液压齿轮泵结构及原理

合集下载

3.第四章-概述-齿轮泵

3.第四章-概述-齿轮泵

对于液压马达, 对于液压马达,机械效率表现为实际输出转矩 与理论转矩之比。 与理论转矩之比。
§4-1 概述
二、液压泵和液压马达的基本性能 3、功率和效率
总效率: 总效率:输出功率与输入功率之比 对于液压泵: 对于液压泵: 对于液压马达: 对于液压马达: 液压泵(液压马达) 液压泵(液压马达)的总效率等于其容积效 率与机械效率的乘积
作业
1、泵和马达在液压系统中起什么作用? 2、什么是泵的工作压力?额定压力?排量?流量?理论流量? 3、泵的功率损失主要组成部分是什么? 4、泵的容积损失主要由哪些因素引起的? 5、外啮合齿轮泵的齿数和流量脉动之间有什么关系? 6、解释齿轮泵的困油现象。如何解决? 7、齿轮泵的内泄漏途径有哪些?哪个途径的泄漏最严重? 8、齿轮泵的径向不平衡力是怎么产生的?有什么危害? 如何防止? 9、齿轮泵有哪些优缺点? 10、画出定量泵、变量泵、双作用定量泵、双作用变量泵 的符号。定量马达、变量马达、双作用定量马达、双 作用变量马达的符号。
§4-1 概述
二、液压泵和液压马达的基本性能 排量( 和流量( 2、排量(V )和流量( qt )
液压泵的排量是指在没有泄漏的情况下, 液压泵的排量是指在没有泄漏的情况下,液 压泵每转一转所排出的油液体积。 压泵每转一转所排出的油液体积。
q 液压泵的排量仅仅取决于密封工作油腔每转 变化的容积而与转速无关。 变化的容积而与转速无关。
§4-2 齿轮泵
五、齿轮泵的泄漏 2、补偿轴向间 、 隙的措施
1) 浮动轴套; 浮动轴套; 2) 浮动(弹性) 浮动(弹性) 侧板。 侧板。
引入 压力 油
图4-5
§4-2 齿轮泵
五、齿轮泵的优缺点
优点:结构简单,尺寸小,重量轻,制造方便, 价格低廉,工作可靠,自吸能力强,对 油液污染不敏感,维护成本低。 缺点:流量脉动大,噪声大,磨损严重,泄漏 大,一些机件承受径向不平衡力,工作 压力的提高受限。

液压系统 齿轮泵

液压系统 齿轮泵
Βιβλιοθήκη 减小轴向间隙浮动轴套
引入压油腔 的压力油
结论: 结论:
齿轮泵由于泄漏大和存在径向不平衡力, 齿轮泵由于泄漏大和存在径向不平衡力, 因而限制了压力的提高。一般用于低压系统。 因而限制了压力的提高。一般用于低压系统。
外啮合齿轮泵的优点
结构简单,制造方便,价格低廉 结构紧凑,体积小,重量轻 自吸性能好,对油污不敏感 工作可靠,便于维护
容积增大 b →c 容积增大
困油引起的结果
油液处在困油区中,需要排油时无处可排, 油液处在困油区中,需要排油时无处可排,需 要吸油时无处可吸。 要吸油时无处可吸。 a→b 容积缩小 p↑ 高压油从一切可能泄漏的缝隙强行挤出, 高压油从一切可能泄漏的缝隙强行挤出,使轴和 轴承受很大冲击载荷,泵剧烈振动, 轴承受很大冲击载荷,泵剧烈振动,同时无功损 耗增大,油液发热。 耗增大,油液发热。 b→c 容积增大 p↓ 形成局部真空,使油液中气体分离出来, 形成局部真空,使油液中气体分离出来,产生气 引起振动、噪声、汽蚀等。 穴,引起振动、噪声、汽蚀等。 总之:由于困油现象,使泵工作性能不稳定, 总之:由于困油现象,使泵工作性能不稳定,产生 振动、噪声等,直接影响泵的工作寿命。 振动、噪声等,直接影响泵的工作寿命。
外啮合齿轮泵的缺点
• 流量脉动大 • 噪声大 • 排量不可调 用途:工程机械、机床低压系统。 用途:工程机械、机床低压系统。
内啮合齿轮泵
特点: 特点: 结构紧凑,尺寸 小,重量轻 相对于外啮合齿 轮泵,流量脉动 小,噪声小。
工作原理: 工作原理:
一对相互啮合的小齿轮 和内齿轮与侧板所围成 的密闭容积被齿啮合线 和月牙板分隔成两部分。 当传动轴带动小齿 轮旋转时,内齿轮作同 向旋转。 如图所示,右半部轮齿脱开啮合, 如图所示,右半部轮齿脱开啮合,所在的密 轮齿脱开啮合 闭容积增大, 吸油腔;左半部为压油腔。 闭容积增大,为吸油腔;左半部为压油腔。

3《液压传动》液压泵

3《液压传动》液压泵

19
17
1)原因:径向液压力分布不均 啮合力 2)危害:轴承磨损、刮壳。 3)措施:缩小压油口,增加径 向间隙。 ※ 压油口缩小后,安装时注意不 能反转。
18
作用在泵轴上的径向力,能使轴弯曲,从而引起齿顶与泵壳体 相接触,从而降低了轴承的寿命,这种危害会随着齿轮泵压力的提 高而加剧,所以应采取措施尽量减小径向不平衡力,其方法如下: (1) 缩小压油口的直径,使压力油仅作用在一个齿到两个齿的范围 内,这样压力油作用于齿轮上的面积减小,因而径向不平衡力也就 相应地减小。 (2)增大泵体内表面与齿轮齿顶圆 的间隙,使齿轮在径向不平衡力作用 下,齿顶也不能和泵体相接触。 (3)开压力平衡槽,如图所示, 开两个压力平衡槽1和2分别与低、高 压油腔相通,这样吸油腔与压油腔相 对应的径向力得到平衡,使作用在轴 承上的径向力大大地减小。但此种方 法会使泵的内泄漏增加,容积效率降 低,所以目前很少使用此种方法。
9
一、齿轮泵的工作原理 齿轮泵的工作原理
齿轮1、2的齿廓线(面)与壳体内 表面及前后端盖构成若干密封容积, 啮合线将高、低压腔隔离开来。 当齿轮按图示方向旋转时,下侧的轮 齿逐渐脱离啮合,其密封容积逐渐增 大,形成局部真空,油液在大气压力 的作用下从吸油口进入下部低压腔; 随着齿轮的转动,齿轮的齿谷把油液 从下侧带到上侧密封容积中,轮齿在 上侧进入啮合时,使上侧密封容积逐 渐减小,油液从上侧油高压腔将油液 排出。当齿轮泵不断地旋转时,齿轮 泵不断地吸油和排油
10
二、齿轮泵的排量和流量 1.排量与流量: 对于由一对齿数相等的齿轮组成的外啮 排量与流量: 合齿轮泵,其主轴旋转一周所排出的液体体积等于两齿轮轮齿 体积之和。对于标准齿轮而言,轮齿体积与齿谷容积是相同的。 这样,齿轮泵的几何排量等于一个齿轮的轮齿体积和齿谷容积 之和。考虑到齿顶间隙的液体从排液腔仍被带回到吸油腔,不 参与排液,则齿轮泵的几何排量等于以齿顶圆为外径、以 (Z- 2)m的圆为内径、高为齿轮宽度B的圆筒体积

齿轮泵简介

齿轮泵简介

几种润滑方式


(5)螺旋吸油式低压润滑 当轴旋转时,利用轴承孔内螺旋槽的作用将轴承外 端的油液吸入轴承,油液对轴承进行润滑和冷却后,再 经轴承内端的大缺口流入刚脱开啮合的轮齿根部,这种 润滑方式称为螺旋吸油式低压润滑。 这种润滑方式的特点是:可以获得相当大的润滑油 流量;进入轴承的润滑油都是冷油,油液粘度大,油膜 的形成条件好,且承载能力强;油液又能通过循环不断 地将轴承热量带走,对轴承起到良好的润滑和冷却作用; 由于有大量的油液去填充刚脱离啮合的轮齿根部,大大 改善了泵的吸油性能,避免了吸空现象,不仅可以提高 容积效率,而且对减轻气蚀和噪声都有显著的效果。
1、困油现象及消除措施
困油现象的危害

闭死容积由大变小时油液受挤压, 导 致压力冲击和油液发热,闭死容积由小变大时,会引起汽 蚀和噪声。 卸荷措施 在前后盖板或浮动轴套上开卸荷槽 开设卸荷槽的原则 两槽间距a为最小闭死容积,而使闭 死容积由大变小时与压油腔相通,闭死容积由小变大时与 吸油腔相通。
3-2 齿轮泵
3-2 齿轮泵
3-2 齿轮泵

啮合形式:内啮合式和外啮合式

齿形分:渐开线齿形、摆线齿形和 圆弧齿形
一、渐开线外啮合齿轮泵
1、工作原理: 2、排量: 弧度排量: V=(1.06~1.12)Z1m2B

二、渐开线外啮合齿轮泵的几个问题
1、困油现象及消除措施 2、端面泄漏与端面间隙的自动补偿 3、径向力及减小径向力的措施
2、端面泄漏与端面间隙的自动补偿
齿轮泵的泄漏途径 (1)端面间隙泄漏 (2)径向间隙泄漏 (3)齿面啮合处的 泄漏

端面泄漏与间隙 补偿措施 端面泄漏占 80%—85%。 端面间隙补 偿采用静压平衡 措施:在齿轮和 盖板之间增加一 个补偿零件,如 浮动轴套或浮动 侧板,在浮动零 件的背面引入压 力油,让作用在 背面的液压力稍 大于正面的液压 力,其差值由一 层很薄的油膜承 受。

液压齿轮泵的工作原理详解

液压齿轮泵的工作原理详解

应用领域
工程机械
农业机械
液压齿轮泵广泛应用于挖掘机、装载机、 压路机等工程机械中,为各执行机构提供 动力。
在拖拉机、收割机等农业机械中,液压齿 轮泵也发挥着重要作用,为液压系统提供 稳定的压力和流量。
航空航天
其他领域
在航空航天领域,液压齿轮泵被用于飞机 起落架、襟翼等关键部件的液压系统中, 确保系统的可靠运行。
冲压成型。
焊接设备
液压齿轮泵为焊接设备提供稳定 的液压动力,确保焊接质量和效
率。
航空航天领域应用案例
飞机起落架
01
液压齿轮泵为飞机起落架提供动力,实现起落架的收放和支撑。Βιβλιοθήκη 航空发动机测试台02
在航空发动机测试台上,液压齿轮泵为各种测试设备提供动力
,确保测试精度和可靠性。
航空液压系统
03
液压齿轮泵是航空液压系统的核心部件,为飞机各系统提供稳
冶金设备
液压齿轮泵在石油化工设备中发 挥着重要作用,为各种反应釜、 压缩机、泵等设备提供稳定的液 压动力。
06
CATALOGUE
液压齿轮泵发展趋势及挑战
技术创新方向探讨
1 2 3
提高效率和压力能力
通过优化齿轮设计、减小内部泄漏等方式,提高 泵的容积效率和总效率,同时提高泵的出口压力 和承载能力。
保系统正常运行。
压力
考虑齿轮泵的工作压力 范围,以及系统最大压
力对齿轮泵的影响。
转速
根据系统要求和齿轮泵 的性能,选择合适的转
速范围。
介质
考虑介质对齿轮泵的腐 蚀、磨损等影响,选择
适合的材质和结构。
安装调试注意事项
清洁度
在安装前,确保齿轮泵及其连接部件的清洁 度,防止杂质进入系统。

齿轮泵原理

齿轮泵原理

(d) 采用弹簧补偿轴向间隙
(e)径向间隙补偿原理图
外啮合渐开线齿轮泵结构例
内啮合渐开线齿轮泵结构例
四。齿轮泵故障分析与排除
1.起动后无油液输出或输出流量不足
• ①泵内配合间隙过大 • ②端面偏磨拉伤 • ③齿轮与浮动侧板或浮动轴套相接触的相对运动面上严重拉伤不能排油,
一般的拉伤输出流量不足 • ⑤泵转速过低,或转向反了; • ⑥吸入管漏气或吸口露出液面; • ⑦吸油高度太大(一般应不超过500mm) 或吸油过滤器、吸入管路被污物
2.弹性侧板式补偿原理:将泵出口压力油引至 侧板背面,靠侧板的变 形来补偿端面间隙
采用补偿间隙的办法来减少齿轮泵的内泄漏
减少或补偿轴向间隙是矛盾的主要方面,方法有:(a).保证 合理的轴向装配间隙,小流量泵间隙0.025-0.04 mm,大流量:间 隙0.04-0.06 mm;(b).采用浮动侧板补或浮动轴套,偿轴向间隙; (c).采用侧板变形型的结构。
• 4..泵磨损太快
• ①.油液中含磨料性杂质; • ②.泵试车时,转向不对且运转时间太长,泵没吸上油,泵内无油干摩
擦造成磨损; • ③. 泵与电机安装不同心,造成偏磨:两者之间的联轴器同心度的要
求不得大于图3-2-37中的数值。另外联轴器中的挠性件如尼龙柱、橡 胶圈等损坏时应予以换新,缺了的补上。
• ①使用反(正)转齿轮泵的地方 却换成了正(反)转齿轮泵,维 修时一定要搞清楚泵的正、反 转;
• ②.油封前腔的泄油通道堵塞: 如泄油通道堵塞,无法通过内 泄油道(如图 中的a孔)通过内 流道返回至泵的进油腔,而造成 油封前腔困油压力增高,超出 油封最高使用压力使油封被冲 翻,此时应疏通泄油通道;
• 5.修泵后转动不灵活或咬死

第七章 齿轮泵

第七章 齿轮泵

第七章 齿 轮 泵齿轮泵是一种常用的液压泵。

它的主要优点是:结构简单,制造方便,造价低;重量轻;外形尺寸小;自吸性能好;对油的污染不敏感;工作可靠;由于齿轮泵是轴对称的旋转体,故允许转速较高。

其缺点是流量脉动和困油现象比较突出,噪声高,齿轮泵的排量不可变。

低压齿轮泵的工作压力为2.5Mpa;中高压齿轮泵的工作压力为16~20Mpa ;某些高压齿轮泵的工作压力已达32Mpa 。

齿轮泵的最高转速一般可大3000r/min 左右,在个别情况下(如飞机用齿轮泵)最高转速可达8000r/min 。

其低速性能较差,一般不适于低速运行。

当泵的转速低于200~300r/min 时,容积效率将降到不能允许的地步。

齿轮泵利用一对齿轮的啮合运动,造成吸、排油腔的容积变化进行工作。

啮合的齿轮为其核心零件。

按照它们的啮合形式,可分为外啮合齿轮泵和内啮合齿轮泵。

外啮合齿轮泵一般都采用一对齿数相同的渐开线直齿齿轮。

内啮合齿轮泵除采用渐开线齿轮外,还有采用摆线齿轮。

§7-1 外啮合齿轮泵的工作原理及流量公式一、外啮合齿轮泵的工作原理图7-1是我国的CB 型齿轮泵。

该系列泵的额定压力为2.5Mpa 。

如图所示,装在泵体3中的一对齿轮由传动轴5驱动。

当传动轴顺时针转动时(见图7-1A-A 剖视),在泵的吸油腔中的齿逐渐退后啮合,使吸油腔容积增加而吸油;在排油腔,主动齿轮的齿挤入被动齿轮的齿间,使排油腔容积减小,通过排油口排油。

在泵体的两端面各铣有卸荷槽b ,经泵体3断面泄漏的油液由卸压槽b 流回到吸油腔,以降低泵体与端盖结合面上的油压对端盖造成的推力,减小螺钉载荷。

在泵前后端盖上开有困油卸荷槽e ,以消除泵工作时产生的困油现象。

孔道a 、c 、d 可以将流入轴承腔的泄漏油排入吸油腔。

因此传动轴的旋转密封圈处于低压,泵不需要设置单独的外泄漏油管。

这种结构的泵的吸油腔不能承受高压,其吸、排油腔不能交换,泵不能反转工作。

二、瞬时流量及理论排量对泵的瞬时流量的分析,其目的在于了解影响瞬时流量脉动的因素。

03第三章 液压泵x

03第三章  液压泵x

际输入转矩Tt之比。即
m
Tt T Tt Tt Tl 1 1 Tl / Tt
式中Tl——转矩损失。 (6)总效率:泵的实 际输出功率P与实际输入功 率Pr之比,即

P Pr pq
T

Tt qt

q
T
v m
液压泵性能特性曲线 如右图:
4.转速 (1)额定转速:额定压力下,允许液压泵 连续运转的最高转速(容积效率最高)。 (2)最高转速:额定压力下,允许短暂运 行的最大转速(受“汽穴”现象限制)。 (3)最低转速:运行液压泵正常运转的最 低转速(受容积效率的限制)。 5.自吸能力 液压泵正常运转时,并不发生汽穴或汽蚀 的条件下,吸液口允许的最低压力。
(3)工作压力:泵实际工作时的压力,其 大小取决于外负载和排油管路上的压力损失。 液压泵按工作压力分: 低压泵 <2.5 MPa 机床 中压泵 2.5~8 MPa 机床 中高压泵 8~16 MPa 工程、冶金、农 业机械 高压泵 16~32 MPa 工程、冶金、采掘 机械 超高压泵 >32 MPa 液压支架 (4)吸入压力:泵入口处的压力。
外反馈限压变量叶片泵变量原 理
内反馈限压变量叶片泵变量原理
3)限压变量叶片泵 的工作性能(右图) 用在机床液压系统中 要求执行元件有快、慢速 和保压阶段的场合。
叶片泵的特点:
优点:运转平稳,流量均匀,噪声小。 缺点:结构复杂,吸油特性不太好,对 油液的污染比较敏感。
第四节 柱塞泵
一、径向柱塞泵 1.轴配流径向柱塞泵 1)组成:转子 偏心安装; 定子 柱塞——径向装入转子; 配流轴——固定不动。 2)工作原理(右图)
2)设置专门的配流机构; 3)油箱内液体的绝对压力必须恒等于或大 于大气压力。 3.液压泵的分类 液压泵按其在每转一周所能输出的油液体 积是否可调节分成定量泵和变量泵。 按构成密封又可以变化的容积空间的零件 结构来划分:齿轮泵、叶片泵、柱塞泵等。 二、液压泵的压力建立条件及其安装高度 1.压力建立条件——外载荷 液压泵的压力,一般是指其出口截面3-3处 的液压力。根据伯努利方程可得

液压泵

液压泵

二、液压泵的主要性能参数
• • • • •
m /r V 1. 排量 2. 流量 1)理论流量 qt Vn 2)实际流量 q qt ql 3)额定流量
3
液压泵在额定转速、额定压力下,按实验标准规定必须保证的流量。 按实验标准规定,液压泵能够实现连续运转的最高压力称为液 压泵的额定压力
二、液压泵的主要性能参数
V 6.66m zB
2
q 6.66m zBnV
2
2.外啮合齿轮泵的流量计算
q 6.66m zBnV
2
m z mz m
2
mz 不变,减少齿数,
增大模数,可以在不增大 泵体积的前提下提高泵的 输出流量
3.流量脉动率
qmax qmin q
外啮合齿轮泵齿数越少,流量脉 动率就越大,其最大值可达20% 以上。
二、单作用叶片泵
1. 结构: 转子、定子、叶片、配油盘、壳体、端盖等。
特点: ●定子和转子偏心; ●定子内曲线是圆; ●配油盘有二个月牙形 窗口。 ●叶片靠离心力伸出。
2. 工作原理
单作用叶片泵
• 密封工作腔(转子、定子、叶片、配油盘组成) • 吸油过程:叶片伸出→V ↑ → p ↓ →吸油; • 排油过程:叶片缩回→V ↓ → p ↑ →排油。 • 旋转一周,完成一次吸油,一次排油——单作用泵 • 径向力不平衡——非平衡式叶片泵 (一个吸油区,一个排油区)
一种抽吸设备,水平管出口通大气,当水平管内液 体流量达到某一数值时,垂直管子将从液箱内抽吸 液体。液箱表面与大气相通,水平管内液体和被抽 吸液体相同。若不计液体流动时的能量损失,问水 平管内流量达到多大时才能开始抽吸。
10
9 8
7 6 5 4

第三章液压泵新

第三章液压泵新

2) 危害:ηv↓
3) 防泄措施:
a) 减小端面间隙
b) 端面间隙补偿装置
浮动侧板
浮动轴套
防泄措施
a) 减小轴向间隙
小流量:间隙0.025-0.04 mm
大流量:间隙0.04-0.06 mm
b) 轴向间隙补偿装置
浮动侧板
浮动轴套
F1稍大于F2
四、齿轮泵优缺点和用途
优点:体积小,重量轻,结构紧凑,工作可靠,自吸
转的最高压力。
(3)最高压力:短时间运行允许最高压力。
2、排量V:不考虑泄漏情况下,泵(马达)每转一圈
所排出液体的体积,一般由其结构尺寸计算得来。
3、流量q:单位时间内能排出的流体体积。单位:m3/s
(1)理论流量qvt:不考虑泄露
qvt=V×n
(2)实际流量qv:
(3)额定流量qvn: 额定压力、额定转速下泵输出的流量
1—偏心轮
2—柱塞
3—泵体
4—弹簧
5,6—单向阀
c—工作腔
配流装置使密封容积轮流和油箱或负载相通。
容积式液压泵正常工作的三个必备条件
▲1必须具有一个由运动件和非运动件所构成的密闭容
积;
▲2密闭容积的大小作周期性的变化, 容积由小变大—
—吸油,由大变小——压油;
▲3吸油口和排油口应严格分开,并有合适的配流装置,
2) 流量:
q 2B[(R 2 r 2 )
其中:B - 叶片宽度
R - 定子长轴半径
r - 定子短轴半径
θ – 叶片倾角
δ – 叶片厚度

R r
z ]nv
cos

三、单作用叶片泵
1. 结构:
转子、定子、叶片、配油盘、壳体、端盖等。

液压与气动技术第二节常见液压泵的原理结构

液压与气动技术第二节常见液压泵的原理结构
2)转子每转一周,每个柱塞吸排油一次,配油轴受着径向 不平衡力。
3)柱塞顶部与定子内表面为点接触,易磨损。 4)径向尺寸大、结构复杂、自吸能力差,目前使用的很少,
逐渐被轴向柱塞泵所代替。
液压与气动技术 机械工程系
各类液压泵的性能比较与应用
齿轮泵
外啮:自吸性能好,对油污染不敏感,结构简单,造价低;但脉动大,噪声大,泄漏 大,效率低;输出低压。
液压与气动技术 机械工程系
双作用叶片泵的应用
由于双作用叶片泵不仅作用在转子上的力 平衡,且运转平稳、输油量均匀、噪声 小。 但结构较复杂,自吸能力差,对油的污染 较敏感,一般用于要求运动平稳、噪声 小,工作环境较好的中等压液压系统。
液压与气动技术 机械工程系
3.单作用叶片泵
单作用叶片工作原理; 限压压变量泵工和特性。
C→b时 密封容积最小,隔开吸
具体措施:在泵盖(或轴承座)上开两个卸荷槽以消除困 油,CB-B形泵将卸荷槽整个向吸油腔侧平
移一段距离,效果更好。
液压与气动技术 机械工程系
消除困油的措施
液压与气动技术 机械工程系
径向作用力不平衡
径向不平衡力的产生和改善 液压力分布规律: 沿圆周从高压腔到低压腔,压力
沿齿轮外圆逐齿降低。p↑,径向 不平衡力增大,齿轮和轴承受到很 大的冲击载荷,产生振动 和噪声。 改善措施:①缩小压油口,以减小 压力油作用面积;②增大泵体内表 面和齿顶间隙和③开压力平衡槽, 都会使容积效率降低。
液压与气动技术 机械工程系
泄漏三种途径
啮合线泄漏— 约占齿轮泵总泄漏量的 5% 径向泄漏—约占齿轮泵总泄漏量的 20%~25% 端面泄漏* —约占齿轮泵总泄漏量的 75%~80% 结论:泵工作压力愈高,泄漏量愈大。要提高齿轮泵的

液压泵的工作原理与齿轮泵结构

液压泵的工作原理与齿轮泵结构

液压泵的工作原理与齿轮泵结构液压泵是将机械能转化为液压能的液压元件。

它通过其中一种机械装置来驱动工作液体,使其产生一定的流量和压力并输送到液压系统中。

1.吸液阶段:当泵的工作装置(通常为柱塞、活塞等)开始向后运动时,工作腔体内的体积增大,由于压力差,液体从储液池或液压系统的油槽中吸入到泵的工作腔体中。

2.封闭阶段:当工作腔体内的液体被吸入后,工作装置开始向前运动,工作腔体的体积减小,产生一定的压力,将液体封闭在工作腔体中。

3.推泵阶段:当工作装置继续向前运动时,在封闭的工作腔体内,液体被推向排液管道或液压系统,实现液体的输送。

液压泵的主要结构一般包括泵体、泵轴、工作腔体、吸油孔、卸油孔等部分。

其中,泵体通常由外壳和内腔组成,内腔内有一定数量的工作腔体,用于容纳液体。

泵轴通过机械传动装置与工作装置相连,从而实现液体的吸入和排出。

吸油孔和卸油孔则分别用于液体的吸入和排出,其位置会随着工作装置的运动而改变。

齿轮泵是一种常见的液压泵,其主要由外壳、泵体、输入轴、输出轴、齿轮等部分组成。

齿轮泵的主要结构包括:1.外壳:用于固定泵体和保护内部的零部件,通常由铸铁或铸钢制成。

2.泵体:包括两个相互啮合的齿轮,一个为驱动齿轮(通常为传动装置的输入轴),另一个为从动齿轮(通常为传动装置的输出轴)。

3.齿轮:是齿轮泵的关键部分,通过驱动齿轮的旋转来驱动从动齿轮,从而实现液体的吸入和排出。

齿轮的轮廓形状通常为直齿或斜齿,两个相互啮合的齿轮必须精确加工以确保密封性和运转的平稳性。

4.输入轴和输出轴:输入轴通过机械传动装置与驱动齿轮相连,将输入的机械能转化为液压能;输出轴与从动齿轮相连,将液体输出给液压系统。

5.吸油孔和卸油孔:齿轮泵的外壳上会有吸油孔和卸油孔,用于液体的吸入和排出。

齿轮泵的工作原理是通过驱动齿轮和从动齿轮的相互啮合来实现工作腔体的体积变化,从而产生一定的流量和压力。

当驱动齿轮旋转时,从而带动从动齿轮一起旋转,液体通过吸油孔进入工作腔体,当齿轮旋转一周后,液体被推出到卸油孔,完成一次液体的吸入和排出。

不同型号液压泵性能比较分析

不同型号液压泵性能比较分析

不同型号液压泵性能比较分析一、引言液压泵是液压系统中的核心元素之一,主要用于将机械能转换为液压能,推动油液在液压系统中工作。

液压泵不同于其他泵,它需要承受高压和高温的工作环境,不同型号的液压泵在设计和性能上存在巨大差异。

为了更好的选择液压泵,本文将对不同型号液压泵的性能进行比较分析。

二、液压泵类型及其工作原理液压泵根据其不同的工作原理和结构可以分为齿轮泵、齿轮泵、叶片泵、滑环泵、液压柱塞泵和液压齿轮泵等。

其中常用的泵型有齿轮泵和柱塞泵。

1. 齿轮泵齿轮泵是最简单、效率最高和价格最便宜的液压泵之一,可广泛应用于各种液压系统。

齿轮泵由外齿轮和内齿轮组成,油液从泵进口侧侵入,当齿轮旋转时,由于齿轮的齿间隙和齿形的交错,泵内的油液被挤压到输出口,形成稳定的压力并流出泵体。

2. 柱塞泵柱塞泵由泵体、节流器、柱塞、弹簧圈和输出管组成。

它通过柱塞来沿轴向压缩油液,对油液施加压力。

当其工作时,柱塞负责在柱塞泵的缸体与油缸之间的活塞上压榨液体,压缩性强,输出流量大。

三、不同型号液压泵性能比较分析选择液压泵的性能因素主要包括压力、流量、效率、噪音、寿命和维护成本等方面,下面将逐一分析不同型号液压泵的性能优缺点。

1. 齿轮泵与柱塞泵比较齿轮泵本身结构简单、制造成本低廉、使用寿命长,输出流量稳定,但是其会有些许泄漏,不能满足高压(大于70MPa)和高精度应用场合。

而柱塞泵则主要用于高精度和高压场合。

它的冲出轴承和滑动轴承能够很好地抵抗侧向力,不会出现轴向运动。

该泵能够保证高精度,但是成本较高,噪音和震动不佳,对油液过滤及保养等维护要求也很高。

2. 不同型号齿轮泵比较齿轮泵还可以根据其结构的不同分为内齿轮泵和外齿轮泵。

内齿轮泵的主要特点是结构简单,易于维修,但由于其内部有齿隙,造成压力和精度的稳定性较差。

外齿轮泵的优点是结构简单、易于制造和维修。

但由于其外齿轮要在泵体内壁上与进油管道错位,增加了泵的摩擦和磨损。

因此,我们应根据具体使用情况来选择合适的齿轮泵型号,齿轮泵稳定性要求不高的场合可选用内齿轮泵,需要高度稳定性的场合则应选用外齿轮泵。

第5讲 齿轮泵

第5讲  齿轮泵

*2、2、5 内啮合齿轮泵
渐开线齿形内啮合齿轮泵 摆线齿形内啮合齿轮泵(摆线转子泵)
*2、2、5 内啮合齿轮泵
渐开线齿形 分类 < 摆线齿形
渐开线齿形内啮合齿轮泵
组成:壳体1 小齿轮2 内齿环3 月牙形隔板4
渐开线齿形内啮合齿轮泵
工作原理: 小齿轮带动内齿环同向高速旋 转, 左半部分轮齿退出啮合, 容积增大,形成真空吸油; 右半部分轮齿进入啮合,容积 减小,压油。 月牙板将吸油腔和压油腔隔开。
实际流量、额定流量、理论流量 关系
q、qn < qt

功率
输出功率 输入功率 结 论
输出功率
即液压泵在工作过程中吸、压油口的压差Δ p和 实际输出流量q的乘积, P =Δ pq
单位:N· 或 W m/s
输入功率
即液压泵主轴的机械功率
Pi = Tiω = 2πnTi
式中:Ti-液压泵的输入转矩 n-液压泵主轴的转速
2、1、1 液压泵的工作原理及分 类
液压泵的基本原理
动画演示
吸油:密封容积增大,产生真空 > 容积式 压油:密封容积减小,油液被迫压出
容积式液压泵的基本特点 (必要条件)
1 形成有周期性变化的密封容积;
2 油箱内油液的绝对压力恒大于等于 大气压;
3 有配流装置。
液压泵分类
按输出流量能否调节: 定量泵、变量 泵 按结构形式 :齿轮式、叶片式、柱塞式、螺杆式
2、2、3 外啮合齿轮泵的结构特点
困油现象 径向作用力不平衡 泄漏
困油现象
困油现象产生的原因 引起结果 消除困油的方法
困油现象产生的原因
∵ 为保证齿轮连续平稳运转,又能够使 吸压油口隔开,齿轮啮合时的重合度 必须大于1,即至少有一对以上的轮齿 同时啮合。 ∴ 出现两对轮齿同时啮合的情况, ∴在齿向啮合线间形成一个封闭容积

液压泵的工作原理与齿轮泵结构(共28张PPT)

液压泵的工作原理与齿轮泵结构(共28张PPT)
液压与气动技术
学习任务:
1、掌握液压泵的工作原理
2、掌握齿轮泵的结构与工作原理
3、掌握外啮合齿轮泵的几个问题
◆液压系统的能量使用情况图
动力元件:是指液压系统的液压泵。由电动机驱动,把输入 的机械能转换成油液的压力能输入到系统中去,为系统的工
作提供动力。下面将介绍液压系统中的动力元件---液压泵 。
下面介绍---外啮合齿轮泵的结构与原理
学习单元二 常用液压元件介绍
2)外啮合齿轮泵
〔1〕外啮合齿轮泵的结构。如图3-32所示为外啮合 齿轮泵的结构,主要由主动齿轮、从动齿轮、壳体、 前后泵体、密封圈和轴承等组成。
动画
图3-32 外啮合齿轮泵的结构
1—从动齿轮; 2—轴承套; 3—密 封圈; 4—前端盖; 5—密封; 6—传动轴; 7—主动齿轮; 8—壳体; 9—后端盖
例如:
工作原理:
以下图中当凸轮1旋转时,柱塞2在凸轮1和弹簧4的作用下在缸体3内往复运动。 当柱 塞右移时,密封工作腔a的容积变大,产生真空,油箱中的油液在大气压力作用下通过单向 阀5吸入缸体内,实现泵吸油。当柱塞左移时,密封工作腔a的容积变小,油液受到挤压便 通过单向阀6输送到系统中去,实现泵压油。如果偏心轮不断地旋转,泵就会不断地完成 吸油和压油动作,因此就会连续不断地向液压系统供油
外齿轮泵原理动画
图3-33 外啮合齿轮泵工作原理图
学习单元二 常用液压元件介绍
图3-32 外啮合齿轮泵的结构
1—从动齿轮; 2—轴承套; 3—密封圈 ; 4—前端盖;ห้องสมุดไป่ตู้5—密封; 6—传动轴; 7—主动齿轮; 8—壳体; 9—后端盖
〔3〕外啮合齿轮泵的几个问题
①泄漏问题
端面泄露:齿轮端面和轴承套端面之间间隙占80% ,

齿轮泵知识

齿轮泵知识

齿轮泵科技名词定义中文名称:齿轮泵英文名称:gear pump定义:依靠密封在一个壳体中的两个或两个以上齿轮,在相互啮合过程中所产生的工作空间容积变化来输送液体的泵。

应用学科:齿轮泵是依靠泵缸与啮合齿轮间所形成的工作容积变化和移动来输送液体或使之增压的回转泵。

由两个齿轮、泵体与前后盖组成两个封闭空间,当齿轮转动时,齿轮脱开侧的空间的体积从小变大,形成真空,将液体吸入,齿轮啮合侧的空间的体积从大变小,而将液体挤入管路中去。

吸入腔与排出腔是靠两个齿轮的啮合线来隔开的。

齿轮泵的排出口的压力完全取决于泵出处阻力的大小。

编辑本段齿轮泵工作原理分析外啮合双齿轮泵的结构。

一对相互啮合的齿轮和泵缸把吸入腔和排出腔隔开。

齿轮转动时,吸入腔侧轮齿相互脱开处的齿间容积逐渐增大,压力降低,液体在压差作用下进入齿间。

随着齿轮的转动,一个个齿间的液体被带至排出腔。

这时排出腔侧轮齿啮合处的齿间容积逐渐缩小,而将液体排出。

齿轮泵适用于输送不含固体颗粒、无腐蚀性、粘度范围较大的润滑性液体。

泵的流量可至300米3/时,压力可达3×107帕。

它通常用作液压泵和输送各类油品。

齿轮泵结构简单紧凑,制造容易,维护方便,有自吸能力,但流量、压力脉动较大且噪声大。

齿轮泵必须配带安全阀,以防止由于某种原因如排出管堵塞使泵的出口压力超过容许值而损坏泵或原动机编辑本段齿轮泵的工作原理简介齿轮泵的概念是很简单的,即它的最基本形式就是两个尺寸相同的齿轮在一个紧密配合的壳体内相互齿轮泵啮合旋转,这个壳体的内部类似“8”字形,两个齿轮装在里面,齿轮的外径及两侧与壳体紧密配合。

来自于挤出机的物料在吸入口进入两个齿轮中间,并充满这一空间,随着齿的旋转沿壳体运动,最后在两齿啮合时排出。

在术语上讲,齿轮泵也叫正排量装置,即像一个缸筒内的活塞,当一个齿进入另一个齿的流体空间时,液体就被机械性地挤排出来。

因为液体是不可压缩的,所以液体和齿就不能在同一时间占据同一空间,这样,液体就被排除了。

齿轮泵知识详解

齿轮泵知识详解

齿轮泵知识详解一、齿轮泵的概述、齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。

相互啮合的一对齿轮的齿顶圆柱和两侧端面,靠紧泵壳的内壁,各齿槽与壳体内壁之间围成了一系列互不相通的密封工作空腔K。

由啮合轮齿隔开的D、G腔分别是与泵吸入口和排出口相通的吸入室和排出室。

如图所示(外啮合)。

当齿轮按图所示方向旋转时,由于啮合轮齿逐渐退出啮合状态,使吸入室D的容积逐渐增大,压力降低。

在吸液池液面压力和D腔内低压之间的压差作用下,液体自吸入池经吸液管和泵吸入口进入吸入室D。

随后又进入封闭的工作空间K,并由齿轮的转动被带至排出室G。

因两齿轮轮齿从上侧开始逐渐进入啮合状态,一个齿轮的轮齿逐渐占据另一个齿轮的齿槽空间,使位于上侧的排出室容积逐渐减小,室内液体压力升高,于是从泵排出口排出泵外。

齿轮连续转动,上述吸、排液过程就连续不断进行了。

齿轮泵的最基本形式就是两个尺寸相同的齿轮在一个紧密配合的壳体内相互啮合旋转,这个壳体的内部类似“8”字形,两个齿轮装在里面,齿轮的外径及两侧与壳体紧密配合。

来自于挤出机的物料在吸入口进入两个齿轮中间,并充满这一空间,随着齿的旋转沿壳体运动,最后在两齿啮合时排出。

二、齿轮泵的工作原理齿轮泵的工作原理如图所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。

两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。

齿轮泵的结构如图所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。

液压系统工作原理之--液压泵

液压系统工作原理之--液压泵

液压泵工作原理
单柱塞泵工作原理
(一)液压泵的工作原理
构成容积泵的基本条件是: 1.结构上能实现具有密封性的工作腔; 2.工作腔能周而复始地增大和减小,当它增大时与吸 油口相连,当它减小时与排油口相连,泵的输出流量与 此空间的容积的变化量和单位时间内的变化次数成比例, 与其它因素无关; 3.吸油口与排油口不能沟通; 4. 油池内液体的绝对压力必须恒等于或大于大气压力。 这是容积式液压泵能够吸入液体的外部条件。 5. 设置专门的配流机构。
变量单作用叶片泵
变量叶片泵
3. 流量-压力特性曲线
调节限位螺钉,qmax 变; 改变弹簧刚度,pmax变,BC斜率变。
4. 优缺点及应用
优点:功率利用合理,简化液压系统 缺点:结构复杂,泄漏增加,ηm↓,ηv↓ 应用:要求执行元件有快速、慢速和保压的 场合
四、叶片泵的常见故障及排除方法
故障现象 产生原因 1.叶片顶部倒角太小 2.叶片各面不垂直 3.定子内表面被刮伤或磨损,产生运动噪声 4.由于修磨使配油盘上三角形卸荷槽太短,不能消除困油现象 5.配油盘端面与内孔不垂直,旋转时刮磨转子端面而产生噪声 6.泵轴与原动机不同轴 排除方法 1.重新倒角(不小于1×45°)或修成圆角 2.检查,修磨 3.抛光,有的定子可翻转180°使用 4.锉修卸荷槽 5.修磨配油盘端面,保证其与内孔的垂 直度小于0.005~0.01mm 6.调整连轴器,使同轴度小于ф0.1mm
特点: ●定子和转子偏心; ●定子内曲线是圆; ●配油盘有二个月牙形 窗口。 ●叶片靠离心力伸出。
单作用叶片泵工作原理
单作用叶片泵工作原理
2. 工作原理
密封工作腔(转子、定子、叶片、配油盘组成) 吸油过程:叶片伸出→V ↑ → p ↓ →吸油; 排油过程:叶片缩回→V ↓ → p ↑ →排油。 旋转一周,完成一次吸油,一次排油——单作用泵 径向力不平衡——非平衡式叶片泵 (一个吸油区,一个排油区)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档