数列课前小测1

合集下载

数列单元能力测试(一)doc

数列单元能力测试(一)doc

数列单元能力测试(一)命题人 蒋红伟一、选择题(5×10=50分)1.在等比数列{}n a 中,953,16,4a a a 则===( ) A .256 B .-256 C .128 D .-1282.设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B .2 C .4 D .63.设数列11,,321,211++⋅⋅⋅++n n ,n n S S n 则项和为的前,⋅⋅⋅等于( ) A .n n -+1 B .n n ++1 C .11-+n D .11++n 4.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .21 5.等差数列{}n a 的各项都是负数且8328232a a a a ++=9,那么它的前10项和n S 等于( )A .-9B .-11C .-13D .-156.等差数列{}n a 中,2=d ,且431,,a a a 成等比数列,则=2a ( ) A .4-B .6-C .8-D .10-7.若数列{a n }的通项公式为a n =n (n -1)·…·2·110n,则{a n }为( ) A .递增数列 B .递减数列 C .从某项后为递减 D .从某项后为递增8.已知{}n a 满足对一切正整数n 均有n n a a >+1且n n a n λ+=2恒成立,则实数λ的范围是( ) A .0>λ B .0<λ C .1->λ D .3->λ 9.数列{}n a 的通项公式为)34()1(1--=-n a n n ,则=100S ( ) A .-200 B .200 C .400 D .-40010.设502,1,,a a a ⋅⋅⋅是从-1,0,1这三个整数中取值的数列,若95021=+⋅⋅⋅++a a a 且21)1(+a +107)1()1(25022=++⋅⋅⋅++a a ,则,,,21⋅⋅⋅a a 50a 中有0的个数为( )A .10B .11C .12D .13二、填空题(5×5=25分)11.在等比数列{}n a 中, 若,15,393==a a 则15a =___________12.等差数列{}n a 中50,102010==S S ,则30S =13.已知等差数列{}n a 的前17项和,5117=S 则=+-+-1311975a a a a a 14.已知数列{a n }的通项公式n a n n +=2,则其前n 项和=n S15..已知函数f (x )对任意x ∈R ,都有f (x )=1-f (1-x ),则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=___三、解答题(75分)16.(13分)等比数列{}n a 共有偶数项,且所有项之和是奇数项之和的3倍,前3项之积等于27,求这个等比数列的通项公式17.(13分){}n a 是公差为1的等差数列,{}n b 是公比为2的等比数列,n n Q P 、分别是{}n a 、{}n b 的前n 项和且45,41036+==Q P b a (1)求{}n a 的通项公式(2)若6b P n >,求n 的取值范围18.(本小题满分13分) (2012重庆文)已知{}n a 为等差数列,且13248,12,a a a a +=+=(1)求数列{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值.19.(12分)已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足22,1175243=+=⋅a a a a (1)求通项n a(2)若数列{}n b 是等差数列且cn S b nn +=,求非零常数c (3)求)()36()(1++∈⋅+=N n b n b n f n n的最大值20.(12分)已知数列{}n a 的各项均为正整数,且满足11),(22521=∈+-=++a N n na a a n n n 又(1)求4321,,,a a a a 的值并由此推测出{}n a 的通项公式(不要求证明) (2)设n n n S a b ,,11-==n b b b +⋅⋅⋅++21,求n S21.(12分)某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年都增加4万元,每年捕鱼收益50万元. (1)问第几年开始获利?(2)若干年后,有两种处理方案:方案一:年平均获利最大时,以26万元出售该渔船;方案二:总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算?数列单元能力测试(一)参考答案ABCCD BDDAB11.75 12.120 13.3 14. 2)1(221++-+n n n 15.3 16.解:设数列共有2n 项,奇数项和为1S ;由已知21111332,,n S S S qS S q =∴+=∴= 又()3121113327323222,,,.n n n a qa q a a --=∴=∴==⋅=⋅17.(1)2+=n a n (2)10≥n18. (Ⅰ)na =2n (Ⅱ)6k =【解析】(Ⅰ)设数列{}n a 的公差为d,由题意知112282412a d a d +=⎧⎨+=⎩ 解得12,2a d ==所以1(1)22(1)2n a a n d n n =+-=+-= (Ⅱ)由(Ⅰ)可得1()(22)(1)22n n a a n n nS n n ++===+ 因12,,k k a a S + 成等比数列,所以212k k a a S += 从而2(2)2(2)(3)k k k =++ ,即 2560k k --=解得6k = 或1k =-(舍去),因此6k = . 19.(1)34-=n a n (2)21-=c (3)491 20.(1)12+=n a n (2)1-21. 解:(1)由题意知,每年的费用是以12为首项,4为公差的等差数列.设纯收入与年数n 的关系为f (n ),则++-=1612[50)(n n f …9840298)]48(2-+-=-++n n n .由题知获利即为f (n )>0,由0984022>-+-n n ,得-10511051+<<n .∵n ∈N ,∴n =3,4,5,…,17.即第3年开始获利. (2)方案一:年平均收入)49(240)(nn n n f +-==. 由于1449249=⋅≥+nn n n ,当且仅当n =7时取“=”号.∴ 1214240)(=⨯-≤n n f (万元). 即前7年年平均收益最大,此时总收益为12×7+26=110(万元). 方案二:f (n )=22n -+40n -98=-22)10(-n +102.当n =10时,f (n )取最大值102,此时总收益为102+8=110(万元). 比较如上两种方案,总收益均为110万元,而方案一中n =7,故选方案一.。

高中数列测试题及答案

高中数列测试题及答案

高中数列测试题及答案一•选择题(本大题共12小题,每小题5分,共60分)1 *1 •已知数列{a n}中,a i 2, a n 1 a n -(n N )则的值为( )2 ,A. 49 B . 50 C . 51 D . 522. —1与2.1,两数的等比中项是( )A . 1B .|1 C.-1 D1 '23.在三角形ABC中, 如果a b c b c a 3bc,那么A等于( )A . 300B.600C.1200D1500亠亠c cosC4. 在"ABC中, ,则此三角形为( )b cosBA .直角三角形; B. 等腰直角三角形C. 等腰三角形D. 等腰或直角三角形5. 已知a n是等差数列,且a2+ a3+ aw+ an=48,则a=+ a7=()A . 12B . 16C . 20D . 246. 在各项均为正数的等比数列b n中,若b7 b8 3,则Iog3$ log3b2 ……log3 b!4等于()(A) 5 (B) 6 (C) 7 (D)87. 已知a,b 满足:a =3,b =2,a b =4,则a b =()A. 3 B . .5 C . 3 D . 108. 一个等比数列{a n}的前n项和为48,前2n项和为60,则前3n项和为( )A、63 B 、108 C 、75 D 、839.数列{a n }满足 a i = 1, a n +1= 2a n + 1( n € N +),那么 a 4的值为()10. 已知△ ABC 中,/ A = 60°, a = .. 6 , b = 4,那么满足条件的△ ABC 的形状大12. 若{a n }是等差数列,首项 a 1>0, a 4+ a s >0, a 4 • &v 0,则使前n 项和 S>0 成立的最大自然数 n 的值为().A. 4B . 5C. 7D. 8二、填空题(本题共4小题,每小题5分,共20分)13. 在数列{a n }中,其前n 项和S= 3 • 2n + k ,若数列{a n }是等比数列,则常数 k 的值为 ______ 14.A ABC 中,如果 一^ =—=—,那么△ ABC 是 ________tan A tan B tan C115•数列{a n }满足 a 1 2,a n a . 1 —,则 a .= ____________________________ ;216•两等差数列{a n }和{b n },前n 项和分别为S n ,T n ,且,A. 4B . 8 C. 15 D. 31小().A.有一种情形 C.不可求出11. 已知 D C B 三点在地面同一直线上, B .有两种情形 D.有三种以上情形DC=a ,从C D 两点测得A 的点仰角分别为a 、 3(a>3 )则A 点离地面的高 asin sin sin( ) acos cos sin( )AB 等于()asin sin cos ( ) acos cos cos ( )T n n 39.数列{a n }满足 a i = 1, a n +1= 2a n + 1( n € N +),那么 a 4的值为() 则色__吨等于 _______ _____________6 b 15三•解答题(本大题共6个小题,共70分;解答应写出文字说明、证 明过程或演算步骤)17. (10)分已知a,b,c 是同一平面内的三个向量,其中a 1,2(1)求 AC (2) 求/ A.21. (12分)已知等差数列{a n }的前n 项的和记为 S.如果a 4 =- 12,a s =- 4. (1) 求数列{a n }的通项公式; (2) 求S 的最小值及其相应的 n 的值; 22. (12分)已知等比数列a n 的前n 项和为S n ,且a n 是&与2的等差中项,等差数列 b n 中,b 1.2,点P(b n ,b n|1)在一次函数y x 2的图象上.(1)若 c25,且cac b 于,a2b 2a b a b18. (12 分)△ ABC 中,BC= 7, AB= 3,且sin C sin B19.(12分)已知等比数列a n 中, 4项及前5项和.2 0.( 12 分)在 ABC 中,m且m 和n 的夹角为一.3(1 )求角C ; ( 2)已知c=-,25a 1 a 310,a 4a65,求其第 C . CC • Ccos ,sin ,n cos , s in 2 22 2 ,三角形的面积s⑴求a-i 和a 2的值;⑵求数列 a n , b n 的通项a n 和b ; ⑶设C na nb n ,求数列C n 的前n 项和T n .高中数列测试题答案.选择题。

等差数列测试题含答案

等差数列测试题含答案

等差数列测试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.等差数列1+x ,2x +2,5x +1,…的第四项等于( ) A .10B .6C .8D .122.在等差数列{}n a 中,若2810a a +=.,则()24652a a a +-=( ) A .100B .90C .95D .203.已知数列{}n a 是等差数列,数列{}n b 分别满足下列各式,其中数列{}n b 必为等差数列的是( ) A .||n n b a =B .2n n b a =C .1n nb a =D .2nn a b =-4.在等差数列{}n a 中,11a =,513a =,则数列{}n a 的前5项和为( ) A .13B .16C .32D .355.在等差数列{}n a 中,若39717,9a a a +==,则5a =( ) A .6B .7C .8D .96.在等差数列{}n a 中,124a a +=,7828a a +=,则数列的通项公式n a 为( ) A .2nB .21nC .21n -D .22n +7.已知数列{}n a 是等差数列,71320a a +=,则91011a a a ++= ( ) A .36B .30C .24D .18.已知数列{}n a 是首项为2,公差为4的等差数列,若2022n a =,则n = ( ) A .504B .505C .506D .5079.已知数列{}n a 满足13n n a a +=-,127a =,*n ∈N ,则5a 的值为( ) A .12B .15C .39D .4210.已知等差数列{}n a 满足3456790a a a a a ++++=,则28a a +等于( ) A .18B .30C .36D .4511.在等差数列{}n a 中,143,24a a ==,则7a = A .32B .45C .64D .9612.设数列{}n a 是公差为d 的等差数列,若244,6a a ==,则d = ( )A .4B .3C .2D .113.在等差数列{}n a 中,若3712a a +=,则5a =( ) A .4B .6C .8D .1014.在等差数列{}n a 中,若3691215120a a a a a ++++=,则12183a a -的值为( ) A .24B .36C .48D .6015.在等差数列{}n a 中,51340a a +=,则8910a a a ++=( ) A .72B .60C .48D .3616.已知数列{}n a 是等差数列,且66a =,108a =,则公差d =( ) A .12B .23C .1D .2二、填空题17.在数列{}n a 中,12a =,13n n a a +-=则数列{}n a 的通项公式为________________. 18.已知数列{}n a 中,12a =,25a =,212n n n a a a +++=,则100a =________ 19.在等差数列{}n a 中,47a =,2818a a +=,则公差d =__________.20.己知等差数列{}n a 满足:10a =,54a =,则公差d =______;24a a +=_______. 21.已知数列{}n a 对任意的,m n N +∈有mn m n a a a ++=,若12a =,则2019a =_______.参考答案1.C 【解析】 【分析】根据等差中项的性质求出x ,进而求出公差,得出答案. 【详解】解:由题意可得,(1+x )+(5x +1)=2(2x +2) 解得x =1∴这个数列为2,4,6,8,… 故选C. 【点睛】本题考查了等差数列及等差中项的性质. 2.B 【解析】 【分析】利用等差数列的性质,即下标和相等对应项的和相等,得到28465210a a a a a +=+==. 【详解】数列{}n a 为等差数列,28465210a a a a a +=+==,∴()24652a a a +-=2101090-=.【点睛】考查等差数列的性质、等差中项,考查基本量法求数列问题. 3.D 【解析】 【分析】对每一个选项逐一分析判断得解. 【详解】设数列{}n a 的公差为d ,选项A,B,C,都不满足1n n b b --=同一常数,所以三个选项都是错误的;对于选项D ,1112222n n n n n n a a a a d b b -----=-+==-, 所以数列{}n b 必为等差数列. 故选:D 【点睛】本题主要考查等差数列的判定和性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 4.D 【解析】 【分析】直接利用等差数列的前n 项和公式求解. 【详解】数列{}n a 的前5项和为1555)(113)3522a a +=+=(. 故选:D 【点睛】本题主要考查等差数列的前n 项和的计算,意在考查学生对该知识的理解掌握水平,属于基础题. 5.C 【解析】 【分析】通过等差数列的性质可得答案. 【详解】因为3917a a +=,79a =,所以51798a =-=. 【点睛】本题主要考查等差数列的性质,难度不大. 6.C 【解析】 【分析】直接利用等差数列公式解方程组得到答案.【详解】121424a a a d +=⇒+= 7812821328a a a d +=⇒+= 1211,2n n a d a ==⇒-=故答案选C 【点睛】本题考查了等差数列的通项公式,属于基础题型. 7.B 【解析】 【分析】通过等差中项的性质即可得到答案. 【详解】由于71310220a a a +==,故9101110330a a a a ++==,故选B. 【点睛】本题主要考查等差数列的性质,难度较小. 8.C 【解析】 【分析】本题首先可根据首项为2以及公差为4求出数列{}n a 的通项公式,然后根据2022n a =以及数列{}n a 的通项公式即可求出答案。

【数列】数列综合练习题(1)--测试用

【数列】数列综合练习题(1)--测试用

数列综合练习题一、选择题:本大题共10个小题;每小题5分,共50分1、数列 的一个通项公式是 ( )A. B . C . D . 2、若两数的等差中项为6,等比中项为10,则以这两数为根的一元二次方程是( ) A 、010062=+-x x B 、0100122=++x x C 、0100122=--x x D 、0100122=+-x x3、已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数,则b 2(a 2-a 1)=( )A.8 B.-8 C.±8 D.4、已知数列{}n a 是等比数列,若,a a a a 41813229=+则数列{}n a 的前30项的积=30T ( ) A 、154, B 、152, C 、1521⎪⎭⎫ ⎝⎛, D 、153,5、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为 ( ) A .15. B .17. C .19. D .216、已知等差数列}{n a 的前n 项和为n S ,若45818,a a S =-=则 ( )(A )18 (B )36 (C )54 (D )727、已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则|m -n|=( )A .1B .43 C .21 D .83 8、等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于( ) A .-1221 B .-21.5 C .-20.5 D .-20 9、设 {a n }是由正数组成的等比数列, 且公比q = 2, 如果a 1 · a 2 · a 3 · … · a 30 = 230, 那么a 3 · a 6 · a 9 · … · a 30 = ( )A .210.B .215.C .220.D .216.10、某人从1999年9月1日起,每年这一天到银行存款一年定期a 元,且每年到期的存款将本和利再存入新一年的一年定期,若年利率r 保持不变,到2003年9月1日将所有的存款和利息全部取出,他可取回的钱数为 A 、()51r a + B 、()()[]r r r a++1-15 C 、 ()41r a + D 、()[]115-+r ra 12)1(3++-=n n n a n n 12)3()1(++-=n n n a n n 121)1()1(2--+-=n n a n n 12)2()1(++-=n n n a n n ⋯--,924,715,58,189二、 填空题:本大题共4小题;每小题4分,共16分。

人教版高中数学选修二第一单元《数列》测试(答案解析)(1)

人教版高中数学选修二第一单元《数列》测试(答案解析)(1)

一、选择题1.设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式为( ). A .()*2212n n a n ⎛⎫=-∈ ⎪⎝⎭N B .()*2112n n a n ⎛⎫=-∈ ⎪⎝⎭N C .()*1112n n a n -=-∈ND .()*122n n a n =-∈N 2.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+B .212n n -+C .221n n -+D .222n n -+3.已知数列{}n a 的前n 项和为n S ,且11a =,1n n a S +=,若(0,2020)n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的平方和为( ) A .1111433⨯- B .1211433⨯- C .1012433⨯+D .1112433⨯+4.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ5.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项6.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×201827.设y =f (x )是一次函数,若f (0)=1,且(1),(4),(13)f f f 成等比数列,则(2)(4)(2)f f f n +++等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4) 8.已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=A .40B .60C .32D .509.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:()()22221211236n n n n ++++++=)A .1624B .1198C .1024D .156010.已知数列{}n a 为等差数列,n S 是其前n 项和,25a =,535S =.数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对一切n ∈+N 都有21n m T +>恒成立,则m 能取到的最小整数为( )A .1-B .0C .1D .211.已知数列{}n a 的前n 项和为n S ,且12a =,()*12n n n a S n N n++=∈,则n a =( ) A .()112n n -+B .2n n ⋅C .31n -D .123n n -⋅12.在公差不为零的等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,前7项和为35,则数列{}n a 的通项n a 等于( ) A .nB .1n +C .21n -D .21n二、填空题13.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为_________.14.已知、、A B C 三点共线 (O 在该直线外),数列{}n a 是等差数列,S n 是数列{}n a 的前n 项和.若12012OA a OB a OC =⋅+⋅,则2012S =____________.15.在数列{}n a 中,11a =,22a =,()*212n n n a a a n ++=+∈N ,记()321nn n n c a λ=-⨯-,若对任意的*n ∈N ,1n n c c +>恒成立,则实数λ的取值范围为______.16.数列{}n a 的前n 项和()*23n n S a n =-∈N,则4a=__________.17.今年冬天流感盛行,据医务室统计,北校近30天每天因病请假人数依次构成数列{}n a ,已知11a =,22a=,且()*21(1)nn n a a n N +-=+-∈,则这30天因病请假的人数共有人______.18.已知数列{}n a 满足11a = 132n n a a +=+,则{}n a 的通项公式为__________________.19.一个等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32:27,则公差d 为_________.20.设等差数列{}n a 的前n 项和为n S ,且10a >,149S S =,则满足0n S >的最大自然数n 的值为_____________.三、解答题21.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,数列{}n b ,11b =,点()1,n n P b b +直线20x y -+=上.(1)求1a 值;(2)求数列{}{},n n a b 的通项公式; (3)设n n n c a b =,求数列{}n c 的前n 项和n T .22.已知数列{}n a 为等差数列,12a =,3522a a +=, (1)求数列{}n a 的通项公式; (2)设+14n n n b a a =,求数列{}n b 的前n 项和n T . 23.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =*n N ∈,证明:12n c c c +++<.24.已知数列{}{},n n a b 满足1231112,1,2,,n n n n na a ab b b a n N a ++++===-=∈ (1)求数列{}n b 的通项公式;(2)求证:1211111,6n n N b b b ++++<∈. 25.已知数列{}n a 的前n 项和为n S ,当2n ,*n N ∈时,112n n S a -=-,且112a =. (1)求数列{}n a 的通项公式;(2)设n n b na =,数列{}n b 的前n 项和n T ,求使得158n T <成立的n 的最大值. 26.已知数列{}n a 的前n 项和为n S ,12a =,()()31n n n S a n a -=-.(1)求n a ; (2)若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用累加法可求得结果. 【详解】112n n n a a +-=, 所以当2n ≥时,1112n n n a a ---=,12212n n n a a ----=,,21112a a -=, 将上式累加得:1121111222n n a a --=++⋅⋅⋅+,1111221112n n a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-=-1112n -⎛⎫=- ⎪⎝⎭,即1122n n a -⎛⎫=- ⎪⎝⎭(2)n ≥, 又1n =时,11a =也适合,1122n n a -∴=-1212n⎛⎫=- ⎪⎝⎭. 故选:B . 【点睛】关键点点睛:利用累加法求解是解题关键.2.D解析:D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a .【详解】解:11nn na a na +=+, ()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+ (111)123n n a a -+-=+++…1n +-, 即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈, 又111a =也满足上式, 212()2n n n n z a -+∴=∈, 22()2n a n z n n ∴=∈-+. 故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合.3.D解析:D 【分析】 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,得到12n n a a +=,求得22,2n n a n -=≥,得到数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,结合等比数列的求和公式,即可求解. 【详解】由11a =,1n n a S +=,可得1211a S a ===, 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,可得11n n n n n a a S S a +--=-=,即12n n a a +=,即12n na a +=, 则数列{}n a 从第二项起是公比为2的等比数列,即22,2n n a n -=≥,又由(0,2020)n a ∈,即222020n -<,可得13,n n N +<∈,所以“和谐项”共有12项,则数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,可得数列{}n a 的所有“和谐项”的平方和为111110(11244)11416413431-+++++=+=⨯+-.故选:D. 【点睛】与数列的新定义有关的问题的求解策略:通过给出一个新的数列的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.4.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解. 【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭.∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 5.D解析:D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.6.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解. 【详解】 由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列,则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181aa =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.7.A解析:A 【分析】由已知可以假设一次函数为1y kx =+,在根据(1),(4),(13)f f f 成等比数列,得出3k =,利用等差数列的求和公式求解即可. 【详解】由已知,假设()f x kx b =+,(0)k ≠(0)10f k b ==⨯+,1b ∴=.(1),(4),(13)f f f 成等比数列,且41,(13(1)1,(4)1)13k f f k f k =+=+=+.1k ∴+,41k +,131k +成等比数列,即2(41)(1)(131)k k k +=++,22161813141k k k k ++=++,从而解得0k =(舍去),2k =,(2)(4)(2)f f f n +++(221)(421)(221)n =⨯++⨯++⋯+⨯+ (242)2n n =++⋯+⨯+(1)42n n n +=⨯+2(1)n n n =++ ()22332n n n n ==++.故选:A . 【点睛】本题考查了等比数列、等差数列和函数的综合应用,考查了学生的计算能力,解题时要认真审题,仔细解答,避免错误,属于中档题.8.B解析:B 【解析】由等比数列的性质可知,数列S 3,S 6−S 3,S 9−S 6,S 12−S 9是等比数列,即数列4,8,S 9−S 6,S 12−S 9是等比数列,因此S 12=4+8+16+32=60,选B .9.C解析:C 【分析】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则n c n =,依次用累加法,可求解.【详解】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,()()()111121n n n n n n n C c c c b b b b b b +----=+++=++++-所以11n n b b C +=-,1213b a a -==22n n n C +=,进而得21332n n n nb C ++=+=+, 所以()21133222n n n n b n -=+=-+,()()()()2221111121233226n n n n B n n n n +-=+++-++++=+同理:()()()111112n n n n n n n B b b b a a a a a a +---=+++=+++--11n n a a B +-=所以11n n a B +=+,所以191024a =. 故选:C 【点睛】本题考查构造数列,用累加法求数列的通项公式,属于中档题.10.B解析:B 【分析】根据25a =,535S =求出数列的通项公式,再利用裂项相消法求出数列的和,然后由21n m T +>恒成立求解.【详解】因为数列{}n a 为等差数列,n S 是其前n 项和,25a =,535S =. 设首项为1a ,公差为d ,所以115545352a d a d +=⎧⎪⎨⨯+=⎪⎩,解得132a d =⎧⎨=⎩,故32(1)21n a n n =+-=+,所以111111()·(21)(23)22123n n a a n n n n +==-++++, 所以11111111111()()23557212323236n T n n n =-+-+⋯+-=-<+++. 因为对于一切n ∈+N 都有21n m T +>恒成立,所以1216+m ,解得512≥-m , 故m 的最小整数为0. 故选:B . 【点睛】本题主要考查数列的通项公式,裂项相消法求数列的和,还考查了运算和求解的能力,属于中档题.11.A解析:A 【分析】先由已知数列递推公式可得1221n n a a n n +=⋅++,得到1n a n ⎧⎫⎨⎬+⎩⎭是以1为首项,以2为公比的等比数列,求出该等比数列的通项公式,即能求得n a . 【详解】 解:∵()*12n n n a S n N n++=∈,∴12n n n a S n +=+,① 当2n ≥时,111n n n a S n --=+,② ①-②有1121n n n n n a a a n n +--=++,化简得1221n n a a n n +=⋅++()2n ≥, 另外,n =1时21113261a S a =+==,故21232a a =⋅,也符合上式, 故1n a n ⎧⎫⎨⎬+⎩⎭是以112a =为首项,以2为公比的等比数列,∴121n na n -=+,故()112n n a n -=+⋅. 故选:A. 【点睛】本题考查了数列的递推公式,考查了数列通项公式的求法,属于中档题.12.B解析:B 【分析】根据等差数列以及等比数列的性质求出首项和公差,从而求出通项公式. 【详解】由题意得,等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,故2317a a a =,则()()211126a d a a d +=+, 故12a d =,① 又数列7项和为35, 则1767352da ⨯+=,②, 联立①②解得:1d =,12a =, 故()211n a n n =+-=+, 故选:B. 【点睛】本题考查等差数列和等比数列的性质,公式,重点考查计算能力,属于基础题型.二、填空题13.【分析】先根据题意得由于数列是以为首项为公比的等比数列进而利用分组求和法求和即可得答案【详解】解:由等比数列的前项和公式得由于数列是以为首项为公比的等比数列设的前项和则故答案为:【点睛】本题考查等比 解析:3288n n -+-【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案. 【详解】解:由等比数列的前n 项和公式得()13141121818211212n n nn n a q S q -⎡⎤⎛⎫-⎢⎥ ⎪-⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦===-=-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦-,由于数列{}32n-是以4为首项,12为公比的等比数列, 设{}n S 的前n 项和n T ,则31412188812881212n nn nT n n n -⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-=--=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:3288n n -+- 【点睛】本题考查等比数列求和,分组求和,考查运算能力,是基础题.本题解题的关键是求出382n n S -=-,再结合数列{}32n -是以4为首项,12为公比的等比数列,再次求和即可. 14.1006【分析】先根据条件将表示成的形式由此确定出的关系再根据等差数列的前项和公式求解出的值【详解】因为三点共线(O 在该直线外)所以所以所以所以所以所以故答案为:【点睛】结论点睛:已知平面中三点共线解析:1006 【分析】先根据条件将OA 表示成xOB yOC +的形式,由此确定出12012,a a 的关系,再根据等差数列的前n 项和公式求解出2012S 的值. 【详解】因为、、A B C 三点共线 (O 在该直线外),所以()1AB AC λλ=≠, 所以AO OB AO OC λλ+=+,所以()1OA OB OC λλ-=-+,所以111OA OB OC λλλ-=+--, 所以120121111a a λλλ-+=+=--,所以()120122012201210062a a S +⨯==,故答案为:1006. 【点睛】结论点睛:已知平面中、、A B C 三点共线 (O 在该直线外),若OA xOB yOC =+,则必有1x y +=.15.【分析】先由题意求得数列的前几项进而猜想然后利用数学归纳法证明猜想再求得再根据恒成立对分奇数偶数两种情况讨论求得实数的取值范围【详解】解:由题意得……故猜想:下面用数学归纳法证明:(1)当时显然成立解析:3,12⎛⎫- ⎪⎝⎭【分析】先由题意求得数列{}n a 的前几项,进而猜想12n na ,然后利用数学归纳法证明猜想,再求得n c ,再根据1n n c c +>恒成立对n 分奇数、偶数两种情况讨论求得实数λ的取值范围【详解】解:由题意得11a =,22a =,342214,4228a a =+⨯==+⨯=,…… 故猜想:12n na ,下面用数学归纳法证明:(1)当1,2,3,4n =时,显然成立; (2)假设当(3)n k k =≥时有12k ka ,那么当1n k =+时,12(1)11122222k k k k k k a a a --+-+-=+=+⨯=所以当1n k =+时,也成立, 由(1),(2)得12n na ,所以32(1)3(2)n n n nn n c a λλ=-⨯-=--,因为对任意的*n ∈N ,1n n c c +>恒成立, 所以113(2)3(2)n n n n λλ++-->--对任意的*n ∈N 恒成立,即13(1)()2nn λ-->-对任意的*n ∈N 恒成立,当n 为偶数时,有1max33()22n λ-⎛⎫>-=- ⎪⎝⎭, 当n 为奇数时,有1min3()12n λ-⎛⎫<= ⎪⎝⎭,所以312λ-<< 所以实数λ的取值范围为3,12⎛⎫- ⎪⎝⎭, 故答案为:3,12⎛⎫- ⎪⎝⎭【点睛】关键点点睛:此题考查由递推式求数列的通项公式,考查不等式恒成立问题,解题的关键是归纳出数列的通项公式,并用数学归纳法证明,以及由1n n c c +>得13(1)()2n n λ-->-,然后分类讨论可得结果,考查转化思想,属于中档题16.24【分析】根据可得两式作差可证明为等比数列并求解出通项公式从而可求【详解】因为所以所以所以所以且所以所以为首项为公比为的等比数列所以所以故答案为:【点睛】思路点睛:已知之间的线性关系求解通项公式的解析:24 【分析】根据23n n S a =-可得1123n n S a ++=-,两式作差可证明{}n a 为等比数列并求解出通项公式,从而4a 可求. 【详解】因为23n n S a =-,所以1123n n S a ++=-,所以1122n n n n a S a S ++--=, 所以1122n n n a a a ++=-,所以12n n a a +=,且11123S a a ==-,所以130a =≠, 所以{}n a 为首项为3,公比为2的等比数列,所以132n n a -=⋅,所以4143224a -=⋅=,故答案为:24. 【点睛】思路点睛:已知,n n S a 之间的线性关系,求解{}n a 通项公式的思路: (1)根据已知条件再写一个关于+1+1,n n S a 或()11,2n n S a n --≥的等式;(2)将新式子与原式作差,利用11n n n a S S ++=-或()12n n n a S S n -=-≥求解出{}n a 的一个递推公式;(3)证明{}n a 为等比数列,并求解出通项公式.17.255【分析】根据题目所给递推关系找到数列的规律由此求得前天的请假人数之和【详解】依题意且所以以此类推数列的奇数项均为偶数项是首项为公差为的等差数列所以前项的和故答案为:【点睛】本小题主要考查分组求解析:255 【分析】根据题目所给递推关系找到数列{}n a 的规律,由此求得前30天的请假人数之和30S . 【详解】依题意11a =,22a =,且()*21(1)n n n a a n N +-=+-∈,所以31311101a a a a -=-=⇒==,4241124a a a -=+=⇒=, 53531101a a a a -=-=⇒==, 6461126a a a -=+=⇒=,以此类推,数列{}n a 的奇数项均为1,偶数项是首项为2、公差为2的等差数列, 所以前30项的和()()301112430S =+++++++23015151516152552+=+⨯=+⨯=. 故答案为:255 【点睛】本小题主要考查分组求和法,考查等差数列前n 项和公式,属于中档题.18.【分析】由递推公式可得即以为首项为公比的等比数列根据等比数列的通项公式求出的通项公式即可得解;【详解】解:因为所以即所以以为首项为公比的等比数列所以所以故答案为:【点睛】本题考查由递推公式求数列的通 解析:1231n -⨯-【分析】由递推公式可得()1131n n a a ++=+,即{}1n a +以2为首项,3为公比的等比数列,根据等比数列的通项公式求出{}1n a +的通项公式,即可得解; 【详解】解:因为132n n a a +=+,11a =, 所以()113331n n n a a a ++=+=+,即1131n n a a ++=+ 所以{}1n a +以2为首项,3为公比的等比数列,所以1123n n a -+=⨯ 所以1231n n a -=⨯-故答案为:1231n -⨯- 【点睛】本题考查由递推公式求数列的通项公式,属于中档题.19.5【分析】设偶数项和为则奇数项和为由可得的值根据公差求得结果【详解】设偶数项和为则奇数项和为由可得故公差故答案为:5【点睛】本题考查等差数列的定义和性质得到公差是解题的关键解析:5 【分析】设偶数项和为32k ,则奇数项和为27k ,由3227354k k += 可得k 的值,根据 公差32276k kd -=求得结果. 【详解】 设偶数项和为32k ,则奇数项和为27k ,由322759354k k k +== 可得6k =,故公差32275566k k kd -===, 故答案为:5. 【点睛】本题考查等差数列的定义和性质,得到6k =,公差32276k kd -=,是解题的关键. 20.22【分析】由等差数列的前项和的公式求解解出、的关系式再求出的临界条件最后得解【详解】解:等差数列的前项和为所以所以其中所以当时解得所以的最大自然数的值为22故答案为:22【点睛】本题应用公式等差数解析:22 【分析】由等差数列{}n a 的前n 项和的公式求解149S S =,解出1a 、d 的关系式,再求出0n S =的临界条件,最后得解. 【详解】解:等差数列{}n a 的前n 项和为n S ,149S S =,所以()114579a a a +=,1117(13)9(4)a a d a d ++=+,111a d =-, 所以()12n a n d =-,其中10a >,所以0d <,当0n a =时,解得12n =,()2312312232302S a a a =+==, 1222222()1102a a S d +==->, 所以0n S >的最大自然数n 的值为22.故答案为:22. 【点睛】 本题应用公式()12n n n a a S +=,等差数列的性质:若m n p q +=+,则m n p q a a a a +=+.对数列的公式要灵活应用是快速解题的关键,解出1a 、d 的关系式,再求出0n S =的临界条件,判断满足0n S >的最大自然数n 的值.三、解答题21.(1)12a =;(2)2nn a =,21n b n =-;(3)1(23)26n nT n +=-⋅+.【分析】(1)由题意得出22n n a S =+,令1n =可求得1a 的值;(2)当2n ≥时,由22n n a S =+可得出1122n n a S --=+,两式作差可得出12nn a a -=,可得出数列{}n a 是等比数列,确定该数列的首项和公比,可求得数列{}n a 的通项公式,由题意可推导出数列{}n b 为等差数列,确定该数列的首项和公差,可求得数列{}n b 的通项公式;(3)求得12n n c n +=⋅,然后利用错位相减法可求得n T . 【详解】(1)由22n n a S =+得:1122a S =+ 即1122a a =+解得12a = (2)由22n n S a =-1122(2)n n S a n --=-≥①-②1122n n n n n a S S a a --=-=-12(2)nn a n a -=≥ 所以数列{}n a 是以2为首项,以2为公比的等比数列,则2nn a =又由数列{}bn 中,12b =,点()1,n n P b b +在直线20x y -+=上 得1:20n n b b +-+=且11b = 所以:12(1)21n b n n =+-=- (2)(21)2nn n n c a b n ==-数列{}n C 的前n 项和23412325272(21)2nTn n =⨯+⨯+⨯+⨯+⋯+-⋅23451212325272(21)2n n T n +=⨯+⨯+⨯+⨯+⋯+-⋅()23411222222222(21)2n n n T n +∴-=⨯+⨯+⨯+⨯+⋯+⋅--⋅可得:1(23)26n n T n +=-⋅+【点睛】解答特殊数列(等差数列与等比数列)的问题时,根据已知条件构造关于基本量的方程,解方程求出基本量,再根据定义确定数列的通项公式,当数列表示为等差和等比数列之积时,利用错位相减法求其前n 项和. 22.(1) 31n a n =-;(2) ()24333+2n T n =-. 【分析】(1)设数列{}n a 的公差为d ,由已知求得411a =,再由等差数列的通项公式可求得答案;(2)运用裂项求和法,可求得答案. 【详解】(1)设数列{}n a 的公差为d ,由已知得354222a a a +==,所以411a =, 所以141123413a a d --===-,所以()()1+12+1331n n d n a a n -⨯=-⨯=-=, 所以31n a n =-; (2)由(1)得()()+144411313+23313+2n n n b a a n n n n ⎛⎫===- ⎪--⎝⎭,所以 411111111++++32558811313+2n n n T ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=---- ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()41124323+2333+2n n ⎛⎫=⨯-=- ⎪⎝⎭. 所以()24333+2n T n =-.数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.23.(1)22n a n =-,(1)n b n n =+;(2)证明见解析. 【分析】(1)根据等差数列的通项公式求出公差d 可得n a ,根据等差数列的求和公式可得n S ,根据n n S b +,1n n S b ++,2n n S b ++成等比数列可得(1)n b n n =+; (2)将n c 放大后再裂项,利用裂项求和方法求解可证不等式成立. 【详解】(1)设等差数列{}n a 的公差为d ,由题意得31413124333a a d a a d S a d =+=⎧⎨=+==+⎩,解得102a d =⎧⎨=⎩,从而22n a n =-,2(1)(1)2n n nS n n -==-. 因为n n S b +,1n n S b ++,2n n S b ++成等比数列 所以()()()212n n n n n n S b S b S b +++=++, 从而()211222n n n n n n n n S S b S S b S S +++++=++,所以2221221(1)(1)(1)(2)2(1)(1)2(1)(1)(2)2(1)2n n n n n n n S S S n n n n n n n n b n n S S S n n n n n n ++++-+--+++====++--+++-+. (2)证明:因为n c ===<=, 所以122(10211)2n c c c n n n +++<-+-++--=【点睛】关键点点睛:将n c 放大后再裂项,利用裂项求和方法求解是解题关键.24.(1)21nn b =-;(2)证明见解析.(1)由题可知数列{}n a 为等比数列,公比2q,进一步求出n a 的通项公式,所以112n n n b b ---=,利用累加法求出数列{}n b 的通项公式;(2)利用111212n n -<-对数列进行放缩 ,化简求出答案. 【详解】 (1)12n na a +=,所以数列{}n a 为等比数列,公比2112,12q a q a q =+=,所以12a =,2n n a ∴=所以11211211222,22222n n n n n n b b b b b b ----=⋯-==-=+++=-21n n b ∴=-(2)证明:222112111111114111112121322322n n n n b b b --⎛⎫⎛⎫+++=+++<++++=+- ⎪ ⎪ ⎪--⎝⎭⎝⎭111111626n -⎛⎫=-<⎪⎝⎭【点睛】放缩法的注意事项: (1)放缩的方向要一致。

中职数学数列专项测试

中职数学数列专项测试

中职数学数列专项测试一、单项选择题1.等差数列{an}中,a5+a6+a7=8,a11+a12+a13=44,则公差d为()A.18B.2C.36D.12.在等差数列{an}中,已知a2和a4是方程x2-2x-3=0的两根,则a3等于()A.-2B.2C.-1D.13.若数列{an}的前4项分别为1,3,9,27,按此规律,第5项为()A.36B.108C.54D.814.若101是某数列中的一项,则此数列可能是()A.{n2+1}B.{n2-1}C.{n2-2n+1}D.{n2-n-1}5.在等差数列{an}中,若a3=3,a13=-2,则a21等于()A.-6B.-5C.6D.56.已知数列1,a,5是等差数列,则实数a的值是()A.2B.3C.4D. 57.在等差数列{an}中,若a2=4,a6=18,则a4等于()A.11B.12C.16D.178.在等差数列{an}中,已知a5=8,前5项和等于10,则前10项和等于()A.95B.125C.175D.709.等差数列{an}的前n项和为Sn,且S3=6,a3=4,则公差d=()A.1B.53C.2D.310.数列12,34,78,1516,…的通项公式是( ) A.an =2n +12n B.an =2n +12n C.an =2n -12n D.an =2n +12n11.600是数列1×2,2×3,3×4,4×5,…的( ) A.第20项 B.第24项 C.第25项 D.第30项12.若等差数列{an}的前n 项和Sn =n (n +1)4,则a1+a8等于( ) A.4 B.72 C.5D.9213.数列-1,2,6,11,17,24,32,…的第10项等于( ) A.50 B.51 C.62 D.7014.已知数列{an}是等差数列,a3+a11=50,且a4=13,则公差d 等于( ) A.1 B.4 C.5 D.615.已知数列{an}的前n 项和Sn =2-n2,则a5的值为( ) A.-9 B.-6 C.-3 D.016.若a =2-1,b =2+1,则a ,b 的等差中项为( ) A. 2 B.1 C.0 D.-117.数列{3n -1}为( ) A.递增数列B.递减数列C.常数列D.以上都不对18.已知数列{an}满足an-1-an=-6(n≥2 ),a4=12,则a1=()A.-6B.0C.6D.1219.数列1,1,2,3,5,8,13,x,34,55,…中x的值是()A.19B.20C.21D.2220.在等差数列{an}中,若S10=120,则a1+a10等于()A.12B.24C.36D.48二、填空题21.已知数列12,23,34,45,…,则0.95是该数列的第项.22.数列{an}中an+1=an+13,且a1=2,则a100=.23.数列{an}中an+1=an+13,且a1=2,则a100= .24.数列1,2,3,…,101中各项之和为.25.在等差数列{an}中,若a1=2,a11=32,则公差d = ,S11= .26.在等差数列{an}中,若a3=2,a7=4,则a5= . 27.已知数列的前n 项和为Sn =-2n2+3n ,则它的通项公式是 .28.已知数列{an}的通项公式an =⎩⎪⎨⎪⎧2·3n-1(n 为偶数,n ∈N*),2n -5(n 为奇数,n ∈N*),则a3·a4= .29.某剧院共有25排座位,后一排比前一排多两个座位,最后一排有70个座位,这个剧院共有 个座位.30.已知数列{an}的通项公式为an =100-3n ,则第 项开始出现负值.31.已知数列{an}的前n 项和Sn =log3(2n +1),则a14+a15+a16+…+a40= .32.在数列{an}中,若a1=1,an +1=an +2(n ∈N*),则该数列的通项公式为 .33.在等差数列{an}中,若a3=7,a4=8,则a7= . 34.已知等差数列{an}的通项公式为an =3-2n ,则公差d = .35.在-1和8之间插入两个数a ,b ,使这四个数成等差数列,则a +b = . 三、解答题36.在等差数列{an}中,已知a2=2,a7,=22. 求:(1)a12的值;(2)a1+a3+a5+a7+a9的和.37.判断22是否为数列{n2-n-20}中的项.如果是,请指出22在数列中的项数.38.已知三个数a1,a2,a3顺次成等差数列,其和为72,且a3=2a1,求这三个数.39.已知无穷数列7,4,3,…,n+6n,…请回答以下问题:(1)求这个数列的第10项;(2)5350是这个数列的第几项?(3)这个数列有多少整数项?(4)有没有等于项数号的13倍的项?如果有,求出这些项;如果没有,试说明理由.40.已知等差数列{an}中,a2=4,a4+a7=15.(1)求数列{an}的通项公式;(2)设bn=2an-2+n,求b1+b2+…+b10的值.41.设等差数列{an}的前n项和为Sn,已知a10=30,a20=50. (1)求数列{an}的通项公式;(2)若Sn=242,求n的值.答案一、单项选择题1.B2.D3.D4.A5.A 【解析】∵在等差数列{an}中,a3=3,a13=-2,∴-2=3+10d ,解得d =-12,故a21=3+18d =-6. 6.B7.A 【提示】∵a2=4,a6=18,∴⎩⎪⎨⎪⎧a1+d =4,a1+5d =18,解得⎩⎪⎨⎪⎧a1=12,d =72.∴a4=a1+3d =12+3×72=11.(或利用等差中项的性质a4=a2+a62=11)8.A 【提示】S5=5(a1+a5)2 =5(a1+8)2 =10⇒a1=-4,a5-a1=4d ,即8-(-4)=4d ⇒d =3.S10=10a1+10×92 d =10×(-4)+45×3=95.故选A.9.C 【提示】由等差数列的前n 项和定义可得:1133624a d a d +=⎧⎨+=⎩,解得d=2. 10.C11.B 【提示】∵600=24×25,∴600是数列的第24项.12.D 【提示】等差数列前n 项和Sn =n (a1+an )2,a1+a8=2S88. 13.C 14.B【提示】根据等差数列性质求得a7=25,则d=a7-a43=4,选B.15.A16.A【提示】由等差中项定义得2x=2-1+2+1,解得x= 2.17.A18.A19.C【提示】本题中的数列是一个斐波那契数列,从第3项起每一项都等于其前两项之和,故x=8+13=21.20.B【提示】∵S10=10(a1+a10)2=120,∴a1+a10=24.二、填空题21.1922.3523.3524.5 15125.3 18726.3【提示】a5-a3=a7-a5得2a5=a3+a7.27.an=-4n+528.5429.115030.3431.1【提示】当n=1时,a1=1;当n≥2,n∈N*时,因为Sn=log3(2n+1),所以Sn-1=log3(2n-1),an=Sn-Sn-1=log32121nn+-,故a14+a15+…+a40=log32927+log33129+…+log38179=log38127=log33=1.32.an=2n-1【提示】由an+1=an+2,得an+1-an=2,∴数列{an}是等差数列,an=1+2(n-1)=2n-1.33.1134.-235.7三、解答题36.(1)42(2)7037.解:解方程n2-n-20=22,得n=7或n=-6(舍去),∴22在数列中的项数是7.38.16,24,3239.解:(1)a10=10+610=85.(2)由5350=n+6n得n=100.(3)∵当n=1,2,3,6时,an=1+6n∈Z,∴an共有4个整数项,分别是a1,a2,a3和a6(4)有这样的项an=n3=n+6n,得n2-3n-18=0,解得n=6或n=-3(舍去). ∴第6项满足条件.40.解:(1)由题意⎩⎪⎨⎪⎧a1+d =4,a1+3d +a1+6d =15,解得⎩⎪⎨⎪⎧a1=3,d =1,∴an =n +2.(2)∵bn =2an -2+n =2n +n ,∴b1+b2+...+b10=(2+22+23+...+210)+(1+2+3+ (10)=2×(1-210)1-2+10×(1+10)2 =2101.41.解:(1)由题意得⎩⎪⎨⎪⎧a1+9d =30,a1+19d =50,解得⎩⎪⎨⎪⎧a1=12,d =2,∴an =2n +10.(2)Sn =12n +n (n -1)2·2=242, 解得n =11或n =-22(舍去).。

数列综合测试题

数列综合测试题

高二数学数列综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a ,b ,c 成等比数列,a ,m ,b 与b ,n ,c 分别成两个等差数列,则a m +cn等于 ( )A .4B .3C .2D .1 2.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线斜率为 ( )A .4 B.14 C .-4 D .-143.设等比数列{a n }的前n 项与为S n ,若S 6S 3=3,则S 9S 6= ( )A .2 B.73 C.83D .34.已知数列{a n }的前n 项与为S n ,且15S n =a n -1,则a 2等于 ( ) A .-54 B.54 C.516 D.25165.等比数列{a n }的前n 项与为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4=( ) A .7 B .8 C .15 D .166.若数列{a n }的通项公式为a n =n (n -1)·…·2·110n,则{a n }为( )A .递增数列B .递减数列C .从某项后为递减D .从某项后为递增7.等差数列{a n }的通项公式是a n =1-2n ,其前n 项与为S n ,则数列{S nn}的前11项与为( )A .-45B .-50C .-55D .-668.设数列{a n }的前n 项与为S n , 已知15a =,且12(1)(1)n n nS n n n S +=+++( n ∈N*), 则过点P(n,n a ) 与Q(n+2,2+n a )( n ∈N*)的直线的一个方向向量的坐标可以是 ( )A .(2,21)B .(-1, -1)C .(21-, -1)D .(2,21--)9.在等比数列{a n }中,若a 3a 5a 7a 9a 11=32,则a 29a 11的值为( )A .4B .2C .-2D .-410.已知两个等差数列{a n }与{b n }的前n 项与分别为A n 与B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是 ( )A .2B .3C .4D .511.已知{a n }是递增数列,对任意的n ∈N *,都有a n =n 2+λn 恒成立,则λ的取值范围是 ( )A .(-72,+∞) B .(0,+∞)C .(-2,+∞)D .(-3,+∞)12.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2 008项的与等于 ( ) A .1 506 B .3 012 C .1 004D .2 008二、填空题(本大题共4小题,每小题4分,共16分.将答案填写在题中的横线上)13.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时3a n +1,当a n 为奇数时,若a 6=1,则m 所有可能的取值为________.14.已知数列{a n }满足a 1=12,a n =a n -1+1n 2-1(n ≥2),则{a n }的通项公式为________.15.已知等差数列{a n }的首项a 1及公差d 都是整数,前n 项与为S n (n ∈N *).若a 1>1,a 4>3,S 3≤9,则通项公式a n =________. 16.下面给出一个“直角三角形数阵”: 14 12,1434,38,316满足每一列的数成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为a ij (i ≥j ,i ,j ∈N *),则a 83=________.三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. ⑴求数列{a n }与{b n }的通项公式.⑵设数列{c n }对任意正整数n ,均有1332211+=+⋯⋯+++n nna b c b c b c b c ,求c 1+c 2+c 3+…+c 2010的值. 18.(本小题满分12分)已知数列{a n }中,其前n 项与为S n ,且n ,a n ,S n 成等差数列(n ∈N *). (1)求数列{a n }的通项公式;(2)求S n >57时n 的取值范围. 19.(本小题满分12分)已知二次函数f (x )=x 2-ax +a (a ≠0),不等式f (x )≤0的解集有且只有一个元素,设数列{a n }的前n 项与为S n =f (n ).(1)求数列{a n }的通项公式;(2)设各项均不为0的数列{c n }中,满足c i ·c i +1<0的正整数i 的个数称作数列{c n }的变号数,令c n =1-aa n(n ∈N *),求数列{c n }的变号数.20.(本小题满分12分)已知数列{a n }满足:a 1=1,a 2=12,且[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *.(1)求a 3,a 4,a 5,a 6的值及数列{a n }的通项公式; (2)设b n =a 2n -1·a 2n ,求数列{b n }的前n 项与S n .21.(本小题满分12分)已知数列{a n }的前n 项与为S n ,点(n ,S nn)在直线y =12x +112上.数列{b n }满足b n +2-2b n +1+b n =0(n ∈N *),b 3=11,且其前9项与为153.(1)求数列{a n },{b n }的通项公式;(2)设c n =3(2a n -11)(2b n -1),数列{c n }的前n 项与为T n ,求使不等式T n >k57对一切n ∈N *都成立的最大正整数k 的值.22.(本小题满分14分)在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n ≥2,n ∈N).(1)试判断数列{1a n}是否为等差数列;(2)若λa n +1a n +1≥λ,对任意n ≥2的整数恒成立,求实数λ的取值范围.数列综合测试题参考答案一、选择题CABDC DDDBD DA 二、填空题13、4,5,32 14、a n =54-2n +12n (n +1)15、n +1 16、12三、解答题17.⑴由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.⑵当n =1时,c 1=3 当n ≥2时,∵,1n n nna abc -=+∴⎩⎨⎧≥⋅==-)2(32)1(31n n c n n故132-⋅=n n c18.解:(1)∵n ,a n ,S n 成等差数列,∴S n =2a n -n ,S n -1=2a n -1-(n -1) (n ≥2), ∴a n =S n -S n -1=2a n -2a n -1-1 (n ≥2), ∴a n =2a n -1+1 (n ≥2),两边加1得a n +1=2(a n -1+1) (n ≥2),∴a n +1a n -1+1=2 (n ≥2). 又由S n =2a n -n 得a 1=1.∴数列{a n +1}是首项为2,公比为2的等比数列,∴a n +1=2·2n -1,即数列{a n }的通项公式为a n =2n -1. (2)由(1)知,S n =2a n -n =2n +1-2-n ,∴S n +1-S n =2n +2-2-(n +1)-(2n +1-2-n ) =2n +1-1>0,∴S n +1>S n ,{S n }为递增数列.由题设,S n >57,即2n +1-n >59. 又当n =5时,26-5=59,∴n >5.∴当S n >57时,n 的取值范围为n ≥6(n ∈N *).19.解:(1)由于不等式f (x )≤0的解集有且只有一个元素, ∴Δ=a 2-4a =0⇒a =4, 故f (x )=x 2-4x +4.由题S n =n 2-4n +4=(n -2)2 则n =1时,a 1=S 1=1;n ≥2时,a n =S n -S n -1=(n -2)2-(n -3)2=2n -5, 故a n =⎩⎪⎨⎪⎧1 n =1,2n -5 n ≥2.(2)由题可得,c n =⎩⎪⎨⎪⎧-3 n =11-42n -5 n ≥2.由c 1=-3,c 2=5,c 3=-3,所以i =1,i =2都满足c i ·c i +1<0,当n ≥3时,c n +1>c n ,且c 4=-13,同时1-42n -5>0⇒n ≥5,可知i =4满足c i 、c i +1<0,n ≥5时,均有c n c n +1>0.∴满足c i c i +1<0的正整数i =1,2,4,故数列{c n }的变号数为3.20.解:(1)经计算a 3=3,a 4=14,a 5=5,a 6=18.当n 为奇数时,a n +2=a n +2,即数列{a n }的奇数项成等差数列,∴a 2n -1=a 1+(n -1)·2=2n -1.当n 为偶数时,a n +2=12a n ,即数列{a n }的偶数项成等比数列,∴a 2n =a 2·(12)n -1=(12)n.因此,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧n (n 为奇数),(12)n2(n 为偶数).(2)∵b n =(2n -1)·(12)n,∴S n =1·12+3·(12)2+5·(12)3+…+(2n -3)·(12)n -1+(2n -1)·(12)n, ①12S n =1·(12)2+3·(12)3+5·(12)4+…+(2n -3)·(12)n+(2n -1)·(12)n +1, ②①②两式相减, 得12S n =1·12+2[(12)2+(12)3+…+(12)n ]-(2n -1)·(12)n +1 =12+12·[1-(12)n -1]1-12-(2n -1)·(12)n +1=32-(2n +3)·(12)n +1. ∴S n =3-(2n +3)·(12)n .21.解:(1)由已知得S n n =12n +112,∴S n =12n 2+112n .当n ≥2时,a n =S n -S n -1 =12n 2+112n -12(n -1)2-112(n -1)=n +5; 当n =1时,a 1=S 1=6也符合上式. ∴a n =n +5.由b n +2-2b n +1+b n =0(n ∈N *)知{b n }是等差数列,由{b n }的前9项与为153,可得9(b 1+b 9)2=9b 5=153,得b 5=17,又b 3=11,∴{b n }的公差d =b 5-b 32=3,b 3=b 1+2d ,∴b 1=5,∴b n =3n +2.(2)c n =3(2n -1)(6n +3)=12(12n -1-12n +1),∴T n =12(1-13+13-15+…+12n -1-12n +1)=12(1-12n +1). ∵n 增大,T n 增大, ∴{T n }是递增数列.∴T n ≥T 1=13.T n >k57对一切n ∈N *都成立,只要T 1=13>k57,∴k <19,则k max =18.22.解:(1)∵a 1≠0,∴a n ≠0,∴由已知可得1a n -1a n -1=3(n ≥2),故数列{1a n}是等差数列.(2)将a n =1b n =13n -2代入λa n +1a n +1≥λ并整理得λ(1-13n -2)≤3n +1,∴λ≤(3n +1)(3n -2)3n -3,原命题等价于该式对任意n ≥2的整数恒成立.设C n =(3n +1)(3n -2)3n -3,则C n +1-C n =(3n +1)(3n -4)3n (n -1)>0,故C n +1>C n ,∴C n 的最小值为C 2=283,∴λ的取值范围是(-∞,283].。

数列测试题及答案

数列测试题及答案

数列测试题及答案【篇一:数列测试题及答案】p> 1、(2010全国卷2理数)如果等差数列?an?中,a3?a4?a5?12,那么a1?a2?...?a7? (a)14 (b)21(c)28 (d)35 【答案】c【解析】a3?a4?a5?3a4?12,a4?4,?a1?a2???a7?7(a1?a7)?7a4?28 22、(2010辽宁文数)设sn为等比数列?an?的前n项和,已知3s3?a4?2,3s2?a3?2,则公比q?(a)3(b)4(c)5(d)6解析:选b. 两式相减得, 3a3?a4?a3,a4?4a3,?q?a4?4. a33、(2010安徽文数)设数列{an}的前n项和sn?n2,则a8的值为(a) 15 (b) 16(c)49(d)64 答案:a【解析】a8?s8?s7?64?49?15.4、(2010浙江文数)设sn为等比数列{an}的前n项和,8a2?a5?0则(a)-11 (c)52s5? s2(b)-8 (d)1112 b. c. 222 d.2【答案】b【解析】设公比为q,由已知得a1q?a1q?2a1q为正数,所以q?28?42?,即q2?2,又因为等比数列{an}的公比故a1?a2,选b ??q25n?6(、2009广东卷理)已知等比数列{an}满足an?0,n?1,2,?,且a5a?2则当n?1时,log2a1?log2a3???log2a2n?1??22nn(?3),22a. n(2n?1)b. (n?1)c. nd. (n?1)22【解析】由a5?a2n?5?22n(n?3)得an则an?2n,log2a1?log2a3????? an?0,?22n,log2a2n?1?1?3?????(2n?1)?n2,选c.7、(2009江西卷文)公差不为零的等差数列{an}的前n项和为sn.若a4是a3与a7的等比中项, s8?32,则s10等于a. 18b. 24c. 60d. 90 答案:c2【解析】由a4?a3a7得(a1?3d)2?(a1?2d)(a1?6d)得2a1?3d?0,再由56d?32得 2a1?7d?8则d?2,a1??3,所以290s10?10a?d?60,.故选c 12s8?8a1?8、(2009辽宁卷理)设等比数列{ an}的前n 项和为sn ,若s6s=3 ,则 9 = s3s6(a) 2 (b)78(c)(d)3 33s6(1?q3)s3【解析】设公比为q ,则=1+q3=3 ? q3=2 ?s3s3s91?q3?q61?2?47于是??? 3s61?q1?23【答案】b9、(2009安徽卷理)已知?an?为等差数列,a1+a3+a5=105,a2?a4?a6=99,以sn表示?an?的前n项和,则使得sn达到最大值的n是(a)21(b)20 (c)19 (d) 18[解析]:由a1+a3+a5=105得3a3?105,即a3?35,由a2?a4?a6=99得3a4?99即?an?0得n?20,选b a4?33 ,∴d??2,an?a4?(n?4)?(?2)?41?2n,由? a?0?n?110、2009上海十四校联考)无穷等比数列1,212,,,…各项的和等于 224c.2?1d.2?1()a.2?2 b.2?2答案b11、(2009江西卷理)数列{an}的通项an?n(cos22n?n??sin2),其前n项和为sn,则33s30为a.470 b.490 c.495d.510 答案:a【解析】由于{cos2n?n??sin2以3 为周期,故 3312?2242?52282?29222s30?(??3)?(??6)???(??302)22210(3k?2)2?(3k?1)259?10?112??[??(3k)]??[9k?]??25?470故选a222k?1k?11012、2009湖北卷文)设x?r,记不超过x的最大整数为[x],令{x}=x-[x],则{[5?1?1], 22?1},2a.是等差数列但不是等比数列b.是等比数列但不是等差数列c.既是等差数列又是等比数列d.既不是等差数列也不是等比数列【答案】b【解析】可分别求得?????数列.二、填空题,?1.则等比数列性质易得三者构成等比13、(2010辽宁文数)(14)设sn为等差数列{an}的前n项和,若s3?3,s6?24,则a9?3?2?s?3a?d?31??a1??1?32解析:填15. ?,解得?,?a9?a1?8d?15. 6?5d?2??s?6a?d?2461?2?14、(2010福建理数)11.在等比数列?an?中,若公比q=4,且前3项之和等于21,则该数列的通项公式an?.【答案】4n-1n-1【解析】由题意知a1?4a1?16a1?21,解得a1?1,所以通项an?4。

(必考题)高中数学必修五第一章《数列》测试卷(有答案解析)(1)

(必考题)高中数学必修五第一章《数列》测试卷(有答案解析)(1)

一、选择题1.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .172.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .543.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .64.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞5.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( )A .2018B .2019C .2020D .20216.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .87.已知等差数列{}n a 的前n 和为n S ,若1239a a a ++=,636S =,则12(a = ) A .23B .24C .25D .268.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( )A .11n + B .1n n + C .1n n- D .11n n -+ 9.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .410.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .202211.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .912.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-二、填空题13.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.14.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记*1,n n n P AP n N θ+∠=∈.若32arctan 9θ=,则点A 的坐标为________.15.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+ ⎪⎝⎭,则2018S =______. 16.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 17.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________. 18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数). 从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______. 19.等差数列{}n a 的前n 项和为n S ,且4873a a a +-=_________. 20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________. 三、解答题21.设数列{}n a 满足()121*4n n a n N a +=-∈-,其中11a =. (1)证明:112n a ⎧⎫-⎨⎬-⎩⎭是等比数列; (2)令32n n n a b a -=-,设数列(){}21-⋅n n b 的前n 项和为n S ,求使2021n S <成立的最大自然数n 的值.22.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.23.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .24.已知递增等比数列{}n a 满足:12a =,416a = . (1)求数列{}n a 的通项公式;(2)若数列{}n b 为等差数列,且满足221b a =-,3358b a =,求数列{}n b 的通项公式及前10项的和;25.设数列{}n a 的前n 项和为n S ,______.从①数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列;②22n n S a =-;③122n n S +=-.这三个条件中任选一个,补充在下面问题中,并作答.(1)求数列{}n a 的通项公式; (2)若21log nn na b a +=,求数列{}n b 的前n 项和n T .26.已知数列{}n a 的前n 项和为21n S n n =++.(1)求这个数列的通项公式; (2)设()11n n n b n a a *+=∈N ,证明:对n *∀∈N ,数列{}n b 的前n 项和524n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.2.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.3.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.4.D解析:D【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.5.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2. 142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+(1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.6.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1) 即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列. 所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nnS n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.7.A解析:A 【解析】等差数列{}n a 的前n 和为n S ,1239a a a ++=,636S =,11339656362a d a d +=⎧⎪∴⎨⨯+=⎪⎩,解得1a 1,d 2,12111223a =+⨯=,故选A.8.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.9.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.10.D解析:D 【分析】根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.11.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=, 由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=.故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.12.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.二、填空题13.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++= 所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-= 所以1112n nS S +-=又11113S a == 所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列, 所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键. 14.或【分析】设点的坐标利用两角差正切公式求列式解得结果【详解】设因为所以或故答案为:或【点睛】本题考查两角差正切公式等比数列考查综合分析求解能力属中档题解析:(0,2)或(0,16) 【分析】设点A 的坐标,利用两角差正切公式求3tan θ,列式解得结果. 【详解】设(0,),0A a a >,因为233443343,124,128P AP AP OAP O x x θ=-=⨯==⨯=∠∠=∠所以238442284t 21an 39a a a a a a aθ-===∴=++⋅或16 故答案为:(0,2)或(0,16)【点睛】本题考查两角差正切公式、等比数列,考查综合分析求解能力,属中档题.15.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N *∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+= ⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=,201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.16.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.17.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27 【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n na a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n n a a +-=,这里再计算21a a -,如果2211()22n na a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.【分析】首先设出等差数列的首项和公差根据其通项公式得到再根据其求和公式得到从而得到结果【详解】设等差数列的首项为公差为则有因为所以故答案为:【点睛】思路点睛:该题考查的是有关等差数列的问题解题思路如 解析:13313S 【分析】首先设出等差数列的首项和公差,根据其通项公式,得到487733a a a a +-=,再根据其求和公式,得到13713S a =,从而得到结果. 【详解】设等差数列的首项为1a ,公差为d ,则有48711117333(7)(6)318=3a a a a d a d a d a d a +-=+++-+=+, 因为11313713()132a a S a +==,所以487133313a a a S +-=, 故答案为:13313S . 【点睛】思路点睛:该题考查的是有关等差数列的问题,解题思路如下:(1)首先设出等差数列的首项和公差;(2)利用等差数列的通项公式,得到项之间的关系,整理得出487733a a a a +-=; (3)利用等差数列的求和公式,求得13713S a =; (4)比较式子,求得结果.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)证明见解析;(2)最大自然数6n =. 【分析】(1)根据题中条件,可得1112n a +--的表达式,根据等比数列的定义,即可得证;(2)由(1)可得1122n n a -=-,则可得2n n b =,根据错位相减求和法,可求得n S 的表达式,根据n S 的单调性,代入数值,分析即可得答案. 【详解】解:(1)∵()1621*44n n n n a a n N a a +-=-=∈--, ∴()()1116323346312311122162262822224n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a +++----⎛⎫----+--======- ⎪-----+----⎝⎭--即11122112n n a a +--=--, ∴112n a ⎧⎫-⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列. (2)由(1)知,1122n n a -=-, 即321112222n n n n n n n a a b a a a ---==-==---, ∴()()21212-⋅=-⋅nn n b n ,()123123252212n n S n =⋅+⋅+⋅++-⋅,① ()23412123252212n n S n +=⋅+⋅+⋅++-⋅,②①减②得()()()112311421222222122221212n nn n n S n n +++--=⋅++++--⋅=+⋅--⋅-()13226n n +=-⋅-.∴()12326n n S n +=-⋅+.∴()()()21112122322210++++-=-⋅--⋅=+>n n n n n S S n n n ,∴n S .单调递增.∵7692611582021S =⨯+=<,87112628222021S =⨯+=>.故使2021n S <成立的最大自然数6n =. 【点睛】解题的关键是根据所给形式,进行配凑和整理,根据等比数列定义,即可得证,求和常用的方法有:①公式法,②倒序相加法,③裂项相消法,④错位相减法等,需熟练掌握. 22.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23nnn c =+代入上式,整理得1(2)(3)2306n n k k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N , 将23nnn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅, 事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.23.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n n a an n+=+,得到{}n b 为等比数列,(2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅,12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.24.(1)2nn a =;(2)21n b n =-,数列{}n b 前10项的和10100S =.【分析】(1)利用等比数列的通项公式,结合已知12a =,416a =,可以求出公比,这样就可以求出数列{}n a 的通项公式;(2)由数列{}n a 的通项公式,可以求出21a -和 358a 的值,这样也就求出2b 和 3b 的值,这样可以求出等差数列{}n b 的公差,进而可以求出通项公式,利用前n 项和公式求出数列{}n b 前10项的和.【详解】(1)设等比数列的公比为q ,由已知12a =,34121616q a a q =⇒⋅=⇒=,所以112n n n a q a -=⋅=,即数列{}n a 的通项公式为2n n a =;(2)由(1)知2nn a =,所以2221213b a =-=-=,333552588b a ==⨯=, 设等差数列{}n b 的公差为d ,则322d b b -==,12121n d b b n b =-=∴=-, 设数列{}n b 前10项的和为10S ,则11010910910101210022S d b ⨯⨯=+⋅=⨯+⨯=, 所以数列{}n b 的通项公式21n b n =-,数列{}n b 前10项的和10100S =. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.25.(1)条件性选择见解析,2n n a =;(2)332n nn T +=-. 【分析】(1)选①:由题意可得32442a a a =+-,再利用等比数列的公比为2可求1a ,进而可求数列{}n a 的通项公式;选②:22n n S a =-,令1n =可求1a ,当2n ≥时,可得1122n n S a --=-,与已知条件两式相减可求得()122n n a a n -=≥,进而可求数列{}n a 的通项公式;选③:122n n S +=-,当1n =时,112S a ==,当2n ≥时,122n n S -=-,与已知条件两式相减可求得2nn a =,检验12a =也满足,进而可求数列{}n a 的通项公式;(2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===,利用乘公比错位相减即可求和. 【详解】(1)选①:因为2a ,3a ,44a -成等差数列, 所以32442a a a =+-,又因为数列{}n a 的公比为2,所以2311122242a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =, 所以1222n n n a -=⨯=.选②:因为22n n S a =-,当1n =时,1122S a =-,解得12a =. 当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-. 即()122n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列. 故1222n n n a -=⨯=.选③:因为122n n S +=-,所以当1n =时,112S a ==,当2n ≥时,122nn S -=-,所以()()1122222n n nn n n a S S +-=-=---=,当1n =时,1122a ==依然成立.所以2nn a =. (2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===, 所以2323412222n n n T +=++++, ① 231123122222n n n n n T ++=++++, ② ①-②得23111111122222n n n n T ++⎛⎫=++++- ⎪⎝⎭ 212111111111111121222211111222221122n n n n n n n n n -+++++⎛⎫-- ⎪+++⎝⎭=+-=+-=+---- 13322n n ++=-. 所以332n nn T +=-. 所以数列{}n b 的前n 项和332n n n T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 26.(1)*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩;(2)证明见解析. 【分析】(1)利用*1,(1),(2,)n n nn S n a S S n n N -=⎧=⎨-≥∈⎩求解即可;(2)利用n a 求n b ,当1n =时,1151224b =≤显然成立,当2n ≥时,利用列项相消法求和判断即可. 【详解】解:(1)当1n =时,111113a S ==++=;当2n ≥时,1n n n a S S -=-22(1)[(1)(1)1]n n n n =++--+-+2n =,所以*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩; (2)由(1)易知*1,(1)121(2,),4(1)n n b n n N n n ⎧⎪=⎪=⎨≥∈⎪+⎪⎩ 当1n =时,1151224b =≤显然成立. 当2n ≥时,1111()4(1)41n b n n n n ==-++, 123n n T b b b b =+++ 11111111[()()()]12423341n n =+-+-++-+ 1111()12421n =+-+ 515244(1)24n =-<+; 故结论成立.【点睛】关键点睛:本题考查数列求通项公式,利用数列求和证明不等式.利用列项相消法求和是解决本题的关键.。

数列找规律

数列找规律

课前小测观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.①2,5,8,11,(),17,20。

②19,17,15,13,(),9,7。

③1,3,9,27,(),243。

④64,32,16,8,(),2。

⑤1,1,2,3,5,8,(),21,34…⑥1,3,4,7,11,18,(),47…⑦1,3,6,10,(),21,28,36,().⑧1,2,6,24,120,(),5040。

⑨1,1,3,7,13,(),31。

⑩1,3,7,15,31,(),127,255。

(11)1,4,9,16,25,(),49,64。

(12)0,3,8,15,24,(),48,63。

(13)1,2,2,4,3,8,4,16,5,().(14)2,1,4,3,6,9,8,27,10,().习题一1.观察下面已给出的数表,并按规律填空:2.下面一张数表里数的排列存在着某种规律,请你找出规律之后,按照规律填空。

3.下图是自然数列排成的数表,按照这个规律,1993在哪一列?习题二1.根据下列各串数的规律,在括号中填入适当的数:(1)1,4,7,10,(),16,……(2)2,3,5,8,13,(),34,……(3)1,2,4,8,16,(),……(4)2,6,12,20,(),42,……2.观察下列各串数的规律,在括号中填入适当的数:(1)2,3,5,7,11,13,(),19,……(2)1,2,2,4,8,32,(),……(3)2,5,11,23,47,(),……(4)6,7,3,0,3,3,6,9,5,(),……3.观察下列各串数的规律,并在每小题的两个括号内填入适当的数:(1)1,1,2,4,3,9,4,16,(),25,6,(),……(2) 15, 16, 13, 19, 11, 22,(), 25, 7,(),……4.按规律填上第五个数组中的数:{1,5,10}{2,10,20}{3,15,30}{4,20,40}{ }习题三1.有一本书共200页,页码依次为1、2、3、……、199、200,问数字“1”在页码中共出现了多少次?3.在10至100的自然数中,个位数字是2或是7的数共有多少个?5.像“21”这个两位数,它的十位数字“2”大于个位数字“1”,问从1至100的所有自然数中有多少个这样的两位数?7.像11、12、13这三个数,它们的数位上的各个数字相加之和是(1+1)+(1+2)+(1+3)=9.问自然数列的前20个数的数字之和是多少?8.把1到100的一百个自然数全部写出来,用到的所有数字的和是多少习题四1.观察图6—4中的点群,请回答:(1)方框内的点群包含多少个点?(2)第10个点群中包含多少个点?(3)前十个点群中,所有点的总数是多少?2.观察下面图6—5中的点群,请回答:(1)方框内的点群包含多少个点?(2)推测第10个点群中包含多少个点?(3)前10个点群中,所有点的总数是多少?3.观察图6—6中的点群,请回答:(1)方框内的点群包含多少个点?(2)推测第10个点群包含多少个点?(3)前十个点群中,所有点的总数是多少?4.图6—7所示为一堆砖.中央最高一摞是10块,它的左右两边各是9块,再往两边是8块、7块、6块、5块、4块、3块、2块、1块.问:(1)这堆砖共有多少块?(2)如果中央最高一摞是10O块,两边按图示的方式堆砌,问这堆砖共多少块?随堂小测1.从1开始的自然数如下排列,则第2行中的第7个数是多少?2.下面各列算式分别按一定规律排列,请分别求出它们的第40个算式:(1)1+1,2+3,3+5,1+7,2+9,3+11,1+13,2+15,(2)1×3,2×2,1×1,2×3,1×2,2×1,1×3,……3.像“101”这个三位数,它的个位数字与百位数字调换以后,数的大小并不改变,问从100至200之间有多少个这样的三位数?4.图6—8所示为堆积的方砖,共画出了五层.如果以同样的方式继续堆积下去,共堆积了10层,问:(1)能看到的方砖有多少块?(2)不能看到的方砖有多少块?。

【强力推荐_高中数学数列测试题】[1]技巧归纳[1] - 副本

【强力推荐_高中数学数列测试题】[1]技巧归纳[1] - 副本

第二章 数列课堂练习1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则|m -n |等于( ).A .1B .43 C .21 D .835.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .1926.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4 006C .4 007D .4 0087.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4B .-6C .-8D . -108.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1B .-1C .2D .219.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则212b a a 的值是( ).A .21 B .-21 C .-21或21 D .4110.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38B .20C .10D .9二、填空题11.设f (x )=221+x,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= . (2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= . (3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= . 13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 .14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 . 15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= .三、解答题17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.(2)已知a1,b1,c1成等差数列,求证ac b +,ba c +,cb a +也成等差数列.18.设{a n }是公比为 q 的等比数列,且a 1,a 3,a 2成等差数列. (1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n与b n 的大小,并说明理由.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2 S n (n =1,2,3…).求证:数列{nS n }是等比数列.20.已知数列{a n }是首项为a 且公比不等于1的等比数列,S n 为其前n 项和,a 1,2a 7,3a 4成等差数列,求证:12S 3,S 6,S 12-S 6成等比数列.第二章 数列参考答案一、选择题 1.C解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 005=1+3(n -1),∴n =699. 2.C解析:本题考查等比数列的相关概念,及其有关计算能力. 设等比数列{a n }的公比为q (q >0),由题意得a 1+a 2+a 3=21, 即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7. 解得q =2或q =-3(不合题意,舍去), ∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84. 3.B .解析:由a 1+a 8=a 4+a 5,∴排除C . 又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8. 4.C 解析: 解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4, ∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根.∴167,1615分别为m 或n ,∴|m -n |=21,故选C .解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n .由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47,∴m =167,n =1615,∴|m -n |=21.5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27,∴q =3,a 1q =9,a 1=3, ∴S 4=3-13-35=2240=120.6.B 解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0,∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0,故4 006为S n >0的最大自然数. 选B .解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最大值.∵S n 是关于n 的二次函数,如草图所示,∴2 003到对称轴的距离比2 004到对称轴的距离小, ∴20074在对称轴的右侧.根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最大自然数是4 006.7.B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6, 又由a 1,a 3,a 4成等比数列,(第6题)∴(a 1+4)2=a 1(a 1+6),解得a 1=-8, ∴a 2=-8+2=-6. 8.A解析:∵59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59·95=1,∴选A .9.A解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q 4, ∴d =-1,q 2=2, ∴212b a a -=2qd -=21.10.C解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n , 又a n ≠0,∴a n =2,{a n }为常数数列, 而a n =1212--n S n ,即2n -1=238=19,∴n =10. 二、填空题 11.23. 解析:∵f (x )=221+x,∴f (1-x )=2211+-x=xx2222⋅+=xx22221+,∴f (x )+f (1-x )=x221++xx22221+⋅=x x222211+⋅+=xx22)22(21++=22.设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6), 则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62, ∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32. 12.(1)32;(2)4;(3)32.解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a ,∴a 5+a 6=(a 1+a 2)q 4=4. (3)2=+=+++=2=+++=4444821843214q qS S a a a S a a a a S ⇒⎪⎩⎪⎨⎧⋅⋅⋅,∴a 17+a 18+a 19+a 20=S 4q 16=32. 13.216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10, ∴6(a 4+a 10)=24,a 4+a 10=4, ∴S 13=2+13131)(a a =2+13104)(a a =2413⨯=26.15.-49.解析:∵d =a 6-a 5=-5, ∴a 4+a 5+…+a 10 =2+7104)(a a=25++-755)(d a d a=7(a 5+2d ) =-49. 16.5,21(n +1)(n -2).解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5, f (5)=f (4)+4=2+3+4=9, ……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2).三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5, n =1时,亦满足,∴a n =6n -5(n ∈N*).首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*), ∴数列{a n }成等差数列且a 1=1,公差为6. (2)∵a 1,b 1,c1成等差数列,∴b2=a1+c1化简得2ac =b (a +c ).ac b ++cb a +=acaba c bc +++22=acca c ab 22+++)(=acc a 2+)(=2++2)()(c a b c a =2·bc a +, ∴ac b +,ba c +,cb a +也成等差数列.18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q , ∵a 1≠0,∴2q 2-q -1=0, ∴q =1或-21.(2)若q =1,则S n =2n +21-)(n n =23+2n n .当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n .若q =-21,则S n =2n +21-)(n n (-21)=49+-2nn .当n ≥2时,S n -b n =S n -1=4-11-)0)((n n ,故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n . 19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n ,∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n , 所以1+1+n S n =nS n 2.故{nS n}是以2为公比的等比数列.20.证明:由a 1,2a 7,3a 4成等差数列,得4a 7=a 1+3a 4,即4 a 1q 6=a 1+3a 1q 3, 变形得(4q 3+1)(q 3-1)=0, ∴q 3=-41或q 3=1(舍).由3612S S =qq a q q a ----1)1(121)1(3161=1213q +=161;6612S S S -=612S S -1=qq a q q a ----1)1(1)1(61121-1=1+q 6-1=161;得3612S S =6612S S S -.∴12S 3,S 6,S 12-S 6成等比数列.。

2019_2020学年高中数学第二章数列能力测试新人教A版必修5

2019_2020学年高中数学第二章数列能力测试新人教A版必修5

第二章 数列能力检测满分150分.考试时间120分钟.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019年山西太原期末)数列1,3,6,10,…的一个通项公式是( ) A .a n =n n +12B .a n =n n -12C .a n =n 2-(n -1) D .a n =n 2-1【答案】A【解析】观察数列1,3,6,10,…,可以发现1=1,3=1+2,6=1+2+3,10=1+2+3+4,…,第n 项为1+2+3+4+…+n =n n +12.∴a n =n n +12.故选A .2.已知等差数列{a n }的前n 项和为S n 且满足S 33-S 22=1,则数列{a n }的公差d 是( )A .-2B .-1C .1D .2【答案】D【解析】由S 33-S 22=1得a 1+a 2+a 33-a 1+a 22=a 1+d -2a 1+d 2=d2=1,∴d =2.3.已知3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,则等差数列的公差为( ) A .4或-2 B .-4或2 C .4 D .-4【答案】C【解析】∵3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,∴(a +2)2=3(b +4),2(a +1)=1+b +1,联立解得⎩⎪⎨⎪⎧a =-2,b =-4或⎩⎪⎨⎪⎧ a =4,b =8.当⎩⎪⎨⎪⎧a =-2,b =-4时,a +2=0,与3,a +2,b +4成等比数列矛盾,应舍去;当⎩⎪⎨⎪⎧a =4,b =8时,等差数列的公差为(a +1)-1=a =4.故选C .4.已知等差数列{a n }的公差d <0,若a 4·a 6=24,a 2+a 8=10,则该数列的前n 项和S n的最大值为( )A .50B .40C .45D .35【答案】C【解析】∵a 4+a 6=a 2+a 8=10,a 4·a 6=24,d <0,∴⎩⎪⎨⎪⎧a 4=6,a 6=4.∴d =a 6-a 46-4=-1,∴a n =a 4+(n -4)d =10-n .∴当n =9或10时S n 取到最大值,S 9=S 10=45.5.公差不为0的等差数列{a n },其前23项和等于其前10项和,a 8+a k =0,则正整数k =( )A .24B .25C .26D .27【答案】C【解析】由题意设等差数列{a n }的公差为d ,d ≠0,∵其前23项和等于其前10项和,∴23a 1+23×222d =10a 1+10×92d ,变形可得13(a 1+16d )=0.∴a 17=a 1+16d =0.由等差数列的性质可得a 8+a 26=2a 17=0,∴k =26.故选C .6.已知各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,则a 7a 9a 11=( ) A .16 B .16 2 C .32 D .32 2【答案】B【解析】∵各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,∴a 4a 14=(22)2=8.∴a 7a 11=a 29=8.∴a 7a 9a 11=16 2.故选B .7.如果数列{a n }满足a 1=2,a 2=1且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A .129B .1210 C .110 D .15【答案】D 【解析】∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15.8.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9的值等于( ) A .54 B .45 C .36 D .27【答案】A【解析】∵2a 8=a 5+a 11,2a 8=6+a 11,∴a 5=6.∴S 9=9a 5=54.9.已知各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为( ) A .3 B .4 C .5 D .6【答案】B【解析】∵a 2a 4=4,a n >0,∴a 3=2.∴a 1+a 2=12.∴⎩⎪⎨⎪⎧a 1+a 1q =12,a 1q 2=2,消去a 1,得1+qq2=6.∵q >0,∴q =12.∴a 1=8,∴a n =8×⎝ ⎛⎭⎪⎫12n -1=24-n .∴不等式a n a n +1a n +2>19化为29-3n>19,当n=4时,29-3×4=18>19,当n =5时,29-3×5=164<19.故选B . 10.(2019年内蒙古包头模拟)已知各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),则S 1+S 2+…+S 2019=( )A .12 019 B .12 020 C .2 0182 019 D .2 0192 020【答案】D【解析】∵n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),∴(S n +1)[n (n +1)S n -1]=0.又S n>0,∴n (n +1)S n -1=0,∴S n =1nn +1=1n -1n +1.∴S 1+S 2+…+S 2 019=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫12 019-12 020=2 0192 020.11.已知数列3,7,11,…,139与2,9,16,…,142,则它们所有公共项的个数为( ) A .4 B .5 C .6 D .7【答案】B【解析】由题意可知数列3,7,11,…,139的通项公式为a n =4n -1,139是数列第35项.数列2,9,16,…,142的通项公式为b m =7m -5,142是数列第21项.设数列3,7,11,…,139的第n 项与数列2,9,16,…,142的第m 项相同,则4n -1=7m -5,n =7m -44=7m 4-1,∴m为4的倍数且m 不大于21,n 不大于35.由此可知,m 只能为4,8,12,16,20.此时n 的对应值为6,13,20,27,34.∴公共项的个数为5.故选B .12.(2019年福建厦门模拟)已知等差数列{a n }的公差d ≠0,{a n }的部分项ak 1,ak 2,…,ak n 构成等比数列,若k 1=1,k 2=5,k 3=17,则k n =( )A .2×3n -1-1 B .2×3n -1+1C .2×3n-1 D .2×3n+1【答案】A【解析】设等比数列ak 1,ak 2,…,ak n 的公比为q .因为k 1=1,k 2=5,k 3=17,所以a 1·a 17=a 25,即a 1(a 1+16d )=(a 1+4d )2,化简得a 1d =2d 2.又d ≠0,得a 1=2d ,所以q =a 5a 1=a 1+4da 1=2d +4d2d=3.一方面,ak n 作为等差数列{a n }的第k n 项,有ak n =a 1+(k n -1)d =2d +(k n -1)d =(k n +1)d ;另一方面,ak n 作为等比数列的第n 项,又有ak n =ak 1·q n -1=a 1·3n -1=2d ·3n -1,所以(k n +1)d =2d ·3n -1.又d ≠0,所以k n =2×3n -1-1.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.(2017年新课标Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 【答案】-8【解析】设{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1+a 2=a 11+q =-1,a 1-a 3=a 11-q2=-3,解得⎩⎪⎨⎪⎧a 1=1,q =-2,∴a 4=a 1q 3=-8.14.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 【答案】13【解析】∵S 1,2S 2,3S 3成等差数列,∴4S 2=S 1+3S 3.a n =a 1qn -1,即4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2),解得q =13.15.已知数列{a n }满足a n +1=12+a n -a 2n 且a 1=12,则该数列的前 2 017项的和等于________.【答案】3 0252【解析】∵a 1=12,a n +1=12+a n -a 2n ,∴a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1k ∈N +,1,n =2k k ∈N +,故数列的前2 017项的和S 2 017=1 008×1+1 009×12=3 0252.16.(2018年江苏)已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n +1成立的n 的最小值为________.【答案】27【解析】B ={2,4,8,16,32,64,128…},与A 相比,元素间隔大,所以从S n 中加了几个B 中元素考虑.1个:n =1+1=2,S 2=3,12a 3=36;2个:n =2+2=4,S 4=10,12a 5=60;3个:n =4+3=7,S 7=30,12a 8=108;4个:n =8+4=12,S 12=94,12a 13=204;5个:n =16+5=21,S 21=318,12a 22=396;6个:n =32+6=38,S 38=1 150,12a 39=780.发现21≤n ≤38时S n -12a n +1与0的大小关系发生变化,以下采用二分法查找:S 30=687,12a 31=612,所以所求n 应在22~29之间,S 25=462,12a 26=492,所以所求n 应在25~29之间,S 27=546,12a 28=540,所以所求n 应在25~27之间,S 26=503,12a 27=516.因为S 27>12a 28,而S 26<12a 27,所以使得S n >12a n+1成立的n 的最小值为27.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分)(2017年北京)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. 【解析】(1)设等差数列{a n }的公差为d . 因为a 2+a 4=10,∴2a 1+4d =10. 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5,所以b 21q 4=9. 解得q 2=3. 所以b 2n -1=b 1q2n -2=3n -1.从而b 1+b 3+b 5+…b 2n -1=1+3+32+…+3n -1=3n-12.18.(本小题满分12分)已知{a n }为等差数列,前n 项和为S n ,S 5=S 6且a 3=-6. (1)求数列{a n }的通项公式;(2)若等比数列{b n }满足b 2=6,6b 1+b 3=-5a 3,求{b n }的前n 项和T n .【解析】(1)由已知可得a 6=0,设等差数列的公差为d ,由题意可得⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0,解得d =2,a 1=-10,∴数列{a n }的通项公式为a n =2n -12. (2)设{b n }的公比为q ,由题设得⎩⎪⎨⎪⎧b 1q =6,6b 1+b 1q 2=30,解得⎩⎪⎨⎪⎧b 1=3,q =2或⎩⎪⎨⎪⎧b 1=2,q =3.1-2当b 1=2,q =3时,T n =21-3n1-3=3n-1.19.(本小题满分12分)等差数列{a n }满足:a 2+a 4=6,a 6=S 3,其中S n 为数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)若k ∈N *且a k ,a 3k ,S 2k 成等比数列,求k 值. 【解析】(1)设等差数列{a n }的首项为a 1,公差为d , 由a 2+a 4=6,a 6=S 3,得⎩⎪⎨⎪⎧2a 1+4d =6,a 1+5d =3a 1+3d ,解得⎩⎪⎨⎪⎧a 1=1,d =1.∴a n =1+1×(n -1)=n . (2)S 2k =2k +2k2k -12=2k 2+k , 由a k ,a 3k ,S 2k 成等比数列,得 9k 2=k (2k 2+k ),解得k =4.20.(本小题满分12分)已知数列{a n }是公差不为零的等差数列,a 1=2且a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式;(2)若{b n -(-1)na n }是等比数列且b 2=7,b 5=71,求数列{b n }的前n 项和T n . 【解析】(1)设数列{a n }的公差为d (d ≠0), ∵a 1=2且a 2,a 4,a 8成等比数列, ∴a 24=a 2a 8,即(2+3d )2=(2+d )(2+7d ), 解得d =2或d =0(舍去).∴a n =a 1+(n -1)d =2+2(n -1)=2n .(2)令c n =b n -(-1)na n ,设数列{c n }的公比为q , ∵b 2=7,b 5=71,a n =2n ,∴c 2=b 2-a 2=7-2×2=3,c 5=b 5+a 5=71+2×5=81.∴q 3=c 5c 2=813=27,故q =3.∴c n =c 2·q n -2=3×3n -2=3n -1,即b n -(-1)n a n =3n -1,∴b n =3n -1+(-1)n·2n .则T n =b 1+b 2+b 3+…+b n =(30+31+…+3n -1)+[-2+4-6+…+(-1)n·2n ],1-322当n 为奇数时,T n =1-3n1-3+2×n -12-2n =3n-2n -32.∴T n=⎩⎪⎨⎪⎧3n+2n -12,n 为偶数,3n-2n -32,n 为奇数.21.(本小题满分12分)(2019年山东莱芜模拟)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和为S n . 【解析】(1)设等比数列{a n }的公比为q . ∵a n +1+a n =9·2n -1,∴a 2+a 1=9,a 3+a 2=18.∴q =a 3+a 2a 2+a 1=189=2. 又2a 1+a 1=9,∴a 1=3. ∴a n =3·2n -1,n ∈N *.(2)b n =na n =3n ·2n -1,∴13S n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1.① ∴23S n =1×21+2×22+…+(n -1)×2n -1+n ×2n.② ①-②,得-13S n =1+21+22+…+2n -1-n ×2n =1-2n1-2-n ×2n =(1-n )2n-1.∴S n =3(n -1)2n+3.22.(本小题满分12分)数列{a n }是公比为12的等比数列且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n +1(λ为常数且λ≠1).(1)求数列{a n }的通项公式及λ的值; (2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.【解析】(1)由题意得,(1-a 2)2=a 1(1+a 3), ∴(1-a 1q )2=a 1(1+a 1q 2). ∵q =12,∴a 1=12,∴a n =⎝ ⎛⎭⎪⎫12n.∵⎩⎪⎨⎪⎧T 1=λb 2,T 2=2λb 3,∴⎩⎪⎨⎪⎧8=λ8+d ,16+d =2λ8+2d .∴λ=12,d =8.(2)由(1)得b n =8n ,∴T n =4n (n +1). ∴1T n =14⎝ ⎛⎭⎪⎫1n -1n +1. 令C n =1T 1+1T 2+…+1T n=14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =14⎝ ⎛⎭⎪⎫1-1n +1,∴18≤C n <14. ∵S n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-⎝ ⎛⎭⎪⎫12n,∴12S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n ,∴14≤12S n <12. ∴C n <12S n .。

人教版高中数学选修二第一单元《数列》测试(包含答案解析)(1)

人教版高中数学选修二第一单元《数列》测试(包含答案解析)(1)

一、选择题1.已知数列{}n a ,{}n b 中满足()1231n n a a n ++=≥,110a =,1n n b a =-,若{}n b 前n 项之和为n S ,则满足不等式16170n S -<的最小整数n 是( ). A .8B .9C .11D .102.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是( ) A .8B .9C .10D .113.我国古代著名的数学专著《九章算术》里有一段叙述:今有良马和驽马发长安至齐,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,九日后二马相逢.问:齐去长安多少里?( ) A .1125B .1250C .2250D .25004.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =5.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .46.设等差数列{}n a 的前n 项和为*,n S n ∈N .若12130,0S S ><,则数列{}n a 的最小项是( ) A .第6项B .第7项C .第12项D .第13项7.已知数列{}n a 的前n 项和为n S ,且11a =,1n n a S +=,若(0,2020)n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的平方和为( ) A .1111433⨯- B .1211433⨯- C .1012433⨯+D .1112433⨯+8.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ9.已知数列{}n a 满足112a =,121n n a a n n +=++,则n a =( )A .312n- B .321n -+ C .111n -+ D .312n+ 10.n S 是数列{}n a 前n 项的和,且满足11a =,12n n a S +=,则下列说法正确的是( ) A .{}n a 是等差数列B .{}n a 中能找到三项p a 、q a 、r a 使得p q r a a a =C .{}n a 是等比数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项的和74n T <11.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n ﹣1,则a 12+a 22+a 32+…+a n 2等于( ) A .n 2(31)-B .()n1912- C .n 91- D .()n1314- 12.已知数列{}n a 为等差数列,n S 是其前n 项和,25a =,535S =.数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对一切n ∈+N 都有21n m T +>恒成立,则m 能取到的最小整数为( )A .1-B .0C .1D .2二、填空题13.计算:111113355720192021++++=⨯⨯⨯⨯__________.14.设n S 是数列{}n a 的前n 项和,若()112nn n nS a =-+,则129S S S +++=________.15.已知数列{}n a 的前n 项和为1,3,23n n n S a S a λ==-,其中λ为常数,若14n n a b n =-,则数列{}n b 中的项的最小值为__________.16.数列{}n a 的前n 项和为n S ,12a =,1112n n n S a +⎛⎫=-⎪⎝⎭,2log n n b a =,则数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T =_____. 17.若数列{}n a 满足111 +-=n nd a a (*,n N d ∈为常数),则称数列{}n a 为调和数列.已知数列1n b ⎧⎫⎨⎬⎩⎭为调和数列,12320300,++++=b b b b 且378+=b b 则16=b ______.18.已知数列{}n a 的前n 项和2n S n =,()1nn n b a =-则数列{}n b 的前n 项n T =________.19.中国排球超级联赛争冠总决赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛就此结束.现甲、乙两支球队进行总决赛,因两队实力相当,每场比赛两队获胜的可能性均为12.据以往资料统计,第一场比赛可获得门票收入500万元,以后每场比赛门票收入比上一场增加100万元.则总决赛中获得门票总收入恰好为4500万元的概率是_____.20.已知数列{}n a 中,11a =,()132,n n a a n n N *-=+≥∈,数列{}n b 满足11n n n b a a +=,*n N ∈,则()12lim n n b b b →∞++⋅⋅⋅+=________. 三、解答题21.已知等差数列{}n a 满足1210a a +=,432a a -=. (1)求数列{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,37b a =,求数列{}n n a b 的前n 项和n S . 22.已知数列{}n a 的前n 项和n S 满足()()*231n n S a n N =-∈.(1)求数列{}n a 的通项公式; (2)记()()111nn n n a b a a +=--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,不等式141n k T n >-+都成立,求实数k 的取值范围. 23.已知等差数列{}n a 的前n 项和为n S ,若2512a a +=,424S S =. (1)求数列{}n a 的通项公式n a 及n S ; (2)若11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和n T .24.等差数列{}n a 的前n 项和为n S ,已知17a =,515S =. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最大值.25.已知{}n a 是公差不为零的等差数列,11a =,且139,,a a a 成等比数列. (1)求数列{}n a 的通项.(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T .26.已知数列{}n a 满足1122n n n a a a +=+()N n *∈,11a =.(1)证明:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式. (2)若记n b 为满足不等式11122k nn a -⎛⎫⎛⎫<≤ ⎪ ⎪⎝⎭⎝⎭()N n *∈的正整数k 的个数,数列nn ba⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求关于n 的不等式4032n S <的最大正整数解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由123n n a a ++=可求得数列{}n a 的通项公式,进而求得数列{}n b ,表示出n S , 令16170n S -<,即可得到满足不等式16170n S -<的最小整数n . 【详解】解:由题意可知:123n n a a ++=, 即11322n n a a +=-+, 即()11112n n a a +-=--, 又110a =,119a ∴-=,即数列{}1n a -是以首项为9,公比为12-的等比数列, 11192n n a -⎛⎫∴-=⨯- ⎪⎝⎭,即11192n n a -⎛⎫=+⨯- ⎪⎝⎭,11192n n n b a -⎛⎫∴=-=⨯- ⎪⎝⎭,12111219661212n nn n S b b b ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦∴=++⋅⋅⋅+=⨯=-⨯- ⎪⎛⎫⎝⎭-- ⎪⎝⎭, 则111632170n n S --=⨯<, 即1112510n -⎛⎫<⎪⎝⎭, 又9112512⎛⎫= ⎪⎝⎭,∴满足不等式16170n S -<的最小整数19n -=, 即10n =. 故选:D. 【点睛】关键点点睛:本题解题的关键是利用构造法求出数列{}n a 的通项公式.2.A解析:A 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案. 【详解】解:由题意得:323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2n n +-()212312n n ⨯-=⨯--1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<; 当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选:A. 【点睛】关键点点睛:本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .3.A解析:A 【分析】由题意可知,良马每日行的距离{}n a 以及驽马每日行的距离{}n b 均为等差数列,确定这两个数列的首项和公差,利用等差数列的求和公式可求得结果. 【详解】由题意可知,良马每日行的距离成等差数列,记为{}n a ,其中1103a =,公差113d =. 驽马每日行的距离成等差数列,记为{}n b ,其中197b =,公差20.5d =-. 设长安至齐为x 里,则1291292a a a b b b x +++++++=,即9813980.521039979225022x ⨯⨯⨯⨯=⨯++⨯-=,解得1125x =. 故选:A. 【点睛】关键点点睛:解本题的关键在于得出长安至齐的距离等于良马和驽马九日所行的距离之和的 2倍,并结合题意得知两匹马所行的距离成等差数列,解题时要充分抓住题中信息进行分析,将实际问题转化为数学问题来求解.4.D解析:D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法.5.B解析:B 【分析】 由题意可得221114n n a a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,得221114n na a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,所以2114(1)43nn n a =+-=-, 因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14n b ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题6.B解析:B 【分析】可利用等差数列的前n 项和的性质,等差数列下标的性质进行判断即可 【详解】由题意12130,0S S ><及()()()12112671311371366,132S a a a a S a a a =+=+=+=,得6770,0a a a +><,所以6670,a a a >>,且公差0d <,所以7a ,最小.故选B .【点睛】等差数列的前n 项和n S 具有以下性质()2121n n S n a -=-,()21n n n S n a a +=+.7.D解析:D 【分析】 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,得到12n n a a +=,求得22,2n n a n -=≥,得到数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,结合等比数列的求和公式,即可求解. 【详解】由11a =,1n n a S +=,可得1211a S a ===, 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,可得11n n n n n a a S S a +--=-=,即12n n a a +=,即12n na a +=, 则数列{}n a 从第二项起是公比为2的等比数列,即22,2n n a n -=≥,又由(0,2020)n a ∈,即222020n -<,可得13,n n N +<∈,所以“和谐项”共有12项,则数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,可得数列{}n a 的所有“和谐项”的平方和为111110(11244)11416413431-+++++=+=⨯+-.故选:D. 【点睛】与数列的新定义有关的问题的求解策略:通过给出一个新的数列的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.8.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解.【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭.∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 9.A解析:A 【分析】利用已知条件得到121111n n a a n n n n +-==-++,再用累加法求出数列的通项,用裂项相消法求数的和. 【详解】 由121n n a a n n +=++得:121111n na a n n n n +-==-++, 即1111n n a a n n--=--, 所以()()()121321n n n a a a a a a a a -=+-+-++-111111*********n n n=+-+-++-=--. 故选:A . 【点睛】 方法点睛:递推公式求通项公式,有以下几种方法:型如:()1n n a a f n +-=的数列的递推公式,采用累加法求通项;形如:()1n na f n a +=的数列的递推公式,采用累乘法求通项; 形如:1n n a pa q +=+ ()()10pq p -≠的递推公式,通过构造转化为()1n n a t p a t +-=-,构造数列{}n a t -是以1a t -为首项,p 为公比的等比数列,形如:1nn n a pa q +=+ ()()10pq p -≠的递推公式,两边同时除以1n q +,转化为1n n b mb t +=+的形式求通项公式;形如:11n n n n a a d a a ++=-,可通过取倒数转化为等差数列求通项公式. 10.D【分析】由n S 与n a 的关系可求得数列{}n a 的通项公式,可判断A 、C 选项的正误;设r q p >>,假设结论成立,利用数列{}n a 的单调性、通项公式以及数的整除性可判断B 选项的正误;利用等比数列的求和公式可判断D 选项的正误; 【详解】当1n =时,211222a S a ===; 当2n ≥时,由12n n a S +=可得12n n a S -=, 两式相减得12n n n a a a +=-,所以,13n n a a +=,且2123aa =≠, 所以,数列{}n a 从第二项开始成以3为公比的等比数列,则222323n n n a a --=⋅=⨯,所以,21,123,2n n n a n -=⎧=⎨⨯≥⎩,A 、C 选项错误; 由题意可知,数列{}n a 为单调递增数列,设p q <,若在数列{}n a 中能找到三项p a 、q a 、r a 使得p q r a a a =,则r q p >>且p 、q 、r N *∈,若1p =,则p r a a =,这与数列{}n a 单调递增矛盾;若2p ≥,则224323292p q p q p q a a --+-=⨯⨯⨯=⨯,232r r a -=⨯,由p q r a a a =,可得42322p q r +--⨯=,由于432p q +-⨯能被3整除,22r -不能被3整除,故B 选项错误;21,111,223n n n a n -=⎧⎪=⎨≥⎪⨯⎩,11T =;当2n ≥时,122111111113137231111112232323434413n n n n T ---⎛⎫- ⎪⎛⎫⎝⎭=+++++=+=+-<+= ⎪⨯⨯⨯⎝⎭-.故D 选项正确. 故选:D. 【点睛】由n S 求n a 时,11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,注意验证1a 是否包含在后面n a 的公式中,若不符合要单独列出,一般已知条件含n a 与n S 的关系的数列题均可考虑上述公式.11.B【分析】由a 1+a 2+a 3+…+a n =3n ﹣1,可求得a n ,从而可知2n a ,利用等比数列的求和公式即可求得答案. 【详解】∵a 1+a 2+a 3+…+a n =3n ﹣1,①,∴a 1+a 2+a 3+…+a n +1=3n +1﹣1,② ②﹣①得:a n +1=3n +1﹣3n =2×3n ,∴a n =2×3n ﹣1()2n ≥. 当n =1时,a 1=31﹣1=2,符合上式,∴a n =2×3n ﹣1. ∴221211249,4,9n n nna a a a -+=⨯∴==,∴{}2n a 是以4为首项,9为公比的等比数列, ∴a 12+a 22+a 32+…+a n 2=()()419191921n n⨯-=--. 故选B . 【点睛】本题考查数列通项公式的确定及等比数列的判断与求和公式的综合应用,属于中档题.12.B解析:B 【分析】根据25a =,535S =求出数列的通项公式,再利用裂项相消法求出数列的和,然后由21n m T +>恒成立求解.【详解】因为数列{}n a 为等差数列,n S 是其前n 项和,25a =,535S =. 设首项为1a ,公差为d ,所以115545352a d a d +=⎧⎪⎨⨯+=⎪⎩,解得132a d =⎧⎨=⎩,故32(1)21n a n n =+-=+,所以111111()·(21)(23)22123n n a a n n n n +==-++++, 所以11111111111()()23557212323236n T n n n =-+-+⋯+-=-<+++. 因为对于一切n ∈+N 都有21n m T +>恒成立, 所以1216+m ,解得512≥-m ,故m 的最小整数为0. 故选:B . 【点睛】本题主要考查数列的通项公式,裂项相消法求数列的和,还考查了运算和求解的能力,属于中档题.二、填空题13.【分析】用裂项相消法求和【详解】故答案为:【点睛】本题考查裂项相消法求和数列求和的常用方法:设数列是等差数列是等比数列(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列的 解析:10102021【分析】用裂项相消法求和. 【详解】111111111111(1)()()1335572019202123235220192021++++=-+-++-⨯⨯⨯⨯111010(1)220212021=-=. 故答案为:10102021. 【点睛】本题考查裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.14.【分析】令计算得出然后推导出当为偶数时当为奇数时利用等比数列的求和公式可求得的值【详解】当时解得;当时当为偶数时可得则;当为奇数时可得则因此故答案为:【点睛】方法点睛:本题考查已知与的关系求和常用的 解析:3411024【分析】令1n =计算得出114a =,然后推导出当n 为偶数时,0n S =,当n 为奇数时,112n n S +=,利用等比数列的求和公式可求得129S S S +++的值.【详解】 当1n =时,11112a S a ==-+,解得114a =;当2n ≥时,()()()1111122nnn n n n n nS a S S -=-+=-⋅-+. 当n 为偶数时,可得112n n n n S S S -=-+,则112n nS -=; 当()3n n ≥为奇数时,可得112n n n n S S S -=-++,则1112120222n n n n nS S -+=-=-=. 因此,2512924681011111111341240000122222102414S S S ⎛⎫- ⎪⎝⎭+++=++++++++==-. 故答案为:3411024. 【点睛】方法点睛:本题考查已知n S 与n a 的关系求和,常用的数列求和方法如下: (1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.15.【分析】先根据求得然后求得求得的表达式进而求得中的项的最小值【详解】当时而所以则当时所以所以数列是首项为公比为的等比数列所以由于所以当时当时且所以当时单调递增最小值为即数列中的项的最小值为故答案为: 解析:1513-【分析】先根据1a 求得λ,然后求得n a ,求得n b 的表达式,进而求得{}n b 中的项的最小值. 【详解】当1n =时,()11123,23a a a λλ=--=,而13a =,所以21,3λλ-==.则233n n S a =-,当2n ≥时,11233n n S a --=-, 所以112333n n n n n a a a a a --=-⇒=,所以数列{}n a 是首项为3公比为3的等比数列,所以3nn a =.由于14n n a b n =-,所以143n nnb -=, 当114n ≤≤时,0n b ≥, 当15n ≥时,0n b <, 且11111314134233333n n n n n n n n n n b b ++++-----=-=-122903n n +-=>, 所以当15n ≥时,n b 单调递增,最小值为151********33b -==-. 即数列{}n b 中的项的最小值为1513-. 故答案为:1513- 【点睛】根据n S 与n a 的关系式求{}n a 的通项公式,主要通过11,1,2n nn S n a S S n -=⎧=⎨-≥⎩来求解.判断数列的单调性可采用差比较法.16.【分析】利用可得为等比数列即可求出进而得出利用裂项相消法即可求出【详解】时两式作差得化简得检验:当时所以数列是以2为首项2为公比的等比数列;令故答案为:【点睛】方法点睛:数列求和的常用方法:(1)对 解析:1nn + 【分析】利用1n n n a S S -=-可得{}n a 为等比数列,即可求出n a ,进而得出n b ,利用裂项相消法即可求出. 【详解】 1112n n nS a +⎛⎫=- ⎪⎝⎭, 2n ≥时,11112n n n S a --⎛⎫=-⎪⎝⎭, 两式作差,得()111111222n n n n n a a a n +-⎛⎫⎛⎫=---≥ ⎪ ⎪⎝⎭⎝⎭,,化简得()122n na n a +=≥,, 检验:当1n =时,112122S a a ==⨯=,24a =,212a a =,所以数列{}n a 是以2为首项,2为公比的等比数列;2nn a =,22l 2log og n n n b a n ===,令()1111111n n n c b b n n n n +===-++, 111111111122334111n n T n n n n =-+-+-++-=-=+++. 故答案为:1nn +.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 17.26【分析】由调和数列的定义可得是公差为的等差数列再由等差数列的性质和求和公式即可得出结果【详解】由数列为调和数列可得(为常数)∴是公差为的等差数列又∴∴又∴∴∴故答案为:26【点睛】本题考查新定义解析:26 【分析】由调和数列的定义可得{}n b 是公差为d 的等差数列,再由等差数列的性质和求和公式,即可得出结果. 【详解】由数列1n b ⎧⎫⎨⎬⎩⎭为调和数列,可得11111 11n n n n b b d b b +++-=-=(n N ∈,d 为常数),∴{}n b 是公差为d 的等差数列, 又12320300b b b b ++++=,∴120203002b b +⨯=,∴12030b b +=, 又378+=b b ,∴54b =,∴51612030b b b b +=+=,∴1626b =,故答案为:26. 【点睛】本题考查新定义的理解和运用,考查等差数列的定义和性质,以及求和公式,考查运算能力,属于中档题.18.【分析】首先利用求出的通项即可得【详解】∵∴当时;当时又当时符合上式∴∴∴当是偶数时当是奇数时∴∴数列的前项和故答案为:【点睛】本题主要考查了已知求考查了奇偶并项求和属于中档题 解析:()1nn -【分析】首先利用2n S n =求出{}n a 的通项,即可得()()121nn b n =--.【详解】∵2n S n =,∴当1n =时,111a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=-, 又当1n =时,11a =符合上式,∴21n a n =-, ∴()()()1121nnn n b a n =-=--,∴()()135791113121nn n T =-+-+-+-+-+-当n 是偶数时,22n nT n =⨯=, 当n 是奇数时,()1122n n T n -=-+-⨯=-, ∴()1nn T n =-,∴数列{}n b 的前项和()1nn T n =-.故答案为: ()1nn - 【点睛】本题主要考查了已知n S 求n a ,考查了奇偶并项求和,属于中档题.19.【分析】构造等差数列求得比赛场次再利用概率公式即可求得结果【详解】根据题意每场比赛的没票收入构成首项为公差为的等差数列设该数列为即可得由可得或(舍)故该比赛共比赛了场前场比赛比分是且第6场比赛是领先 解析:516【分析】构造等差数列,求得比赛场次,再利用概率公式,即可求得结果. 【详解】根据题意,每场比赛的没票收入,构成首项为500,公差为100的等差数列,设该数列为{}n a ,即可得1500a =,100d =, 由4500n S =,可得6n =或15n =-(舍),故该比赛共比赛了6场,前5场比赛比分是2:3,且第6场比赛是领先队获胜.故其概率为53515216C ⎛⎫=⎪⎝⎭. 故答案为:516. 【点睛】本题考查等差数列前n 项和基本量的计算,以及n 次独立重复试验的概率求解,属综合中档题.20.【分析】求出数列的通项公式利用裂项求和法求出利用极限的运算法则可得出所求极限值【详解】且则数列是以为首项以为公差的等差数列所以因此故答案为:【点睛】本题考查数列前项和的极限值的求法是中档题解题时要认解析:13【分析】求出数列{}n a 的通项公式,利用裂项求和法求出12n b b b ++⋅⋅⋅+,利用极限的运算法则可得出所求极限值. 【详解】()132,n n a a n n N *-=+≥∈且11a =,则数列{}n a 是以1为首项,以3为公差的等差数列,所以,()13132n a n n =+-=-,()()111111323133231n n n b a a n n n n +⎛⎫∴===- ⎪-+-+⎝⎭, 1211111111134473231393n b b b n n n ⎛⎫∴++⋅⋅⋅+=-+-++-=- ⎪-++⎝⎭, 因此,()12111lim lim 3933n n n b b b n →∞→∞⎛⎫++⋅⋅⋅+=-=⎪+⎝⎭. 故答案为:13. 【点睛】本题考查数列前n 项和的极限值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.三、解答题21.(1)()*22n a n n N =+∈;(2)32n nSn +=⋅.【分析】(1)根据等差数列的通项公式,列式求首项和公差,再求通项公式;(2)先求数列{}n b 的通项公式,再利用错位相减法求和. 【详解】(1)设等差数列{}n a 的公差为d ,因为43a a d -=,所以2d =. 又因为1210a a +=,所以1210a d +=,解得14a =. 所以()*42(1)22n a n n n N=+-=+∈(2)设等比数列{}n b 的公差为q ,因为238b a ==,3716b a ==, 所以2q,14b =,所以12n n b +=从而2(1)2n n n a b n +=+.345122232422(1)2n n n S n n ++=⨯+⨯+⨯++++,① 4562322232422(1)2n n n S n n ++=⨯+⨯+⨯++++,②由①-②得:3452322222(1)2n n n S n ++-=⨯++++-+()33332122(1)2212n n n n S n n ++--=+-+=-⋅-所以32n n S n +=⋅.【点睛】方法点睛:本题考查等差等比数列,以及数列求和,一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.倒序相加法求和.22.(1)3nn a =;(2)1,8⎛⎫+∞ ⎪⎝⎭.【分析】(1)由1(2)n n n a S S n -=-≥得出n a 的递推关系,结合1a 得{}n a 等比数列,从而得通项公式;(2)用裂项相消法求得和n T ,不等式可变形为()11231n n k -+>-,令()11()231n n f n ++=-,再用作差法得出()f n 的单调性,得最大项,从而得k 的取值范围. 【详解】(1)因为数列{}n a 的前n 项和n S 满足()()231n n S a n N *=-∈,所以当2n ≥时,()11231n n S a --=-,两式相减得:1233n n n a a a -=-,即13(2)n n a a n ,又1n =时,()11231S a =-,解得:130a =≠,所以数列{}n a 是以3为首项,3为公比的等比数列,从而3nn a =(2)由(1)知:()()()()113113131nn n n n n n a b a a ++==----111123131n n +⎛⎫=- ⎪--⎝⎭, 所以,12n n T b b b =+++1223111111112313131313131n n +⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥------⎝⎭⎝⎭⎝⎭⎣⎦11112231n +⎛⎫=- ⎪-⎝⎭, 对任意的n *∈N ,不等式141n kT n >-+都成立,即11111223141n k n +⎛⎫->- ⎪-+⎝⎭, 化简得:()11231n n k -+>-,令()11()231n n f n ++=-,因为()()()()1211221(21)31(1)()023*********n n n n n n n n f n f n +++++++--⋅-+-=-=<---⋅-, 故()f n 单调递减, 所以max 1[()](1)8f n f ==,故18k >,所以,实数k 的取值范围是1,8⎛⎫+∞ ⎪⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,考查裂项相法法求和,数列不等式恒成立问题.数列求和方法有:公式法,错位相减法,裂项相消法,分组(并项)求和法,倒序相加法等,用作差法确定数列的单调性求出数列的最大(小)项是求数列最值的常用方法.23.(1)21n a n =-,2n S n =;(2)211(1)n T n -=+.【分析】(1)由等差数列的通项公式及前n 项和公式即可求得; (2)代入求出数列{}n b 的通项公式,再用裂项求和即可. 【详解】(1)解:设等差数列首项为1a ,公差为d , 2512a a +=,424S S =,得:()1112512434422a d a d a d +=⎧⎪⎨⨯+=+⎪⎩, 解得:112a d =⎧⎨=⎩, 1(1)12(1)21n a a n d n n ∴=+-=+-=-,21(1)(1)2122n n n d n n S na n n --⨯=+=⨯+=; (2)1222212111(1)(1)n n n n a n b S S n n n n +++===-⋅++, 1232222222211111111122334(1)n n T b b b b n n ∴=++++=-+-+-++-+211(1)n =-+. 【点睛】方法点睛:本题考查的核心是裂项求和,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.24.(1)92n a n =-;(2)28n S n n =-+,()max 16n S =.【分析】(1)根据等差数列前n 项和的计算公式结合15,a S 的值,计算出等差数列的公差d ,由此确定出等差数列的通项公式;(2)根据1,a d 求解出n S ,结合二次函数的性质确定出n S 的最大值.【详解】(1)设等差数列的公差为d ,因为51545152S a d ⨯=+=,所以2d =-, 所以()()71292n a n n =+-⨯-=-;(2)因为()()2117182n n n S a n d n n n n n -=+=--=-+,即()2416n S n =--+ 当4n =时,n S 有最大值,()4max 16n S S ==.【点睛】方法点睛:求解等差数列前n 项和的最值的几种常用方法:(1)利用等差数列前n 项和的二次函数特性,求解出前n 项和的最值;(2)分析等差数列通项公式,根据等差数列各项取值的正负,确定出前n 项和的最值. 25.(1)n a n =;(2)21n n +. 【分析】(1)由11a =,且139,,a a a 成等比数列,列方程求出公差,再利用等差数列的通项公式可得答案;(2)结合(1)利用等差数列的求和公式求得2121121n S n n n n ⎛⎫==- ⎪++⎝⎭,再利用裂项相消法可得答案.【详解】(1)设公差为,0d d ≠,由11a =,且139,,a a a 成等比数列, 则1218112d d d++=+ 解得:1d =或0d =(舍去), ()()11111n a a n d n n =+-=+-⨯=,故{}n a 的通项n a n =.(2)n a n =,则()2122n n n n n S ++== 所以:()212211211n S n n n n n n ⎛⎫===- ⎪+++⎝⎭ 11111212231n T n n ⎛⎫∴=-+-+⋅⋅⋅+- ⎪+⎝⎭ 1211n ⎛⎫=- ⎪+⎝⎭ 11211n n n +⎛⎫=- ⎪++⎝⎭ 1121n n +-⎛⎫= ⎪+⎝⎭ 21n n =+ 【点睛】方法点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()122121n n n +--()()()()1121212121n n n n ++---=--1112121n n +=---;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.26.(1)证明见解析;21n a n =+;(2)8. 【分析】 (1)根据等差数列的定义,证明111n na a +-为常数,由等差数列通项公式得1n a ,从而求得n a ;(2)不等式11122k n n a -⎛⎫⎛⎫<≤ ⎪ ⎪⎝⎭⎝⎭即为11222n n k -+≤<,从而可确定k 的个数,即n b ,然后由错位相减法求得n S ,结合{}n S 是递增数列,通过估值法得出不等式4032n S <的最大正数解.【详解】(1)由1122n n n a a a +=+取倒数得 11221112n n n n n a a a a a +++=⇔=+,即11112n n a a +-=,所以1n a ⎧⎫⎨⎬⎩⎭为公差为12的等差数列, ()1111121221n n n n a a a n +=+-⋅=⇒=+. (2)当11122n n k a -⎛⎫⎛⎫<≤ ⎪ ⎪⎝⎭⎝⎭时,1112221212n n n n k k -++≤<⇔-≤<-, 所以这样k 有2n 个2n n b ⇒=,()112n n nb n a -=+⋅, ()2121324212n n S n -=⋅+⋅+⋅+⋅⋅⋅+-⋅,()2122232212n n n S n n -=⋅+⋅+⋅⋅⋅+⋅++⋅,两式相减得:()21222212n n n S n --=+++⋅⋅⋅+-+⋅2n n =-⋅,所以2n n S n =⋅为递增数列. 82048S =,94608S =,8940328S S n <<⇒≤,所以最大正整数解为8.【点睛】方法点睛:本题主要考查等差数列的证明,考查错位相减法求和.数列求和的常用方法有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.。

上海市必修五第一章《数列》测试题(有答案解析)

上海市必修五第一章《数列》测试题(有答案解析)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-3.某大楼共有12层,有11人在第一层上了电梯,他们分别要去第2至12层,每层1人,因特殊原因,电梯只能停在某一层,其余10人都要步行到所要去的楼层,假设初始的“不满意度”为0,每位乘客每向下步行一层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,要使得10人“不满意度”之和最小,电梯应该停在第几层( ) A .7B .8C .9D .104.已知数列{}n a 是等比数列,满足51184a a a =,数列{}n b 是等差数列,且88b a =,则79b b +等于( )A .24B .16C .8D .45.已知等比数列{}n a 的前n 项和为n S ,则下列命题一定正确的是( ) A .若20200S >,则10a > B .若20210S >,则10a > C .若20200S >,则20a >D .若20210S >,则20a >6.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51017.某食品加工厂2019年获利20万元,经调整食品结构,开发新产品.计划从2020年开始每年比上一年获利增加20%,则从( )年开始这家加工厂年获利超过60万元.(已知lg 20.3010=,lg30.4771=) A .2024年B .2025年C .2026年D .2027年8.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .99.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-210.如果数列{}n a 的前n 项和21()n n S a n N +=-∈,则5a =( ) A .8B .16C .32D .6411.已知数列{}n a 为等差数列,10a <且1231990a a a a +++⋅⋅⋅+=,设()*12n n n n b a a a n N ++=∈,当{}n b 的前n 项和n S 最小时,n 的值有( )A .5个B .4个C .3个D .2个12.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-二、填空题13.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈.若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则当1212nS S S n+++取最大值时n 的值为______.14.数列{}n a 中,已知22a =,21n n n a a a ++=+,若834a =,则数列{}n a 的前6项和为______.15.设n S 是数列{}n a 的前n 项和,且112a =,110n n n a S S +++=,则2020S =______. 16.已知函数()f x 在()1,∞-+上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则1100a a +等于________. 17.等比数列{}n a 前n 项和为n S ,若634S S =,则96S S =______. 18.若数列}{n a2*3()n n n N =+∈,则n a =_______.19.对于数列{}n a ,存在x ∈R ,使得不等式()2*144n na x x n N a +≤≤-∈成立,则下列说法正确的有______.(请写出所有正确说法的序号). ①数列{}n a 为等差数列; ②数列{}n a 为等比数列;③若12a =,则212n na -=;④若12a =,则数列{}n a 的前n 项和21223n n S +-=.20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若2125,2,log a log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11n n n b b a ++⎧⎫-⎨⎬⎩⎭的前n 项和为232n n+ (1)求{}n a 的公比q 的值; (2)求{}n b 的通项公式.22.在数列{}n a 中,11a =,()*21221,,k k k a a a k N -+∈成等比数列,公比为0k q >.(Ⅰ)若2k q =,求13521k a a a a -+++⋅⋅⋅+; (Ⅱ)若()*22122,,k k k a a a k N ++∈成等差数列,公差为k d ,设11k k b q =-. ①求证:{}n b 为等差数列;②若12d =,求数列{}k d 的前k 项和k D .23.已知数列{}n a 的前n 项和为n S ,且11a =,()121n n a S n N *+=+∈,等差数列{}n b 满足39b =,15272b b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 的前n 项和为n T ,且n n n c a b =⋅,求n T .24.已知正项数列{}n a 、{}n b ,记数列{}n a 的前n 项和为n S ,若1143a b +=,21n n S a +=,2211(1)0n n n n nb b b n b ----+=(1)求数列{}n a 、{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和n T . 25.已知数列{}n a 满足:12a =,()*112n nn a a n N n ++⎛⎫=∈ ⎪⎝⎭. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T ;(3)设2nn nb a =,数列{}n b 的前n 项和为n S ,求2n n S S -的最小值.26.已知数列{}n a 的前n 项和()2*N n S nn =∈,{}n b 是递增等比数列,且11b a =,35b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)若()*N n n n c a b n =⋅∈,求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272n nn c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥⎪⎝⎭.设272n nn c -=,则111252792222n nn n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.A解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.3.C解析:C 【分析】根据题意,假设电梯所停的楼层,表达出“不满意度”之和,利用等差数列的求和公式即可求得结论. 【详解】解:设电梯所停的楼层是(212)n n ,则12(2)2[12(12)]S n n =++⋯+-+++⋯+- (2)(1)(12)(13)222n n n n ----=+⨯22235335353()157()157232624n n n =-+=--+ 开口向上,对称轴为5396x =≈, 故S 在9n =时取最小值239539314402min S ⨯-⨯+==.故选:C . 【点睛】本题考查数列知识,考查函数思想的运用,考查计算能力,求得“不满意度”之和是关键.4.C解析:C 【分析】利用等比数列和等差数列的性质计算. 【详解】∵数列{}n a 是等比数列,∴2511884a a a a ==,又80a ,∴84a =,又{}n b 是等差数列,∴7988228b b b a +===. 故选:C . 【点睛】关键点点睛:本题考查等差数列与等比数列的性质,掌握等差数列与等比数列的性质是解题关键.对正整数,,,m n p l ,若m n p l +=+,{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =,特别地若2m n p +=,{}n a 是等差数列,则2m n p a a a +=,若{}n a 是等比数列,则2m n p a a a =.5.B解析:B 【分析】根据等比数列的前n 项和公式分别讨论20200S >和20210S >即可得答案. 【详解】当1q =时,2020120200S a =>,故10a >,20a >, 当1q ≠时,()202012020101a q S q-=>-,分以下几种情况,当1q <-时,10a <,此时210a a q =>; 当10q -<<时,10a >,此时120a a q =<, 当01q <<时,10a >,此时210a a q =>; 当1q >时,10a >,此时210a a q =>; 故当20200S >时,1a 与2a 可正可负,故排除A 、C .当1q =时, 2021120210S a =>,故10a >, 20a >; 当1q ≠时,()202112021101a q S q-=>-,由于20211q-与1q -同号,故10a >,所以21a a q =符号随q 正负变化,故D 不正确,B 正确; 故选:B 【点睛】关键点点睛:本题解决时根据等比数列的求和公式,分类讨论公比的情形是解决问题的关键,分析出首项及公比的情况即可确定第二项的符号,属于中档题.6.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.7.C解析:C 【分析】本题根据题意各年获利构成一个等比数列,然后得到通项公式,根据题意可得出关于n 的不等式,解出n 的值,注意其中对数式的计算. 【详解】由题意,设从2019年开始,第n 年的获利为()n a n *∈N万元,则数列{}n a 为等比数列,其中2019年的获利为首项,即120a =.2020年的获利为()2620120%205a =⋅+=⋅万元,2021年的获利为()223620120%205a ⎛⎫=⋅+=⋅ ⎪⎝⎭万元,∴数列{}n a 的通项公式为()16205n n n N a *-⎛⎫⋅⎪⎝⎭∈= ,由题意可得1620605n n a -⎛⎫=⋅> ⎪⎝⎭,即1635n -⎛⎫> ⎪⎝⎭,()65lg3lg3lg3lg30.47711log 3610lg 6lg52lg 2lg3120.30100.47711lg lg 23lg 52n ∴->=====-+-⨯+-⨯-6.03166=>,8n ∴≥,∴从2026年开始这家加工厂年获利超过60万元. 故选:C . 【点评】本题主要考查等比数列在实际生活中的应用,考查了等比数列的通项公式,不等式的计算,对数运算.属于中档题.8.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.9.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.10.B解析:B 【分析】根据题意得到()21n n S a n N +=-∈,1121n n S a --=-(n 2≥),两式做差得到12n n a a -=,可得到数列的通项,进而得到结果.【详解】数列{}n a 的前n 项和()21n n S a n N +=-∈,1121n n S a --=-(n 2≥),两式做差得到12n n a a -=(n 2≥),由此可得到数列是等比数列,令n=1代入得到1121S a =-=1a ,解得1a =1,故得到数列通项为12n n a ,令n=5得到516.a =故答案为B. 【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知n S 和n a 的关系,求n a 表达式,一般是写出1n S -做差得通项,但是这种方法需要检验n=1时通项公式是否适用.11.B解析:B 【分析】根据等差数列的性质可知1000a ,从而判断数列{}n a 是单调递增数列,即可判断当{}n b 的前n 项和n S 最小时,n 可取的值. 【详解】数列{}n a 为等差数列,119921981002a a a a a ,1231990a a a a +++⋅⋅⋅+=,则1001990a ,即1000a ,10a <,可以判断数列{}n a 是单调递增数列,991010,0a a ,12n n n n b a a a ++=, 12323412nn n n S a a a a a a a a a ,当{}n b 的前n 项和n S 最小时,n 可取的值为97,98,99,100共4个. 故选:B. 【点睛】本题主要考查等差数列的性质,属于中档题.12.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.二、填空题13.8或9【分析】根据等差等比数列的通项公式先求出数列和的通项公式再结合等差数列的求和公式求得进而得到再结合数列取值即可求解【详解】各项均为正数的等比数列中若所以解得所以解得或因为所以所以又由所以则当时解析:8或9 【分析】根据等差、等比数列的通项公式,先求出数列{}n a 和{}n b 的通项公式,再结合等差数列的求和公式,求得()92n n n S -=,进而得到92n nc -=,再结合数列{}n c 取值,即可求解.【详解】各项均为正数的等比数列{}n a 中,若355a a +=,264a a =,所以35352656a a a a a a +=⎧⎨==⎩,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =或12q =-,因为()0,1q ∈,所以12q =, 所以55512n n n a a q--⎛⎫=⋅= ⎪⎝⎭.又由5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==,则92n n S nc n -==, 当9,n n N +<∈时,902n nc -=>;当9n =时,0n c =;当10,n n N +>∈时,0n c <,故当8n =或9n =时,1212nS S S n+++取最大值. 故答案为:8或9. 【点睛】本题主要考查了等差、等比数列的通项公式,以及等差数列的前n 项和公式的应用,其中解答中熟记等差、等比数列的通项公式,以及等差数列的求和公式,准确计算是解答解答的关键,着重考查推理与运算能力.14.32【分析】利用数列的递推公式推导出由此能求出数列的前6项和【详解】∵数列中∴解得∴数列的前6项和为:故答案为:32【点睛】本题主要考查数列的前6项和的求法考查递推公式递推思想等基础知识考查运算求解解析:32 【分析】利用数列的递推公式推导出11a =,由此能求出数列{}n a 的前6项和. 【详解】∵数列{}n a 中,22a =,21n n n a a a ++=+,834a =, ∴32112a a a a =+=+,43211224a a a a a =+=++=+,543162a a a a =+=+,6541103a a a a =+=+, 7651165a a a a =+=+,876126834a a a a =+=+=,解得11a =,∴数列{}n a 的前6项和为:()()()()61111112246210324832S a a a a a a =+++++++++=+=,故答案为:32.【点睛】本题主要考查数列的前6项和的求法,考查递推公式、递推思想等基础知识,考查运算求解能力,属于中档题.15.【分析】代入再证明为等差数列继而求得的通项公式再计算即可【详解】因为所以两边同除以得:所以数列是以为首项1为公差的等差数列所以所以所以故答案为:【点睛】本题主要考查了根据递推公式证明等差数列的方法属解析:12021【分析】代入11n n n a S S ++=-,再证明1n S ⎧⎫⎨⎬⎩⎭为等差数列,继而求得1n S ⎧⎫⎨⎬⎩⎭的通项公式再计算2020S 即可. 【详解】因为110n n n a S S +++=,所以,11n n n n S S S S ++-=-, 两边同除以1n n S S +-得:1111n nS S +-=, 所以数列1n S ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列,所以()1211n n n S =+-=+,所以11n S n =+, 所以202012021S = 故答案为:12021【点睛】本题主要考查了根据递推公式证明等差数列的方法,属于中档题.16.【分析】根据的图象的对称性利用平移变换的知识得到的图象的对称性结合函数的单调性根据得到的值最后利用等差数列的性质求得所求答案【详解】由函数的图象关于对称则函数的图象关于对称又在上单调且所以因为数列是 解析:2-【分析】根据()2y f x =-的图象的对称性,利用平移变换的知识得到()f x 的图象的对称性,结合函数的单调性,根据()()5051f a f a =得到5051a a +的值,最后利用等差数列的性质求得所求答案. 【详解】由函数()2y f x =-的图象关于1x =对称,则函数()f x 的图象关于1x =-对称, 又()f x 在()1,∞-+上单调,且()()5051f a f a =,所以5051a a 2+=-,因为数列{}n a 是公差不为0的等差数列,所以11005051a a 2a a +=+=-, 故答案为:2-. 【点睛】本题考查函数的对称性和单调性,等差数列的性质,涉及函数的图象的平移变换,属中档题,小综合题,难度一般.17.【分析】根据等比数列的性质得到成等比从而列出关系式又接着用表示代入到关系式中可求出的值【详解】因为等比数列的前n 项和为则成等比且所以又因为即所以整理得故答案为:【点睛】本题考查学生灵活运用等比数列的 解析:134【分析】根据等比数列的性质得到232,,n n n n n S S S S S --成等比,从而列出关系式,又634S S =,接着用6S 表示3S ,代入到关系式中,可求出96S S 的值. 【详解】因为等比数列{}n a 的前n 项和为n S ,则232,,n n n n n S S S S S --成等比,且0n S ≠,所以6396363--=-S S S S S S S ,又因为634S S =,即3614=S S ,所以6696666141144--=-S S S S S S S ,整理得96134=S S . 故答案为:134. 【点睛】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。

数列测试卷(含答案)

数列测试卷(含答案)

第五章数列测试卷一、选择题(本大题20个小题,每小题3分,共60分) ( )1. 数列1,-2,3,-4……的一个通项公式是A.a n=(一1)n•nB. a n= (-1)n+1 •nC. a n=nD. a n=-n2.已知数列{a n}的通项公式为a n=n2+n,且156是该数列的一项,则n 等于 ( )A.10B.11C.12D.133.若等差数列的前n项和S n=2n2- n,则它的通项公式a n为( )A.4n+3B.4n一3C.2n-1D.2n+14.在数列{ a n}中,若a1=2,a n=a n+1-2,则该数列的第5项等于( )A.16B. 14C.12D.55.已知2,m,8构成等差数列,则实数m的值是 ( )A.4B.4或一4C.10D.566.在等差数列{a n}中,已知S3=54,则a2为 ( )A.6B.12C.18D.247.在等差数列中,若a1=23,公差d为整数,a6>0,a7<0,则d等于 ( )A.-1B. -2C.-3D.-4 8.若a ≠b,且aa 1,a 2a 3,b 和a.b 1b 2b 3,b 4,b 都是等差数列,则a1−a2b1−b2等于( )A.43B.34C. 45D.549.在等差数列{a n }中,若a 1+a 4+a 7= 39,a 3+a 6+a 9=27,则S 9等于 ( )A.66B.144C.99D.297 10.等差数列{a n }中,若a n = m,a m =n,且m ≠n,那么a m+n .等于( ) A. mn B.m+n C.m-n D.011.已知a,b,c 成等比数列,则函数y=2ax 2+ 3bx+c 与x 轴交点的个数是 ( )A.0B.1C.2D.3 12.等比数列{a n }中,a 6=6,a 9=9,则a 3等于 ( ) A.4 B .32C.169D.213.已知等比数列{a n },前3项的和为7,积为8,则此数列的公比等于( )A.2B.2或32C.12D.-2或-12.14.已知等差数列{a n }的公差d=3,若a 1,a 3.a 4.成等比数列,则a 2等于 ( )A.-18B.-15C.-12D. -9 15.在等比数列(a n )中:若 a 2•a 6=8,Iog 2(a 1•a 7)= ( )A. 8 B .3 C.16 D.28 16.已知1和4的等比中项是log 3x,则实数x 的值是 ( ) A.2或12B.3或13C.4或14D.9或1917.已知等比数列{a n }的各项均为正数.且a 1, 12a 3,2a 2成等差数列,则a9+a10a7+a8= ( )A.1+√2B.1- √2C.3+2√2D.3-2√2 18.在等比数列{a n }中,著a4a7+a5a6=20.则此数列的前10项之积为( )A.50B.2010C.105D. 1010 19.为了治理沙漠,某农场要在沙漠上赖种植被,计划第一年栽种15公顷,以后每年比上一年多栽种4公顷,那么10年后该农场共裁种植被的公顷数是 ( )A.510公顷B.330公顷C.186公顷D.51公顷 20.《九章算术)“竹九节”问题:现有一根9 节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积是 ( )A.1升B.6766升 C.4744升 D.3733升二、填空题(本大题5个小题,每小题4分,共20分) 21.在等差数列{a n }中,若Sn=3n 2+2n.则公差d 的值是22.已知数列{a n }的通项公式为a n =2n 一49,则当n= 时,S n 有最小值.23.在等差数列{a n }中,已知公差d=12,且a 1+a 3+a 5…+a 97+a 99=60.则a1+a2+a3+…+a99+a100= .24.等比数列{a n}中,a2=2,a5=16,则S6=25.某种储蓄利率为2.5%,按复利计算,若本金为30 000元,设存入工期后的本金和利息为y元,则y随x变化的函数关系为三、解答题(本大题5个小题,共40分)26.(本小题6分)已知等差数列{a n}中,a n=33-3n,求前n项和S n的最大值.27.(本小题8分)设数列{a n}满足:a1=1,a n+1=2a n.n∈N+.(1)求数列{a n}的通项公式:(2)已知数列{b n}是等差数列,S n是其前n项和,且满足b1=a3,b3=a1+a2+a3,求S20的值。

(完整版)数列单元测试题(含答案)

(完整版)数列单元测试题(含答案)

《数列》一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是 ( )A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n ,若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是( )A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( )A .6B .8C .10D .1210、在等比数列{a n }中4S =1,8S =3,则20191817a a a a +++的值是 ( )A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( ) A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.题号 1 2 3 4 5 6 7 8 9 10 11 答案 DDABCDCBABA12、3.2n-1 13、510 14、n (n+1)+1-2n 15、4n+2 16、4951 17、d=32,n=50 18、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. 19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答:设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n nna abc -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。

成都石室中学(北湖校区)必修五第一章《数列》测试题(有答案解析)

成都石室中学(北湖校区)必修五第一章《数列》测试题(有答案解析)

一、选择题1.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( )A .20192020B .20202021C .20212022D .101010112.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘...积.分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .24.若数列{}n a 满足*111(n nd n N a a +-=∈,d 为常数),则称数列{}n a 为调和数列,已知数列21n x ⎧⎫⎨⎬⎩⎭为调和数列,且222212320184036x x x x +++⋯+=,则92010x x +的最大值为( )AB .2C.D .45.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .126.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--7.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或8.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-9.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-10.根据下面一组等式:11s =, 2235s =+=,345615s =++=, 47891034s =+++=, 5111213141565s =++++=, 6161718192021111s =+++++=,……可得21n S -=( )A .324641n n n -+-B .1413n -C .2184023n n -+D .(1)12n n -+11.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .27612.在1和19之间插入个n 数,使这2n +个数成等差数列,若这n 个数中第一个为a ,第n 个为b ,当116a b+取最小值时,n 的值是( ) A .4B .5C .6D .7二、填空题13.设数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,则n a =______. 14.无穷数列{}n a 满足:只要()*,p q a a p q N=∈,必有11p q aa ++=,则称{}n a 为“和谐递进数列”.已知{}n a 为“和谐递进数列”,且前四项成等比数列,151a a ==,22a =,则2021S =_________.15.已知数列{}n a 的前n 项和为n S ,点()()*,,2n n S a n N n ∈≥在2441xy x =-的图像上,11a =,数列{}n a 通项为__________.16.定义max{,}a b 表示实数,a b 中的较大的数.已知数列{}n a 满足1a a =2(0),1,a a >=122max{,2}()n n na a n N a *++=∈,若20154a a =,记数列{}n a 的前n项和为n S ,则2015S 的值为___________.17.已知数列{}n a 的首项12a =,且满足132n n a a +=+(*N n ∈),则{}n a 的前n 项和n S =___________.18.已知数列{}n a 的通项公式为3217n n a n -=-,前n 项和为n S ,则n S 取得最小值时n 的值为_________. 19.已知下列结论:①若数列{}n a 的前n 项和21n S n =+,则数列{}n a 一定为等差数列.②若数列{}n a 的前n 项和21nn S =-,则数列{}n a 一定为等比数列.③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111,,a b c可能构成等差数列. ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111,,a b c一定构成等比数列. 则其中正确的结论是_______.20.著名的斐波那契数列:1,1,2,3,5,…,的特点是从三个数起,每一个数等于它前面两个数的和,则222212320482048a a a a a ++++是数列中的第______项.三、解答题21.已知等差数列{}n a 的前n 项和为n S ,35a =,636S =. (1)求数列{}n a 的通项公式;(2)记m b 为2log k 在区间(]()*0,m a m N ∈中正整数k 的个数,求数列{}m b 的前m 项和.22.已知n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数且n *∈N 若.130n n a a ++⋅>恒成立,求:(1)数列{}n a 的通项公式; (2)数列{}n a 的前n 项和n S .23.若数列{}n a 的前n 项和()2*n S n n N =∈.(1)求{}n a 的通项公式; (2)若数列{}n b 满足3nn na b =,求数列{}n b 的前n 项和n S . 24.从条件①()21nn S n a =+,(2)n a n =≥,③0n a >,22n n n a a S +=,中任选一个,补充到下面问题中,并给出解答.(注:如果选择多个条件分别作答,按照第一个解答计分.)已知数列{}n a 的前n 项和为n S ,11a =,___________. (1)求数列{}n a 的通项公式;(2)若1a ,k a ,2k S +成等比数列,求正整数k 的值.25.在①246a a +=,945S =②222n n n S =+③()121n n a n n a n -=≥-,11a =这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{}n a 的前n 项和为n S ,________,数列{}n b 为等比数列,112b a =,222a b =,求数列{}n n a b 的前n 项和n T .26.在如图三角形数阵中第n 行有n 个数,ij a 表示第i 行第j 个数,例如,43a 表示第4行第3个数.该数阵中每一行的第一个数从上到下构成以m 为公差的等差数列,从第三行起每一行的数从左到右构成以m 为公比的等比数列(其中0m >).已知221141322112,2,2aa a a m a ==+=.313233414241344515253545121322512 n n n a a a a a a a a a a a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅nna ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅(1)求m 及53a ; (2)记112233n nn T a a a a =++++,求n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】 数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=. 故选:C 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 4.C解析:C 【分析】 先由题设21n x ⎧⎫⎨⎬⎩⎭为调和数列{}2n x ⇒是等差数列,进而利用等差数列的前n 项和公式及性质求得2292010x x +的值,再利用基本不等式求得92010x x +的最大值即可. 【详解】解:由题设知:2212211111n n n n x x d x x ++-=-=*(n N ∈,d 为常数), {}2n x ∴是等差数列,2222221201812320182018()40362x x x x x x++++⋯+==, 222212018920104x x x x ∴+==+,2292010920102x xx x +(当且仅当92010x x =时取“等号“), 2229201092010()2()8x x x x ∴++=,9201022x x ∴+(当且仅当92010x x ==“等号“),92010x x ∴+的最大值为故选:C. 【点睛】本题主要考查等差数列的定义、性质、前n 项和公式及基本不等式在处理最值中的应用,属于中档题.5.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.6.D解析:D 【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 【详解】因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列, 所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确, ()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.7.B解析:B 【分析】结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.8.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.9.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.10.A解析:A 【分析】求出第()1n -行最后一项,可得第n 行为第一项,求出第n 行最后一项,根据第n 是等差数列求出n S ,即可求出21n S -. 【详解】易得第()1n -行最后一项为[]21(1)(1)22n n n n +---=,则第n 行第一项为212n n-+,第n 行最后一项为2(1)22n n n n ++=, 故第n 行为第一项212n n -+,最后一项为22n n+,项数为n 的等差数列, 故22312222n n n n n n n n S ⎛⎫-+++ ⎪+⎝⎭==, 所以32214641n S n n n -=-+-. 故选:A. 【点睛】本题考查对数列的理解,以及等差数列的前n 项和的求法,属于中档题.11.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果. 【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=, 故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.12.B解析:B 【分析】设等差数列公差为d ,可得20a b +=,再利用基本不等式求最值,从而求出答案. 【详解】设等差数列公差为d ,则119a d b d =+=-,,从而20a b +=, 此时0d >,故0,0a b >>,所以11616()()1161725b a a b a b a b ++=+++≥+=, 即116255204a b+=,当且仅当16b a a b=,即4b a =时取“=”, 又1,19a d b d =+=-,解得3d =,所以191(1)3n =++⨯,所以5n =, 故选:B . 【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.二、填空题13.【分析】构造求出由题意可得利用等差数列的通项公式可得利用累加法即可求得【详解】构造则由题意可得故数列是以4为首项2为公差的等差数列故所以以上n-1个式子相加可得解得故答案为:【点睛】本题考查等差数列 解析:()()*1n n n N+∈【分析】构造1n n n b a a +=-,求出1b ,由题意可得()()21112n n n n n n a a a a b b ++++---=-=,利用等差数列的通项公式可得n b ,利用累加法即可求得n a . 【详解】构造1n n n b a a +=-,则1214b a a =-=,由题意可得()()21112n n n n n n a a a a b b ++++---=-=, 故数列{}n b 是以4为首项2为公差的等差数列,故()*142(1)22n n n b a a n n n N +=-=+-=+∈,所以21324314,6,8,2n n a a a a a a a a n --=-=-=-=,以上n -1个式子相加可得1(1)(42)2n n n a a -+-=,解得()*(1)n a n n n N =+∈,故答案为:()()*1n n n N +∈【点睛】本题考查等差数列,累加法求数列通项公式,属于基础题.14.7576【分析】根据新定义得数列是周期数列从而易求得【详解】∵成等比数列∴又为和谐递进数列∴…∴数列是周期数列周期为4∴故答案为:7576【点睛】本题考查数列新定义解题关键是由数列新定义性质得出数列解析:7576 【分析】根据新定义得数列是周期数列,从而易求得2021S . 【详解】∵1234,,,a a a a 成等比数列,121,2a a ==,∴344,8a a ==,又15a a =,{}n a 为“和谐递进数列”,∴26a a =,37a a =,48a a =,59a a =,…, ∴数列{}n a 是周期数列,周期为4. ∴2021505(1248)17576S =⨯++++=. 故答案为:7576. 【点睛】本题考查数列新定义,解题关键是由数列新定义性质得出数列为周期数列,从而易得结论.15.【分析】把数列递推式中换为整理得到是等差数列公差然后由等差数列的通项公式得答案【详解】由题意可得:∴∴两边除以并移向得出是等差数列公差故当时当时不符合上式故答案为:【点睛】本题考查了数列递推式考查了解析:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩【分析】把数列递推式中n a 换为1n n s s --,整理得到1{}nS 是等差数列,公差2d =,然后由等差数列的通项公式得答案.【详解】由题意可得:()24,241nn n S a n S =≥- ∴()214,241nn n n S S S n S --=≥-, ∴1140n n n n s s s s ---+=.两边除以1n n s s -,并移向得出1114,(2)n n n S S --=, 1{}nS ∴是等差数列,公差4d =, 11111S a ==. ∴114(1)43nn n S =+-=-, 故143n S n =-. ∴当2n 时,()()111443474347n n n a S S n n n n --=-=-=----. 当1n =时,11a =不符合上式.()()()()*1,14,,24347n n a n N n n n ⎧=⎪∴=-⎨∈≥⎪--⎩. 故答案为:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩. 【点睛】本题考查了数列递推式,考查了等差关系的确定,考查了运算求解能力,属于中档题.16.7254【分析】参数进行分类讨论由已知求出数列的前几项从中发现是以5为周期的再根据求得的值可得答案【详解】由题意当时因此是周期数列周期为所以不合题意当时同理是周期数列周期为所以故答案为:【点睛】本题解析:7254 【分析】参数a 进行分类讨论,由已知求出数列的前几项,从中发现是以5为周期的,再根据20154a a =求得a 的值可得答案.【详解】 由题意34a a=,当2a ≥时,44a =,52a a =,6a a =,71a =,因此{}n a 是周期数列,周期为5,所以2015524a a a a ==≠,不合题意,当02a <<时,48a a=,54a =,6a a =,71a =,同理{}n a 是周期数列,周期为5,所以2015544a a a ===,1a =,1234518a a a a a ++++=,2015403187254S =⨯=.故答案为:7254. 【点睛】本题考查新定义问题,考查周期数列的知识,解决此类问题常采取从特殊到一般的方法,可先按新定义求出数列的前几项(本题由12,a a 依次求出34567,,,,a a a a a ),从中发现周期性的规律,本题求解中还要注意由新定义要对参数a 进行分类讨论.解决新定义问题考查的学生的阅读理解能力,转化与化归的数学思想,即把新定义的“知识”、“运算”等用我们已学过的知识表示出来,用已学过的方法解决新的问题.17.【分析】根据递推公式构造等比数列求出再分组根据等比数列求和公式可得结果【详解】由得因为所以是首项为公比为的等比数列所以所以所以故答案为:【点睛】关键点点睛:构造等比数列求解是解题关键解析:()11332n n +--【分析】根据递推公式构造等比数列{1}n a +,求出n a ,再分组根据等比数列求和公式可得结果. 【详解】由132n n a a +=+得113(1)n n a a ++=+,因为1130a +=≠,所以{1}n a +是首项为3,公比为3的等比数列, 所以11333n n n a -+=⨯=,所以31n n a =-,所以1233333n n S n =++++-3(13)13n n -=--()11332n n +=--. 故答案为:()11332n n +-- 【点睛】关键点点睛:构造等比数列{1}n a +求解是解题关键.18.8【分析】求出数列在n 的不同取值范围的正负判断出的单调性可求出【详解】令解得或当时单调递增当时单调递减当时单调递增所以取得最小值时的值为8故答案为:8【点睛】本题考查数列前n 项和的最值的求法解题的关解析:8 【分析】求出数列在n 的不同取值范围的正负判断出n S 的单调性可求出. 【详解】 令30217n n a n -=≥-,解得3n ≤或172n ≥,∴当3n ≤时,0n a ≥,n S 单调递增,当47n ≤≤时,0n a <,n S 单调递减, 当8n ≥时,0n a >,n S 单调递增, 所以n S 取得最小值时n 的值为8. 故答案为:8. 【点睛】本题考查数列前n 项和的最值的求法,解题的关键是根据数列的正负判断n S 的单调性.19.②④【分析】①先求出再当时求出判断当时有判断①错误;②先求出再当时求出判断数列是以1为首项以2为公比的等比数列判断②正确;③先建立方程组再整理得与非零实数不全相等矛盾判断③错误;④先得方程整理得判断解析:②④ 【分析】①先求出12a =,再当2n ≥时求出21n a n =-,判断当1n =时有11n a a =≠,判断①错误;②先求出11a =,再当2n ≥时求出12n na ,判断数列{}n a 是以1为首项以2为公比的等比数列,判断②正确;③先建立方程组2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,再整理得a b c ==与非零实数,,a b c 不全相等矛盾,判断③错误;④先得方程2b ac =,整理得2111()b a c=⨯,判断④正确. 【详解】①:数列{}n a 的前n 项和21n S n =+,当1n =时,211112a S ==+=,当2n ≥时,221(1)(1)121n n n a S S n n n -⎡⎤=-=+--+=-⎣⎦,当1n =时,11n a a =≠, 故①错误;②:数列{}n a 的前n 项和21n n S =-,当1n =时,111211a S ==-=, 当2n ≥时,111(21)(21)2nn n n n n a S S ---=-=---=,当1n =时,11n a a ==,且12nn a a -= 所以数列{}n a 是以1为首项,以2为公比的等比数列, 故②正确;③:若111,,a b c是等差数列,则211a c b a c ac+=+=, 因为,,a b c 成等差数列,则2a c b +=,则2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,整理得a b c ==,与非零实数,,a b c 不全相等矛盾, 故③错误;④:因为非零实数,,a b c 不全相等,且,,a b c 成等比数列, 所以2b ac =,则21111b ac a c==⨯, 则111,,a b c一定构成等比数列. 故④正确. 故答案为:②④. 【点睛】本题考查等差数列和等比数列的判断,是基础题.20.【分析】由题意可得进而可得然后再利用累加法即可求出结果【详解】由题意可知所以即所以……所以又所以∴所以是数列中的第项故答案为:【点睛】本题考查了数列的递推公式和累加法的应用考查学生的计算能力属于中档题 解析:2049【分析】由题意可得21n n n a a a ++=+,进而可得21211n n n n n a a a a a ++++⋅=+⋅,然后再利用累加法,即可求出结果. 【详解】由题意可知21n n n a a a ++=+,所以()1211n n n n n a a a a a ++++⋅=⋅+,即21211n n n n n a a a a a ++++⋅=+⋅所以220482049204820482047a a a a a ⋅=+⋅,220472048204720472046a a a a a ⋅=+⋅,……223221·a a a a a ⋅=+,所以2222048204920482047221·a a a a a a a ⋅=++⋯++, 又21a a =所以2222204820492048204721a a a a a a ⋅=++⋯++∴2222123204820492048a a a a a a ++++=.所以222212320482048a a a a a ++++是数列中的第2049项.故答案为:2049 . 【点睛】本题考查了数列的递推公式和累加法的应用,考查学生的计算能力,属于中档题.三、解答题21.(1)21n a n =-;(2)212233m m +--【分析】(1)根据等差数列的通项公式和前n 项和公式列出式子求出首项和公差即可求出通项公式;(2)由20log 21m k a m ≤=-<解得2112m k -<≤,即可得出1241m m b -=⨯-,再分组求和即可得出. 【详解】(1)设等差数列{}n a 的公差为d ,则3161+25656+362a a d S a d ==⎧⎪⎨⨯==⎪⎩,解得1a 1,d 2, ()11221n a n n ∴=+-⨯=-;(2)由20log 21m k a m ≤=-<,解得2112m k -<≤,m b 为2log k 在区间(]()*0,m a m N ∈中正整数k 的个数,21121241m m m b --∴=-=⨯-,设数列{}m b 的前m 项和为m T , 则()21214221433m m mT m m +-=-=---.【点睛】本题考查等差数列基本量的计算,解题的关键是求出首项和公差,考查等比数列的求和公式,解题的关键是求出1241m m b -=⨯-.22.(1)*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩;(2)2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【分析】 (1)先令12n nx t =,根据所给方程,得到()()2312log 23n n n t n t n n ++=+,构造函数()()214log 2n g x x n x +=+,确定122n n n t +<<,再讨论n 为奇数和n 为偶数两种情况,结合题中条件,即可求出数列的通项;(2)根据(1)的结果,讨论n 为奇数和n 为偶数两种情况,利用分组求和的方法,结合等差数列的求和公式,即可求出结果. 【详解】(1)因为n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,令12n n x t =,则12n nx t =, 所以()()2312log 23n n n t n t n n ++=+,记()()214log 2n g x x n x +=+,显然()g x 单调递增,且2221log 32n n g n n n n n n n +⎛⎫=+<+<+ ⎪⎝⎭,()()222111log 13132n n g n n n n n n n ++⎛⎫=+++=++>+ ⎪⎝⎭, 所以122n n n t +<<, 当*21()n k k N =-∈时,2112n k k t k --<<<,则[]11122n nn n a t k x ⎡⎤-===-=⎢⎥⎣⎦; 当*2()n k k N =∈时,21122n k k t k +<<=+,则[]122n n n n a t k x ⎡⎤====⎢⎥⎣⎦; 综上,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩; (2)由(1)可得,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩,当*21()n k k N =-∈时,()()1352461......n n n S a a a a a a a a -=+++++++++211121002412461122222 (222)22222224n n n n n n n +---⎛⎫⎛⎫++ ⎪ ⎪---⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭;当*2()n k k N =∈时,()()1351246......n n n S a a a a a a a a -=+++++++++2220024224622222 (222)22222224n n n n n n n -⎛⎫⎛⎫++ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭;综上,2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【点睛】 关键点点睛:求解本题的关键在于由n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,求出12n x 的范围,利用12n n a x ⎡⎤=⎢⎥⎣⎦,通过讨论n 的奇偶,得出数列通项,即可求解. 23.(1)21n a n =-;(2)113n nn S +=-. 【分析】(1)利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求通项公式;(2)由(1)知利用错位相减法求和.【详解】解:(1)当1n =时,111a S ==,当2n ≥时,()221121n n n a S S n n n -=-=--=-,当1n =时,也符合上式,所以对任意正整数n ,21n a n =-. (2)由(1)得213n nn b -=, 所以1312135232133333n n n n n S ---=+++++…,① 234111352321333333…n n n n n S +--=+++++,②-①②,得32121111212333333n n n n S +-⎛⎫=++++- ⎪⎝⎭…, 21113311132[1()]12122231333n n n n n -++⨯--+=+-=--, 所以113n nn S +=-. 【点睛】方法点睛:本题考查已知数列n S 与n a 的关系式,求通项公式,和错位相减法求和,一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.倒序相加法求和.24.(1)答案见详解;(2)答案见详解. 【分析】选①时,先写()1122n n S n a ++=+,作差得到n a n ⎧⎫⎨⎬⎩⎭是等差数列,即求得n a n =,再按要求列方程解得正整数k 的值即可;选②时,代入1n n n a S S -=-,化简得到是等差数列,求得2n S n =,再计算n a 即可,再按要求列方程解得正整数k 的值即可;选③时,先写21112n n n a a S ++++=,作差得到数列{}n a 是等差数列,即求得na n =,再按要求列方程解得正整数k 的值即可. 【详解】解:若选①,()21n n S n a =+,则()1122n n S n a ++=+, 两式作差得()()11221n n n a n a n a ++-=++,即101n na a n n,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭是等差数列,首项是111a =,公差是0,故1n a n =,所以n a n =;由{}n a 通项公式知,()12n n n S +=,故()()2232k k k S +++=,又11a =,k a k =, 结合题意知,()()22312k k k ++=⨯,即2560k k --=,解得1k =-或6k =,因为k 是正整数,所以6k=.若选②(2)n a n =≥,11a =,故0n S >1n n n a S S -=-=,=1=,2n ≥,故1=,公差是1n =,故2n S n =.2n ≥时,()221121n n n a S S n n n -=-=--=-,且11a =也适合该式,故数列{}n a 的通项公式21n a n =-;11a =,21k a k =-,()222k S k +=+,结合题意知,()()222112k k -=⋅+,即23830k k --=,解得3k =或13k =-, 因为k 是正整数,所以3k =.若选③,0n a >,22n n n a a S +=,则21112n n n a a S ++++=,两式作差得()211n n a a +++()212n n n a a a +-+=,化简得()()1110n n n n a a a a +++--=,由0n a >知,10n n a a ++>,得110n n a a +--=,即11n n a a +-=, 数列{}n a 是等差数列,首项是1,公差为1,故n a n =; 由{}n a 通项公式知,()12n n n S +=,故()()2232k k k S +++=,又11a =,k a k =,结合题意知,()()22312k k k ++=⨯,即2560k k --=,解得1k =-或6k =,因为k 是正整数,所以6k =. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,若已知式是关于na 和n S 关系式时,也通常利用两式作差得到1n n n S S a --=消去n S ,或者代入1n n n a S S -=-消去n a ,进行化简计算.25.选①或②或③,()1122n n T n +=-⨯+.【分析】选①,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据已知条件建立有关1a 、d 的方程组,求出这两个量,并求出q 的值,可得出数列{}n a 、{}n b 的通项公式,进而利用错位相减法可求得n T ;选②,设等比数列{}n b 的公比为q ,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,并求出q ,可求得数列{}n b 的通项公式,再利用错位相减法可求得n T ;选③,设等比数列{}n b 的公比为q ,利用累乘法可求出数列{}n a 的通项公式,并求出q ,可求得数列{}n b 的通项公式,再利用错位相减法可求得n T . 【详解】选①,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 由已知条件可得2419124693645a a a d S a d +=+=⎧⎨=+=⎩,解得11a d ==,()11n a a n d n ∴=+-=, 22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅, 1231222322n n T n =⨯+⨯+⨯++⨯, ()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--, 因此,()1122n n T n +=-⨯+;选②,当1n =时,111a S ==; 当2n ≥时,()()2211122n n n n n n n a S S n --+-+=-=-=. 11a =也满足n a n =,所以,对任意的n *∈N ,n a n =.22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅, 1231222322n n T n =⨯+⨯+⨯++⨯, ()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--, 因此,()1122n n T n +=-⨯+; 选③,()121n n a n n a n -=≥-,且11a =, 由累乘法可得321121231121n n n a a a n a a n a a a n -=⋅⋅⋅⋅=⨯⨯⨯⨯=-. 22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅, 1231222322n n T n =⨯+⨯+⨯++⨯, ()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--, 因此,()1122n n T n +=-⨯+.【点睛】 方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和; (2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.26.(1)2m =,5340a =;(2)1(1)22n n +-⨯+【分析】(1)根据题意以m 表示出313241,,a a a ,由4132122a a =+即可求出m ,进而求出53a ; (2)根据等差数列和等比数列的通项公式求出2n nn a n =⨯,再利用错位相减法即可求出n T .【详解】(1)由已知得3111(31)22a a m m =+-⨯=+, 23231(22)22a a m m m m m =⨯=+⨯=+, 4111(41)32a a m m =+-⨯=+,4132122a a =+, ()21322222m m m ∴+=++,即220m m -=, 又0m >,2m ∴=,51114210a a ∴=+⨯=,25351240a a ∴=⨯=;(2)由(1)得111(1)22n a a n n =+-⨯=, 当3n ≥时,1122n n nn n a a n -=⨯=⨯, 又211124a a =+=,2221248a ma ==⨯=, 11222,8a a ∴==满足2n nn a n =⨯,1234122232422n n T n ∴=⨯+⨯+⨯+⨯++⨯,23412122232(1)22n n n T n n +=⨯+⨯+⨯++-⨯+⨯, 两式相减得12341222222n n n T n +-=+++++-⨯()11112122222(1)2212n n n n n n n n ++++-=-⨯=--⨯=-⨯--, 1(1)22n n T n +∴=-⨯+.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解; (2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.。

学生数列测验 (2)(1)

学生数列测验 (2)(1)

数学竞赛数列测验考试时间:120分钟姓名_____班级_____分数_____1、(10分)一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是(可以用指数表示)_____________2、(10分)已知}{n a 是公差不为0的等差数列,}{n b 是等比数列,其中3522113,,1,3b a b a b a ====,且存在常数βα,使得对每一个正整数n 都有βα+=n n b a log ,则=+βα___________.3、(10分)数列}{n a 满足)(1)2(2,211⋅+∈++==N n a n n a a n n ,则2013212014...a a a a +++=_____.4、(20分)数列{a n }满足a n =a n-1-a n-2(n ≥3).如果它的前1492项之和是1985,而它的前1985项之和是1492.那么前2001项的和是多少?5、(20分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-= ,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示);(Ⅱ)若1p =,14q =,求{}n a 的前n 项和.6、(30分)对于数列{u n },若存在常数M >0,对任意的n ∈N*,恒有|u n +1-u n |+|u n -u n -1|+…+|u 2-u 1|≤M ,则称数列{u n }为B —数列.(1)首项为1,公比为q (|q |<1)的等比数列是否为B —数列?请说明理由;(2)设S n 是数列{x n }的前n 项和,给出下列两组判断:A 组:①数列{x n }是B—数列,②数列{x n }不是B—数列;B 组:③数列{S n }是B—数列,④数列{S n }不是B—数列.请以其中一组中的论断为条件,另一组中的一个论断为结论组成一个命题,判断所给出的命题的真假,并证明你的结论;(3)若数列{a n }、{b n }都是B —数列,证明:数列{a n b n }也是B —数列.7、(本题满分50分)设数列{}n a 定义为11a =.12017,,1,2,.,3.n n n n n r a n a n a n a n a n a r r ++≤⎧==⎨->⎩<≤ 若,若求满足的正整数的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档