弹性力学概念汇总说课材料

合集下载

弹性力学知识点总结

弹性力学知识点总结

一、弹性体的力学性质1.1 弹性体的基本定义弹性体是指在受力作用下可以发生形变,但在去除外力后能够完全恢复原状的物质。

弹性体的形变可以分为弹性形变和塑性形变两种,其中弹性形变是指在外力作用下形变后又能够完全恢复的形变,而塑性形变则是指在外力作用下形变后无法完全恢复的形变。

1.2 林纳与胡克定律弹性体的力学性质可以由林纳和胡克定律来描述。

林纳定律指出,在小形变范围内,弹性体的形变与受力成正比。

而胡克定律则指出,在弹性体上施加的外力与其形变之间存在线性关系,即应力与应变成正比。

二、应力应变关系2.1 应力的定义与计算应力是指单位面积上的受力大小,通常用σ表示。

应力可以分为正应力和剪应力两种,其中正应力是指垂直于物体表面的受力,而剪应力是指平行于物体表面的受力。

在弹性体受力作用下,可以使用以下公式来计算应力:σ = F / A其中,σ为应力,F为受力大小,A为受力的面积。

2.2 应变的定义与计算应变是指物体在受力作用下的形变程度,通常用ε表示。

应变可以分为正应变和剪应变两种,其中正应变是指物体在受力作用下的长度、体积等发生的相对变化,而剪应变是指物体表面平行位移的相对变化。

在弹性体受力作用下,可以使用以下公式来计算应变:ε = ΔL / L其中,ε为应变,ΔL为长度变化量,L为原始长度。

2.3 应力应变关系应力与应变之间存在一定的关系,这种关系可以用材料的弹性模量来描述。

弹性模量是指在正应变下的应力大小,通常用E表示。

弹性模量可以分为弹性体积模量、剪切模量和弹性体积模量三种,分别对应不同形变情况下的应力应变关系。

3.1 弹性体积模量弹性体积模量是指在正应变下,单位体积的物体受力后的应力大小,通常用K表示。

弹性体积模量是材料的一个重要力学性质,它描述了材料在受力作用下的体积变化情况。

3.2 剪切模量剪切模量是指在剪切应变下,材料受力后的应力大小,通常用G表示。

剪切模量描述了材料在受力作用下的形变情况。

3.3 杨氏模量杨氏模量是衡量正应变下的应力大小的指标,通常用E表示。

弹性力学讲义

弹性力学讲义
zx
yz
标轴的负方向为负。
yx y 负面:截面上的外法线 B 沿坐标轴的负方向
A
z
O
负面上的应力以沿坐标 y 轴的负方向为正,沿坐
(不考虑位置, 把应力当作均匀应力)标轴的正方向为负。
x 正应力符号规定与材力同,切应力与材力不相同。
连接前后两面中心的直线 z
ab作为矩轴,列出力矩平 衡方程,得
z
fz
F f
S
fy
f : 极限矢量,即物体在P点所受面力 的集度。方向就是F的极限方向。
fx P
fx , fy , fz:体力分量。
o
y 符号规定:
x
lim F f
V 0 S
沿坐标正方向为正,沿坐标负 方向为负。
量纲:N/m2=kg∙m/s2∙m2=kg/m∙s2
即:L-1MT-2
(4)各向同性 — 假定物体是各向同性的.
符合以上四个假定的物体,就成为理想弹性体.
(5)小变形假定 — 假定位移和形变是微小的. 它包含两个含义: ⅰ 假定应变分量 <<1. 例如:普通梁中的正应变 <<10-3 << 1,切应变 << 1;
ⅱ 假定物体的位移<<物体尺寸.
例如:梁中挠度 << 梁的高度
弹性力学在土木、水利、机械、航空等工程学科 中占有重要的地位。许多非杆件形状的结构必须用 弹性力学方法进行分析。例如,大坝,桥梁等。
§1.2 弹性力学中的几个基本概念
弹性力学的基本概念: 外力、应力、形变和位移
1. 外力:体积力和表面力,简称体力和面力
体力:分布在物体体积内的力,例如重力和惯性力。
2 yzzx

弹性力学总结与复习全ppt课件

弹性力学总结与复习全ppt课件
4. 平面问题Airy应力函数
的选取:
直角坐标下
y 0
O
b
xl
y
y 0
y f ( y)
O
y xf ( y)
x
g
x
(x, y)
gy
ax3 bx2 y cxy2 dy3
g
y 习题:3 -1,3 –2,3 –3,3 -4
寒 假 来 临 , 不少的 高中毕 业生和 大学在 校生都 选择去 打工。 准备过 一个充 实而有 意义的 寒假。 但是, 目前社 会上寒 假招工 的陷阱 很多
结构特点
(1)一般多连体
1(z)
1 8
m
(Xk
k 1
iYk ) ln(
z
zk ) 1 (z)
1(z)
3 8
m
(Xk
k 1
iYk ) ln(
z
zk ) 1*(z)
其中: 1(z),1(z) 为该多连体中单值解析函数。
(2-26)
(3) 再让 x , y , xy 满足应力边界条件和位移单值条件(多连体问题)。
l( x )s m( xy )s X m( y )s l( xy )s Y
(2-18)
us u (2-17) vs v
寒 假 来 临 , 不少的 高中毕 业生和 大学在 校生都 选择去 打工。 准备过 一个充 实而有 意义的 寒假。 但是, 目前社 会上寒 假招工 的陷阱 很多
(4-11)
应力分量 位移分量
r
rA2rA2BB(1(3
2
ln r 2 ln
) r)
2C 2C
r r 0
(4-12)
ur
1 E
(1

弹性力学基本概念和考点汇总

弹性力学基本概念和考点汇总

弹性力学基本概念和考点汇总弹性力学是研究物体在受力作用下的形变和应力的学科。

它是物理学和工程学中的一门重要课程,被广泛应用于材料力学、结构设计和工程力学等领域。

在学习弹性力学的过程中,有一些基本概念和考点是必须要掌握的。

1.弹性形变和塑性形变:弹性形变是指物体在受到外力作用后,恢复到原始形状的形变。

而塑性形变是指物体在受到外力作用后,不能完全恢复到原始形状的形变。

2.弹性力学中的基本假设:在弹性力学中,通常做出两个基本假设。

第一个是小变形假设,即物体在受力作用下发生的形变是很小的;第二个是线弹性假设,即物体的应力和应变之间的关系是线性的。

3.弹性势能和应变能:弹性势能是指物体在受力过程中,由于形变而储存的能量。

而应变能是指物体在受力过程中,由于形变而转换成的能量。

4. Hooke定律:Hooke定律是指物体在小变形范围内,应力和应变之间的关系是线性的。

它可以表示为应力等于弹性模量乘以应变。

5.弯曲力学:弯曲力学是研究杆件在受到弯曲力作用下的形变和应力分布。

在弯曲力学中,有一些重要的概念和公式,如弯曲应力、弯曲应变、弯矩和弯曲方程等。

6.薄壁压力容器:薄壁压力容器是指在薄壁条件下,承受内外压力作用的容器。

在薄壁压力容器的分析中,常常需要考虑切应力和平均应力的计算。

7.稳定性分析:稳定性分析是指对于一个受到外力作用的物体,判断其是否处于稳定平衡状态的分析。

在稳定性分析中,需要考虑物体的刚度、屈曲和挠度等因素。

8.复合材料力学:复合材料是由两种或两种以上不同材料组成的材料。

在复合材料力学中,需要考虑不同材料的力学性能和界面效应等因素。

9.动力学分析:动力学分析是研究物体在受到外力作用下的运动状态和运动规律。

在动力学分析中,需要考虑物体的质量、加速度和作用力等因素。

以上是弹性力学中的一些基本概念和考点的汇总。

掌握这些基本概念和考点可以帮助我们理解弹性力学的基本原理和应用,进而应用于实际问题的分析和解决。

人教版必修1《弹力》说课稿

人教版必修1《弹力》说课稿

人教版必修1《弹力》说课稿一、课程背景介绍人教版必修1《弹力》是高中物理教材中的一篇重要内容。

本篇文章主要介绍了弹性材料的性质和应用,旨在帮助学生理解物体的弹性变形以及原理,并能运用所学知识解决实际问题。

二、教学目标1.理解弹性材料的基本概念和性质;2.掌握杨氏模量的计算方法;3.通过实例学习掌握弹性变形的原理和应用;4.培养学生的观察、分析和实验能力。

三、教学内容1. 弹性材料的性质弹性材料是指能在外力作用下发生形状变化并随即恢复原状的材料。

学生会学习到弹性力学中的一些基本概念,如弹性体、弹性极限和弹性恢复率等。

通过实例和实验,学生将了解不同材料的弹性特性和应用。

2. 杨氏模量的计算方法杨氏模量是衡量材料刚性的重要参数,是指当材料在垂直方向上受到单位面积的应力时,材料在平行方向上产生的应变的比值。

在本课中,学生将学习如何计算杨氏模量以及应用计算结果解决实际问题。

3. 弹性变形的原理和应用学生将了解弹性变形的原理,包括应力与应变的关系以及胡克定律。

通过实例分析和实验,学生将学习如何应用弹性变形的原理解决实际问题,如弹簧的应用、悬线的原理等。

四、教学重点1.弹性材料和弹性力学的基本概念;2.理解杨氏模量的计算方法;3.掌握应力、应变和胡克定律的关系;4.弹性变形的原理和应用。

五、教学方法1.课堂讲授:通过简明扼要的讲解,引导学生了解弹性材料的基本概念和性质;2.实例分析:通过生活中的实例,让学生了解弹性变形的原理和应用;3.实验演示:进行简单的实际实验,让学生亲自观察和操作,进一步理解弹性力学的基本原理。

六、教学过程1. 导入(5分钟)简要介绍弹性材料的概念,并提出学习弹性力学的重要性和应用前景。

2. 弹性材料的性质(15分钟)通过实例和图片展示不同弹性材料的性质,引导学生认识不同材料的弹性特性。

3. 杨氏模量的计算方法(20分钟)详细讲解杨氏模量的定义和计算方法,并通过例题和实际问题引导学生应用公式进行计算。

弹性力学基本概念

弹性力学基本概念

弹性力学基本概念弹性力学是力学的一个分支领域,研究材料在受力时的弹性变形和恢复变形的行为规律。

本文将介绍弹性力学的基本概念,包括应力、应变、胡克定律和杨氏模量等。

一、应力和应变在弹性力学中,应力和应变是两个基本的物理量,用来描述物体在受力时的变形情况。

应力是单位面积上的力,通常用希腊字母σ表示。

应力可以分为正应力和剪应力两种。

正应力是指垂直于受力面的力,它可以通过力的大小和受力面的面积计算得到。

正应力的单位是帕斯卡(Pa),1Pa等于1牛顿/平方米。

剪应力是指平行于受力面的力,它也可以通过力的大小和受力面的面积计算得到。

剪应力的单位也是帕斯卡(Pa)。

应变是物体由于受力而发生的变形程度,通常用希腊字母ε表示。

应变可以分为线性应变和剪切应变两种。

线性应变是指物体在受力下发生的长度变化与原长度之比。

线性应变的计算公式为:ε = ΔL / L,其中ΔL表示长度变化,L表示原长度。

剪切应变是指物体在受到剪应力时,各层之间相对位置的变化。

剪切应变的计算公式为:γ = Δx / h,其中Δx表示位置变化,h表示物体的厚度。

二、胡克定律胡克定律是弹性力学的基本定律之一,描述了材料的应力和应变之间的关系。

胡克定律可以用公式表示为:σ = Eε,其中σ表示应力,E表示杨氏模量,ε表示应变。

杨氏模量是衡量材料硬度和刚度的重要物理量,表示单位应力下材料的单位应变。

杨氏模量的单位是帕斯卡(Pa)。

胡克定律表明,当材料处于弹性变形状态时,应力和应变之间成正比。

杨氏模量越大,材料的刚度越高,抵抗变形的能力也越强。

三、弹性常数除了杨氏模量,弹性力学还有其他一些描述材料力学性质的常数。

泊松比是描述材料在受到正应力时,在垂直方向上的应变情况的比值。

泊松比的计算公式为:ν = -ε_2 / ε_1,其中ε_1表示垂直方向上的线性应变,ε_2表示平行方向上的线性应变。

弹性体模量是描述材料在受力时的刚度的物理量,定义为单位体积的材料在受力时所发生的应变与应力之比。

弹性力学的概念

弹性力学的概念

经典弹性力学建立
17世纪末到18世纪初,R·胡克、C·惠更斯 、L·欧拉和J·伯努利等人建立了经典的弹性 力学理论,奠定了弹性力学的基础。
弹性力学应用领域
工程领域
材料科学
弹性力学广泛应用于各种工程领域,如建 筑、桥梁、道路、隧道、航空航天等,用 于分析和设计各种结构物。
弹性力学对于研究材料的力学性能和变形 行为具有重要意义,为材料科学的发展提 供了理论基础。
组分、结构等因素变化。
智能材料
03
如压电材料、形状记忆合金等,其力学行为与电场、磁场、温
度等外部条件密切相关,对弹性力学提出新的挑战。
复杂环境下弹性力学问题
极端环境
如高温、低温、高压、 真空等极端环境下,材 料的弹性力学行为可能 发生变化,需要研究相 应的理论和实验方法。
多场耦合
在力、热、电、磁等多 场耦合作用下,材料的 弹性力学响应更加复杂 ,需要建立多场耦合的 弹性力学模型。
泊松比
又称横向变形系数,是反映材料在受到纵向压缩或拉伸时,横向应变与纵向应变 比值的物理量。泊松比越大,说明材料在受到纵向力时横向收缩或膨胀越明显。
应力集中与应力分布
应力集中
在物体内部,由于形状、尺寸或材料性质等原因,某些部位 的应力可能显著高于其他部位,这种现象称为应力集中。应 力集中容易导致物体在局部范围内发生破坏。
地震学
生物力学
弹性力学在地震学中也有重要应用,用于 研究地震波在地球内部的传播规律和地震 引起的地面振动等问题。
生物力学是研究生物体运动和变形的学科, 弹性力学为其提供了基本的理论和方法。
02
弹性力学基本概念
CHAPTER
应力与应变概念
应力
物体内部单位面积上所承受的力,表示物体内部某一点的受力状态。应力分为 正应力和切应力,正应力与截面垂直,切应力与截面平行。

大学弹力力学知识点总结

大学弹力力学知识点总结

大学弹力力学知识点总结弹性力学是力学的一个分支,主要研究物体在外力作用下的形变和应力,以及这些形变和应力之间的关系。

在这一领域中,我们主要研究弹性体的性质,包括拉伸、压缩、扭转和弯曲等。

弹性力学不仅在工程领域有着广泛的应用,也是现代物理学、材料学和地质学等领域的基础。

1.基本概念在弹性力学中,我们首先需要了解一些基本概念,包括应力、应变、杨氏模量和泊松比等。

应力是单位面积上的外力,通常用符号σ表示。

应力可以分为正应力、剪切应力等。

应变是单位长度上的形变量,通常用符号ε表示。

应变也可以分为正应变、剪切应变等。

杨氏模量是描述材料刚度的参数,通常用符号E表示。

杨氏模量越大,说明材料越难以变形。

泊松比描述了材料在垂直拉伸时横向收缩的程度,通常用符号ν表示。

2.拉伸在弹性力学中,拉伸是一个非常重要的概念,它描述了物体在外力作用下的长度变化。

拉伸实验通常利用应变计来测量物体的应变,从而得到应力-应变曲线。

根据应力-应变曲线,我们可以得到杨氏模量和屈服强度等重要参数。

3.压缩压缩是拉伸的逆过程,它描述了物体在外力作用下的长度减小。

同样,通过压缩实验可以得到物体的杨氏模量和屈服强度等参数。

4.扭转扭转是指物体在外力作用下的扭转形变。

扭转实验可以得到物体的剪切模量。

5.弯曲弯曲是物体在外力作用下产生的弯曲形变。

在弯曲实验中,我们通常关注的是杨氏模量和截面惯性矩等参数。

弯曲实验还可以用来研究材料的疲劳性能。

6.弹性体的稳定性在弹性力学中,我们还需要研究弹性体的稳定性问题。

通常情况下,我们关注的是杆的稳定性和壳的稳定性。

通过分析弹性体的形变和应力分布,我们可以得到弹性体的稳定性条件。

7.应力分析应力分析是弹性力学的重要内容,它主要研究物体内部的应力分布。

应力分析可以帮助我们理解物体在外力作用下的形变特性,以及预测物体的破坏情况。

总之,弹性力学是一门重要的力学分支,它不仅在工程领域有着广泛的应用,也在物理、材料和地质等领域发挥着重要作用。

大班科学说课稿:弹性

大班科学说课稿:弹性

大班科学说课稿:弹性1. 引入大家好,我是XX小学的XX老师,今天给大家讲解的是关于弹性的科学知识。

弹性是一种常见的物理现象,在我们的日常生活中随处可见。

比如,我们拍打脸颊后,皮肤会反弹回来;我们跳跳球时,球也会反弹回来;我们用弹簧作为挂钩时,弹簧会伸缩等等。

这些都涉及到了弹性的原理。

2. 知识点讲解2.1 弹性定义弹性是指物体发生形变后能够恢复原有形态的性质,它是由物体的分子或原子来维持的。

2.2 弹性形变的种类弹性形变主要分为两种:弹性压缩形变和弹性拉伸形变。

2.2.1 弹性压缩形变弹性压缩形变是指物体在外力作用下,沿着压力方向发生的压缩形变。

当外力作用取消后,物体能够恢复原来的形态和大小。

举个例子,我们可以将一个海绵压缩后再松手,海绵就会恢复原来的形态和大小。

2.2.2 弹性拉伸形变弹性拉伸形变是指物体在外力作用下,沿着拉力方向发生的拉伸形变。

当外力作用取消后,物体能够恢复原来的形态和大小。

我们可以将一根橡皮筋拉伸后再松手,橡皮筋就会恢复原来的形态和大小。

2.3 弹性的应用弹性在我们的日常生活中是非常常见的。

下面就让我们来看一下弹性的一些应用:2.3.1 弹簧的应用弹簧是一种具有弹性特性的机械元件,应用非常广泛。

我们可以将弹簧作为挂钩,用于挂各种物品,弹簧的弹性可以帮助我们固定物品。

2.3.2 碰撞的应用碰撞是一种常见的物理现象,也是弹性的重要应用场景。

当两个物体碰撞时,它们之间会产生弹性变形,这种变形会导致物体发生反弹。

我们可以将这种弹性应用到运动场上,比如网球、篮球、足球等运动项目中,这些比赛中的球都具有弹性,能够反弹。

这不仅增加了比赛的趣味性,也让运动员在比赛中发挥出更好的状态。

3. 结语以上就是关于弹性的科学知识讲解,希望大家能够从中了解到弹性的定义、形变的种类以及应用场景。

同时也希望大家能够在日常生活中注意观察和应用弹性的知识。

2024版弹性力学5PPT课件

2024版弹性力学5PPT课件

2024/1/25
5
边界条件与约束类型
边界条件
位移边界条件、应力边界条件、混合边界条件。
约束类型
几何约束、运动约束、动力约束。
2024/1/25
பைடு நூலகம்
6
应力、应变及位移关系
2024/1/25
应力
单位面积上的内力,包括正应力和剪应力。
应变
物体在外力作用下形状和尺寸的改变,包 括线应变和角应变。
位移
物体在外力作用下某点位置的改变,包括 线位移和角位移。
广义平面应力问题与广义平面应变问题的定义
阐述广义平面应力问题和广义平面应变问题的基本概念和定义。
广义平面应力问题与广义平面应变问题的求解方法
介绍如何利用弹性力学的基本方程和边界条件,求解广义平面应力问题和广义平面应变 问题。
广义平面应力问题与广义平面应变问题的实例分析
通过具体实例,展示广义平面应力问题和广义平面应变问题求解方法的实际应用。
10
功的互等定理与卡氏定理
01
功的互等定理的基本内容
在弹性力学中,如果两个载荷系统在相同的物体上分别作用并产生相同
的位移场,则这两个载荷系统所做的功相等。
2024/1/25
02 03
卡氏定理的基本内容
在弹性力学中,如果物体在某一载荷作用下处于平衡状态,那么在该载 荷作用下物体内部任意点的应力分量与另一与之平衡的载荷在该点所引 起的位移分量成正比。
2024/1/25
03
平面问题求解方法
13
平面应力问题与平面应变问题
平面应力问题
分析薄板在面内荷载作用 下的应力、变形和稳定性。
2024/1/25
平面应变问题
研究长柱体或深埋在地下 的结构物,在垂直于轴线 或地面的荷载作用下,其 横截面内的应力和变形。

弹性力学基础教学课件PPT

弹性力学基础教学课件PPT
弹性力学基础教学课 件
目录
• 引言 • 弹性力学基本概念 • 弹性力学基本方程 • 弹性力学问题解法 • 弹性力学应用实例 • 总结与展望
01
引言
课程简介
弹性力学基础是一门介绍弹性力学基本原理和方法的课程,旨在为学生提供解决 工程问题中弹性力学问题的能力。
本课程将介绍弹性力学的基本概念、基本原理、基本方法以及在工程实践中的应 用,帮助学生建立对弹性力学的基本认识,培养其解决实际问题的能力。
弹性力学基本方程
平衡方程
静力平衡方程
描述了弹性体在力的作用下保持平衡的状态,表达了物体内 部各点的应力与外力之间的关系。
运动平衡方程
在考虑了物体运动的情况下,描述了弹性体在力的作用下保 持运动的平衡状态,涉及到速度和加速度。
几何方程
应变与位移关系
描述了物体在受力变形过程中,位移 与应变之间的关系。
应变与速度关系
描述了物体在受力变形过程中,速度 与应变之间的关系。
本构方程
弹性本构方程
描述了弹性体在受力变形过程中,应力与应变之间的关系,涉及到弹性模量和泊松比等 参数。
塑性本构方程
描述了塑性体在受力变形过程中,应力与应变之间的关系,涉及到屈服准则和流动法则 等参数。
04
弹性力学问题解法
总结词
弹性梁的弯曲问题
总结词
实际工程应用
详细描述
在建筑工程、机械工程和航空航天工程等领域,弹性梁的弯曲问题具有广泛的应用。例如,在桥梁和建筑结构中, 梁是主要的承载构件,其弯曲变形会影响结构的稳定性和安全性。通过掌握弹性力学的基本原理和方法,可以更 加准确地分析梁的弯曲问题,优化梁的设计和计算。
弹性薄板的弯曲问题
越广泛。未来可以进一步研究和发展更加高效、精确的数值计算方法,

弹性力学知识点总结

弹性力学知识点总结

弹性力学知识点总结弹性力学是力学的一个重要分支,研究固体物体的变形和回复过程。

在本文中,将对弹性力学的几个重要概念和原理进行总结和介绍。

1. 弹性模量弹性模量是衡量固体物体抵抗形变的能力的物理量。

根据胡克定律,弹性模量E可以通过应力σ和应变ε的比值得到:E = σ/ε。

其中,应力表示受力物体单位面积上的力的大小,应变表示物体在应力作用下产生的形变程度。

2. 胡克定律胡克定律是弹性力学的基本原理,描述了理想弹性体在弹性应变范围内的力学行为。

根据胡克定律,应变与应力成正比。

即ε = σ/E,其中E为杨氏模量。

3. 杨氏模量杨氏模量是衡量固体材料抗拉性能的物理量,表示固体在单位面积上受到的拉力与单位长度的伸长量之比。

杨氏模量的定义为:E =F/AΔL/L0,其中F为受力物体的拉力,A为受力物体的横截面积,ΔL为拉伸后的长度增量,L0为原始长度。

4. 泊松比泊松比是衡量固体材料体积收缩性的物理量。

泊松比定义为物体在一轴方向上受力引起的形变量与垂直方向上的形变量之比。

公式表示为:μ = -εlateral/εaxial。

5. 应力-应变关系弹性力学中的应力-应变关系描述了材料在受力作用下的力学行为。

对于弹性材料,应力与应变成线性关系,即应力和应变成比例。

6. 弹性极限弹性极限是指固体材料可以弹性变形的最大程度。

超过弹性极限后,材料将会发生塑性变形。

7. 弹性势能弹性势能是指物体在形变后能够恢复到初始状态的能力。

弹性势能可以通过应变能来表示,其大小等于物体在受力作用下形变所储存的能量。

8. 弹性波传播弹性波是在固体中传播的一种机械波。

根据介质的不同,弹性波可以分为纵波和横波。

9. 斯内尔定律斯内尔定律描述了弹性力学体系中应力与应变之间的关系。

根据斯内尔定律,弹性变形是由应力和应变之间的线性关系所描述的。

10. 压力容器设计弹性力学在压力容器设计中起着重要作用。

根据弹性力学的原理,可以计算压力容器在不同压力下的变形情况,从而设计出满足安全要求的容器结构。

弹性力学讲义

弹性力学讲义

弹性力学01绪论1.1弹性力学的内容1.2弹性力学的几个基本概念 1.3弹性力学中的基本假定。

1.1、弹性力学的内容弹性力学:研究弹性体由于受外力、边界约束或温度等原因而发生的应力、变形和位移。

研究弹性体的力学:有材料力学、结构力学、弹性力学。

它们的研究对象分别如下: ①材料力学:研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题。

②结构力学:在材料力学基础上研究杆系结构(如桁架、钢架等)③弹性力学:研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。

在研究方法上,弹性力学和材料力学也有区别:弹力研究方法:在区域V 内严格考虑静力学、几何学和物理学三方面条件,建立三套方程;在边界s 上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。

材力也考虑这几方面的条件,但不是十分严格的:常常引用近似的计算假设(如平面截面假设)来简化问题,并在许多方面进行了近似的处理。

因此材料力学建立的是近似理论,得出的是近似的解答。

从其精度来看,材料力学解法只能适用于杆件。

例如:材料力学:研究直梁在横向载荷作用下的平面弯曲,引用了平面假设,结果:横截面上的正应力按直线分布。

()zM x yI σ⋅=弹性力学:梁的深度并不远小于梁的跨度,而是同等大小的,那么,横截面的正应力并不按直线分布,而是按曲线变化的。

22()345z M x y y y q I h h σ⎛⎫⋅=+- ⎪⎝⎭这时,材料力学中给出的最大正应力将具有很大的误差。

弹性力学在力学学科和工程学科中,具有重要的地位:弹性力学是其他固体力学分支学科的基础。

弹性力学是工程结构分析的重要手段。

尤其对于安全性和经济性要求很高的近代大型工程结构,须用弹力方法进行分析。

工科学生学习弹力的目的:1)理解和掌握弹力的基本理论; 2)能阅读和应用弹力文献;3)能用弹力近似解法(变分法、差分法和有限单元法)解决工程实际问题: 4)为进一步学习其他固体力学分支学科打下基础。

弹性力学基本概念和考点汇总

弹性力学基本概念和考点汇总

基本概念:(1)面力、体力与应力、应变、位移的概念及正负号规定(2)切应力互等定理:作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。

(3)弹性力学的基本假定:连续性、完全弹性、均匀性、各向同性和小变形。

(4)平面应力与平面应变;设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。

同时,体力也平行与板面并且不沿厚度方向变化。

这时,0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。

设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。

由胡克定律,0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。

因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。

(5)一点的应力状态;过一个点所有平面上应力情况的集合,称为一点的应力状态。

(6)圣维南原理;(提边界条件)如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。

(7)轴对称;在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。

这种问题称为空间轴对称问题。

一、平衡微分方程:二、(1)平面问题的平衡微分方程;00yxx x xy yy f x yf x yτστσ∂∂++=∂∂∂∂++=∂∂(记)(2)平面问题的平衡微分方程(极坐标);10210f f ρρϕρϕρϕρϕρϕϕ∂σ∂τσσ∂ρρ∂ϕρ∂σ∂ττρ∂ϕ∂ρρ-+++=+++=1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。

2024年度-弹性力学讲课文档

2024年度-弹性力学讲课文档

弹性力学讲课文档contents •弹性力学基本概念与原理•弹性力学分析方法•一维问题求解方法与应用•二维问题求解方法与应用•三维问题求解方法与应用•弹性力学在工程中应用案例目录01弹性力学基本概念与原理弹性力学定义及研究对象定义弹性力学是研究弹性体在外力作用下产生变形和内部应力分布规律的科学。

研究对象主要研究弹性体(如金属、岩石、橡胶等)在小变形条件下的力学行为。

弹性体基本假设与约束条件基本假设连续性假设、完全弹性假设、小变形假设、无初始应力假设。

约束条件弹性体在变形过程中,必须满足几何约束(如位移连续、无重叠等)和物理约束(如应力平衡、应变协调等)。

应力单位面积上的内力,表示物体内部各部分之间的相互挤压或拉伸作用。

应变物体在外力作用下产生的形状和尺寸的变化,反映物体变形的程度。

位移物体上某一点在变形前后位置的变化,描述物体的整体移动。

关系应力与应变之间存在线性关系(胡克定律),位移是应变的积分结果。

应力、应变及位移关系弹性力学中能量原理能量守恒原理弹性体在变形过程中,外力所做的功等于弹性体内部应变能的增加。

最小势能原理在所有可能的位移场中,真实位移场使系统总势能取最小值。

虚功原理外力在虚位移上所做的虚功等于内力在相应虚应变上所做的虚功。

02弹性力学分析方法解析法分离变量法通过分离偏微分方程的变量,将其转化为常微分方程进行求解。

积分变换法利用积分变换(如傅里叶变换、拉普拉斯变换等)将偏微分方程转化为常微分方程或代数方程进行求解。

复变函数法引入复变函数,将弹性力学问题转化为复平面上的问题,利用复变函数的性质进行求解。

将连续问题离散化,用差分方程近似代替微分方程进行求解。

有限差分法有限元法边界元法将连续体划分为有限个单元,对每个单元进行分析并建立单元刚度矩阵,然后组装成整体刚度矩阵进行求解。

将边界划分为有限个单元,利用边界积分方程进行求解,适用于处理无限域和复杂边界问题。

半解析法有限体积法将计算区域划分为一系列控制体积,将待解的微分方程对每一个控制体积积分得出离散方程进行求解。

弹性力学专题知识课件

弹性力学专题知识课件
7
2)弹性力学: 在弹性力学中,一般不作出那些假定,故解比较精确。
例如在研究直梁在横向荷载作用下旳弯曲,弹性力学就不引 用了平面截面旳假定;又例如在研究有孔旳拉伸构件,弹 性力学也不假定拉应力在净截断面均匀分布;这使数学推 演复杂, 但解往往是比较精确旳。
3)构造力学: 构造力学研究措施有位移法、力法或混正当等。 弹性力学一般不研究杆件系统,但诸多人致力于弹
10
2. 面力
(1)定义:分布在物体表面上旳力。如流体压力和接触力
F 。如图1-3所示。
(2)性质:面力一般是物体表面点旳位置坐标旳函数。
(3)面力集度: S 上面力旳平均集度为: F
S
P点所受面力旳集度为:
z
fz F
f lim F S 0 S
△S F (4)面力分量:
fx
P fy
y
P点旳面力分量为 fx , f y , fz ,量 纲是 L1MT 2
zy yz , yx xy , xz zx
作用在两个相互垂直旳面上而且垂直于该两面交线旳切应 力是互等旳(大小相等,正负号也相同。)
17
图1-9
(4)注意弹性力学切 应力符号和材料力学是有 区别旳,图1-9中,弹性
弹性力学 力学里,切应力都为正,
而材料力学中相邻两面旳 旳符号是不同旳。正应力 与材料力学旳正负号要求 相同(即拉为正压为负)。
C
y
z
yx z
x P yz
A
y
(1)为了分析一点P旳应力
状态,在这一点从物体内取出
一种微小旳正平行六面体,各
yz
面上旳应力沿坐标轴旳分量称
y 为应力分量。即每个面上旳应
yx B 力分量可分解为一种正应力和

弹性力学课件完整版

弹性力学课件完整版

材料拉伸或压缩时力学性能指标
弹性模量
弹性模量是描述材料抵抗弹性变形能力的指标,它等于应 力与应变的比值。
泊松比
泊松比是描述材料在拉伸或压缩时横向变形与纵向变形之 间关系的指标。
屈服极限和强度极限
屈服极限是指材料开始产生塑性变形的应力值,强度极限 是指材料在拉伸或压缩时所能承受的最大应力值。这些指 标对于评价材料的力学性能具有重要意义。
生物医学领域人体骨骼、肌肉等软组织力学性能研究
骨骼力学性能研究
运用弹性力学理论对人体骨骼进行受力分析 和模拟,研究骨骼在不同载荷下的应力分布 和变形情况,为骨折治疗和骨骼生物力学研 究提供理论支持。
肌肉软组织力学性能研究
通过弹性力学方法建立肌肉软组织的力学模 型,研究肌肉在收缩和舒张过程中的应力应 变关系以及能量转换机制,为运动生物力学
通过弹性力学中的运动方程可以建立位移梯度与应变之间的联系。
03
位移边界条件与约束
在实际问题中,空间各点的位移会受到边界条件和约束的影响。因此,
在分析空间各点位移变化规律时,需要考虑这些因素的影响。
06
弹性力学在工程中应用 举例
建筑结构中梁、板、柱设计原理
梁的设计原理 根据梁的受力特点和支承条件,运用弹性力学理论进行内 力、应力和变形的分析,从而确定梁的截面尺寸和配筋。
实验法在弹性力学研究中作用
验证理论模型
通过实验手段,可以验证弹性力学理论模型 的正确性和有效性。
研究材料性能
通过实验可以研究不同材料的力学性能,为 弹性力学的研究提供基础数据。
获取实验数据
通过实验可以获取大量的实验数据,为弹性 力学的研究提供有力的支持。
探索新现象和新规律
通过实验可以发现新的力学现象和规律,推 动弹性力学的发展。

弹性力学基本概念总结

弹性力学基本概念总结

弹性力学基本概念总结弹性力学是研究物体在受力作用下产生的变形与应力分布规律的科学。

在弹性力学中,存在一些基本的概念,这些概念对于理解物体的弹性变形和力学响应非常重要。

本文将对弹性力学中的一些基本概念进行总结。

一、应力和应变1. 应力应力是单位面积上的力,用符号σ表示。

在弹性力学中,常用的应力有拉伸应力、压缩应力和剪切应力。

拉伸应力表示物体在拉伸力作用下的应力,压缩应力表示物体在压缩力作用下的应力,剪切应力表示物体在层叠力作用下的应力。

2. 应变应变是物体在受力作用下发生的变形程度,用符号ε表示。

与应力类似,应变也有拉伸应变、压缩应变和剪切应变。

拉伸应变表示物体在拉伸力作用下的应变,压缩应变表示物体在压缩力作用下的应变,剪切应变表示物体在层叠力作用下的应变。

二、胡克定律胡克定律是弹性力学的基础定律之一,它描述了弹性固体的线弹性响应。

根据胡克定律,应力与应变之间的关系可以用以下公式表示:σ = Eε其中,σ为应力,E为杨氏模量,ε为应变。

胡克定律表明,线弹性材料的应力与应变成正比。

三、杨氏模量和剪切模量1. 杨氏模量杨氏模量是衡量材料抵抗拉伸应力的能力的物理量。

它表示了单位应力下的应变程度。

杨氏模量用符号E表示,单位是帕斯卡(Pa)。

杨氏模量越大,材料越具有抵抗拉伸应力的能力。

2. 剪切模量剪切模量是衡量材料抵抗剪切应力的能力的物理量。

它表示了单位剪切应力下的剪切应变程度。

剪切模量用符号G表示,单位也是帕斯卡(Pa)。

剪切模量越大,材料越具有抵抗剪切应力的能力。

四、弹性极限和屈服点1. 弹性极限弹性极限是材料在弹性变形过程中能够承受的最大应力。

当应力超过弹性极限时,材料将发生剧烈的塑性变形或破裂。

2. 屈服点屈服点是材料在受力过程中的一个关键点。

在屈服点之前,材料仅发生弹性变形,应力与应变成正比。

而在屈服点之后,材料开始发生塑性变形,应变增加的同时应力逐渐减小。

五、弹性体和弹性力学模型1. 弹性体弹性体是指在受力作用下产生弹性变形,但在去除外力后可以恢复原状的物体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性力学概念汇总
1、五个基本假定在建立弹性力学基本方程时有什么用途?
答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。

均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。

因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化
各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。

进一步地说,就是物体的弹性常数也不随方向而变化。

小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。

同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。

在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。

2、试分析简支梁受均布荷载时,平面截面假设是否成立?
解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。

简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。

而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。

例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。

所以,严格来说,不成立。

3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主
矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?
解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。

这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。

将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。

如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。

教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。

4、在导出平面问题的三套基本方程时,分别应用了哪些基本假定?这些方程的适用条件是什么?答:1、在导出平面问题的平衡微分方程和几何方程时应用的基本假定是:物体的连续性,小变形和均匀性。

在两种平面问题中,平衡微分方程和几何方程都适用。

2、在导出平面问题的物理方程时应用的基本假定是:物体的连续性,完全弹性,均匀性,小变形和各向同性,即物体为小变形的理想弹性体。

在两种平面问题中的物理方程不一样,如果将平面应力问题的物理方程中的E换为 2
1 E ,换为1,就得到平面应变问题的物理方程。

5、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。

在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。

在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。

弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。

另一份答案:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立平衡微分方程、几何方程和物理方程;在边界s上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。

在研究内容方面:材料力学研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题;结构力学在材料力学基础上研究杆系结构(如桁架、刚架等);弹性力学研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。

在研究方法方面:理力考虑整体的平衡(只决定整体的V运动状态);材力考虑有限体ΔV的平衡,结果是近似的;弹力考虑微分体dV 的平,结果比较精确。

6、简述弹性力学的研究方法。

答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。

此外,在弹性体的边界上还要建立边界条件。

在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束条件建立位移边界条件。

求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。

7、弹性力学中应力如何表示?正负如何规定?
答:弹性力学中正应力用表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴。

并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

8、简述按应力求解平面问题时的逆解法。

答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。

9、试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

10、弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征?
答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为:
平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。

只有平面应力分量x,y,xy存在,且仅为x,y的函数。

平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u和v,只有平面应变分量x,y,xy存在,且仅为x,y的函数。

11、材料各向同性的含义是什么?“各向同性”在弹性力学物理方程中的表现是什么?答:材料的各向同性假定物体的物理性质在各个方向上均相同。

因此,物体的弹性常数不随方向而变化。

在弹性力学物理方程中,由于材料的各向同性,三个弹性常数,包括弹性模量E,切变模量G和泊松系数(泊松比)μ都不随方向而改变(在各个方向上相同)。

12、位移法求解的条件是什么?怎样判断一组位移分量是否为某一问题的真实位移?答:按位移法求解时,u,v必须满足求解域内的平衡微分方程,位移边界条件和应力边界条件。

平衡微分方程、位移边界条件和(用位移表示的)应力边界条件既是求解的条件,也是校核u,v是否正确的条件。

相关文档
最新文档