于开平-结构动力学第十五讲

合集下载

于开平-结构动力学第十一讲

于开平-结构动力学第十一讲
������ 2 ������ ������������ ������������ ������������ ������������ −������ 2 − ������ + ������ + ������������ − ������ + ������������ − ������ = 0 ������������ ������������ 2 ������������ 2
结 构 动 力 学
第三章 连续体振动的精确解法
(第十一讲)
主讲教师:于开平
哈尔滨工业大学航天学院
1.4 剪切变形与转动惯量对固有频率的影响
������ 截面剪力作用:受剪切变形影响梁轴线偏离了截面 ������ = ������������������ 法线,偏离角度������,称为剪切角。
梁轴线实际转动角度为:������������ = ������ − ������ 改变了截面转角与梁轴线转角原来 的简单一阶导数关系,不能用横向位移 完全描述梁的运动,需要用两个量。 剪切角与剪力关系:������ = ������������������ ������ − ������������
2
− ������������������ 2 ������
2
������
2
=0
������ 2 1 − ������ ������
2
2 2 ������ 4 ������ 2 ������ ������ ������������ + ������������ − ������������������ 2 =0 ������ ������ ������ ������
������ = ������������

结构动力学多自由度

结构动力学多自由度

▪ 振型方程:
(K i2M)ji 0 (i 1, 2, 3, n)
▪∵
K 2i M 0
▪ ∴ 第i 个振型方程中的n 个方程中只有n-1个是独立的! ▪ ——无法得到j1i、 j2i、 … 、 jni 的确定值, ▪ 但可以确定各质点振幅之间的相对比值: ▪ —— 振型的幅值是任意的,但形状是惟一的。
一致质量矩阵:
L
pava m13v1 0 fI ( x)v( x)dx
L
0
m( x) 3( x)v3
L
1( x)v1dx
mij 0 EI ( x)i ( x) j ( x)dx
L
cij 0 c( x) i ( x) j ( x)dx
其中,c(x)表示分布的粘滞阻尼特性。
一致节点荷载
L
vˆ 表示体系的形状,不随时间变化。
v 2vˆ sin(t ) 2v 2mvˆ sin(t ) kvˆ sin(t ) 0
k 2m vˆ 0
k 2m vˆ 0
即: k 2m 0
上式的N个根,表述体系可能存在的N个振型的频率。
1
2
3
N
2)
2
)
y32
(t
)

32
s
in
(
2
t
2
)
1

2i
yi
(t
)
jˆ3i
s
in(i
t
i
)
jˆ ni
1
jˆ 21
jˆ 31
jˆ 32
1
jˆ 22
将N个振型中的每一振型形式,用F表示N个振型所组成的方阵。
11 12 13 1N

结构动力学课件PPT

结构动力学课件PPT

my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
)
3
B'
M I1
E'
D'
F' G'
A
D
E
B
F
G
C
fD1
fI1
fS1
f D2
f I2
f S2
a
2a
a aa a
Z(t )
f S1
k1(EE')
3 4
k1Z (t )
f D1
d c1( dt
DD')
1 4
c1Z (t )
fS2
k1(GG')
1 3
k2
Z
(t
)
fD2 c2Z (t)
f
I1
m1
1 2
Z(t)
3. 有限单元法
—— 将有限元法的思想用于解决结构的动力计算问题。
要点:
▪ 先把结构划分成适当(任意)数量的单元;
▪ 对每个单元施行广义坐标法,通常取单元的节点位移作 为广义坐标;
▪ 对每个广义坐标取相应的位移函数 (插值函数);
▪ 由此提供了一种有效的、标准 化的、用一系列离散坐标 表示无限自由度的结构体系。
建立体系运动方程的方法
▪ 直接平衡法,又称动静法,将动力学问题转化为任一时刻 的静力学问题:根据达朗贝尔原理,把惯性力作为附加的 虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载, 使体系处于动力平衡条件,按照静力学中建立平衡方程的 思路,直接写出运动方程。

结构动力学课件

结构动力学课件

m
EI = ∞
W=2
m m>>m梁 m +αm梁 I
厂房排架水平振动 时的计算简图
m 2I
I
单自由度体系 三个自由度体系
v(t) u(t) θ(t)
三个自由度 水平振动时的计算体系
三个自由度 顶板简化成刚性块
多自由度体系
复杂体系可通过加支 杆限制质量运动的办 法确定体系的自由度
§15-2 单自由度体系的运动方程 15建立运动方程的方法很多,常用的有“动静法” 虚功法、 建立运动方程的方法很多,常用的有“动静法”、虚功法、 变分法等。下面介绍建立在达朗泊尔原理基础上的“动静法” 变分法等。下面介绍建立在达朗泊尔原理基础上的“动静法”。 m
P(t )
&&(t ) y
m&&(t ) = P(t ) y
运动方程
m
P(t )
一、柔度法
− m&&(t ) y
惯性力 && 柔度法步骤: 柔度法步骤(t ) f I = −my : 1.在质量上沿位移正向加惯性力; P(t ) + [−m&&(t )] = 0 y 2.求外力和惯性力引起的位移; 形式上的平衡方程, 形式上的平衡方程,实质上的运动方程 3.令该位移等于体系位移。

δ 11
P (t )
柔度法步骤: 柔度法步骤: 1.在质量上沿位移正向加惯性力; 2.求外力和惯性力引起的位移; 3.令该位移等于体系位移。
三、列运动方程例题 例3.
&& my + ky = P(t )
P(t )
P(t )
m
EI1 = ∞

结构动力学课件(华中科技大学)

结构动力学课件(华中科技大学)


v02
2
y(t)
a
v0 a cos 初始相位角 tan1 y0
v0
T
自由振动总位移:
y0

0

t
a
13.2.3 结构的自振周期和自振频率
由式: y(t) a sin(t ) 可知
时间经 T 2后 ,质量完成了一个振动周期。
用T 表示周期,周期函数的条件: y(t+T )=y(t )
动力计算的内容:
1)结构本身的动力特性:自振频率、阻尼、振型 2)荷载的变化规律及其动力反应 (自由振动)
(受迫振动)
13.1.2 动力荷载的分类
1)周期荷载
P(t ) 简谐荷载 t
2)冲击荷载
P(t)
P(t)
P
爆炸荷载1
P
P
一般周期荷载
t
P(t) 爆炸荷载2 P
突加荷载
tr
t
tr
t
t
P(t)
3)随机荷载
结构 (系统)
第四类问题:控制问题
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
输出 (动力反应)
控制系统 (装置、能量)
13.1.2 动力荷载的分类
本课程主要任务是:
求解结构的动力特性;剖析结构动力反应规律,提出
结构在动力反应的分析方法;为结构设计提供可靠的依
据。
可靠性设计依据:
安全性:确定结构在动力荷载作用下可能产生的最大内 力,作为强度设计的依据;
l/2
l/2
l/2
l/2
l/2
l/2
(a)
(b)
(c)
13.2.3 结构的自振周期和自振频率

第10章 结构动力学

第10章 结构动力学

5.与其它课程之间的关系
结构动力学以和数学为基础。 要求熟练掌握已学过的知识和数学知识(微分方程的求解)。 结构动力学作为结构抗震、抗风设计计算的基础。
2014-1-10
第10章
10.2体系的动力自由度
1.动力自由度的定义
动力问题的基本特征是需要考虑惯性力,根据达朗贝尔(D‘Alembert Jean Le Rond)原理,惯性力与质量和加速度有关,这就要求分析质量分布和质量位 移,所以,动力学一般将质量位移作为基本未知量。 确定体系中全部质量位置所需要的独立几何参数数目,成为体系的动力自由 度。
4 ( x) sin
2014-1-10

广义坐标法是一种数学简化方法
第10章
10.2体系的动力自由度
有限单元法:
可以看作是分区的广义坐标法,其要点与静力问题一样,是先把结构划分 成适当数量的区域(称为单元),然后对每一单元施行广义坐标法。详见 有限单元法参考资料,这里不再赘述。 一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠 的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的 方法,已有不少专用的或通用的程序可供结构动力学分析之用。 有限单元法也是一种数学简化方法
2014-1-10
第10章
10.1 概述
2.动力荷载及其分类
动力荷载分类方法有很多种,常见的是按动力作用随时间的变化规律来分。 周期性荷载:其特点是在多次循环中荷载相继呈现相同的时间历程。如旋 转机械装置因质量偏心而引起的离心力。 周期性荷载又可分为简谐荷载和非简谐周期荷载,所有非简谐周期荷载均 可借助Fourier级数分解成一系列简谐荷载之和。 冲击和突加载荷: 其特点是荷载的大小在极短的时间内有较大的变化。冲 击波或爆炸是冲击载荷的典型来源;吊车制动力对厂房的水平作用是典型 的突加荷载。 随机载荷:其时间历程不能用确定的时间函数而只能用统计信息描述。风 荷载和荷载均属此类。对于随机荷载,需要根据大量的统计资料制定出相 应的荷载时间历程(荷载谱)。 前两种荷载属于确定性荷载,可以从运动方程解出位移的时间历程并进一 步求出应力的时间历程。 随机荷载属于非确定性荷载,只能求出位移响应的统计信息而不能得到确 定的时间历程,因而~92层之间有一颗巨 大的‘金色大球’,由实 心钢板堆焊而成,直径约 5.4米,重达680吨,价值 400W美元。其实质是调质 阻尼器TMD(Tuned Mass Damper),作用是减轻飓 风、地震给大楼带来的震 动。

结构动力学-课件(全10章+总结)(刘晶波,杜修力主编.机械工业出版社出版)

结构动力学-课件(全10章+总结)(刘晶波,杜修力主编.机械工业出版社出版)
独立参数也称为体系的广义坐标,可以是位移、转角或 其它广义量。
质量块mg 无质量弹簧k
(a) 弹簧-质点
2ust
动力反应
u
(b) 静力和动力反应
静力问题和动力问题位移反应的区别
1.4 结构离散化方法
离散化:把无限自由度问题转化为有限自由 度的过程
三种常用的离散化方法: 1、集中质量法、 2、广义坐标法、 3、有限元法。
F (t) = Asinωt F (t) = Acosωt F (t) = Asin(ωt − φ)
可以是机器转动引起的不平衡力等。
p(t)
t
(a) 简谐荷载
1.2 动力荷载的类型
(2)非简谐周期荷载
荷载随时间作周期性变化,是时间t的周期函数,但不
能简单地用简谐函数来表示。 例如:平稳情况下波浪对堤坝的动水压力;轮船螺旋 桨产生的推力等。
n =1
nπx
L
sin(.)— 形函数(形状函数),给定函数,满足边界条件;
bn(t)— 广义坐标,一组待定参数,对动力问题是作为时间的函数。
∑ u( x, t )
=
N n =1
bn
(t)
sin
nπx
L
2、广义坐标法
悬臂梁:
x
(b) 悬臂梁
用幂级数展开:

∑ u(x) = b0 + b1x + b2 x2 + L = bn xn n=0
结构动力学和静力学的本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力
惯性力的产生是由结构的质量引起的,对结构中质量位 置及其运动的描述是结构动力分析中的关键,这导致 了结构动力学和结构静力学中对结构体系自由度定义 的不同。

结构动力学有限元法

结构动力学有限元法

100%
动力响应分析
研究车辆、风、地震等外部激励 下桥梁的动力响应,评估其安全 性能。
80%
稳定性分析
分析桥梁在极端载荷下的稳定性 ,确保其正常工作。
建筑结构的抗震分析
地震作用下的结构响应
通过有限元法模拟地震对建筑 结构的作用,计算结构的位移 、加速度等响应。
结构抗震性能评估
根据计算结果评估建筑结构的 抗震性能,优化设计以提高其 抗震能力。
局限性
由于结构动力学有限元法需要进行大量的数值计算和存储,因此 对于大规模复杂结构的分析可能会面临计算效率和精度方面的问 题。此外,对于一些特殊结构和复杂工况,可能需要采用特殊的 建模和分析方法。
04
结构动力学有限元法的应用实例
桥梁结构的动力学分析
80%
桥梁结构的模态分析
通过有限元法计算桥梁的固有频 率和振型,了解其自振特性。
结构减震设计
利用有限元法进行减震设计, 如设置隔震支座、阻尼器等, 降低地震对结构的影响。
机械设备的动态特性分析
01
设备模态分析
02
设备振动分析
03
设备优化设计
通过有限元法分析机械设备的固 有频率和振型,了解其动态特性。
研究机械设备在工作过程中的振 动情况,分析其振动原因和影响。
根据动态特性分析结果,优化机 械设备的设计,降低振动和噪声。
用于分析电磁场的分布和变化规律,如电机、变 压器、天线等。
流体动力学
用于模拟流体在各种条件下的流动特性,如航空 、航海、管道流动等。
热传导分析
用于分析温度场的变化和热量传递规律,如热力 管道、电子设备等。
有限元法的研究意义
提高工程设计的可靠性和安全性

结构动力计算教学课件PPT_OK

结构动力计算教学课件PPT_OK

k12
0
k21
(k22 2m2 )
特征方程 频率方程
(k11 2m1)(k22 2m2) k12k21 0
4
(k11 2m1)(k22 2m2) k12k21 0
2
2 1,2
1 2
k11 m1
k 22 m2
1
2
k11 m1
k 22 m2
k11k22 k12k21 m1m2
最小圆频率称为第一(基本)圆频率: 第二圆频率-------
K1 F
n1 n2 nn
FMYY 0
K Fn自M由度Y体 系作K自由Y振动 的K 0 IM运动Y方程(K柔Y度法)0
将特解带入方
程整理后:
FM
1 2
IX
0
M Y
KY 0
FM
1 2
I
0
频率方程
19
FM
1
2 j
I j
0
j(1) 1
规准化主振型方程
一般的:
n个主振型向量彼此线性无关,
( j 1,2,, n)
n个自由 度体系的
依上式可求得与ωj 相对应 主振型,我们可唯一地确 振型方程
定主振型的形状,但不能唯一地确定它的振幅。
N自由度体系有n个主振型,若体系为对称形式,则这些主振型
分为对称及反对称形式两类。
17
主振型的规准化:
为了使主振型的振幅也具有确定值,需另外补充条件, 由此得到的主振型叫规准化主振型。
则系数行列式为零:
K 2 M 0
n个自由度体系 的频率方程
n个频率(按数值大小从小到大排列): ω1,ω2,---,ωn
令:Xj 表示与频率ωj相对应的主振型向量:

第1章 结构动力学简述

第1章 结构动力学简述

1
2014-04-19
第一节
1 、工程中的振动问题
引言
风振问题
地震问题
工程中的振 动问题
海浪问题
爆炸问题
结构的动力性态 作 者:【英】G.B.沃伯顿 著 金咸定译 出 版 社:地震出版社 出版时间:1983
结构动力学 作 者: Roy R.Craig (克雷格) 著常岭译 出 版 社:人民交通出版社 出版时间:1996
结构在动力荷载作用下的计算,要涉及内外两个方面的因素,即结构本身的 动力特性和干扰力的变化规律。所谓结构的动力特性是指结构的自振频率、振型 结构的响应分析 和阻尼,其中阻尼的大小取决于结构的物理性质,它是由试验测定的,而结构的 自振频率和振型的计算就构成结构动力计算中一个很重要的组成部分。 至于干扰 力的变化规律可事先设定或由统计得到。 结构的参数识别
z
y x
CY KY P(t ) MY
m1 M m2 m n-1 mn
y x
退出
退出
9
2014-04-19
第三节 结构的连续模型
1.运动方程的建立
根据达朗贝尔原理,在体系上主动力、约束力和惯性力构成一个平衡力 系,不论体系在运动中处于何种位置,这种瞬时平衡的关系总是成立的。
y
n
a1, a2,…….. an
(2k 1) x k ( x) 1 cos 2l
y
x
y ( x, t ) ak k ( x )
k 1
n
悬臂梁变形曲线
退出
退出
( c) 有限元概念
用有限数目的离散位移坐标表示给定结构位移的第三种方法,综 合了堆聚质量法及广义坐标法两者中的某些特点,已成为目前流行的 方法。这个方法是分析连续结构的有限元法的基础,它提供了既方便 又可靠的体系理想化模型,而且对用电子计算机分析来说特别有效。

结构动力学 ppt课件

结构动力学  ppt课件

7
§1.3 结构动力分析中的自由度
一. 自由度的定义
确定体系中所有质量位置所需的独立坐标数,称作体 系的动力自由度数。
单自由度体系、有限自由度体系、无限自由度体系 二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难, 而且从工程角度也没必要。常用简化方法有: 集中质量法 广义坐标法 有限单元法
EI
P(t )
(t ) m y y(t )
1
k11
l
k11
12EI / l 3 12EI / l 3
k11 24 EI / l 3
(t ) m y
(t ) k11 y(t ) P(t ) m y
24 EI y (t ) P(t ) 3 l
PPT课件 18
例4.
P(t )
1P
P(t)
P(t )
l Pl/4
l/2
2l 3 11 3EI
Pl 3 1P 16 EI
2l 3 l3 (t )] 1P (t )] y(t ) 11[m y [m y P(t ) 3EI 16 EI
PPT课件 17
例3.
P(t )
l
EI
m
EI1
第三类问题:荷载识别。
PPT课件
5
第四类问题:控制问题
输入 (动力荷载) 结构 (系统) 控制系统 (装置、能量) 输出 (动力反应)
本课程主要介绍结构的反应分析 任务 讨论结构在动力荷载作用下反应的分析的方法。寻找 结构固有动力特性、动力荷载和结构反应三者间的相互关 系,即结构在动力荷载作用下的反应规律,为结构的动力 可靠性(安全、舒适)设计提供依据。
要了解和掌握结构动力反应的规律,必须首先建立描述 结构运动的(微分)方程。建立运动方程的方法很多,常用的 有虚功法、变分法等。下面介绍建立在达朗伯原理基础上的 “动静法”。 m

第十四章结构动力学多自由度

第十四章结构动力学多自由度

k11 2m1
k21
k12
0
k22 2m2 频率方程
(equation of frequency)
• 存在两个特征解1 ,2 ;
• 其中最小的一个称第一频率,较大的一个称第 二频率。
9 / 67
§14-6 多自由度结构的自由振动
振型方程的解只可得出振幅的相对比值
A11 A21
k11
k12
m112
一、刚度法
取任意质量mi列动力平衡方程:
FIi FRi Fei FPi 0 n
根据叠加原理有
Fei kij y j
jn1
FRi ij yj
j 1
FI i mi &y&i
n
n
则 mi yi ij yj kij y j FPi
j 1
j 1
mn
yn (t)
y2 (t)
m1
y1 (t )
按主振型振动的条件: 初位移或初速度与此振型相对应;
一般初始条件下的振动通常不能完全与某一振型 相对应,因此振动将是主振动的叠加。
y1 (t ) y2 (t )
AA11sin(1t AA21sin(1t
1) BA12sin(2t 2 ) 1) BA22sin(2t 2 )
多自由度体系自由振动的振型分解
A1TKA2 0
(i 1, 2,, n)
2 / 67
§14-6 多自由度结构的自由振动
写成矩阵形式
m1
m2
O
&y&1 11 12 L
mn
&y&M2 &y&n
21
L
n1
22
L

15结构动力计算,武汉理工大学,包世华版结构力学课件

15结构动力计算,武汉理工大学,包世华版结构力学课件

ω 其中: r = ω
(1 5 .1 7 )
低阻尼体系的自振圆频率
式(15.16)的解为:
y = e −ξωt (C1 cosω r t + C 2 sin ω r t )
引入,t 有:
= 0时 , y (0) = y0 v(0) = v0
y=e
− ξω t
v0 + ξω y0 sin ω r t y0 cos ω r t + ωr
y (t ) = C1 sin ωt + C2 cos ωt
积分常数C1,C2由初始条件确定。 设t=0时:
C2 = y0 把 v C1 = 0 ω
(b)
C2 = y0 y (0) = y0 代入(b)式,有: v & y (0) = v0 C1 = 0 ω
ωr = ω
1−ξ
2
λ = −ω
y = (C1 + C 2 t )e −ωt
= 0时 , y (0) = y0 v(0) = v0
有: y = [ y 0 (1+ωt ) + v0 t ]e 由上式作y-t曲线: 这条曲线仍具有衰减性, 但不具有波动性。
P(t) t
P(t)
t
简谐荷载(按正、余弦规律变化) 一般周期荷载
t
(2)冲击荷载:短时内剧增或剧减。(如爆炸荷载) P(t) P(t) P(t)
P tr t
P tr t
P t
(3)随机荷载:(非确定性荷载) 荷载在 将来任一时刻的数值无法事先确定。(如 地震荷载、风荷载) 3.动力计算的自由度 (1)概念
δ=
1 k
将(a)代入(15.2)整理后,即为(15.1)式。

优选结构动力学

优选结构动力学

惯性力
FI my
质点处于动力平衡状态 FI Fe 0
可得
my k11y 0
§14-3 单自由度结构的自由振动
命 2 k11
m
则有 y 2 y 0 (a)
上式即为单自由度结构自由振动微分方程
(2) 列位移方程(柔度法)如图c。
质点m振动时,把惯性力FI看作是静力荷 载作用在体系上,则质点处的位移为
l
2l
§14-3 单自由度结构的自由振动
2、运
为一常系数线性齐次微分方程,其通解为
y(t) A1 cost A2 sin t
A1和A2为任意常数,可有初始条件来确定。
振动的初始条件为 t 0时,y y0,y y0
式中y0—初位移, y0—初速度。
则有
A1 y0,A2
§14-3 单自由度结构的自由振动
k11 1 g g (d)
m
m11
mg11
Δst
刚度法 柔度法
重力法
g—重力加速度;Δst—重量mg所产生静力位移。
式(d)表明:ω随Δst的增大而减小,即把质点放在结构最大位 移处,则可得到最低的自振频率和最大的振动周期。
讨论:质量自重力对自振频率的影响。
结构动力学
§14-1 概 述
一、结构动力计算的特点 动力荷载作用下,结构将发生振动,各种量值均随时间而变化。
1、内容: (1)研究动力荷载作用下,结构的内力、位移等计算原理和计算方法。 求出它们的最大值并作为结构设计的依据。
(2)研究单自由度及多自由度的自由振动、强迫振动。 2、静荷载和动荷载 (1)静荷载:荷载的大小和方向不随时间变化(如梁板自重)。 (2)动荷载:荷载的大小和方向随时间变化,需要考虑惯性力。 3、特点 (1)必须考虑惯性力。 (2)内力与荷载不能构成静平衡。必须考据惯性力。依达朗伯原理, 加惯性力后,将动力问题转化为静力问题。

结构动力学教学课件(共10章)第10章 结构动力学专题

结构动力学教学课件(共10章)第10章 结构动力学专题


··
∑ () + ∑
··
·
+2ζnωn + qn=-=


=
=+

··
()
()
(10-19)
上式可简记为
··
·
··
··
+2ζnωn + qn=- + (10-20)
力位移。
由于[Kg]表示因支承单位位移在自由节点上产生的力,而[K]表示自由节点单位位移所产生的
力,因此{us}和{ug}满足条件
[K]{us}+[Kg]{ug}={0}(10-4)
由此可得到{us}和{ug}的关系为
{us}=-[K]-1[Kg]{ug}(10-5)
10.1
10.1.1
结构地震反应分析中的多点输入问题
点地震动输入下结构总的反应为
{ua}={us
}+{u}=-[K]-1[K
g]{ug}+

∑ {ϕ}nqn(t)
=

= ∑ [Egl]ugl+∑{ϕ}nqn(t)(10-15)
=

10.2
10.2.1
结构地震反应分析中的多维输入问题
非对称结构在多维地震输入时的振型叠加法
计算非对称结构在多维地震动作用下的反应时,在刚性楼板假定前提下通常每层考虑三个自
式(10-7)右端第二项表示结构与支座的阻尼耦联,由于比较小,通常可忽略。同时,根据式(10-4)和
式(10-5),则式(10-7)可简化为
··
{Peff(t)}=([M][K]-1[Kg]-[Mg]){ }(10-8)

《结构动力学》课件

《结构动力学》课件
《结构动力学》PPT课件
欢迎来到《结构动力学》PPT课件。本课程将带领您深入了解结构动力学的理 论和应用,探索建筑在外力作用下的响应和行为。让我们一起开启这个精彩 的学习之旅吧!
引言
1 研究对象及内容
探索结构动力学的研究范围,包括结构振动、动态响应等。
2 相关概念解释
解释与结构动力学相关的术语和概念,如动力学基础知识、振动分析方法等。
1 常见结构材料
列举常用的结构材料,如 钢材、混凝土、木材等。
2 材料特性与选用原则
介绍结构材料的特性和选 用原则,以保证结构的安 全和可靠性。
3 材料处理与加工
讨论结构材料的处理和加 工过程,如焊接、锻造等。
结构的实验及检测
1 实验设备及方法
介绍用于结构实验的设备和方法,如振动台、应变测量等。
2 实验数据分析
2 振动分析方法
介绍结构振动分析的常用 方法,包括自由振动和强 迫振动的分析。
3 动态响应分析方法
研究结构在外力作用下的 响应规律,包括频率响应 和时程分析等方法。
结构的稳定性分析
1 基础概念
介绍结构稳定性分析的基本概念,如失稳、临界荷载等。
2 总体稳定分析
分析结构整体的稳定性,探讨各种失稳模式的产生和防范。
介绍与结构安全管理相关 的法规和规范,保证结构 的安全性和可靠性。
结论
1 结构动力学研究的未来发展趋势
展望结构动力学领域的未来发展方向和研究 重点。
2 结构动力学在现代工程实践中的应
用价值
总结结构动力学在工程实践中的应用价值和 意义,如地震工程、桥梁设计等。
参考文献
整理了一份涵盖结构动力学领域相关文献的参考书目,供读者深入研究和进 一步学习。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xt t
( xt t xt ) (1 ) xt (1 )txt t 2
K K a0 M a1C
将它们同时代入第三个方程,只剩下待求时刻的位移,整理得 Kxt t Qt t
Qt t Qt M (a6 xt a2 xt a3 xt ) C (a1 xt a4 xt a5 xt )
x(t ) lim
x(t t ) x(t ) xt t xt t 0 t t
1 x x x x xt t t t t t t 2 t t
x(t ) lim
x(t ) x(t t ) xt xt t t 0 t t
2.3 纽马克方法(Newmark method)
对待求的下一时刻的位移、速度和加速度在当前时刻������进行泰勒展开
1 1 x (t t ) x (t ) tx (t ) t 2 x (t ) t 3 x (t ) O(t 4 ) 2 6 1 x (t t ) x (t ) tx (t ) t 2 x (t ) O(t 3 ) 2 x (t t ) x (t ) x (tn ) O(t ) x(t t ) x(t ) tx (t ) O(t 2 ) t
(2) 确定初始值
x 0 , x 0 , x0
x0 = M 1 (Q (0) Cx0 - Kx0 )
1 1 2
(3) 选择时步长∆������ , 使它满足∆������ < ∆������������������ = ������������ /������(������������ 为系统的最小周期)
结 构 动 力 学
第五章 结构动力学中常用的数值算法
(第十五讲)
主讲教师:于开平 哈尔滨工业大学航天学院
2 结构动力响应的数值解法——典型直接积分法
2.1 引言
Mx Cx Kx Q (t ) x (0) x0 x (0) v0
i) 非比例阻尼 ii) 非线性情况F(x,v) iii) 有冲击作用
(4) 将计算结果和������时刻的位移分别赋值给前一时刻,用于下一次的递推计算
xt t xt , xt xt t
(5) 返回步骤(1)计算下时刻的位移 根据这个算法流程,同学们可自行用计算机语言来实现。
2.2 中心差分法 (The central difference method)
( xt t xt ) (1 ) xt (1 )txt t 2
(4) 将计算结果分别赋值给前一时刻,用于下一次的递推计算
xt xt t , xt =xt t , xt xt t
(5) 返回步骤(1)计算下时刻的位移
2.3 纽马克方法(Newmark method)
则运动方程可简写成 Mxt t Qt
其中 M a0 M a1C
Qt Qt ( K a2 M ) xt (a0 M a1C ) xt t
x0 a1 ( xt xt ), x0 a0 ( xt 2 x0 xt ) xt =(x0 xt ) / a1
1) 这三种典型情况,模态叠加不适用,数值积分。 2) 模态分解后,因载荷形式复杂,无法给出解析解,需要数值积分。 这类方法,不需要先进行模态变换,可直接进行积分,因此相比 于模态叠加法,被称为直接积分类方法。
2.2 中心差分法 (The central difference method)
该方法用利用数学上的差商代替导数的思想
Mxt + Cxt + Kxt = Qt
2.2 中心差分法 (The central difference method)
将上述中心时刻 t 的速度、加速度表示代入并整理得
1 2 1 K M x M C t xt t 2 2 ( t ) ( t ) 2 t 1 1 2 , a , a 将其中各矩阵前的系数,分别简记为 a0 1 2 (t )2 2t (t ) 2 1 1 M C xt t Qt 2 ( t ) 2 t
(4) 形成等效刚度矩阵
K K a0 M a1C
(5) 对等效刚度矩阵三角分解
K LDLT
2.3 纽马克方法(Newmark method)
纽马克法的解题步骤——算法流程 2. 对每一时间步进行循环
(1) 计算������ + ∆������ 时刻的等效载荷
Qt t Qt M (a6 xt a2 xt a3 xt ) C (a1 xt a4 xt a5 xt )
Qt Qt ( K a2 M ) xt (a0 M a1C ) xt t
(2) 求解������ + ∆������ 时刻的位移
( LDLT ) xt t Qt
(3) 如需要计算时刻������的速度和加速度值,可通过它们的位移差分表示来计算
xt a1 ( xt t xt t ), xt a0 ( xt t 2 xt xt t )
������������ ������
= ������
2������ ������ ������
= ������ ,
������
2
������������ 为系统的最小周期,������������ 为系统的最高频率。显然对大型结构,中心差分方 法的时间步长要取得很小。 时间步长越小计算精度越高,但过小,相同计算时间区间内 0, ������ ,需计算的 步数������Τ∆������就大大增加,计算量也跟着增加。因此,时间步长的选择首先要满 足稳定性要求,然后要在精度和计算量之间平衡。
• 如果不仅对称,同时还正定,可直接做第一讲里介绍的Cholesky分解,
分解成LLT,三角分解后求逆比直接求逆效率要高得多; • 注
2.2 中心差分法 (The central difference method)
中心差分法的解题步骤——算法流程 2. 对每一时间步进行循环 (1) 计算时刻������的等效荷载
将三阶导数表达式代入位移和速度泰勒展开式 t 2 t 2 x (t t ) x (t ) tx (t ) x (t ) x (t t ) O(t 4 ) 3 6
x (t t ) x (t )
t t x (t ) x (t t ) O(t 3 ) 2 2
利用这两种速度表示的平均来确定当前时刻的速度,
1 ( xt t xt t ). 2t
用以当前时刻������为中心的前后时刻位移的差分来计算速度,这也是中心差 分名字的由来。不同时刻的函数值做差,称为函数对时间的差分运算。 加速度用速度的差商表示,每一个时刻的速度再用位移的差商表示
纽马克方法的几点补充说明 1) 常用算法中,为保证计算精度, ������ = 1/2 ,因此也常被称作纽马克 −������ 方法。 为保证计算是无条件稳定的,一般取������ ≥ 1/4。其中������ = 1/4的算法,也被称 为平均加速度方法,相当于在计算的时间区间内假设加速度是不变的。 2) 需要进行一次解代数方程组的运算,不能直接递推求解,无条件稳定的纽 马克−������方法属于隐式算法。
2.3 纽马克方法(Newmark method)
1 xt t xt txt [( ) xt xt t ]t 2 2 xt t xt [(1 ) xt xt t ]t
其中������, ������ 为加权常数,然后假设������ + ∆������ 时刻的近似值满足运动方程
2.3 纽马克方法(Newmark method)
纽马克法的解题步骤——算法流程 1. 初始值计算 (1) 形成系统矩阵K,M和C
(2) 确定初始值 x0 , x0 , x0 ,其中初始加速度的计算与中心差分法一样
(3) 选择时间步长∆t,算法参数γ、β,并计算积分常数
a0
1 1 a 1 a t 2 , 1 t , 3 2 t a4 1 a5 ( 2) a t (1 ) a t 2 , , 6 , 7
2.4 结构动响应数值算法性能评价指标分析
xt x0 1 1 x0 x0 2a1 2a0
式中零时刻加速度可通过观测补充给出,也可通过零时刻的动力学方程给出
x0 = M 1 (Q (0) Cx0 - Kx0 )
2.2 中心差分法 (The central difference method)
中心差分法的解题步骤——算法流程 1. 初始值计算 (1) 形成刚度矩阵 K, 质量矩阵 M 和阻尼矩阵C。
Mxt t Cxt t Kxt t Qt t
三个方程可以确定三个待定量。由第一个方程可以解出待求时刻加速度表示
xt t =
1 1 1 ( x x ) x ( 1) xt t t t t 2 t t 2
将这个加速度表示代入第二个方程,可以解出待求时刻速度表示
xt xt t xt 1 xt t xt xt xt t t t t t 1 时间变量在下 ( x 2 x x ) t t t t t 2 标的,表示该 (t )
时刻的近似值
假设上述中心时刻t的速度、加速度连同位移满足振动方程
(2) 求解������ + ∆������ 时刻的位移
( LDLT ) xt t Qt t
(3) 计算������ + ∆������ 时刻的加速度和速度 1 1 1 xt t = ( x x ) x ( 1) xt t t 2 t t t t 2
xt t
确定步长后,计算系数 a0 (t )2 , a1 2t , a2 (t )2 (4) 计算 xt x0
相关文档
最新文档