少喷溅;前期化好渣,在第二批造渣料加入前后,通过提前成渣的方法,将泡沫渣的高峰期前移,以便与脱碳的峰值时刻错开;改进吹炼工艺,吹炼前期采用大氧压适当降低枪位操作,利于熔解废钢,在硅氧化完毕之后、脱碳的高峰期到达之前,暂时降低供氧强度,然后再将其平缓地恢复到正常值,吹炼终期采用大氧压低枪位操作,加强熔池搅拌,保证终点钢水成分和温度的均匀,降低了氧耗,同时降低炉渣氧化性。 3.2.2优化造渣工艺,实施少渣炼钢,减少炉渣铁耗为了减少单炉产渣量,在生产中采取精料方针,在进一步完善转炉留渣溅、渣操作工艺应用基础上努力提高入炉原料质量,使用高品位石灰和矿石,采用轻烧白云石造渣。根据铁水Si、S含量情况合理调整造渣料消耗,在确保满足生产需要的情况下适当减少石灰量消耗。铁水中硅、锰含量低及无需脱硫,这些条件会改变造渣机理及动力特性,因为这时石灰消耗下降,渣量减少,渣碱度及氧化度增高。在这样的条件下,渣的精炼功能只限于铁水脱磷,这样就能在转炉冶炼本身中多次利用渣,使渣具有很高的精炼能力。4转炉冶炼工艺过程控制的未来展望

炼钢工艺的发展历程

炼钢工艺的发展历程 2008年12月8日摘自冶金自动化网 炼钢方法(1) 最早出现的炼钢方法是1740年出现的坩埚法,它是将生铁和废铁装入由石墨和粘土制成的坩埚内,用火焰加热熔化炉料,之后将熔化的炉料浇成钢锭。此法几乎无杂质元素的氧化反应。 炼钢方法(2) 1856年英国人亨利·贝塞麦发明了酸性空气底吹转炉炼钢法,也称为贝塞麦法,第一次解决了用铁水直接冶炼钢水的难题,从而使炼钢的质量得到提高,但此法要求铁水的硅含量大于0.8%,而且不能脱硫。目前已淘汰。 炼钢方法(3) 1865年德国人马丁利用蓄热室原理发明了以铁水、废钢为原料的酸性平炉炼钢法,即马丁炉法。1880年出现了第一座碱性平炉。由于其成本低、炉容大,钢水质量优于转炉,同时原料的适应性强,平炉炼钢法一时成为主要的炼钢法。 炼钢方法(4) 1878年英国人托马斯发明了碱性炉衬的底吹转炉炼钢法,即托马斯法。他是在吹炼过程中加石灰造碱性渣,从而解决了高磷铁水的脱磷问题。当时,对西欧的一些国家特别适用,因为西欧的矿石普遍磷含量高。但托马斯法的缺点是炉子寿命底,钢水中氮的含量高。 炼钢方法(5) 1899年出现了完全依靠废钢为原料的电弧炉炼钢法(EAF),解决了充分利用废钢炼钢的问题,此炼钢法自问世以来,一直在不断发展,是当前主要的炼钢法之一,由电炉冶炼的钢目前占世界总的钢的产量的30-40%。 炼钢方法(6)

瑞典人罗伯特·杜勒首先进行了氧气顶吹转炉炼钢的试验,并获得了成功。1952年奥地利的林茨城(Linz)和多纳维兹城(Donawitz)先后建成了30吨的氧气顶吹转炉车间并投入生产,所以此法也称为LD法。美国称为BOF法(Basic Oxygen Furnace)或BOP法, 如图1所示。 图1 BOF法 炼钢方法(7) 1965年加拿大液化气公司研制成双层管氧气喷嘴,1967年西德马克西米利安钢铁公司引进此技术并成功开发了底吹氧转炉炼钢法,即OBM法(Oxygen Bottom Maxhuette) 。1971年美国钢铁公司引进OBM法,1972年建设了3座200吨底吹转炉,命名为Q-BOP (Quiet BOP) ,如图2所示。 图2 Q-BOP法 炼钢方法(8) 在顶吹氧气转炉炼钢发展的同时,1978-1979年成功开发了转炉顶底复合吹炼工艺,即从转炉上方供给氧气(顶吹氧),从转炉底部供给惰性气体或氧气,它不仅提高钢的质量,而且降低了炼钢消耗和吨钢成本,更适合供给连铸优质钢水,如图3所示。 图3 转炉顶底复合吹炼法 炼钢方法(9) 我国首先在1972-1973年在沈阳第一炼钢厂成功开发了全氧侧吹转炉炼钢工艺。并在唐钢等企业推广应用,如图4所示。

季戊四醇生产工艺

df文档 河北大学硕士学位论文姓名:石敏瑜申请学位级别:硕士专业:应用化学指导教师:白国义20100501 摘 要 摘 要 双季戊四醇是一种重要的精细化工中间体,不论是在实验室研究还是在工业生产中都具有十分重要的意义。本文对双季戊四醇及其衍生物的合成与废水处理工艺进行了系统的研究。首先,以甲醛、乙醛和氢氧化钠为原料,对单、双季戊四醇的合成工艺进行了研究。为提高双季戊四醇的选择性,系统地考察了反应物的物质的量之比、反应终温、单季戊四醇加入量等因素对反应的影响,确定了最佳反应条件:在反应终温为46℃,n(甲醛):n(乙醛):n(氢氧化钠) = 6.0:1:1.2 时,加入质量分数为 6 wt%的单季戊四醇,乙醛的转化率接近100.0%,单季戊四醇的选择性为91.2%,双季戊四醇的选择性为 4.7%。接着,以双季、丙烯酸为原料,合成了双季戊四醇六丙烯酸酯。考察了阻聚剂和酸催化剂的加入量对反应的影响,确定了最佳实验条件:在酸醇摩尔比为7.5:1,对苯二酚加入量 3 wt%,对甲苯磺酸加入量为4 wt%时,双季戊四醇六丙烯酸酯收率为90.6%。此外,还建立了一种基于TiO2 光催化剂的单(双)季戊四醇废水处理工艺。制备了一系列的TiO2 催化剂用于单(双)季戊四醇的废水处理,并发现TiO2-HY 催化剂具有较高的催化活性和稳定性。通过XRD,SEM,XPS 等系列表征,发现TiO2-HY 催化剂粒径22.6 nm,以金红石相存在。pH 为6,50 mL 废水中催化剂加入量为0.06 g 时,在光照16 h,废水中总有机物的降解率可达90.5%。 关键词 双季戊四醇合成 衍生物 废水处理 TiO2 I Abstract Abstract Dipentaerythritol (DPE) is an important fine chemical intermediate, which has a great significance both in the laboratory and industrial production. Synthesis of DPE and its derivative, together with the technology for the disposal of its wastewater, are studied in this paper. The synthesis of pentaerythritol (PE) and DPE were studied systematically, using formaldehyde, aldehyde and 骚年美女网https://www.360docs.net/doc/5217688799.html, NaOH as the starting material. The influence of the molar ratio of the reactants, final reaction temperature, and dosage of PE were optimized. The conversion of aldehyde is nearly 100.0% and the selectivity of PE and DPE are 91.2% and 4.7%, respectively, while the final reaction temperature is 46℃, the molar ratio is n(formaldehyde): n(aldehyde): n(NaOH) = 6.0:1:1.2, and the dosage of PE is 6 wt%. The synthesis of dipentaerythritol hexaacrylate was also studied, using DPE, crylic acid as the starting material. The influence of dosage of inhibitor and acid catalyst were optimized. The yield of dipentaerythritol hexaacrylate is 90.6%, while the molar ratio is n(crylic acid): n(DPE) = 7.5:1, t

转炉炼钢工艺流程

转炉炼钢工艺流程 转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高 200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 电炉.转炉系统炼钢生产工艺流程简图 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2 , Mn0,)生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅

与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理; (2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3?5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3?5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min后火焰微弱,停吹);

糠醇生产工艺技术分析

糠醇生产工艺技术分析 糠醇的合成是由糠醛在催化剂作用下,在管式反应器内保持一定压力、利用自热维持一定的反应温度,氢气与糠醛液相充分接触后发生反应合成的。影响其生产工艺过程的主要因素由采用的催化剂类型的选择;反应温度、压力、气液比(氢醛比)等的控制;空速;反应器的高径比;精馏工艺的选择;糠醛的纯度及酸性等决定。 目前,糠醇的生产主要是利用糠醛催化加氢制,分为高压液相加氢和常压气相加氢。前者工艺流程短,投资少,见效陕,缺点是劳动强度大;后者工艺流程复杂,投资大,生产成本高,见效慢,尤其对催化剂的技术要求较高。目前,国内生产气相加氢制糠醇的催化剂技术还不够完善,需从国外进口,优点是装置用人少,安全性高。 国内大多数厂家均采用液相加氢法生产糠醇,本文结合共享集团于2005年10月份开始建设并已投产的7000t/a糠醇生产装置项目,作者经过对实际装置生产工艺运行控制和总结,从以下几个方面探讨有关糠醇合成工艺技术及其技术改造。 1 生产工艺过程 将糠醛用泵打入糠醛高位槽,然后放人搅拌槽与定量的催化剂混合均匀,再通过计量泵以约8.0MPa的压力注入夹套管式反应器,进入反应器前与经过氢压机压缩至大于 8.0MPa的氢气共同预热后在反应器人口处混合,一般反应温度控制在210~230℃,得粗糠醇,经减压精馏即可得到产品糠醇。 2 糠醇合成机理 糠醛加氢合成糠醇主反应式如下: C4H3O(CHO)+H2=C4H3O(CH2OH)+Q 液相糠醛加氢反应类型属瞬间反应,反应为非均相反应,具有多相反应的特征。反应历程为,糠醛首先吸附在催化剂活性中心,被吸附分子的C-O羰基键由于活性中心的复杂分子轨道作用而被削弱,接着与溶解在糠醛中的氢发生反应。目前,实践研究表明,该羰基上发生的化学吸附在铜铬催化剂作用下,当温度、压力达到其活性温度才会发生。 3 糠醇合成技术 3.1 常压气相加氢制糠醇 以汽化的糠醛控制一定的空速与过量的氢气流混合后通过装有催化剂的列管式固定床反应器,采用氧化物类催化剂,其反应温度控制在120℃左右,压力在1.1×105Pa左右,粗产物糠醇无色透明,糠醇含量可达到98%,单程转化率可得达到99%以上,产率一般可达到92%以上。气相加氢所采用的催化剂一般有两大类:氧化物催化剂和合金类催化剂。前者活性温度相对高于后者。 3.2 液相加氢制糠醇 一般采用夹套管式反应器,应用氧化物催化剂,反应温度可控制在200-220℃,压力为6.5~11MPa,糠醇含量可达到97%以上,单程转化率在98%以上。液相加氢所采用的催

转炉炼钢工艺的优化实践

转炉炼钢工艺的优化实践 摘要: 目前,我国炼钢行业正在快速发展,同时炼钢技术的进步主要围绕着高效率、高质量、低成本、低能耗、少环境污染等方面。对于炼钢技术采取优化措施,结合工艺优化和综合降耗,从炉料消耗、氧气消耗、石灰、合金消耗、煤气回收、除尘灰、钢渣综合处理等环节有效控制,明显提高炼钢的经济和质量效益。在整体上提高炼钢行业的竞争性,创新炼钢工艺,不断优化炼钢工艺等方面,取得了明显的效果。 关键词: 转炉炼钢工艺优化 0 前言 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力,工艺优化,不但可以降低成本,同时提高炼钢企业的年产量,节省各项资源的消耗,最大限度地提高了企业的经济效益。各项技术指标的提高,进一步优化炼钢工艺,带动了炼钢业的经济发展。本文主要通过对炼钢行业现状的分析,结合成功经验,对炼钢工艺优化提出一些既有效又经济的方法,降低成本的同时,提高炼钢产量,节约能源。笔者分析探讨了炼钢工艺优化的重要性和可实施性。 1总述炼钢行业的现状 针对当前钢铁行业所面临的处境,提高市场竞争力、降低炼钢生产成本势在必行。而在炼钢生产中,金属炉料成本约占炼钢生产总成本的80%以上,因此抓好金属炉料成本是控制炼钢生产成本的关键。为进一步减少金属炉料消耗,略钢炼钢厂通过探索,优化炉料结构,改进炉前冶炼工艺和优化合金料的使用,采用少渣炼钢工艺、改进吹氧工艺、引用低成本合金等措施,有效地降低金属炉料消耗、氧耗和合金成本,达到降低生产成本的目的,增加了企业经济效益。近年来炼钢厂通过完善溅渣护炉、低铁水比冶炼、高效转炉、低耐材消耗达到了转炉炼钢厂生产工艺的优化组合。 2炉料结构优化思路 目前,常用的转炉金属炉料有高炉铁水、铁块(生铁)、自产废钢、社会废钢( 以中型和小型废钢为主)等。炉料结构优化应以满足转炉炼钢需要为基础,以提高炉料金属收得率为出发点,找出成本最低的炉料配比为目的。炉料金属收得率是指某一金属炉料的单位投入量通过冶炼可以产出合格钢水的百分率。它受两方面因素影响: 一方面是炉料自身含量,另一方面是在冶炼过程中的各种损耗,包括原料中杂质元素化学损失、烟尘损失、喷溅及炉渣带钢造成的铁耗等。 3 提高炉料金属收得率工艺措施 3.1 优化入炉料结构,合理使用好铁矿石

转炉炼钢工艺标准经过流程

转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种

转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;(2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3~5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3~5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min 后火焰微弱,停吹); (5)倒炉,测温、取样,并确定补吹时间或出钢; (6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。 上炉钢出完钢后,倒净炉渣,堵出钢口,兑铁水和加废钢,降枪供氧,开始吹炼。在送氧开吹的同时,加入第一批渣料,加入量相当于全炉总渣量的三分之二,开吹3-5分钟后,第一批渣料化好,再加入第二批渣料。如果炉内化渣不好,则许加入第三批萤石渣料。 吹炼过程中的供氧强度:

糠醇安全技术说明书1

编码:00003 化学品安全技术 说明书 化学品名:糠醇 企业名称: 地址: 邮编: 传真号码: 联系电话: 电子邮箱: 编制日期:

目录 第一部分:化学品及企业标识 (2) 第一部分:化学品及企业标识 (2) 第二部分:危险性概述 (2) 第三部分:成分/组成信息 (2) 第四部分:急救措施 (3) 第五部分:消防措施 (3) 第六部分:泄漏应急处理 (3) 第七部分:操作处置与储存 (3) 第八部分:接触控制和个体防护 (4) 第九部分:理化特性 (4) 第十部分:稳定性和反应性 (5) 第十一部分:毒理学信息 (5) 第十二部分:生态学信息 (6) 第十三部分:废弃处理 (6) 第十四部分:运输信息 (6) 第十五部分:法规信息 (6) 第十六部分:其他信息 (7)

第一部分:化学品及企业标识 化学品中文名:糠醇;2-呋喃甲醇 化学品英文名:furfural alcohol 企业名称: 地址: 邮编: 传真号码: 企业电话: 应急电话: 电子邮件地址: 推荐用途:可用于有机合成、合成纤维、橡胶、农药等,也用于制造树脂和溶剂。 第二部分:危险性概述 危险性类别:第6.1类毒害品。 侵入途径:吸入、食入、经皮肤吸收。 健康危害:本品具有刺激性。高浓度持续吸入引起咳嗽、气短和胸部紧束感,极高浓度可引起死亡。蒸气对眼有刺激性,液体可引起眼部炎症和角膜混浊。皮肤接触其液体,可引起皮肤干燥和刺激。口服出现头痛、恶心,口腔和胃刺激。 环境危害:对环境可能有危害。 爆炸危险:本品可燃,有毒,具强刺激性。 第三部分:成分/组成信息 纯品□√混合物□ 化学品名称:糠醇 有害物成分含量CAS号 糠醇99% 98-00-0

(工艺技术)制模工艺解析

制模工艺解析 1、1、对照样品:原形是否有与样品不相符的地方,测量样品和原形的高度,按收缩比例计算是否相符, 比例如白云土5%,半瓷土10%; 2、2、切附件:仔细检查判断是否有附件,可以不切下的或有的仅仅只有一点点卡模,是不是修一点就 可少分一片,说明:少切附件或尽可能的少分一片,并非偷懒,因为这小小的动作就会给注浆、修整减少很多的人力和物力,比如,注浆少脱一片模,修整就少刮一条模线,注浆少灌一个附件,修整就少接一个附件既节省人力又提高了效率,所以切附件是一个很重要的环节; 3、3、附件归类:要把空心的和实心的分开来分,这样有利于操作; 4、4、原形表面处理:表面用细水砂纸打光滑,纹路刻深,记号、编号写清楚; 5、5、分片:分片前先画线,以确保模线走向的准确度,然后就可以填泥巴,倒石膏浆,待石膏浆发热 后,用风枪或借用其它工具,比如木锤、橡胶锤把它从原形上取下来修好,便可开始第二片,周而复始,截止分完; 6、 6 、烤模试灌: 是为了在做KS前能有效的把问题控制,不至于以后工作中出现漏洞,使做出的KS模一而再再而三的修改,或报废的一种检查手段,待试灌确认没问题后便可进入KS工作;7、7、做KS: 做KS前要把模子反处理,然后缩夹心,以0。3MM为准,做KS用KS石膏,比例为1: 2.6 水与石膏; 8、8、修KS: 修KS 时也要对照样品,包括每一条纹路,都要仔细的对照,要把每一片模具的利角修出来,修好后涂上一层洋干漆,让其形成一层硬化膜; 9、9、保养与烤KS: 目的是为了把KS里面的水份烤干,以免敲模时模具石膏发热会把KS里面的水份蒸发使模具出现真空; 10、敲模: 敲模前要对KS,保养1 —2个小时,止KS光滑发亮时,方可灌石膏浆,石膏浆的比例为平台1:0。 75,高压1 : 0。乙石膏与水(单位KG); KS保养好后敲的第一模具拿去试产,保证大货能顺利生产,试产通过后方可大量敲模; 11、主要以手工制作, 但不免也要在生产中借用一些简单的工具或化学制剂来协肋完成, 比 如:我们所使用的打浆机, 它的主要作用是用来搅拌石膏与水配比后的搅拌作用, 同时又给提供一个真空环境, 把石膏里的空气全部抽空, 增加模具的脱模次数, 刮板的作用是在我们把石膏浆倒入KS后,过上约5分钟左右,石膏浆初凝时,用刮板刮去多余的石膏, 使模具形成一个平面, 第一, 增加模具美感与可观度, 第二, 能使模具摆放平稳, 木锤用来协助脱模, 待石膏终凝后用木锤敲打模具, 使其振动至松动, 最终达到脱模目的; 化学剂:有钾肥皂,也称脱模剂,在脱模前要用调好的加钾肥皂涂抹数次,使表面形成 油层来防止KS吸水,调制钾肥皂与水的参考值为 1 : 5; 注浆工艺解析 所谓注浆, 也就是产品成形的一个过程。它主要由石膏模具和泥浆两者结合而达到的一个效果。 、石膏模具对注浆的影响 1、1、模具的硬度如何将影响到它的吸水性 a.a.模具硬度大,则吸水性差;b.b.模具硬度适中则吸水性比较好 2、2、造型的复杂与否直接影响到注浆的操作。

转炉炼钢知识问答

转炉炼钢知识问答 1 转炉炼钢的原材料 1-1 转炉炼钢用原材料有哪些,为什么要用精料? 炼钢用原材料分为主原料、辅原料和各种铁合金。氧气顶吹转炉炼钢用主原料为铁水和废钢(生铁块)。炼钢用辅原料通常指造渣剂(石灰、萤石、白云石、合成造渣剂)、冷却剂(铁矿石、氧化铁皮、烧结矿、球团矿)、增碳剂以及氧气、氮气、氩气等。炼钢常用铁合金有锰铁、硅铁、硅锰合金、硅钙合金、金属铝等。 原材料是炼钢的物质基础,原材料质量的好坏对炼钢工艺和钢的质量有直接影响。国内外大量生产实践证明,采用精料以及原料标准化,是实现冶炼过程自动化、改善各项技术经济指标、提高经济效益的重要途径。根据所炼钢种、操作工艺及装备水平合理地选用和搭配原材料可达到低费用投入,高质量产出的目的。 转炉入炉原料结构是炼钢工艺制度的基础,主要包括三方面内容:一是钢铁料结构,即铁水和废钢及废钢种类的合理配比;二是造渣料结构,即石灰、白云石、萤石、铁矿石等的配比制度;三是充分发挥各种炼钢原料的功能使用效果,即钢铁料和造渣料的科学利用。炉料结构的优化调整,代表了炼钢生产经营方向,是最大程度稳定工序质量,降低各种物料消耗,增加生产能力的基本保证。1-2 转炉炼钢对铁水成分和温度有什么要求? 铁水是炼钢的主要原材料,一般占装入量的70%~100%。铁水的化学热与物理热是氧气顶吹转炉炼钢的主要热源。因此,对入炉铁水化学成分和温度必须有一定的要求。 A铁水的化学成分 氧气顶吹转炉炼钢要求铁水中各元素的含量适当并稳定,这样才能保证转炉冶炼操作稳定并获得良好的技术经济指标。 (1)硅(Si)。硅是转炉炼钢过程中发热元素之一。硅含量高,会增加转炉热源,能提高废钢比。有关资料表明,铁水中WSi每增加0.1%,废钢比可提高约1.3%。铁水硅含量高,渣量增加,有利于去除磷、硫。但是硅含量过高将会使渣料和消耗增加,易引起喷溅,金属的收得率降低。Si含量高使渣中SiO2含量过高,也

季戊四醇

产品介绍 简介 1名称季戊四醇 2分子式C(CH2OH)4 3分子量136.15 4物化特性熔点:261~262℃沸点:276℃相对密度:1.395g/cm3折射率:1.548 溶解性:15℃时1g溶于18ml水。 溶于乙醇、甘油、乙二醇、甲酰胺。不溶于丙酮、苯、四氯化碳、乙醚和石油醚等。稳定性:在空气中很稳定,不易吸水 5 规格98单季92单季90单季双季 6外观白色结晶或粉末 明细 1图片 2储运: 干燥、清洁、通风仓库内 3用途: 用于制造醇酸树脂和油漆,制造塑料稳定剂和增塑剂,并用于制造四硝基季戊四醇起爆炸药等,也可制备航空润滑油4生产工艺: 乙醛与甲醛在碱性条件下缩合后用氢气还原或者与甲醛在强碱条件下反应得到 表格 名称季戊四醇 分子式C(CH2OH)4 分子量136.15 规格98单季92单季90单季双季 CAS码115-77-5 EINECS号204-104-9 包装25/50kg/pp bag 装箱量20MT/20’FCL 是否危险品否 监管条件无 HS编码2905.4200 起运港天津或青岛 目标市场瑞典,美国,日本 是否加托盘可不加

Introduction Name: Pentaerythrite Molecular formula: C (CH2OH) 4 Molecular weight: 136.15 Physical and Chemical property Melting point: 261 ~ 262 ° c boiling point : 276 ℃relative density: 1.395 g/cm3 refractive index: 1.548 solubility: 15 degrees 18ml soluble in water 1g. Soluble in ethanol, glycerin, glycol, armour. Insoluble in acetone, benzene, carbon tetrachloride, ether and petroleum ether, etc. Stability: the air is very stable, bibulous Specification 98 single-season 92 single-season 90 single-season double-season Appearance White crystalline or powder Particulars Picture Storage and transportation: dry, clean and perflation in the Usage: Used in the manufacture of alkyd resin and paint, manufacturing plastic stabilizers and plasticizer, and used in the manufacture of four nitro pentaeruthritol detonating explosives etc, also in aviation for lubricating preparation Production technology: Acetaldehyde and formaldehyde in alkaline conditions after the condensation with hydrogen reduction or with formaldehyde in alkali reaction conditions Sheet Name Pentaerythrite Molecular formula C(CH2OH)4 Molecular weight 136.15 Specification98% 92% 90% CAS code 115-77-5 EINECS code 204-104-9 Package 25 or 50kg/ pp bag loading 20MT/20’FCL Hazardous chemicals no Supervision condition None HS code 2905.4200 Port of loading Tianjin or Qingdao Target market Sweden USA Japan Pallet or not no

季戊四醇以甲醛和乙醛为原料

季戊四醇以甲醛和乙醛为原料,在碱性催化剂(氢氧化钙或氢氧化钠。用氢氧化钙的季戊四醇生产工艺称为“钙法”;用氢氧化钠的季戊四醇生产工艺称为“钠法”)存在条件下反应制得。首先甲醛和乙醛缩合生成反应中间物五碳赤丝藻糖(季戊四糖),五碳赤丝藻糖与甲醛反应,还原生成季戊四醇,同时生成甲酸盐。副产物主要有:聚季戊四醇、季戊四醇甲醚类、季戊四醇缩甲醛、树胶和甲醛聚糖。通过合理选择和严格控制反应条件可抑制这些副反应的发生。反应物是甲醛和乙醛混合物水溶液,反应原料配比决定了最终反应产物的比例。使用NaOH为催化剂,副产物为甲酸钠。随着原料配比中甲醛对乙醛的比例增加,相应的产物中二季戊四醇量增加,单季戊四醇量减少。 国外季戊四醇生产多数采用低温钠法,连续缩合,加压脱醛,多效蒸发及先进的精制技术,产品品种多,消耗低,副产品回收完全,污染小。 ) n6 I, o# V9 l* J4 D/ C* 国内生产现状 近年来,中国季戊四醇发展迅速,不仅产能快速增加,而且生产技术也取得较大进步。1997年中国季戊四醇生产能力和产量分别为5万吨和2万吨,2002年分别增加到10万吨以上和5万吨左右。目前中国有季戊四醇生产厂家近30家,其中规模超过万吨级的企业主要有衡阳三化实业公司、湖北宜化集团公司、云天化集团公司和保定化工原料厂等。湖北宜化宜都分公司的万吨季戊四醇生产线投产,新生产线为该公司新增1.5万吨季戊四醇产量,加上原有的1.5万吨产能,该公司已经具备了年产3万吨季戊四醇的生产能力,排名亚洲第一、世界第三,季戊四醇的年销售收入将达到2.5亿元,成为该公司新的利润增长点。该公司为了确保1.5万吨季戊四醇新生产线的竞争优势,购买韩国三洋化学实业公司的单季及双季戊四醇专有技术,生产的季戊四醇羟基含量高达98%,达到国际领先水平。前5年间,中国季戊四醇产能和产量年均增长率分别为15%和20%,表观消费量从1998年的2.8万吨增加到2002年的6.1万吨、2003年的约6万吨,年均增长率约17%。2003年生产能力和产量分别增加到12万吨/年以上和6.5万吨。我国季戊四醇主要生产厂家和生产能力见表1。但是,尽管近年中国季戊四醇产能逐年增加,而前几年进口量呈现上升趋势,2002年进口量高达9822吨。进入2003年国内合成日趋成熟,而且多套万吨级装置发挥应有的规模效应,国内产量快速增长,2003年达到6.5万吨,加上亚洲周边国家季戊四醇装置较少,国际市场需求看好,2003年进口减少到2641吨,而出口大增,达到7848吨。我国近年来季戊四醇产量和进出口见表2。 表1 我国季戊四醇主要生产厂家和生产能力,吨/年

转炉少渣工艺技术分析

转炉少渣工艺技术分析 摘要:阐述了少渣炼钢的工艺路线,分析了转炉少渣吹炼的供气制度、造渣制度、温度制度、合金化制度等,介绍了国内外几家钢厂典型的少渣炼钢工艺及其冶金效果,指出少渣炼钢是未来炼钢的主要发展方向。 关键词:转炉;少渣炼钢;工艺制度 Progress and Prospect of Less Slag Steelmaking Process Abstract:The paper summarizes the process line of less slag steelmaking,and analyzes the system of gas supplying,slagging and alloying,that 0f the temperature and SO on.of less slag blowing in converter.introduces the typical processes of less slag steelmaking and its metallurgical effects of seven steel plants at home and abroad,meanwhile,points out that less slag steelmaking is the main development direction of the steelmaking in the future. Key words:converter;less 8lag steelmaking;process system 铁水“三脱”使传统炼钢工艺发生了显著变化,在铁水预处理阶段进行脱硅、脱磷和脱硫,使炼钢转炉的主要功能转变为调温和脱碳,同时炼钢渣量减少,形成了少渣炼钢工艺。由于少渣炼钢用的铁水硅含量很低,造渣用石灰加入量明显减少,降低了渣料消耗和能耗,喷溅少,铁损低,减少了污染物的排放。同时,因渣量少,氧的利用效率高,吹炼终点钢水中氧含量低,余锰高,合金元素收得率较高,从而降低了生产成本。另外,少渣炼钢工艺终点命中率高,改善了钢水的纯净度,为生产超纯净钢创造了条件。 1 少渣炼钢工艺路线 常见的转炉炼钢工艺路线有四种。第一种是传统的炼钢工艺,欧美各国的炼钢厂多采用这种模式,即铁水先脱硫预处理后,再转炉炼钢。通常转炉炼钢渣量占金属量的10%以上,转炉渣中FeO含量在17%左右。此外,渣中还含有约8%的铁珠,该工艺钢铁料消耗高。第二种炼钢工艺是先在铁水沟、混铁车或铁水罐内进行铁水“三脱”预处理,然后在复吹转炉进行少渣炼钢,这种工艺的不足之处是脱磷前必须先脱硅,废钢比低(≤5%),脱磷渣碱度过高,难于利用。第三种炼钢工艺是20世纪90年代中后期日本各大钢厂试验研究成功的转炉铁水脱磷工艺,该工艺解决了超低磷钢的生产难题。与第二种工艺路线的明显区别是脱磷预处理移到转炉内进行,转炉内自由空间大,反应动力学条件好,生产成本较低。具体工艺是采用两座转炉双联作业,一座脱磷,另一座接受来自脱磷炉的低磷铁水脱碳[1、2],即“双联法”。典型的双联法工艺流程为:高炉铁水_+铁水预脱硫-+转炉脱磷_+转炉脱碳_+炉外精炼.+连铸。由于受设备和产品的限制,也有在同一座转炉上进行铁水脱磷和脱碳的操作模式,类似传统的“双渣法”。第四种炼钢工艺是对第三种炼钢工艺进行了改进,与第三种工艺的明显不同是将部分脱碳渣(约8%)返回脱磷转炉,脱磷后的铁水进入脱碳转炉脱碳。该工艺是目前渣量最少、最先进的转炉生产纯净钢的工艺路线。在上述四种转炉炼钢工艺路线中,后三种炼钢工艺铁水经过“三脱”预处理后再脱碳炼钢,能够做到少渣操作。四种

炼钢工艺流程图

炼钢工艺流程 1炼钢厂简介 炼钢厂主要将铁水冶炼成钢水,再经连铸机浇铸成合格铸坯。现有5座转炉,5台连铸机,年设计生产能力为500万吨,现年生产钢坯400万吨。其中炼钢一分厂年生产能力达到240万吨;炼钢二厂年生产能力为160万吨。 2炼钢的基本任务 钢是以Fe为基体并由C、Si、Mn、P、S等元素以及微量非金属夹杂物共同组成的合金。 炼钢的基本任务包括:脱碳、脱磷、脱硫、脱氧去除有害气体和夹杂,提高温度,调整成分,炼钢过程通过供氧造渣,加合金,搅拌升温等手段完成炼钢基本任务,“四脱两去两调整”。 3氧气转炉吹炼过程 氧气顶吹转炉的吹氧时间仅仅是十分钟,在这短短的时间内要完成造渣,脱碳、脱磷、脱硫、去气,去除非金属夹杂物及升温等基本任务。 由于使用的铁水成分和所炼钢种的不同,吹炼工艺也有所区别。氧气顶吹转炉炼钢的吹炼过程,根据一炉钢吹炼过程中金属成分,炉渣成分,熔池温度的变化规律,吹炼过程大致可以分为以下3个阶段: (1)吹炼前期。(2)吹炼中期。(3)终点控制。 炼好钢必须抓住各阶段的关键,精心操作,才能达到优质、高产、低耗、长寿的目标。 装入制度 装入制度是保证转炉具有一定的金属熔池深度,确定合理的装入数量,合适的铁水废钢比例。

3.1.1装入量的确定 装入量是指转炉冶炼中每炉次装入的金属料总重量,它主要包括铁水和废钢量。目前国内外装入制度大体上有三种方式: (1)定深装入;(2)分阶段定量装入;(3)定量装入 3.2.2装入次序 目前永钢的操作顺序为,钢水倒完后进行溅渣护炉溅渣完后装入废钢,然后兑入铁水。 为了维护炉衬,减少废钢对炉衬的冲击,装料次序也可以先兑铁水,后装废钢。若采用炉渣预热废钢,则先加废钢,再倒渣,然后兑铁水。如果采用炉内留渣操作,则先加部分石灰,再装废钢,最后兑铁水。 供氧制度 制订供氧制度时应考虑喷头结构,供氧压力,供氧强度和氧枪高度控制等因素。 3.2.1氧枪喷头 转炉供氧的射流特征是通过氧枪喷头来实现的,因此,喷头结构的合理选择是转炉供氧的关键。氧枪有单孔,多孔和双流道等多种结构。永钢使用的是4孔拉瓦尔喷头形式喷枪。 3.2.2氧气压力控制 氧气压力控制受炉内介质和流股马赫数的影响。经测定,炉内介质压力一般为—,流股马赫数在—之间。因此目前在转炉上使用的工作压力为—,视各种扎容量而定。一般说来,转炉容量大,使用压力越高。 3.2.3氧气流量和供氧强度 (1)氧气流量:

湖南呋喃树脂深加工项目可行性研究报告

湖南呋喃树脂深加工项目可行性研究报告 规划设计/投资分析/产业运营

报告摘要说明 呋喃又称糠醇,本身进行均聚或与其它单体进行共缩聚而得到的缩聚 产物,糠醇与脲醛、酚醛、酮醛合成多种产物,习惯上称为呋喃树脂。其 中以糠醇酚醛树脂、糠醇尿醛树脂应用较多。 糠醇树脂是由糠醇为主体与甲醛缩聚而成的(改性产品又添加了尿素),外观为深褐色至黑色的液体或固体,耐热性和耐水性都很好,耐化学腐蚀 性极强,对酸、碱、盐和有机溶液都有优良的抵抗力,是优良的防腐剂。 糠醇树脂强度高,是木材、橡胶、金属和陶瓷等优良的粘结剂,也可用于 生产涂料。 该呋喃树脂项目计划总投资17137.59万元,其中:固定资产投资11837.35万元,占项目总投资的69.07%;流动资金5300.24万元,占 项目总投资的30.93%。 本期项目达产年营业收入37851.00万元,总成本费用28539.30 万元,税金及附加320.69万元,利润总额9311.70万元,利税总额10916.76万元,税后净利润6983.78万元,达产年纳税总额3932.99 万元;达产年投资利润率54.33%,投资利税率63.70%,投资回报率40.75%,全部投资回收期3.95年,提供就业职位586个。 呋喃树脂是指以具有呋喃环的糠醇和糠醛作原料生产的树脂类的总称,其在强酸作用下固化为不溶的固形物,在机械工业的铸造工艺中作砂芯粘

结剂,广泛应用于汽车、机床、船舶、飞机,风电、通用机械、精密仪器等产品的铸件生产和高档精密出口铸件的生产。 呋喃树脂属热固性树脂,受热时能彼此交联固化而无需添加固化剂。酸在固化反应中起催化作用,还可降低热固化时所需的温度。根据施工工艺的特殊需要,可引入催化型固化剂,无需加热就能在室温下迅速交联固化。固化交联时要放出低分子物质,故固化时体积收缩率较大,其延伸率很低,呈现脆性。

相关文档
最新文档