2012数值分析试卷答案
2012数值分析试题及答案
aii
(bi
n
aij
x
(k j
)
)
,
j 1
i 1,2,, n
(1) 求此迭代法的迭代矩阵 M ;
(2) 证明:当 A 是严格对角占优矩阵, 0.5 时,此迭代格式收敛.
解:迭代法的矩阵形式为:
x(k1) x(k) D 1 (b Ax (k) ) D 1 (D A)x(k) D 1b
x2 3/5
).
线 …
8.对离散数据 xi yi
1 0 1 2 的拟合曲线 y 5 x 2 的均方差为( 2.5 1.58 ).
2 1 1 3
6
…
…
…
9.设求积公式
2
f (x)dx
1
A0 f (1) A1 f (0) A2 f (1) 是插值型求积公式,则积分系
… 数 A0 3/ 4 , A1 0 , A2 9 / 4 .
2
2
2
2
2
2
R[ f ] 0 f (x)dx 0 p1 (x)dx 0 f (x)dx 0 H 3 (x)dx 0 H 3 (x)dx 0 p1(x)dx
2 f (4) ( x ) (x 1 )2 (x 1 )2 dx f (4) () 2 (x2 1)2 dx
…
四、(10 分)利用复化 Simpson 公式 S2 计算定积分 I
2
cos
xdx
的近似值,并估
0
… 计误差。
… …
解:
I
S2
1 [cos0 6
cos2
数值分析试题与答案
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
数值分析期末试题及答案
数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。
2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。
b) 二分法是一种______法则。
c) 梯形法则是一种______型的数值积分方法。
3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。
b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。
c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。
试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。
b) 请解释牛顿插值多项式的概念及其应用。
2. 填空题(共10分)a) 数值稳定性通过______号检查。
b) 龙格-库塔法是一种______计算方法。
c) 零点的迭代法在本质上是将方程______转化为______方程。
3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。
b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。
c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。
答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。
它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。
b) 迭代法和直接法是数值计算中常用的两种方法。
迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。
《数值分析》所有参考答案
等价三角方程组
, ,
11.设计算机具有4位字长。分别用Gauss消去法和列主元Gauss消去法解下列方程组,并比较所得的结果。
解:Gauss消去法
回代
列主元Gauss消去
15.用列主元三角分解法求解方程组。其中
A= ,
解:
等价三角方程组
回代得
, , ,
16.已知 ,求 , , 。
解:
, ,
17.设 。证明
,(II)
,
当 时
当 时
迭代格式(II)对任意 均收敛
3) ,
构造迭代格式 (III)
,
当 时
当 时
迭代格式(III)对任意 均收敛
4)
取格式(III)
, , ,
4.用简单迭代格式求方程 的所有实根,精确至有3位有效数。
解:
当 时, ,
1 2
当 时
,
,
, ,
1)
迭代格式 ,
,
当 时, ,
任取 迭代格式收敛于
是中的一种向量范数。
解:
当 时存在 使得
,
,
所给 为 上的一个范数
18.设 。证明
(1) ;
(2) ;
(3) 。
解:(1)
(2)
(3)
19.设
A=
求 , , 及 , 。
解: ,
Newton迭代格式
,
20.设 为 上任意两种矩阵(算子)范数,证明存在常数
, 使得
对一切 均成立。
解:由向量范数的等价性知道存在正常数 使得
,
=0.187622
[23.015625 , 23.015625+0.187622]
数值分析期末考试题带答案
湖北民族学院2012年秋季期末试卷A或BA卷课程数值分析使用班级0210403、4、5、6 制卷份数86 考生姓名命题人刘波课程负责人单位审核人答题纸数班级题号一二三四五六七八九十合计学号评分分数阅卷人注意:所有答案必须填写在答题纸上! 一、填空题(4分⨯10=40分)1、向量T x )3,2,1(-=的范数1x = ,∞x = ,2x 。
2、已知,3)2(,1)1(==f f 那么)(x f y =以2,1=x 为节点的拉格朗日线性差值多项式为 。
3、设矩阵A 是对称正定矩阵,则用 迭代法接线性方程组,b AX =其迭代解数列一定收敛。
4、辛普森公式: 。
5、牛顿-柯特斯求积分公式的系数和=∑=nk n k C 0)( 。
6、,1)(2+=x x f 则=]3,2,1[f ,=]4,3,2,1[f 。
7、积分公式)42(32)21(31)41(32)(10f f f dx x f +-≈⎰具有 次代数精度。
二、计算题(10分⨯3=30分) 1、求01162=+-x x 的小正根。
2、给定形如)0()1()0()('01010f B f A f A dx x f ++≈⎰的求积公式,试确定系数,,,010B A A 使公式具有尽可能高的代数精确度。
3、求⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=242422221A 的特征值及普半径。
三、证明题(20分⨯1=20分) 1、用直接三角分解法解⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛201814513252321321x x x四、讨论题(10分⨯1=10分)1、用4点(n=3)的高斯——勒让德求积公式计算xdx x I cos 22⎰=π答案:一:1: 6,3,14 解: ∞x=||max 1i ni x ≤≤;1x =∑=n i i x 1||;2x =2112)(∑=ni ix ;向量的p 范数:p x =pni p ix 11)||(∑=2: 2x-1 3、高斯-赛德尔4、)]()2(4)([6)(b f b a f a f a b dx x f b a +++-≈⎰5、16、1,07、3二:1:解:6381+=x ,*2206.094.78638x x ==-≈-=,*2x 只有一位有效数字,若改用0627.094.15163816382≈≈+=-=x ,具有三位有效数字。
2012年春季学期(本科生)数值分析课程考试试卷(A卷)答案及评分标准
线封密三峡大学试卷班级姓名学号2012年春季学期《数值分析》课程考试试卷( A 卷)答案及评分标准注意:1、本试卷共3页;2、考试时间:120 分钟;3、姓名、学号必须写在指定地方;一、(16分)填空题1.设T x )3,4,2(-=,则 2x 29= (1分) ∞x4= (1分).2. 为尽量避免有效数字的严重损失,当1>>x 时,应将表达式x x -+1改写为xx ++11以保证计算结果比较精确(2分).3.迭代过程),1,0)((1 ==+n x x n n ϕ收敛的一个充分条件是迭代函数)(x ϕ满足1|)(|<'x ϕ(2分).4. 设()1537++=x x x f ,则差商0]2,,2,2,2[821= f (2分).5. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是.2,1,0,)(1)(1='---=+k x f x f x x x k k k k k (2分) .6.矩阵范数),2,1(||||∞=p A p 与谱半径)(A ρ有一个不等式关系,表现为p A A ||||)(≤ρ(2分).7.将⎪⎪⎭⎫ ⎝⎛=231264A 进行LU 分解(即Doolittle 分解),则 ⎪⎪⎭⎫⎝⎛=1301L (2分);⎪⎪⎭⎫ ⎝⎛=5064U (2分).二、(10分)用最小二乘法解下列超定线性方程组:⎪⎪⎩⎪⎪⎨⎧=+=+=-=+7262353114221212121x x x x x x x x 解: +-+=221)1142(),(x x y x Q 221)353(--x x+-++221)62(x x 221)72(-+x x要使总残差达到最小,必有⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0021x Q x Q⇒⎩⎨⎧-=-=-48463513182121x x x x⇒⎪⎪⎩⎪⎪⎨⎧==9111327383021x x 或⎩⎨⎧≈≈24.104.321x x (10分)三、(10分)给定函数表84.087.090.092.094.096.097.098.099.011/sin 19.08.07.06.05.04.03.02.01.00x x x 利用所有数据,用复合辛普森(Simpson )公式计算dxx xI ⎰=10sin 的近似值. 解: 用复合辛甫生Simpson 公式,小区间数5=n , 步长2.0)00.1(51=-⨯=h)90.094.097.099.0(21[62.05+++⨯+=≈S I]84.0)87.092.096.098.01(4++++++ 9453.0= (10分)线封密三峡大学试卷班级姓名学号四、(12分)设nn ij Ra A ⨯∈=)(对称,顺序主子式),,2,1(0n i i =≠∆则T LDL A =分解存在,其中L 为单位下三角形矩阵,D 为对角阵, 试写出求方程组b Ax =解的计算步骤(用矩阵表示), 此法称为改进平方根法. 试用它求解方程组:⎩⎨⎧=+=+635310121022121x x x x 解: 由T LDL A =可得b Ax =的方程为b x LDL T=,令y x DL T =,则b Ly =.计算步骤: (1) 将A 直接分解TLDL A =,求出 D L , (2) 求解方程b Ly =(3) 求解方程y D x L T 1-= (4分)⎢⎣⎡102 ⎥⎦⎤5310⎥⎦⎤⎢⎣⎡=10121l ⎥⎦⎤⎢⎣⎡2100d d ⎥⎦⎤⎢⎣⎡10121l 比较矩阵两边的元素,可得: ,521=l ,21=d .32=d由b Ly =可得 ⎥⎦⎤⎢⎣⎡1501⎥⎦⎤⎢⎣⎡21y y ⎥⎦⎤⎢⎣⎡=6312 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒31221y y 由y D x L T1-=得 ⎥⎦⎤⎢⎣⎡1051⎥⎦⎤⎢⎣⎡21x x ⎥⎦⎤⎢⎣⎡=16 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒1112x x (12分)五、(12分) 取节点1,010==x x ,写出x e x y -=)(的一次插值多项式),(1x L 并估计插值误差.解: 建立Lagrange 公式为 ()x L 110100101y x x x x y x x x x --+--=1101101-⨯--+⨯--=e x x x e x 11-+-=. (8分) ())1)(0(!2)()()(11--''=-=x x y x L x y x R ξ )10(<<ξ ()1)0(max 2110--≤≤≤x x x 令 ),1()(-=x x x h 由0)(='x h ,求得一个驻点得211=x于是 =≤≤|)(|max 10x h x 41)}1(),(),0({max 110=≤≤h x h h x 所以有())()(11x L x y x R -=)(max 2110x h x ≤≤≤81= (12分)六、(10分) 在区间[0,2]上利用压缩映像原理验证迭代格式1012.k x k +==,,,的敛散性. 解:(1) 记x x +=2)(ϕ,则xx +='221)(ϕ.当]2,0[∈x 时,];2,0[]2,2[)]2(),0([)(⊂=∈ϕϕϕx (5分) (2) .1221)0(|)(|<='≤'ϕϕx 因此,对]2,0[0∈∀x ,迭代格式1012.k x k +==,,, 产生的序列∞=0}{k k x 收敛. (10分)线封密三峡大学试卷班级姓名学号七、(12分)已知方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛121212212321x x x a a a (1)写出解此方程组的雅可比(Jacobi)迭代法公式; (2)证明当4>a 时,雅可比(Jacobi)迭代法收敛; (3)取5=a ,T x)101,51,101()0(=,求出)2(x . 解:(1)对.,3,2,1 =i 从第i 个方程解出i x ,得雅可比法迭代公式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--=--=+++ ,1,0,)21(1)222(1)21(1)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1n x x a x x x a x x x a x n n n n n n n n n (5分) (2)当4>a 时,A 为严格对角占优矩阵,所以雅可比迭代法收敛. (10分)(3)取5=a ,Tx )101,51,101()0(= 由迭代公式计算得 101)1(1=x , 258)1(2=x , 101)1(3=x . 25013)2(1=x , 258)2(2=x , 25013)2(3=x . (12分)八、(10分)设初值问题:⎩⎨⎧=≤≤++='0)0(10,122y x y x y , (1) 写出用Euler 方法、取步长1.0=h 解上述初值问题数值解的公式; (2) 写出用改进Euler 方法、取步长1.0=h 解上述初值问题数值解的公式. 解: (1)取步长1.0=h 解上述初值问题数值解的Euler 公式为;9,,1,0),1(1.0),(0221==++⨯+=+=+y n y x y y x hf y y n n n n n n n (5分)(2)取步长1.0=h 解上述初值问题数值解的改进Euler 公式为:)2(21.0)1(1.002121221221=⎪⎩⎪⎨⎧+++++=++⨯+=++++y y x y x y y y x y y n n n n n n n n n n (10分)九、(8分)学完《数值分析》这门课程后,请你简述一下“插值、逼近、拟合”三者的区别和联系.解: 答案略.。
西南大学2012年《数学分析》考研试题答案
一、单项选择题(本题共6小题,每小题5分,共30分)1、C2、B3、A4、D5、B6、D二、计算题(本题共7小题,每小题10分,共70分)1、求极限⎪⎭⎫⎝⎛++--→11111lim 0x e x x x . 解:因为011lim 1x x x e →⎛⎫-= ⎪-⎝⎭000111lim lim lim (1)122x x x x x x x x x x x e x e e x e e xe e xe →→→---===--++, 6分 所以00011111113lim lim lim 111112 2.x x x x x x e x x e x →→→⎛⎫⎛⎫-+=-+=+= ⎪ ⎪-+-+⎝⎭⎝⎭10分 2、设⎪⎩⎪⎨⎧==te y t e x ttsin cos ,求22dx y d . 解:sin cos ,cos sin t t t tdy e t e t dx e t e t +=- 5分 2223322(cos sin )(cos sin )t t t t d y e dx e t e t e t t ==-- 10分 3、设⎰=21sin )(x dt ttx f ,求⎰10)(dx x xf .解:11122120000111()()()()222xf x dx f x dx x f x x f x dx '==-⎰⎰⎰12221001111(1)sin (1)cos 22221[(1)cos11].2f x dx f x f =-=+=++⎰4、设22z u v uv =-,y x u cos =,y x v sin =,求x z ∂∂和yz ∂∂.解:22(2)cos (2)sin z z u z v uv v y u uv y x u x v x ∂∂∂∂∂=+=---∂∂∂∂∂,22(2)sin (2)cos .z z u z v v uv x y u uv x y y u y v y∂∂∂∂∂=+=-+-∂∂∂∂∂ 5、将函数xx f 3)(=在00=x 点处展开成泰勒级数。
数值分析2012考试卷沈阳工业大学
研究生考试命题纸沈阳工业大学 2012 / 2013 学年 第 一 学期课程名称:数值分析 课程编号:000304 任课教师:陈欣 曲绍波 考试形式:闭 卷一、填空(每题3分,共15分)1. 二分法是求解 方程f (x )=0的 根一种方法,其前提是f (x )在有根区间[a ,b ]内单调且 。
2. 设矩阵⎪⎪⎭⎫ ⎝⎛-=0112A ,则1A = 、=2A 、)(A ρ= 。
3. 对于正数a ,使用牛顿法于方程02=-a x 所得到的迭代格式为 ,其收敛阶为 、求110(取x 0=10)的第一个近似值为 。
4. 幂法用来计算实矩阵A 的 特征值及对应的 ,在计算过程中进行“归一化”处理的原因是为了 。
5. 高斯求积公式)33()33()(11f f dx x f +-≈⎰-的代数精度为 ,当区间不是[-1,1],而是一般区间[a , b ]时,需要做变换 ,使用该公式计算≈⎰311dx x。
二、解答下列各题(每题5分,共10分)1. 请写出经过点A (0,1),B (2,3),C (4,5)的拉格朗日插值多项式形式。
说明插值基函数的性质以及拉格朗日插值法的优缺点。
2. 设n 阶可逆矩阵A 已经分解成A =LU ,其中L 下三角矩阵,U 单位上三角矩阵,推导出解线性方程组AX =b 的计算公式。
三、(10分)用不选主元的直接三角分解法解下面线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=-+-=-+-=-342424344343232121x x x x x x x x x x 四、(20分,每题10分)对于线性方程组⎪⎩⎪⎨⎧=++=++=-+9223122321321321x x x x x x x x x 1. 分别写出使用GS 迭代法,SOR 迭代法(ω=1.3)求解的迭代格式,并对初始向量(1,0,0)T ,分别计算第一步近似解向量;2. 分别讨论求解此方程的J —方法和GS —方法的收敛性。
五、(10分)给出函数表如下,用牛顿向前插值公式求f (2.03)的近似值。
2012级硕士研究生数值分析期末考试试卷及答案
设区间分成 n 等分,则 h=1/n., 故对复合梯形公式,要求
RT ( f ) =| −
即n2 ≥
b − a 2 '' 1 1 1 h f (η ) |≤ ( ) 2 e ≤ × 10 −5 ,η ∈ (0,1) 12 12 n 2
e × 10 5 , n ≥ 212 .85 ,因此 n=213,即将区间[0,1]分成 213 等分时,用复合梯形计 6 1 算,截断误差不超过 × 10 − 5 。 2
为 2 .设 。 位有效数字,
x * 的相对误差限
f ( x ) = 3 x 7 + x 4 + 3x + 1 ,则 f [2 0 ,2 1 ,L ,2 7 ] =
,
f [2 0 ,21 , L,2 8 ] =
。 , 并计
3. 过点 ( −1,0), ( 2,0) 和 (1,3) 的二次拉格朗日插值函数为 算 L2 ( 0) 4 .设
S1 ( x) = 3.7143 + 1.2429 x
2-范数的误差
4
2.45
|| δ || 2 =
∑ (S (x ) − y )
1
2
i
i
= 0.675 = 0.8216
i= 0
5. 用改进的欧拉公式(预估-校正方法) 解初值问题
dy = x 2 + 100 y 2 , y( 0) = 0 , h 为步长, (1) 取步长 h = 0.1, 计算到 x = 0 .2(保 dx
p ( 2) = 1, 并写出其余项表达式(要求有推导过程) 。
2. 若用复合梯形公式dx ,问区间 [0, 1] 应分成多少等分才能使截断误差不超过
1 × 10 − 5 ? 若改用复合辛普森公式,要达到同样的精度区间[0, 1] 应该分成多少等份? 由下表数 2
2012数值分析试题及答案
2
2
2
2
2
2
R[ f ] 0 f (x)dx 0 p1 (x)dx 0 f (x)dx 0 H 3 (x)dx 0 H 3 (x)dx 0 p1(x)dx
2 f (4) ( x ) (x 1 )2 (x 1 )2 dx f (4) () 2 (x2 1)2 dx
所以,迭代矩阵为 M D 1 (D A) .
当 A 是严格对角占优矩阵, 0.5 时,由于
n
| aij |
(M ) M max | j1 | 1,所以,迭代格式收敛.
1in
2aii
三、(12 分)说明方程 x cosx 0 有唯一根,并建立一个收敛的迭代格式,使
42 ,则 A 的 Doolittle 分解式是( A 13
10 10
2 -2
),Crout
… …
○
分解式是(
A 13
-02
1 0
12
).
… … …
3.解线性方程组
xx11
4x2 9x2
2 1
的
Jacobi
迭代矩阵的谱半径
(B)
(
2/3
).
… 封
4.迭代格式 xk1 xk3 3xk2 3xk , k 0,1,2,... 求根 1是( 3 )阶收敛的.
… …
5.设 f (x) sin x ,用以 xi i, i 0,1,2 为节点的二次插值多项式近似 sin1.5 的值,
aii
(bi
n
aij
x
(k j
)
数值分析考试卷及详细答案解答汇总
数值分析考试卷及详细答案解答汇总姓名班级学号一、选择题1.F2,5,3,4表示多少个机器数(C).A64B129C257D2562.以下误差公式不正确的是(D)A.某1某某2某某1某某2某B.某1某某2某某1某某2某C.某某某某某某某某某某某D.某某/某某某某某某12121221123.设aA哪一个在数值21,从算法设计原则上定性判断如下在数学上等价的表达式,计算上将给出a较好的近似值?(D)61(21)63B99702C(322)D1(322)34.一个30阶线性方程组,若用Crammer法则来求解,则有多少次乘法(A)A31某29某30!B30某30某30!C31某30某31!D31某29某29!5.用一把有毫米的刻度的米尺来测量桌子的长度,读出的长度1235mm,桌子的精确长度记为(D)A1235mmB1235-0.5mmC1235+0.5mmD1235±0.5mm二、填空1.构造数值算法的基本思想是近似替代、离散化、递推化2.十进制123.3转换成二进制为1111011.01001。
3.二进制110010.1001转换成十进制为50.562554.二进制0101.转换成十进制为75.已知近似数某某有两位有效数字,则其相对误差限5%6.ln2=0.69314718…,精确到103的近似值是0.6937.某3.14159265和38.设某3.1416,某某,则某123.141的有效数位分别为某某2.001,y某0.8030是由精确值某和y经四舍五入得到的近似值,则某某y某的误差限0.55某10-39.设某2.3149541,取5位有效数字,则所得的近似值某某2.315010.设有多项式函数p某2某310某27某8,给出计算法p某的计算量较小的一个算((2某+10)某-7)某+8三、计算1.指出下列经四舍五入得的有效数字位数,及其绝对误差限和相对误差限。
2.0004-0.00200解:因为某1=2.0004=0.20004某101,它的绝对误差限0.00005=0.5某1015,即m=1,n=5,1故某=2.0004有5位有效数字.a1=2,相对误差限r10150.000025 2a1―某2=-0.00200,绝对误差限0.000005,因为m=-2,n=3,某2=-0.00200有3位有效数字.a1=2,相对误差限r=2.对准确值某11013=0.002522某999.9和某某1000和它的两个近似值为某121000.1分别计算它们的有效数位及绝对误差限,根据结果判断以下结论是否正确:对准确值某的两个近似值某1,某2,则有效数位n大的则其绝对误差限就越小110mn,n越大,通常绝对误差限越小,但绝对误差限也与m有2某关,因此上述结论并不总是正确。
(完整word版)数值分析考试试卷和答案(word文档良心出品)
线封密三峡大学试卷班级姓名学号2011年春季学期《数值分析》课程考试试卷( A 卷)答案及评分标准注意:1、本试卷共3页;2、考试时间:120 分钟;3、姓名、学号必须写在指定地方;一、(16分)填空题1. 已知1125A ⎡⎤=⎢⎥⎣⎦,则1A 6= (1分),∞A 7= . (1分)2.迭代过程),1,0)((1 ==+n x x n n ϕ收敛的一个充分条件是迭代函数)(x ϕ满足1|)(|<'x ϕ. (2分)3. 设),,2,1,0(,,53)(2==+=k kh x x x f k 则差商0],,,[321=+++n n n n x x x x f .(2分)4. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是.2,1,0,)(1)(1='---=+k x f x f x x x k k k k k (2分)5. 用二分法求方程01)(3=-+=x x x f 在区间]1,0[内的根,迭代进行二步后根所在区间为]75.0,5.0[.(2分)6.为尽量避免有效数字的严重损失,当1>>x 时,应将表达式x x -+1改写为xx ++11以保证计算结果比较精确.(2分)7. 将2111A ⎛⎫= ⎪⎝⎭作Doolittle 分解(即LU 分解),则100.51L ⎛⎫= ⎪⎝⎭(2分),2100.5U ⎛⎫= ⎪⎝⎭(2分)二、(10分)用最小二乘法解下列超定线性方程组:⎪⎩⎪⎨⎧=-=+=+2724212121x x x x x x 解:23222121,e e e x x ++=)(ϕ221221221)2()72()4(--+-++-+=x x x x x x由 ⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=-+=∂∂0)1662(20)1323(2212211x x x x x x ϕϕ(8分)得法方程组 ⎩⎨⎧=+=+166213232121x x x x 7231=⇒x , 7112=x所以最小二乘解为: 7231=x 7112=x . (10分)三、(10分)已知)(x f 的函数值如下表25.15.001)(15.005.01---x f x用复合梯形公式和复合Simpson 公式求dx x f ⎰-11)(的近似值.解 用复合梯形公式,小区间数4=n ,步长5.0)]1(1[41=--⨯=h )]1())5.0()0()5.0((2)1([24f f f f f hT +++-+-=.线封密三峡大学试卷班级姓名学号25.1]2)5.15.00(21[25.0=++++-=(5分) 用复合Simpson. 小区间数2=n ,步长1)]1(1[21=--⨯=h)]1())5.0()5.0((4)0(2)1([62f f f f f hS ++-+⨯+-=33.168]2)5.10(45.021[61≈=+++⨯+-= (10分)四、(12分)初值问题 ⎩⎨⎧=>+='0)0(0,y x b ax y有精确解 bx ax x y +=221)(, 试证明: 用Euler 法以h 为步长所得近似解n y 的整体截断误差为n n n n ahx y x y 21)(=-=ε证: Euler 公式为:),(111---+=n n n n y x hf y y代入b ax y x f +=),(得:)(11b ax h y y n n n ++=-- 由0)0(0==y y 得:bh b ax h y y =++=)(001; 11122)(ahx bh b ax h y y +=++= )(3)(21223x x ah bh b ax h y y ++=++=……)()(12111---++++=++=n n n n x x x ah nbh b ax h y y (10分)因nh x n =,于是 )]1(21[2-++++=n ah bx y n n 2)1(2nn ah bx n -+==n n n bx x x a+-12∴n n n y x y -=)(ε)2(2112n n n n n bx x x abx ax +-+=-=n n n x x x a )(21--=n hx a 2 =221anh (12分)五、(10分) 取节点1,010==x x ,写出x e x y -=)(的一次插值多项式),(1x L 并估计插值误差.解: 建立Lagrange 公式为()=x L 110100101y x x x x y x x x x --+--=10101101-⨯--+⨯--=e x x x e x 11-+-=.(8分)())1)(0(!2)()()(11--''=-=x x y x L x y x R ξ )10(<<ξ ()811)0(max 2110≤--≤≤≤x x x(10分)六、(10分) 在区间]3,2[上利用压缩映像原理验证迭代格式,1,0,4ln 1==+k x x k k 的敛散性.解 : 在]3,2[上, 由迭代格式 ,1,0,4ln 1==+k x x k k , 知=)(x ϕx 4ln .因∈x ]3,2[时,]3,2[]12ln ,8[ln )]3(),2([)(⊂=∈ϕϕϕx (5分) 又1|1||)(|<='xx ϕ,故由压缩映像原理知对任意]3,2[0∈x 有收敛的迭代公式),1,0(,4ln 1 ==+k x x k k (10分)线封密三峡大学试卷班级姓名学号七、(10分)试构造方程组⎩⎨⎧=+=+423322121x x x x 收敛的Jacobi 迭代格式和Seidel Gauss -迭代格式,并说明其收敛的理由. 解:将原方程组调整次序如下:⎩⎨⎧=+=+324232121x x x x 调整次序后的方程组为主对角线严格占优方程组,故可保证建立的J 迭代格式和GS 迭代格式一定收敛.收敛的J 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=++)3(21)24(31)(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (5分)收敛的GS 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=+++)3(21)24(31)1(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (10分)八、(12分)已知43,21,41210===x x x 1)推导以这3个点作为求积节点在[0,1]上的插值型求积公式;2)指明求积公式所具有的代数精度.解:1)过这3个点的插值多项式)())(())(()())(())(()(121012002010212x f x x x x x x x x x f x x x x x x x x x p ----+----=+)())(())((2021201x f x x x x x x x x ----⎰⎰=∑=≈∴)()()(221010k k k x f A dx x p dx x f ,其中: ⎰⎰=----=----=32)4341)(2141()43)(21())(())((10201021100dx x x dx x x x x x x x x A ⎰⎰-=----=----=31)4321)(4121()43)(41())(())((10210120101dx x x dx x x x x x x x x A ⎰⎰=----=----=322143)(4143()21)(41())(())((10120210102dx x x dx x x x x x x x x A ∴所求的插值型求积公式为:⎰+-≈)]43(2)21()41(2[31)(10f f f dx x f (10分) 2)上述求积公式是由二次插值函数积分而来的,故至少具有2次代数精度,再将43,)(x x x f =代入上述求积公式,有:⎰+-==]43(2)21()41(2[3141333310dx x ⎰+-≠=])43(2)21(41(2[3151444410dx x 故上述求积公式具有3次代数精度. (12分)九、(10分)学完《数值分析》这门课程后,请你简述一下“插值、逼近、拟合”三者的区别和联系.。
2012数值分析试卷答案
2012数值分析试卷答案科目:数值分析考试时间: 出题教师:集体昆明理工大学2012级硕士研究生试卷考生姓名:专业:学号:考试要求:考试时间150分钟;填空题答案依顺序依次写在答题纸上,填在试卷卷面上的不予计分;可带计算器。
一、填空题(每空2分,共40分)* * *1 •设x 0.231是真值x 0.228的近似值,则x有_______________ 位有效数字,x的相对误差限为 _____________________ 。
2•设f(x) 3x7x43x 1,则f[20,21, ,27] _____________ , f[20,21, ,28] _______ 。
3.过点(1,0), (2,0)和(1,3)的二次拉格朗日插值函数为L2(x)= ___________________ ,并计算L2(0) ___________________ 。
3 24•设f (x) 3x 2x 4x 5在1,1上的最佳二次逼近多项式为________________________ , 最佳二次平方逼近多项式为 _________________ 。
1f—5 •高斯求积公式° x f (x)dx A f(X。
)A f (xj的系数A__________________________________ ,A1 __________ ,节点x0------------------ ,x, ---------------------------6 •方程组Ax b,A D L U,建立迭代公式x(k 1}Bx(k)f,写岀雅可比迭代法和7. A 00 ,其条件数Cond(A )2 1 J2J318.设A,计算矩阵A 的范数,|| A||1 =2,I|A||2 =9 •求方程Xf(x)根的牛顿迭代格式是10.对矩阵A 2作LU 分解,其L= 5,U=二、计算题(每题 10分,共50分)1.求一个次数不高于4次的多项式P(x),使它满2.若用复合梯形公式计算积分2据,0.4 0.43.线性方程组Ax b ,其中A0.4 0.4 0.80.8,b [1,2,3]T ,(1)建立雅可比迭代法和 1高斯-赛德尔迭代法的分量形式。
数值计算(数值分析)试题及答案
++中的待定系数,使其A f(1)(0)武汉理工大学研究生课程考试标准答案用纸课程名称:数值计算(A ) 任课教师 :一. 简答题,请简要写出答题过程(每小题5分,共30分) 3.14159265358979的近似值,它们各有几位有效数字,绝对误差和相对误差分别是多少?3分)2分)2.已知()8532f x x x =+-,求0183,3,,3f ⎡⎤⎣⎦,0193,3,,3f ⎡⎤⎣⎦.(5分)3.确定求积公式10120()(0)(1)(0)f x dx A f A f A f '≈++⎰中的待定系数,使其代数精度尽量高,并指明该求积公式所具有的代数精度。
解:要使其代数精度尽可能的高,只需令()1,,,m f x x x =使积分公式对尽可能大的正整数m 准确成立。
由于有三个待定系数,可以满足三个方程,即2m =。
由()1f x =数值积分准确成立得:011A A += 由()f x x =数值积分准确成立得:121/2A A += 由2()f x x =数值积分准确成立得:11/3A =解得1201/3,1/6,2/3.A A A === (3分)此时,取3()f x x =积分准确值为1/4,而数值积分为11/31/4,A =≠所以该求积公式的最高代数精度为2次。
(2分)4.求矩阵101010202A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的谱半径。
解 ()()101101322I A λλλλλλλ--=-=--- 矩阵A 的特征值为1230,1,3λλλ=== 所以谱半径(){}max 0,1,33A ρ== (5分)5. 设10099,9998A ⎛⎫= ⎪⎝⎭计算A 的条件数()(),2,p cond A P =∞.解:**19899-98999910099-100A A A A --⎛⎫⎛⎫=⇒== ⎪ ⎪-⎝⎭⎝⎭矩阵A 的较大特征值为198.00505035,较小的特征值为-0.00505035,则1222()198.00505035/0.0050503539206cond A A A -=⨯==(2分)1()199********c o n d A A A -∞∞∞=⨯=⨯=(3分)22001130101011010220100110110()(12)()(12)()()()()()x x x x x x x x H x y y x x x x x x x x x x x x x x y x x y x x x x ----=-+-------''+-+---(5分)并依条件1(0)1,(0),(1)2,(1) 2.2H H H H ''====,得2222331()(12)(1)2(32)(1)2(1)211122H x x x x x x x x x x x =+-+-+-+-=++ (5分)2.已知()()()12,11,21f f f -===,求()f x 的Lagrange 插值多项式。
2012研究生数值分析课期末考试复习题及答案
、填空1.设X 彳3149541…,取5位有效数字,则所得的近似值x= 2.3150f X 1,X 22.设一阶差商f x 2 f x 11 4 33x 2 x 12 1y' f(X, y)y(X0)y0近似解的梯形公式是f X 2,X 3f x 3 f x 2 X 3 X 2 则二阶差商f ^,X2,X311/63.设X (2, 3, 1),则||X|2 714 ||X|| 3。
p4924.4.求方程x x 1.25 0的近似根,用迭代公式x J x 匸25,取初始值X o那么X 11.5y k6、 1 1 A 5 1,则A 的谱半径Q 【盘)=7、 2 设 f(x) 3x 5, X k kh, k 0,1,2,…,贝卩 f 人几 1, Xn 23 和 f Xi , X n 1, Xi 2 , Xn38若线性代数方程组AX=b 的系数矩阵A 为严格对角占优阵,贝U 雅可比迭代和高斯-塞德尔迭代都 收敛9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为 O(h )5. 解初始值问题y 10、为了使计算 10表达式改写成 二、计算题 1、已知 敛的简单迭代函数 2 3— 2 3 1 (X 1) (X 1)的乘除法运算次数尽量的少,应将 y 10 — 1 — 2 — X 1 X 1 X 1 蛊=机刃的00)满足■ 3V 妙⑵,使轧严护(心)/ =,试问如何利用骰㈤构造一个收 0, 1…收敛? (X ),可得3x (X) 3x 1 X 2( (X) 3X) (X)(X ) (X ) 3),故(X ) 1(X-3I 2 11 2 2、试确定常数A ,B , fl L / W 心铝Ej(0) +&S ) 有尽可能高的代数精度。
试问所得的数值积分公式代数精度是多少?它是否为 Gauss 型的? X k 1(X k ) 3X k , k=0,1,•… 收敛。
C 和a ,使得数值积分公式 A C —,B 9 16"9,aY 5,该数值求积公式具有 5次代数精确度,它是 Gauss 型的3、利用矩阵的LU 分解法解方程组y4、写出求解下列初始值问题 y ⑴ 迭代式及四阶龙格-库塔法迭代式。
哈工大研究生数值分析试题与答案
哈⼯⼤研究⽣数值分析试题与答案---WORD 格式--可编辑--1. 3,2x =-分别是⽅程328120x x x --+= 的根;讨论⽤Newton 迭代法求它们近似值的收敛阶。
取初值02x =-计算根3x =-的近似值,要求迭代3次。
(结果保留4位⼩数)解:设 32()812f x x x x =--+2()328f x x x '=--()62f x x ''=-(3)0,(3)0f f '-=-≠,(2)0,(2)0,(2)100f f f '''===≠则:3-是()0f x =的单根,故Newton 迭代在3-附近是平⽅收敛; 2是()0f x =的⼆重根,故Newton 迭代在2附近是线性收敛;取02x =-,Newton 迭代: 3212()812()328n n n n n n n n f x x x x x x x f x x x +--+=-=-'-- 223634n n n x x x ++=+ 2001023634x x x x ++==+ 2112123634x x x x ++==+ 2223223634x x x x ++==+2. 设常数0a ≠ ,求出a 的取值范围使得解⽅程组112233212313a x b a x b a x b --?????? ??? ?-= ??? ? ??? ????的Jacobi 迭代法收敛。
解: Jacobi 迭代:(1)()k k J x B x g +=+ 10210211203203130130J a B a a a -----?????? ? ? ?=--=-- ? ? ? ? ? ???????112a b g a b -???? ? ?= ? ? ? ?a谱半径:()1JBaρ=<时Jacobi迭代收敛故:a>3. 设(1)⽤Crout三⾓分解法求解⽅程组1232325xx?=??;(2)⽤乘幂法求⽅程组系数阵的按摸最⼤的特征值和对应的特征向量。
数值分析2012考试卷
研究生考试命题纸沈阳工业大学 2012 / 2013 学年 第 一 学期课程名称:数值分析 课程编号:000304 任课教师:陈欣 曲绍波 考试形式:闭 卷一、填空(每题3分,共15分)1. 二分法是求解 方程f (x )=0的 根一种方法,其前提是f (x )在有根区间[a ,b ]内单调且 。
2. 设矩阵⎪⎪⎭⎫ ⎝⎛-=0112A ,则1A = 、=2A 、)(A ρ= 。
3. 对于正数a ,使用牛顿法于方程02=-a x 所得到的迭代格式为 ,其收敛阶为 、求110(取x 0=10)的第一个近似值为 。
4. 幂法用来计算实矩阵A 的 特征值及对应的 ,在计算过程中进行“归一化”处理的原因是为了 。
5. 高斯求积公式)33()33()(11f f dx x f +-≈⎰-的代数精度为 ,当区间不是[-1,1],而是一般区间[a , b ]时,需要做变换 ,使用该公式计算≈⎰311dx x。
二、解答下列各题(每题5分,共10分)1. 请写出经过点A (0,1),B (2,3),C (4,5)的拉格朗日插值多项式形式。
说明插值基函数的性质以及拉格朗日插值法的优缺点。
2. 设n 阶可逆矩阵A 已经分解成A =LU ,其中L 下三角矩阵,U 单位上三角矩阵,推导出解线性方程组AX =b 的计算公式。
三、(10分)用不选主元的直接三角分解法解下面线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=-+-=-+-=-342424344343232121x x x x x x x x x x 四、(20分,每题10分)对于线性方程组⎪⎩⎪⎨⎧=++=++=-+9223122321321321x x x x x x x x x 1. 分别写出使用GS 迭代法,SOR 迭代法(ω=1.3)求解的迭代格式,并对初始向量(1,0,0)T ,分别计算第一步近似解向量;2. 分别讨论求解此方程的J —方法和GS —方法的收敛性。
五、(10分)给出函数表如下,用牛顿向前插值公式求f (2.03)的近似值。
数值分析试题(卷)与答案解析
数值分析试题一、 填空题(2 0×2′)1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是(B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
x 0 0.5 1 1.5 2 2.5 y =f (x )-2-1.75-10.2524.2511. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
2012数值分析试卷Microsoft Word 文档
一.填空题(每小题3分,共27分):1.计算40的近似值时,要使其相对误差限001.0*<r ε,只需取 位有效数字; 2.设近似数1,2*2*1-==x x 的误差限分别为01.0和02.0,则≈)(*2*1x x ε ;3.设求积公式)()(0k ban k k x f A dx x f ⎰∑=≈是插值型求积公式,则0nk k A ==∑.4.若)(x P 是],[)(b a C x f ∈的最佳4次逼近多项式,则)(x P 在],[b a 上至少有 个偏差点; 5.在求积公式中,辛甫生公式至少具有 次代数精度;6.将⎪⎪⎭⎫ ⎝⎛-=1111A 分解为下三角阵L 与上三角阵U 之积, 即LU A =,则L =, U =;7.用牛顿迭代法解方程10x xe -=的迭代公式为8. 将],[b a 区间n 等分,步长n ab h -=,分点),,1,0(n k kh a x k =+=,则],[b a 等分为n 个子区间,即∑-==1],[n k k I b a ,子区间],[1+=k k k x x I .则计算定积分()baI f x dx =⎰的复化辛普森公式为n S =.9. 计算定积分()b aI f x dx =⎰的复化梯形公式的误差表达式为n I T -= 二.单选题(每小题3分,共24分):1. 根据数值运算误差分析的方法与原则, 无需避免的是 ( );A. 绝对值很大的数除以绝对值很小的数B. 两个非常相近的数相乘C. 绝对值很大的数加上绝对值很小的数D. 两个非常相近的数相减2. 设 )(,),(),(10x l x l x l n 分别为节点 n x x x ,,,10 上的 n 次拉格朗日插值基函数, 则 ∑=≡-ni iix l x 0)()2(( );A .2-x B.2-i xC.0D. 13. 设 n ()[,],()f x C a b P x ∈是)(x f 的最佳一致逼近多项式, 则其逼近标准是依据( ); A. 2min[()()]kbn aa f x P x dx -⎰C. n minmax ()()ia a x bf x P x ≤≤- D. n maxmin()()ka x ba f x P x ≤≤-4. 设 )(],,[)(x P b a C x f ∈是)(x f 的最佳平方逼近多项式, 则其逼近标准是依据( ); A. 2min[()()]kbn aa f x P x dx -⎰B.C. n minmax ()()ia a x bf x P x ≤≤- D. n maxmin()()ka x ba f x P x ≤≤-5. 若牛顿-柯特斯公式只有一个求积节点, 则柯特斯系数 =)0(0C ( A );A.1B.0C.2/1D.a b - 6.插值型求积公式 ∑==nk k kn x f AI 0)( 的代数精度最高可达到 ( ) 次;A.nB.1+nC.n 2D.12+n7. 用迭代法解方程 )5.1(01023==--x x x , 则该方程最好改写为 ( ) ; A.2/11x x += B.321x x += C.13-=x x D. 1/1-=x x8. 迭代法)()()1(k k k x Ax b x+-=+解线性方程组b Ax =收敛的充要条件是( );A .1)(<A ρB. 1)(<-A b ρC. 1)(<-A I ρD. 1)(<+A I ρ三.解答题(共39分)1.(7分) 求 32()21f x x x x =++- 在区间 [-1,1] 上的2次最佳一致逼近多项式()2P x2. (15分) 己知)(x f 的函数表如下,解答下述问题:(1)填写差商表.i x)(i x f ],[1+i i x x f ],,[21++i i i x x x f ],,[3+i i x x f ],,[4+i i x x f6 1 10 3 46 4 82 6212(2)写出函数)(x f 的牛顿插值多项式. (3)写出插值余项的表达式.3.(7分)求简单迭代法),...2,1,0(,121=+=+k x x x kk k 的收敛阶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012数值分析试卷答案昆明理工大学2012级硕士研究生试卷科目: 数值分析 考试时间: 出题教师: 集体 考生姓名: 专业: 学号:题号一二三四五六总分分数考试要求:考试时间150分钟;填空题答案依顺序依次写在答题纸上,填在试卷卷面上的不予计分;可带计算器。
一、 填空题(每空2分,共40分)1.设*0.231x=是真值0.228x =的近似值,则*x 有 位有效数字,*x 的相对误差限为 。
2.设133)(47+++=x x x x f ,则=]2,,2,2[71Λf ,=]2,,2,2[81Λf 。
3. 过点)0,2(),0,1(-和)3,1(的二次拉格朗日插值函数为)(2x L = , 并计算=)0(2L 。
4.设32()3245f x x x x =+-+在[]1,1-上的最佳二次逼近多项式为 ,最佳二次平方逼近多项式为 。
5.高斯求积公式)()()(11010x f A x f A dx x f x +≈⎰的系数0A = ,1A = ,节点0x = ,1x = 。
6.方程组b Ax =,,U L D A --=建立迭代公式f Bx x k k +=+)()1(,写出雅可比迭代法和高斯-赛德尔迭代法的迭代矩阵,=Jacobi B ,=-Seidel Gauss B 。
7.022010022A ⎤⎥⎥=⎢⎥⎢⎥,其条件数2()Cond A = 。
8.设⎥⎦⎤⎢⎣⎡=2113A ,计算矩阵A 的范数,1||||A = , 2||||A = 。
9.求方程()x f x =根的牛顿迭代格式是 。
10.对矩阵⎪⎪⎪⎭⎫⎝⎛=513252321A 作LU 分解,其L=________________, U= __________________。
二、计算题(每题10分,共50分)1. 求一个次数不高于4次的多项式P (x ), 使它满足:1)1(,0)0(,0)0('===p p p ,1)1(,'=p ,1)2(=p 并写出其余项表达式(要求有推导过程)。
2. 若用复合梯形公式计算积分dx e x ⎰1,问区间[0, 1]应分成多少等分才能使截断误差不超过51021-⨯? 若改用复合辛普森公式,要达到同样的精度区间[0, 1]应该分成多少等份? 由下表数据,用复合辛普森公式计算该积分的近似值。
x0 0.25 0.5 0.75 1 x e11.281.642.112.713. 线性方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=18.04.08.014.04.04.01A ,T b ]3,2,1[=,(1)建立雅可比迭代法和高斯-赛德尔迭代法的分量形式。
(2)问雅可比迭代法和高斯-赛德尔迭代法都收敛吗 ?4. 已知如下实验数据4,,1,0),,(Λ=i y x i i , 用最小二乘法求形如x a a y 10+=的经验公式,并计算最小二乘法的误差。
i x 1 2 3 45 i y44.5688.55. 用改进的欧拉公式(预估-校正方法),解初值问题0)0(,10022=+=y y x dx,取步长,1.0=h 计算到2.0=x (保留到小数点后四位)。
三、证明题(共10分)1. 如果 A 是对称正定矩阵,则A 可唯一地写成T LL A =,其中L 是具有正对角元的下三角阵。
昆明理工大学2012级硕士研究生试卷答案一填空题(每空2分,共40分)1. 2 0.025或0.02162. 3 03. )2)(1(23-+-x x ,34. 2754xx -+ 2119255xx -+5. 0.28 0.39 0.29 0.826. UL D H U L D HS G J11)(),(----=+= 7. 18. | A ||1 = 3_,2316299||||2++=A9. 1()1'()k k k k k x f x xx f x +-=--10.⎪⎪⎪⎭⎫ ⎝⎛-=153012001L ,⎪⎪⎪⎭⎫ ⎝⎛--=2400410321U二、计算题(每空10分,共50分)1.求一个次数不高于4次的多项式P (x ),使它满足:P (0) =0,P’(0) =0,P (1) =1,P’(1) =1,P (2) =1,并写出其余项表达式。
解:由题意 P (x ) = x 2(ax 2 + b x + c ),由插值条件得方程组1)24(412341=++=+++=++c b a c b a c b a求解,得 a =1/4,b= – 3/2 ,c =9/4。
所以)492341()(22+-=x x x x P 插值余项为)2()1()(!51)(22)5(--=x x x fx R ξ2. 若用复合梯形公式计算积分dxe x ⎰10,问区间[0,1]应分成多少等分才能使截断误差不超过51021-⨯?若改用复合辛普森公式,要达到同样的精度区间[0, 1]应该分成多少等分?由下表数据用复合辛普森公式计算该积分。
x0 0.25 0.5 0.75 1 x e11.281.642.112.71解:由于xe xf =)(,则xe x fx f==)()()4(''在区间[0,1]上为单调增函数,b-a=1,设区间分成n 等分,则h=1/n., 故对复合梯形公式,要求≤--=|)(12|)(''2ηf h a b f R T 521021)1(121-⨯≤e n ,)1,0(∈η即52106⨯≥en,85.212≥n ,因此n=213,即将区间[0,1]分成213等分时,用复合梯形计算,截断误差不超过51021-⨯。
若用复合辛普森公式,则要求≤⎪⎭⎫ ⎝⎛--=|)(2180|)(()42ηf h a b f R S 5441021)1(21801-⨯≤⨯e n,)1,0(∈η4410144⨯≥en ,7066.3≥n ,因此n=4,即将区间[0,1]分成8等分时,用复合梯形计算,截断误差不超过51021-⨯。
=++=∑-=++1401214)]()(4)([6)(k k k k x f x f x f h h S 7125.1))()(4)()()(4)((65.0432210=+++++x f x f x f x f x f x f3. 线性方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=18.04.08.014.04.04.01A ,Tb ]3,2,1[=,(1)建立Jacobi 迭代法和Gauss-Seidel 迭代法的分量形式。
(2)问Jacobi 迭代和Gausse-Seidel 迭代法都熟收敛吗? 解:(1) Jacobi 迭代法的分量形式⎪⎩⎪⎨⎧=--=--=--=+++Λ,2,1,0,)8.04.03()8.04.02()4.04.01()(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k x x x x x x x x x k k k k k k k k k ,)0(x 为任意初始值。
Gauss-Seidel 迭代法的分量形式⎪⎩⎪⎨⎧=--=--=--=++++++Λ,2,1,0,)8.04.03()8.04.02()4.04.01()1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k x x x x x x x x x k k k k k k k k k ,)0(x 为任意初始值。
(2)Jacobi 迭代法的迭代矩阵⎪⎪⎪⎭⎫ ⎝⎛------=+=-08.04.08.004.04.04.00)(1U L D B J)32.08.0)(8.0(||2-+-=-λλλλJ B I10928203.1)(>=J B ρ,故Jacobi 迭代法不收敛。
Gauss-Seidel 迭代法的迭代矩阵⎪⎪⎪⎭⎫ ⎝⎛---=-=--672.0032.0064.016.004.04.00)(1U L D B SG18.0)(<=-S G B ρ,故G-S 迭代法收敛。
4. 已知实验数据5,,2,1),,(Λ=k yx kk,如下表,用最小二乘法求形如xa a y 10+=的经验公式,并计算均方误差。
i x 1 2 3 45 i y44.5688.5解:令x a a x S 101)(+=,10=ϕ,1x =ϕ 故51),(4000==∑=i ϕϕ15),(4010==∑=i i x ϕϕ15),(4001==∑=i i x ϕϕ55),(40211==∑=i i x ϕϕ31),(400==∑=i i f f ϕ5.105),(41==∑=i i i f x f ϕ由法方程得线性方程组⎩⎨⎧=+=+5.1055515311551010a a a a 解得25.1,45.210==a a 于是所求拟合曲线为x x S 2429.17143.3)(1+=2-范数的误差0.8216 675.0))((||||2412==-=∑=iii y x S δ5. 用改进的欧拉公式(预估-校正方法) 解初值问题0)0(,10022=+=y y xdxdy ,h 为步长,(1)取步长,1.0=h 计算到2.0=x (保留到小数点后四位)。
解:(1)由改进的欧拉公式⎪⎩⎪⎨⎧++=+=++++),(),([2),(1111n n n n n n n n n n y x f y x f h y y y x hf y y因为,1.0=h 0=y ,22100),(y xy x f +=所以2.0,1.0,0210===x x x=+=),(0001y x hf y y 0,),(),([2110001y x f y x f hy y ++==0.0005=+=),(1112y x hf y y 0.0015)],(),([2|221112.02y x f y x f hy y x ++===0.0030三、证明题(共10分)1、证明:如果 A 是对称正定矩阵,则A 可唯一地写成TLL A =,其中L 是具有正对角元的下三角阵。
法一:因为A 对称正定,A 的所有顺序主子式不为零。
A 有唯一的Doolittle 分解U L A =其中⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=1112222223111111311122211ΛO ΛK Ou a u a u a u a u a u u u U n n nn 0DU = D 为对角阵,0U 为单位上三角矩阵。
又因为A 是对角正定矩阵TA A DU L ==0=TTLD U由分解的唯一性 TU L 0=,代入分解式子 TLDL A =又A 对称正定知道n i D D u D u i iii ,,2,0,1111Λ=>==-2121221122112211D D u u u u u u u u u D nn nn nn =⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=OOO所以TTLLD L D L A ==)(2121,其中21D L 为对角元为正的下三角矩阵。