递推数列求通项公式
最全的递推数列求通项公式方法
高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。
类型1)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例:已知数列满足,,求。
解:由条件知:分别令,代入上式得个等式累加之,即所以,变式:(2004,全国I ,个理22.本小题满分14分)已知数列,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式.解:,,即,…………将以上k 个式子相加,得将代入,得,。
经检验也适合,类型2解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。
例:已知数列满足,,求。
解:由条件知,分别令,代入上式得个等式累乘之,即又,例:已知,,求。
解:。
变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,(n ≥2),则{a n }的通项解:由已知,得,用此式减去已知式,得当时,,即,又,,将以上n个式子相乘,得类型3(其中p,q均为常数,)。
解法(待定系数法):把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。
例:已知数列中,,,求.解:设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所以.变式:(2006,,文,14)在数列中,若,则该数列的通项_______________(key:)变式:(2006..理22.本小题满分14分)已知数列满足(I)求数列的通项公式;(II)若数列{b n}滿足证明:数列{b n}是等差数列;(Ⅲ)证明:(I)解:是以为首项,2为公比的等比数列即(II)证法一:①②②-①,得即③-④,得即是等差数列证法二:同证法一,得令得设下面用数学归纳法证明(1)当时,等式成立(2)假设当时,那么这就是说,当时,等式也成立根据(1)和(2),可知对任何都成立是等差数列(III)证明:变式:递推式:。
数列-递推公式求通项的十大模型
递推公式求通项的十种类型类型1.等差数列:相邻两项递推形式:d d a a n n ,(=--1为常数,+∈≥N n n 且2)或者相邻三项递推形式:)2(211++-∈≥=+N n n a a a n n n 且.这种递推形式下,直接用等差数列的通项公式:即可解决!例1.已知数列{}n a 的前n 项和为n S ,满足11a =1=,则n a =()A.21n -B.nC.21n +D.12n -解析:∵11a ==1,∴是以1为首项,以1为公差的等差数列,(1)11(1)1n n n =-⨯=+-⨯=,即2n S n =,∴()221121n n n a S S n n n -=-=--=-(2n ≥).当1n =时,11a =也适合上式,∴21n a n =-.故选:A.注1:在等差数列中,有一类比较特殊的递推类型,即b kn a a n n +=++1,它可以得到两个子数列分别是公差为k 的等差数列.例2.已知数列{}n a 的前n 项和为n S ,且12a =,()142n n a a n n +++=+∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前2021项的和为()A.20212022B.20202021C.20192020D.10101011解析:∵12a =,()142n n a a n n +++=+∈N ,∴216a a +=,解得24a =.142n n a a n ++=+ ,∴2146n n a a n +++=+,两式相减,得24n na a +-=,∴数列{}n a 的奇数项与偶数项均为公差为4的等差数列,∴当n 为偶数时,2(1)422n n a a n =+-⨯=.当n 为奇数时,1n +为偶数,∴根据上式和(*)知1422n n a n a n +=+-=,数列{}n a 的通项公式是2n a n =,易知{}n a 是以2为首项,2为公差的等差数列,故()()2212n n nS n n +==+,()111111n S n n n n ==-++,设1n S ⎧⎫⎨⎩⎭的前n 项和为n T ,则20211111112021112232021202220222022T =-+-++-=-= .故选:A.例3.数列{}n a 中,112,21,N n n a a a n n *+=+=+∈.求{}n a 的通项公式;解析:(1)由121++=+n n a a n ①2123n n a a n ++⇒+=+②,②-①22n n a a +⇒-=,∴{}n a 的奇数项与偶数项各自成等差数列,由11223a a a =⇒+=,∴21a =,∴2112(1)2n a a n n -=+-=,∴1n a n =+,n 为奇数,212(1)21n a n n =+-=-,∴1n a n =-,n 为偶数.∴()()**1,21,N 1,2,Nn n n k k a n n k k ⎧+=-∈⎪=⎨-=∈⎪⎩.类型2.等比数列:相邻两项递推:)2,0,0(1+-∈≥≠≠=N n n a q qa a n n n且且或q a a n n=-1.或者相邻三项递推:)2(211≥∈=+-+n N n a a a n n n 且.注2:在等比数列应用中,有一类比较特殊的递推类型,即++∈∀⋅=N n m a a a n m m n ,,,我们可以对其赋值得到一个等比数列.例4.数列{}n a 中,112a =,对任意,N m n *∈有m n m n a a a +=,若19111k k k a a a +++++ 15522=-,则k =()A.2B.3C.4D.5解析:由任意,m n *∈N 都有m n m n a a a +=,所以令1m =,则11n n a a a +=,且112a =,所以{}n a 是一个等比数列,且公比为12,则1910155191112222222k k k k k k k k a a a ++++++++=+++=-=- 所以5k =,故选:D.例5.已知数列{}n a 满足22,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数且11a =,22a =.求通项n a ;解析:当n 为奇数时,由22n n a a +-=知数列{}21k a -是公差为2的等差数列,()2111221k a a k k -=+-⨯=-,∴n a n =,n 为奇数;当n 为偶数时,由22n n a a +=知数列{}2k a 是公比为2的等比数列,1222k kk a a q -==,∴22nn a =,n 为偶数∴2,2,n n n n a n ⎧⎪=⎨⎪⎩为奇数为偶数.类型3.)(1n f a a n n =--累加型例6.若数列{}n a 满足11a =,12n n a a n +-=.求{}n a 的通项公式.解析:因为12n n a a n +-=,11a =,所以()()()1122112(1)2(2)21n n n n n a a a a a a a a n n ---=-+-++-+=-+-+++2222(1)112n n n n -+⋅-+=-+=,故21n a n n =-+.类型4.)(1n f a a n n=-(2≥∈+n N n 且)累乘型.例7.数列{}n a 及其前n 项和为n S 满足:11a =,当2n ≥时,111n n n a a n -+=-,则12320231111a a a a ++++= ()A.20211011B.40442023C.20231012D.40482025解析:当2n ≥时,111n n n a a n -+=-,即111n n a n a n -+=-,所以3124123213451,,,,,12321n n n n a a a a a n n a a a a n a n ---+=====-- 累乘得:()113451123212n n n a n n a n n ++=⨯⨯⨯⨯=-- ,又11a =,所以()12n n n a +=所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则1232023111111111111222212233420232024a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭14046202321202420241012⎛⎫=-== ⎝⎭.故选:C.类型5.d ca a n n +=-1型(待定系数法)一般形式:1(,n n a ca d c d -=+为常数,0,1,0)c c d ≠≠≠,可以构造一个等比数列,只要在每一项同加上一个常数即可,且常数1dx c =-,1()n n a x c a x -+=+,令n n b a x =+,则n b 为等比数列,求出n b ,再还原到n a ,1)1(11--⋅-+=-c dc cd a a n n .例8.在数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈.求{}n a 的通项公式.解析:依题意,数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈,所以()()1*N 1412,n n a a n n --=-≥∈,所以数列{}1n a -是首项为111a -=,公比为4的等比数列.例9.(2014年新课标全国1卷)已知数列{}n a 满足13,111+==+n n a a a ,证明⎭⎬⎫⎩⎨⎧+21n a 是等比数列,并求{}n a 的通项公式.解析:显性构造:13,111+==+n n a a a ,)21(3211+=++n n a a ,)13(21-=n n a .类型6.nn n b m qa a ⋅+=+1型例10.已知数列{}n a 的首项1=6a ,且满足1142n n n a a ++=-.求数列{}n a 的通项公式;解析:∵1142n n n a a ++=-,∴112122n n n n a a ++=⋅-,∴1112122n n n n a a ++⎛⎫-=- ⎪⎝⎭,又∵1122a -=,故12n n a ⎧⎫-⎨⎬⎩⎭是以2为首项,2为公比的等比数列.112222n nn n a --=⋅=,则42n n n a =+.类型7.)1)((1≠+=+p n f pa a n n 型.方法1.数学归纳法.方法2.1111)()(+++++=⇒+=n n n n n n n p n f p a p a n f pa a ,令n n n p a b =,则11)(++=-n n n pn f b b ,用累加法即可解决!(公众号:凌晨讲数学)例11.(2020年新课标全国3卷)设数列{}n a 满足31=a ,n a a n n 431-=+.(1)计算2a ,3a ,猜想{}n a 的通项公式并加以证明;(2)求数列{}n na 2的前n 项和n S .解析:方法1:归纳法.(1)235,7,a a ==猜想21,n a n =+得1(23)3[(21)]n n a n a n +-+=-+,1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+方法2:构造法.由n a a n n 431-=+可得:1113433+++-=-n n n n n n a a ,累加可得:123123+=⇒+=n a n a n n n n .(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯ .①23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯ .②-①②得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯ ,1(21)2 2.n n S n +=-+类型8.)0(1≠⋅+=+q p qpa ta a n nn 型例12.已知数列{}n a 满足11a =,*1,N 1nn n a a n a +=∈+,求数列{}n a 的通项公式.因为*1,N 1n n n a a n a +=∈+,所以1111n na a +=+,即1111n n a a +-=,又11a =,所以111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭为首项为1,公差为1的等差数列,所以()1111n n n a =+-⨯=,故1n a n =,所以数列{}n a 的通项公式为1n a n=.类型9.已知n S 与n a 关系,求n a .(公众号:凌晨讲数学)解题步骤:第1步:当1=n 代入n S 求出1a ;第2步:当2≥n ,由n S 写出1-n S ;第3步:1--=n n n S S a (2≥n );第4步:将1=n 代入n a 中进行验证,如果通过通项求出的1a 跟实际的1a 相等,则n a 为整个数列的通项,若不相等,则数列写成分段形式,.)2()1(1⎩⎨⎧≥==n a n a a n n 在本考点应用过程中,具体又可分为三个角度,第一,消n S 留n a ,第二个角度,消n a 留n S ,第三个角度,级数形式的前n 项和,下面我们具体分析.例13.已知数列{}n a 的前n 项和为n S ,112a =,112n n n S S a ++⋅=-.证明:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列.证明:∵112n n n S S a ++⋅=-,∴112n n n n S S S S ++⋅=-,易知0n S ≠,∴111112n n n n n nS S S S S S +++-=-=⋅,∴数列1n S ⎧⎫⎨⎬⎩⎭是公差为2的等差数列.例14.设数列{}n a 的前n 项和为n S ,且满足1=2a ,()*123N n n n a S n +=+∈.求n S .解析:因为()*123N n n n a S n +=+∈,所以11233,3n nn n n n n S S S S S ++-=+=+∴,则111111,333333n n n n n n n n S S S S ++++-=+=,11233S =,即{}3n n S 为首项为23,公差为13的等差数列,则211(1)(1)3333n n S n n =+-=+,故1(1)3n n n S -=+⋅.例15.已知数列{}n a 满足123123252525253n n na a a a ++++----….求数列{}n a 的通项公式.解析:123123252525253n n na a a a +++=----…,①当1n =时,14a =.当2n ≥时,123112311252525253n n n a a a a ---++++----…,②由①-②,得()3522n n a n +=≥,因为14a =符合上式,所以352n n a +=.例16.(2022新高考1卷)记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.求{}n a 得通项公式.解析:111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .类型9:已知前n 项积求n a .例17.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.解析:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠,所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈,所以数列{}n b 是以132b =为首项,以12d =为公差等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n n b n ∴=+-⨯=+,22211n n n b n S b n +==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.类型10.特征方程法(强基层次):n n n ba aa a +=++12型.求解方程:02=--b a λλ,根据方程根的情况,可分为:(1)若特征方程有两个相等的根,则nn x b An a 0)(+=(2)若特征方程有两个不等的根,则n nn Bx Ax a 21+=例18.已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式;解析:2143n n n a a a ++=-,变形为:()2113n n n n a a a a +++-=-,216a a -=,∴数列{}1n n a a +-是等比数列,首项为6,公比为3.∴116323n nn n a a -+-=⨯=⨯,变形为:1133n n n n a a ++-=-,131a -=-,∴31n n a -=-,∴31n n a =-例19.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解析:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩,1322n n n a --∴=.例20.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a .解析:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n na --∴=+-.。
已知数列递推公式求通项公式的几种方法
求数列通项公式的方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式;解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nn a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-;评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式;二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式; 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =;评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式;例3 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式;解:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则所以3 1.nn a n =+-评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231nn n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,即得数列{}n a 的通项公式;例4 已知数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式;解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 评注:本题解题的关键是把递推关系式13231nn n a a +=+⨯+转化为111213333n n n n n a a +++-=+,进而求出112232111122321()()()()333333333n n n n n n n n n n n n a a a a a a a a a -----------+-+-++-+,即得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,最后再求数列{}n a 的通项公式; 三、累乘法例5 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式;解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5nn n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式; 例6已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式;解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=; 所以,{}n a 的通项公式为!.2n n a =评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为11(2)n na n n a +=+≥,进而求出132122n n n n a a a a a a a ---⋅⋅⋅⋅,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式; 四、待定系数法例7 已知数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式;解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50nn a -≠,则11525n n nn a a ++-=-,则数列{5}nn a -是以1151a -=为首项,以2为公比的等比数列,则152n n n a --=,故125n n n a -=+;评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n nn n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}nn a -的通项公式,最后再求出数列{}n a 的通项公式;例8 已知数列{}n a 满足1135241nn n a a a +=+⨯+=,,求数列{}n a 的通项公式;解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+⑥将13524nn n a a +=+⨯+代入⑥式,得整理得(52)24323n nx y x y +⨯++=⨯+;令52343x x y y +=⎧⎨+=⎩,则52x y =⎧⎨=⎩,代入⑥式得115223(522)n n n n a a +++⨯+=+⨯+⑦由11522112130a +⨯+=+=≠及⑦式,得5220nn a +⨯+≠,则115223522n n nn a a +++⨯+=+⨯+, 故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,因此1522133n n n a -+⨯+=⨯,则1133522n n n a -=⨯-⨯-;评注:本题解题的关键是把递推关系式13524nn n a a +=+⨯+转化为115223(522)n n n n a a +++⨯+=+⨯+,从而可知数列{522}n n a +⨯+是等比数列,进而求出数列{522}nn a +⨯+的通项公式,最后再求数列{}n a 的通项公式;例9 已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式;解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ ⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,则等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x xx y y x y z z +=⎧⎪++=⎨⎪+++=⎩,则31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ ⑨由213110118131320a +⨯+⨯+=+=≠及⑨式,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +⨯+⨯+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=⨯,则42231018n n a n n +=---;评注:本题解题的关键是把递推关系式212345n n a a n n +=+++转化为2213(1)10(1)182(31018)n n a n n a n n ++++++=+++,从而可知数列2{31018}n a n n +++是等比数列,进而求出数列2{31018}n a n n +++的通项公式,最后再求出数列{}n a 的通项公式;五、对数变换法例10 已知数列{}n a 满足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式;解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,;在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩设1lg (1)5(lg )n n a x n y a xn y ++++=++错误!将⑩式代入错误!式,得5lg lg3lg 2(1)5(lg )n n a n x n y a xn y +++++=++,两边消去5lg n a 并整理,得(lg3)lg 255x n x y xn y ++++=+,则lg35lg 25x x x y y +=⎧⎨++=⎩,故lg34lg3lg 2164x y ⎧=⎪⎪⎨⎪=+⎪⎩代入错误!式,得1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++ 错误! 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠及错误!式, 得lg3lg3lg 2lg 04164n a n +++≠, 则1lg3lg3lg 2lg (1)41645lg3lg3lg 2lg 4164n n a n a n +++++=+++, 所以数列lg3lg3lg 2{lg }4164n a n +++是以lg3lg3lg 2lg 74164+++为首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,因此1111111116164444111111161644441111111616444455514lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464(lg 7lg 3lg 3lg 2)5lg 3lg 3lg 2[lg(7332)]5lg(332)lg(7332)5lg(332)lg(733n n n n n n n n n n n n a n ---------=+++---=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅1115116454151511642)lg(732)n n n n n -------⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯;评注:本题解题的关键是通过对数变换把递推关系式5123n n n a a +=⨯⨯转化为1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++,从而可知数列lg3lg3lg 2{lg }4164n a n +++是等比数列,进而求出数列lg3lg3lg 2{lg }4164n a n +++的通项公式,最后再求出数列{}n a 的通项公式; 六、迭代法例11 已知数列{}n a 满足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式;解:因为3(1)21n n n n a a ++=,所以121323(1)23212[]n n n n n n n n n a a a ---⋅-⋅⋅--== 又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=;评注:本题还可综合利用累乘法和对数变换法求数列的通项公式;即先将等式3(1)21nn n na a ++=两边取常用对数得1lg 3(1)2lg nn n a n a +=+⨯⨯,即1lg 3(1)2lg n n na n a +=+,再由累乘法可推知(1)123!213211221lg lg lg lg lg lg lg5lg lg lg lg n n n n n n n n n a a a a a a a a a a --⋅⋅---=⋅⋅⋅⋅⋅=,从而1(1)3!225n n n n n a --⋅⋅=;七、数学归纳法例12 已知数列{}n a 满足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式; 解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得 由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论;1当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立; 2假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立; 根据1,2可知,等式对任何*n N ∈都成立;评注:本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明; 八、换元法例13 已知数列{}n a 满足111(14116n n a a a +=+=,,求数列{}n a 的通项公式;解:令n b =则21(1)24n n a b =-故2111(1)24n n a b ++=-,代入11(1416n n a a +=+得 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥ 则123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-,所以{3}n b -是以13332b -===为首项,以21为公比的等比数列,因此121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得 2111()()3423n n n a =++;n b ,使得所给递推关系式转化11322n n b b +=+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式;。
三大类递推数列通项公式的求法
三大类递推数列通项公式的求法1 一阶线性递推数列求通项问题一阶线性递推数列主要有如下几种形式: (1)1()n n x x f n +=+这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n 项和).当()f n 为常数时,通过累加法可求得等差数列的通项公式.而当()f n 为等差数列时,则1()n n x x f n +=+为二阶等差数列,其通项公式应当为2n x an bn c =++形式,注意与等差数列求和公式一般形式的区别,后者是2n S an bn =+,其常数项一定为0. (2)1()n n x g n x +=这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n 项积). 当()g n 为常数时,用累乘法可求得等比数列的通项公式.(3)1(,0,1)n+n x =qx +d q,d q q ≠≠为常数;这类数列通常可转化为1()n n x p q x p ++=+,或消去常数转化为二阶递推式211()n n n n x x q x x +++-=-.[例1]已知数列n x {}中,11121(2)n n x x x n -==+≥,,求n x {}的通项公式. [解析]解法一.转化为1()n n x p q x p ++=+型递推数列.∵121(2)n n x x n -=+≥,∴112(1)(2)n n x x n -+=+≥,又112x +=,故数列{1n x +}是首项为2,公比为2的等比数列.∴12n n x +=,即21n n x =-.解法二.转化为211()n n n n x x q x x +++-=-型递推数列. ∵n x =2x n-1+1(n ≥2) ① ∴1n x +=2x n +1 ②②-①,得112()n n n n x x x x +--=-(n ≥2),故{1n n x x +-}是首项为x 2-x 1=2,公比为2的等比数列,即11222n n n n x x -+-== ,再用累加法得21n n x =-.解法三.用迭代法.21231221212(21)12212222121n n n n n n n n x x x x x ------=+=++=++=++++=- .当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.[例2]已知函数1()22(1)2f x x x =-+≤≤的反函数为121(),1,()yg x x x g x ===, 321(),,(),,n n x g x x g x -== 求数列n x {}的通项公式. [解析]由已知得1()1(01)2g x x x =-+≤≤,则1111,1(2)2n n x x x n -==-+≥. 令11()2n n x p x p -+=-+=,则11322n n x x p -=--.比较系数,得23p =-.即有1212()(2)323n n x x n --=--≥.∴数列{23n x -}是以12133x -=为首项,12-为公比的等比数列,∴1211()332n n x --=-,故1112()323n n x -=-+.[评析]此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4)1(,nn n cx x c d x d+=+为非零常数);若取倒数,得1111n n d x c x c+=+ ,令1n n y x =,从而转化为(1)型而求之.(5)1(,1,1)n n+n x =qx +d q,d q d ≠≠为非零常数; 这类数列可变换成111n n n n x x q d d d d ++=+ ,令nnnx y d =,则转化为(1)型一阶线性递推公式. [例3]设数列11132(*)n n n n x x x x n N +==+∈.{}满足:,求数列n x {}的通项公式. [解析]∵132n n n x x +=+,两边同除以12n +,得11312222n n n n x x ++=+ .令322nnnx y = ,则有13122n n y y +=+ .于是,得131(1)2n n y y ++=+,∴数列1n y +{}是以首项为37144+=,公比为32的等比数列,故1731()42n n y -+= ,即173()142n n y -=- ,从而2117323n n n x -+=- .[例4]设10132(*)n n n x x x n N --=-∈为常数,且,求数列n x {}的通项公式. [解析]设1132(3)n n n n x p x p --+=-+ ,用1132n n n x x --=-代入,可解出15p =-. ∴35nn x -{}是以公比为-2,首项为00332122555x x x -=--=-1的等比数列. ∴1032(2)(2)55n n n x x --=--, 即1023(2)(2)55n n n x x -=--+03(1)2(1)2(*)5n n n n n x n N --=+-∈ .(6)1(00,0,1)pn+n n x =cx x ,c p p >>>≠这类数列可取对数得1lg lg lg n n x x c +=+,从而转化为等差数列型递推数列. 2 可转化为等差、等比数列或一些特殊数列的二阶递推数列[例5]设数列12215521(*)333n n n n x x x x x x n N ++===-∈.{}满足:,,求数列n x {}的通项公式. [解析]由2152(*)33n n n x x x n N ++=-∈,可得 2111222()(*)333n n n n n n x x x x x x n N ++++=-=-∈.-设11212521333n n n n y x x y y x x +=-=-=-=,则{}是公比为的等比数列,且,故2(*)3n y n N =∈n ().即12(2)3n n x x n --=≥n-1().用累加法得 12111221222()()()()()333n n n n n n n x x x x x x x x ------=-+-++-=+++ , 或11221112()()()222()()1333n n n n n n n x x x x x x x x -----=-+-++-+=++++21()233[1()]2313nn -==--). [例6]在数列12211(*)n n n n x x x x x x n N ++===+∈{}中,已知,,求数列n x {}的通项公式.[解析]可用换元法将其转化为一阶线性递推数列.令11n n n y x a x +=-,使数列n y {}是以2a 为公比的等比数列(1,a a 2待定). 即211211()n n n n x a x a x a x +++-=-,∴212112()n n n x a a x a a x ++=+-.对照已给递推式,有121211a a a a +==-,,即21210a a x x --=、是方程的两个实根.从而1212a a a a ====∴211111(222n n n n x x x x ++++-=-) ①或211111(222n n n n x x x x ++++-=-) ②由式①得111(22n n n x x +-=;由式②得111(22nn n x x +-=.消去111((22n nn n x x +=-1,得]. [例7]在数列12211(*)n n n n x x x x x x n N ++===-∈{}中,已知,,求100x . [解析]由21n n n x x x ++=- ①,得321n n n x x x +++=- ②.式②+式①,得3n n x x +=-,从而有63n n n x x x ++=-=.∴数列n x {}是以6为其周期.故100x =4x =-1.3 特殊的n 阶递推数列[例8]已知数列n x {}满足11231123(1)(2)n n x x x x x n x n -==++++-≥ ,,求n x {}的通项公式. [解析]∵123123(1)(2)n n x x x x n x n -=++++-≥ ①∴1123223(2)(3)n n x x x x n x n --=++++-≥ ② ②-①,得1(3)n n x nx n -=≥.∴1(3)nn x n n x -=≥,故有 1312213n n n n x x x n n x x x ---==-=. ,, 将这几个式子累乘,得22(1)(2)3(1)(2)3nn x n n n x n n n x x =--==--. ,或 又1211(1),11,!(2)2n n x x x x n n =⎧⎪====⎨≥⎪⎩ ,故 .[例9]数列{n x }满足21121,2n n x x x x n x =+++= ,求数列{n x }的同项公式. [解析]由212n n x x x n x +++= ①,得21211(1)(2)n n x x x n x n --+++=-≥ ②. 式①-式②,得221(1)n n n x n x n x -=--,或2221(1)(1)n n n n n x n x x n x --=-=-,故有11(2)1n n x n n x n --=≥+ . ∴12312341234,,,,112n n n n n n n n x x x x n n n n x n x n x n x n -----------====+-- ,322121,43x x x x ==. 将上面几个式子累乘,得121(1)n x x n n=+ ,即1211(2)(1)(1)n x x n n n n n ==≥++ . ∵112x =也满足上式,∴1211(*)(1)(1)n x x n N n n n n==∈++ .。
由数列的递推公式求通项公式课件
2
⇒ +1 = +
3
3
3
设 =
,则
3
+1 =
即
+1
+1
,有
3+1
+1 = +
+1 − =
2 − 1 =
2 +1
3
2 +1
3
(可用累加法求出通项公式)
3 − 2 =
2 2
3
2 3
3
……,
− −1=
⇒ − 1 =
+1 + = ( + ) ⟹
+1 +
+
= ,
所以{ + }是等比数列,公比为,首项为1 +
(2)是用作差法直接构造: 由已知得 +1 = + , = −1 + , 两式相减有
+1 − = ( − −1 )
所以+1 − 是公比为的等比数列
由数列的递推公式求通项公式
递推公式:
如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,
那么这个公式叫做这个数列的递推公式。
例如:等差数列递推公式:+1 = + 或 −1 + +1 = 2
+1
等比数列递推公式:
=
已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具
例3. 在数列{ }中,1 = 1,当 ≥ 2时,有 = 3−1 + 2,求{ }的通项公式。
解法1:设 + = 3(−1 + ),即有 = 3−1 + 2
数列递推公式的九种方法
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
九类常见递推数列求通项公式方法
九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。
)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。
解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。
2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。
类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。
i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。
例2已知a11,anan1n,求an。
解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。
方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。
类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。
anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。
数列的递推公式与通项公式前n项和公式
二、数列的递推公式与通项公式、前n 项和公式一、知识点回顾:1、递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
2、数列前n 项和S n 与通项a n 的关系式:a n =⎩⎨⎧--11s s s n n 12=≥n n 。
在数列{a n }中,前n 项和S n 与通项公式a n 的关系,是本讲内容一个重点,要认真掌握之。
注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);若a 1 适合由a n 的表达式,则a n 不必表达成分段形式,可化统一为一个式子。
(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。
3、数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n nn S n a S S n -==-≥。
一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。
⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。
⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅ (2)n ≥。
求数列的通项公式的八种方法(强烈推荐)
怎样由递推关系式求通项公式一、基本型:(1)a n =pa n-1+q (其中pq ≠0 ,p ≠1,p 、q 为常数)型:——运用代数方法变形,转化为基本数列求解.利用待定系数法,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x ⇒a 1+n + x = p(a n +p x q +), 令x =px q + ∴x =1-p q时,有a 1+n + x = p(a n + x ),从而转化为等比数列 {a n +1-p q} 求解. 例1. 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.-1练1.已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n ∈ N +,求通项a n .a n = 2 -2n-1 ,n ∈N + 练2.已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.21nn a ∴=- 二、可化为基本型的数列通项求法: (一)指数型:a n=ca n-1+f(n)型 1、a 1=2,a n =4a n-1+2n (n ≥2),求a n .2、a 1=-1,a n =2a n-1+4〃3n-1(n ≥2),求a n .3、已知数列{}n a 中,1a =92,113232+-+=n n n a a (n ≥2),求n a .∴ n a =13)21(2+--n n(二)指数(倒数)型 1、a 1=1,2a n -3a n-1=(n ≥2),求a n .2、a 1=,a n+1=a n +()n+1,求a n . (三)可取倒数型:将递推数列1nn n ca a a d+=+(0,0)c d ≠≠,1、(2008陕西卷理22)(本小题满分14分)已知数列{a n }的首项135a =,1321n n n a a a +=+,12n = ,,. (Ⅰ)求{a n }的通项公式; 332nn n a ∴=+2、已知数列{}n a *()n N ∈中, 11a =,121nn n a a a +=+,求数列{}n a 的通项公式.∴121n a n =-. 3、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . a n =4、 若数列{n a }中,1a =1,n S 是数列{n a }的前n 项之和,且nnn S S S 431+=+(n 1≥),求数列{n a }的通项公式是n a . 131-=n n S ⎪⎩⎪⎨⎧+⋅-⋅-=123833212n n n n a )2()1(≥=n n 三、叠加法:a n=a n-1+f(n)型:1.已知数列{a n }中, 11a =,1n-13n n a a -=+(2)n ≥。
十类递推数列的通项公式的求法
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&
文!黄爱民
一、an+1= an+ f(n)型 这类递推数列可通过累加法求得其通项公式.当 f(n)
为常数时,通过累加法可求得等差数列的通项公式;当
f(n)为等差数列形式时,an+1= an+ f(n)为二阶等差数列, 它的通项公式的形式为 an=an2+bn+c.同时要注意它与等 差数列求和公式的一般形式的区别,后者是 Sn=an2+bn, 它的常数项一定为 0.
对数,得 lgan=lg2an4- 1 ,则有 lgan=4lgan-1+lg2.
∴lgan+
1 3
lg2=4(lgan-
1+
1 3
lg2).从而知{lgan+
1 3
lg2}是
首项为 1 lg2,公比为 4 的等比数列. 3
∴lgan=
(4n-1- 1)lg2 3
=(4n-1- 1)lg#3 2
,即
高中生·高考指导 13
×(3 2
)n- 1=(3 2
)n,即
an=
2n 3n- 2n
.
九、a n+1=
Aan+B Can+D
(A,B,C,D 为非零常数)型
这类递推数列的通项公式是利用函数的不动点来
求的.尽管这个知识点高考不作要求,但考题往往就从
这些地方出,只需增加一些铺垫.
例 9 若 f(x0)=x0,则称 x0 为 f(x)的不动点.已知函 数 f(x)= 2x+3 .
+1 2
.令
bn=
an 2n
,则有
bn+1=
3 2
bn+
递推数列求通项公式的方法
递推数列求通项公式的典型方法1、 a n+1=a n +f (n )型 累加法:a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =f (n-1)+f (n-2)+…f (1)+ a1例1 已知数列{a n }满足a 1=1,a n+1=a n +2n (n ∈N *), 求a n 解: a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =2n-1+2n-2+…+21+1=2n -1(n ∈N *)例 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .2、)(1n g a a nn =+型 累积法:112211.....a a aa a a a a n n n n n −−−=所以()()()()11...321a g n g n g n g a n −−−=∴例2:已知数列{a n }满足()*1N n n a ann ∈=+,.11=a 求n a解:112211...a a aa a a a a n n n n n −−−==()()()()!11...321−=−−−n n n n ()()+∈−=∴N n n a n !1例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+−+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题).3.q pa a n n +=+1型(p,q 为常数)方法:(1)⎪⎪⎭⎫ ⎝⎛−+=−++111p q a p p q a n n ,再根据等比数列的相关知识求n a . (2)()11−+−=−n n n n a a p a a 再用累加法求n a .(3)111++++=n n n n n p qp a p a ,先用累加法求n n p a 再求n a 例3.已知{}n a 的首项a a =1(a 为常数),()2,21≥∈=+−n N n a a n n ,求n a解 设()λλ−=−−12n n a a ,则1−=λ()1211+=+∴−n n a a{}1+∴n a 为公比为2的等比数列。
递推数列求通项的常用方法
求递推数列通项公式的常用方法一、 累加法:利用1211()()n n n a a a a a a -=+-+⋅⋅⋅-求通项公式的方法称为累加法。
累加法是求“1()n n a a f n +=+”型的递推数列通项公式的基本方法(()f n 可求前n 项和).例1. 在数列{}n a 中,11111,(1)2n n n n a a a n ++==++ (I )设n n a b n=,求数列{}n b 的通项公式 (II )求数列{}n a 的前n 项和n S二、累乘法:利用恒等式321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥求通项公式的方法称为累乘法,累乘法是求: “1()n n a g n a +=”型的递推数列通项公式的基本方法(数列()g n 可求前n 项积). 例2.已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. .三、构造新数列:(一) 数列形式及构造方法1.形式1:n+1n a pa q =+(,p q 为常数,0p ≠,0q ≠)构造1:通过待定系数法,1()()n n a x p a x ++=+,反解x ,可得{}n a x +为等比数列,进而求解{}n a 构造2:由n+1n a pa q =+得n 1n a pa q -=+,两式作差:“11()n n n n a a p a a +--=-”,可得1{}n n a a --为等比数列,进而求解{}n a例3.1 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.2.形式2:)(1n f pa a n n +=+构造1:1(1)[()]n n a g n p a g n +++=+;构造2:等式左右同除以1n p +,得111()n n n n n a a f n P p p +++=+; 例3.2设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .例3.3已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。
由递推关系式求通项公式类型大全
由递推关系式求通项公式类型大全
递推关系式是用来描述一组数列的递推规律的方程,通常形如an=f(an-1)。
求通项公式是指对于这组数列,求出所有项的公式。
下面是一些常见的递推关系式及其对应的通项公式:
1.an=an-1+c,其中c为常数。
通项公式为:
a1+c(n-1)
2.an=an-1*r,其中r为常数。
通项公式为:
ar^(n-1)
3.an=an-1+an-2,通项公式为:
a1*((1+√5)/2)^(n-1)-a2*((1-√5)/2)^(n-1)
4.an=an-1*an-2,通项公式为:
a1^(n-1)*a2^(n-2)
5.an=an-1+n,通项公式为:
n(n+1)/2
6.an=an-1*n,通项公式为:
n!
7.an=an-1+2^n,通项公式为:
2^n-1
8.an=an-1*(-1)^n,通项公式为:
(-1)^n
注意:上述通项公式均是在满足递推关系式的条件下得出的。
如果递推关系式不合法或者不存在,则无法得出通项公式。
常见递推数列通项公式的求法
(5)累乘法:
an1 an
f (n) ( f (1) f (2)
i 1
f (n)可求)
(6)构造法 an1 kan b
(7)作商法( a1a2 an cn 型);
(8)数学归纳法.
类型1 an1 an f (n)
类型1 an1 an f (n)
求法:累加法
类型3 an1 pan q( p 0, p 1)
求法 : 待定系数法.令an1 p(an ), 其中为待定系数,化为等比数列 {an }求通项.
例3 已知数列{an }中,若a1 1, an1 2an 3(n 1),求数列{an }的通项公式.
为首项, 公比为
(1)n1. 2
1 2
的等比数列.
又
an
1 2
an1
1,
an 2 21n.
【1】设数列{an}的前 n 项和为 Sn , 已知 a1 5 ,且 nSn1 2n(n 1) (n 1)Sn (n N ) , 则数列 an 的通项公式 是( A)
1 3 (an1 2an2 )(n 3,4, ) (1)求证 : 数列{an1 an }是等比数列; (2)求数列{an }的通项公式an .
【1】已知数列 {an} 中,
a1=1,
an+1=
1 2
an+1 (nN*),
则an =___2___2__1_n____.
Q
an1
类型6
an1
pan qan
r
(
p, q,
r均不为零)
类型6
an1
递推公式求通项公式
用递推公式求通项的六种方法:等差数列和等比数列有通项公式;累加法;累乘法;构造法;错位相减法。
按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子表示出来,称作该数列的通项公式。
累加法:用于递推公式为an+1=an+f(n),且f(n)可以求和。
累乘法:用于递推公式为an+1/an=f(n)且f(n)可求积。
构造法:将非等差数列、等比数列,转换成相关的等差等比数列。
错位相减法:用于形如数列由等差×等比构成:如an=n·2^n。
用迭代法:此题也可用归纳猜想法求之,但要用数学归纳法证明.。
三项递推关系求通项
三项递推关系求通项要求一个递推关系的通项,需要知道递推关系的初始条件和递推公式。
以下是三种常见的递推关系的通项求解方法:1. 线性递推关系:假设线性递推关系为 a_n = p*a_(n-1) + q*a_(n-2),其中p和q为常数,a_n为第n项的值。
我们需要知道的初始条件为 a_0和 a_1。
假设通项形如a_n = x^n,其中x为常数。
将其代入递推关系,得到:x^n = p*x^(n-1) + q*x^(n-2)整理,得到特征方程:x^2 - p*x - q = 0解特征方程,得到x1和x2,这两个根就是递推关系的通项的形式。
2. 非线性递推关系:假设递推关系为 a_n = f(a_(n-1), a_(n-2)),其中f为一个函数。
我们需要知道的初始条件为 a_0 和 a_1。
通常情况下,求非线性递推关系的通项比较困难,没有统一的解法。
需要根据具体的递推关系和函数f的性质来进行分析和求解。
3. 递归递推关系:递归递推关系是一种常见的递推关系形式,常用于定义数列的递推关系。
比如斐波那契数列的递推关系为:F_n = F_(n-1) + F_(n-2),初始条件为 F_0 = 0 和 F_1 = 1。
可以通过数学归纳法证明,斐波那契数列的通项为F_n = (φ^n - (-φ)^(-n)) / √5,其中φ=(1+√5)/2为黄金分割比。
总结来说,要求一个递推关系的通项,需要根据具体的递推关系形式进行分析和解决。
对于线性递推关系,可以通过特征方程解得通项表达式;对于非线性递推关系,需要具体问题具体分析;对于递归递推关系,可以通过数学归纳法证明通项的形式。
根据递推关系求数列通项公式的几种方法
一、定义法 例 1、已知数列an 的递推公式,求an
1)a1 3, an1 an 2
1 2)a1 2, an 1 an 3
等差数列
等比数列
二、累加相消法(累加法)
形如:a1 a, an1 an f n
当所给数列每依次相邻两项之间的差 组成等差或等比数列时,就可用累加 法进行消元。
p 1 , 求a n ?
构造等比数列an , 使an 1 p(an ),
an 2 1
n
则q (p 1 ) ,
q 即 p1
4)a1 2, an1 2an 3
an 2
n1
an1 3 2(an 3)
2 an 5 4n
例6、已知数列an 的递推关系为: an 1 a ,a1 3,求an
2 n
两边同取常用对数
an 3
2 n1
当一个数列每依次相邻两项之商构成 一个等比数列或其它数列时,就可用 累乘法进行消元。
例3、已知数列an 的递推公式,求an
1)a1 2, an1 3 an
n
an 2 3
n n 1 2
n 2)a1 1, an 1 an n 1
1 an n
四、换元法
通过“换元”,构造一个等差或等比的 新数列,利用等差或等比的知识解决 问题。
3
1 5)a1 1, an 1 an 6 2
1 an 1 4 (an 4) 2
1 an 5 2
n 1
4
例5、已知数列an 的递推关系为: an 1 an 2an 1an,a1 2,an 0, 求an
递推式求数列通项公式常见类型及解法
递推式求数列通项公式常见类型及解法递推数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列给 予解决,由于递推数列的多变性,这里介绍总结一些常见类型及解法。
一、公式法(涉及前n 项的和) 已知)(n f s n =⎩⎨⎧≥----=-----=⇒-)2()1(11n S S n S a n n n 注意:已知数列的前n 项和,求通项公式时常常会出现忘记讨论1=n 的情形而致错。
例1.已知数列}a {n 前n 项和1322-+=n n S n ,求数列}a {n 的通项公式。
解:当n=1时,411==s a ,当2≥n 时,14]1)1(3)1(2[)132(221+=--+---+=-=-n n n n n s s a n n n ,15114a ≠=+⨯⎩⎨⎧≥+==∴)2(,14)1(,4n n n a n练习:已知数列}a {n 前n 项和12+=n n S ,求数列}a {n 的通项公式。
答案:⎩⎨⎧≥==-)2(,2)1(,31n n a n n 二、作商法(涉及前n 项的积)已知)(......321n f a a a a n =⨯⨯⨯⎪⎩⎪⎨⎧≥----=----=⇒)2()1()()1().1(n n f n f n f a n例2.已知数列}a {n 中的值试求时53232,2,11a a n a a a n a n +=⋅⋅⋅⋅⋅⋅⋅≥=。
解:当2≥n 时,由2321n a a a a n =⋅⋅⋅⋅⋅⋅⋅⋅,可得21321)1(-=⋅⋅⋅⋅⋅⋅⋅⋅-n a a a a n则22)1(-=n na n16614523222253=+=+∴a a三、累加法(涉及相邻两项的差)已知)(1n f a a n n =-+112211)......()()(a a a a a a a a n n n n n +-+-+-=⇒--- 例3.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{ a n } 中, a1 1 , 练习4、 例 2.在正数数列 1 1 S n (an ) an 。 2 a n ,求
例 9:已知数列 a n 的前 n 项和为 练习5、 S n 1 4 a n 2 , n N .
*
S n, a1 1,
(1) 若 b n a n 1 2 a n , 求证:b n 为等比数列;
练习1:已知数列{an},a1=2,an+1=an+3n+2,求an, 练习2: 已知数列{an}满足a1=1, a n 3 n 1 a n 1 n 2 (1)求a2,a3 ,a4
a (2)证明: n 3 1
n
2
类型6 an1
pan qan r
( p, q, r均不为零)
2 , 3 , 4 ,
an a1
a1 已知 an ,求an . f n a n 1
f 2 f 3 f n a n
f n
类型4
an1 pan q( p 0, p 1)
.
求 :构 法 待 系 法 法 造 ( 定 数 )
an .
a1 2 , a n 0 . ( 3) a n 1 a n 2 a n a n 1
练习3、 例1、设{an}的首项为1的正项数列,且
n 1a
2 n 1
na a n 1 a n 0 n 1, 2 ,3,.....
2 n
求它的通项公式。
类型七:形如 a1 a , a 2 b , a n 2 pa n 1 qa n , (其中 p , q 为常数, 且 p q 1)
类型八:已知 S n 或 S n 与 a n 的关系式,求 a n
类型九:其他类型
a1 2, 已知 a n 1 4 a n 2 .
2n 3 2
类型8 6、形如an 1 f (an )
例 8、已知数列
归纳法
2 1 an ,
a n 中, a 1 2, a n 1 求数列 a n 的通项公式.
然后9 其它类型 求法:按题中指明方向求解. 例
设数列{a n }满足a1 1, a 2 2, a n 1 3 (a n 1 2a n 2 )( n 3,4, )
1 f b n 1
(n=2,3,4,…..) 求{bn}的通
(求通项公式 a ) :
n
类型一: 形如 a1 a , a n 1 a n f ( n ), (其中 f ( n ) 是可以求和的数列 { f ( n )} 的 通项公式) 类型二:形如 a1
a , a n 1 f ( n ) a n , (其中 f ( n ) 是可以求积的数
练习1、 例 6、已知 S n 为数列 a n 的前 n 项和,且 S n 2 2 a n,
求数列
a n 的通项公式.
练习2、 例 4:已知正数数列 a n 的前 n 项和为 S n,
a n 与 2的等差中项等于 求 an . S n 与 2的等比中项,
例 3:已知数列 a n 的前 n 项和为 S n, a n 0 , 练习3、 an 6Sn an 3 , n N .求 S n .
( 2 )设 c n (3)求 S n . an 2
n
, 求证:c n 为等差数列;
练习6、 例4、设数列{an}的首项为1,前n项和为Sn, 3 满足关系tS n 2 t 3 S n 1 3t t 0 , n 2 , n N (1) 求证:数列{an}是等比数列; (2)设数列{an}的公比为f(t),作数列{bn}, 使 b1=1,bn= 项公式
练习: 例 5:已知数列
a n 的递推公式,求
1 2 n, n 2
an .
1 ) a1 2, a n a n 1
2 ) a1 1, a n 1 a n 2
n
类型3
a n 1 a n f ( n)
求法:迭代法、累乘法 例 在数列{an }中,已知a1 1, 有nan1
a1 2 a n 1 3a n
;
类型1 定义法
例1 、 已 知 数 列 a n 的 递 推 公 式 , 求 a n
1) a1 3, a n 1 a n 2 等差数列 1 2) a1 2, a n 1 a n 等比数列 3
a1 3 练习: 例1、数列 a n 中, a n 0, 1 1 ,求 a n. 2 a an n 1
列 { f ( n )} 的通项公式) 类型三: 形如 a1 a , a n 1 pa n q , (其中 p , q 为常数, p 1, q 0 ) 且
类型四: 形如 a1 a , a n 1 pa n qn r , (其中 p , q , r 为常数, p 1, q 0 ) 且
令a n 1 p(a n ), 其 为 定 数 , 中 待 系 化 等 数 为 比 列 {a n }求 项 . 通
例
已知数列 a n }中, 若a1 1, a n 1 2a n { 3( n 1), 求数列{a n }的通项公式 .
练习: 例 3、数列 a n 中, a 1 1, a n 1 3 a n 1,求 a n.
类型5 an1 pan f (n)( p 0, p 1)
a n1 an f ( n) 求法 : 待定系数法或化为 n 1 n n1 p p p 后累加法求解 .
例
在数列{a n }中a1 1, a n1 2a n 2
n
( n N ), 求数列{an }的通项公式 .
a1 6 例 2、数列 a n 中, ,求 a n. a n 1 1 2 ( a n 1)
类型2
a n 1 a n f ( n)
求法:迭代法、累加法
例 在数列{a n }中,已知a1 1,当n 2时,
有a n a n 1 2n 1( n 2), 求数列 的通项公式.
*
练习4、 已知各项均为正数的数 {a n }的前 列
n项和S n满足S1 1, 且6 S n (a n 1) (a n 2), n N , 求{a n }的通项公式.
例 7、 练习5、A n 、 B n 分别为 a n 、b n 的前 n 项和, a n
n 12 A n 13 n ,求 b n. 4B
ex 2、数列 a n 中, a 1 1, a n a n 1 2 n 1
n
2 , n N * ,求 a n 、 S n.
求法 : 倒数法, 若p r , 则化为等差数列求 通项; 若p r , 则化为类型3求通项.
例 已知数列 an }中, a1 1, S n {
求{a n }的通项公式 .
S n 1 2 S n 1 1
,
类型7
S n f (an )
求法 : 利用n 2时, a n S n S n1化为 {a n }或{ S n }的递推关系求解 .
( n 1)a n ( n N , n 2), 求数列{a n } 的通项公式.
1) 练习: a1 2, a n 1 3 a n
n
累乘法
a2 a f 1 a3 f a2 a4 f a3 an a n 1
类 型 五 : 形 如 a1 a , a n 1 pa n q
p 1, q 0, q 1 )
n 1
, (其中
p, q
为常数,且
类型六:形如
a1 a , a n 1
pa n qa n r
,
( 其 中 p, q 为 常 数 , 且
p 1, q 0 )
已 S n, a n . 知 求
(n 1) S1 an Sn Sn 1 (n 2)
例 2 、 已 知 数 列 a n 的 前 n 项 和 S n, 求 a n
1) S n 2 n 3 n
2
2) S n n 1
2
例
已知数列 a n }满足S n a n 2n 1, { 其中S n是{a n }的前n项和, 求{a n }的 通项公式.
常见递推数列通项公式的求法
复习等差(等比)数列的递推公式
1、等差数列的递推公式:an an 1 d (n 2) a1 a a n 1 a n d a1 a 2、等比数列的递推公式:a n a n 1 q(n 2) a1 a a n 1 a n q a1 a
(1)求证 : 数列{a n 1 a n }是等比数列; ( 2)求数列{a n }的通项公式 n . a
例 8:已知数列 练习1、
a n 满足 a1 1, a 2
3
a n 2 2 a n 1 a n 4,求 a n .
练习2、 例 7:已知数列 a n 的递推公式,求
ex 4.数列 a n 中, a 1
1
2 n 2, n N ,求 a n.
, a n a n 1
1
n n 1
补充题:
(1)数列an 中,a1 1 an 1 an 5; , 1 (2)数列a n 中,a1 6,a n 1 a n; 2
求下列数列的通项公式
:
a1 3 an n 8 ex1、数列 a n 中,满足 ; 2 a n 1 a n 1 1 a1 2 2 ex 2、数列 a n 中, a n 0, ;a n an n3 a n 1 1 2a n a1 5 ex 3、已知数列 a n 满足 . n a n 1 2 a n 3 a n 2 3