钙钛矿太阳电池综述精选PPT
合集下载
钙钛矿太阳能电池课件PPT

Efficient planar heterojunction perovskite solar cells by vapour deposition
Nature 501, 395 (202X) 英国牛津大学Henry Snaith小 组,15.4%
Sequential deposition as a route to high-performance perovskite-sensitized solar cells
染料敏化电池的研发方向和内容
光阳极膜性能的提高。制备电子传导率高、抑制电荷 复合的高性能多孔半导体膜,并优化膜的性能;改进 制膜的方法,使其工艺更简单、成本更低;寻找其它 可代替TiO2 的氧化物半导体。
染料敏化效果的提高。设计、合成高性能的染料分子, 并改善分子结构,提高电荷分离效率,使染料具有更 优异的吸收性能和光谱吸收范围;充分利用多种染料 的特征吸收光谱的不同,研究染料的协同敏化,拓宽 染料对太阳光的吸收光谱。
光敏层,即钙钛矿光吸收层,接受光照激发产生光电 子,注入到多孔半导体层。后来的研究发现,该光敏 层同时具有电子传输功能。
空穴传输材料,捕获空穴,代替传统染料敏化电池中 的电解液,对于制造全固态敏化电池是一个大的突破。
金属电极,即背电极,在染料敏化电池结构中相当于 对电极。
Michael Gratzel小组的最新成果
钙钛矿太阳能电池
《科学》杂志评选202X年度十大科学突 破,第3项。钙钛矿型太阳能电池: 一种 新时代的太阳能电池材料在过去的这一 年中获得了大量的关注,它们比那些传 统的硅电池要更便宜且更容易生产。钙 钛矿电池还没有像商用太阳能电池那样 有效,但它们正在快速不断地得到改善。
美国宾州大学的Andrew Rappe研究组,将钙 钛矿结构的铁电晶体用于光伏转换,提高光吸 收效率,号称转换效率可达50%以上。目前只 是材料和结构的设想,尚未制作出实际器件。
Nature 501, 395 (202X) 英国牛津大学Henry Snaith小 组,15.4%
Sequential deposition as a route to high-performance perovskite-sensitized solar cells
染料敏化电池的研发方向和内容
光阳极膜性能的提高。制备电子传导率高、抑制电荷 复合的高性能多孔半导体膜,并优化膜的性能;改进 制膜的方法,使其工艺更简单、成本更低;寻找其它 可代替TiO2 的氧化物半导体。
染料敏化效果的提高。设计、合成高性能的染料分子, 并改善分子结构,提高电荷分离效率,使染料具有更 优异的吸收性能和光谱吸收范围;充分利用多种染料 的特征吸收光谱的不同,研究染料的协同敏化,拓宽 染料对太阳光的吸收光谱。
光敏层,即钙钛矿光吸收层,接受光照激发产生光电 子,注入到多孔半导体层。后来的研究发现,该光敏 层同时具有电子传输功能。
空穴传输材料,捕获空穴,代替传统染料敏化电池中 的电解液,对于制造全固态敏化电池是一个大的突破。
金属电极,即背电极,在染料敏化电池结构中相当于 对电极。
Michael Gratzel小组的最新成果
钙钛矿太阳能电池
《科学》杂志评选202X年度十大科学突 破,第3项。钙钛矿型太阳能电池: 一种 新时代的太阳能电池材料在过去的这一 年中获得了大量的关注,它们比那些传 统的硅电池要更便宜且更容易生产。钙 钛矿电池还没有像商用太阳能电池那样 有效,但它们正在快速不断地得到改善。
美国宾州大学的Andrew Rappe研究组,将钙 钛矿结构的铁电晶体用于光伏转换,提高光吸 收效率,号称转换效率可达50%以上。目前只 是材料和结构的设想,尚未制作出实际器件。
钙钛矿太阳能电池文献总结报告知识讲解共44页PPT

钙钛矿太阳能电池文献总结报告知识 讲解
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申
钙钛矿ppt

1、单一化运输 2、光吸收能力基本不变情况下, 材料所需厚度减小 3、三组分材料,无限的操作空间, 结构无限可能
FIVE 市场化问题
1、没有严格的器件性能评估方法。 2、 电池效率的可重现性差。 3、 材料对空气和水的耐受性以提高器件的稳定性差。 4、 电池材料有毒。 5、 无法大规模生产。
钙钛矿矿物就是Байду номын сангаасBNNO(或Ba,Ni共改性
金属电极 HTM
钙钛矿光敏层 ETM FTO 玻璃
FOUR 光转化为电能
激子生成示意图
太阳光入射到电池吸收层后随即被吸收, 光子的能量将原来束缚在原子核周围的电 子激发,使其形成自由电子。 由于物质整体上必须保持电中性,电子被 激发后就会同时产生一个额外的带正电的 对应物,物理学上将其叫做空穴。这样的 一个“电子--空穴对”就是科学家们常说 的“激子”。
光阳极:FT0和|T0导电玻璃 电子传输层(ETL):接收带负电荷的电子载流子并且传输电子载流子的 材料,n型半导体。作用:促进光生电子-空穴对分离,提高电荷传输 效率。实验中背电极(Ag电极)一般用Ti02,但Ti02吸收紫外光产生光生 空穴影响钙钛矿太阳能电池的稳定性,所以空穴传输层用ZnO, Al2O3,Wo3,Zr0代替 光吸收层:钙钛矿层,收太阳光产生电子光阳极(FTO/To)空穴对,从 而高效的传输电子和空穴; 玻璃空穴传输层(HTL):传输空穴;作用:促进电子和空穴在界面处的 分离,减钙钛矿太阳能电池的结构少复合,提高电池性能。实验中都 是spiro- OMe TAD,然而 spIro- OMe TAD的价格P型半导体昂贵、制备 工艺复杂,不利于大面积投入钙钛矿层到生产中,所以用P3HT, PCBM等有机物代替 背阴极:Au或Ag
的KNbO 3纳米晶体)越来越普及的电子设备,如手机和笔
FIVE 市场化问题
1、没有严格的器件性能评估方法。 2、 电池效率的可重现性差。 3、 材料对空气和水的耐受性以提高器件的稳定性差。 4、 电池材料有毒。 5、 无法大规模生产。
钙钛矿矿物就是Байду номын сангаасBNNO(或Ba,Ni共改性
金属电极 HTM
钙钛矿光敏层 ETM FTO 玻璃
FOUR 光转化为电能
激子生成示意图
太阳光入射到电池吸收层后随即被吸收, 光子的能量将原来束缚在原子核周围的电 子激发,使其形成自由电子。 由于物质整体上必须保持电中性,电子被 激发后就会同时产生一个额外的带正电的 对应物,物理学上将其叫做空穴。这样的 一个“电子--空穴对”就是科学家们常说 的“激子”。
光阳极:FT0和|T0导电玻璃 电子传输层(ETL):接收带负电荷的电子载流子并且传输电子载流子的 材料,n型半导体。作用:促进光生电子-空穴对分离,提高电荷传输 效率。实验中背电极(Ag电极)一般用Ti02,但Ti02吸收紫外光产生光生 空穴影响钙钛矿太阳能电池的稳定性,所以空穴传输层用ZnO, Al2O3,Wo3,Zr0代替 光吸收层:钙钛矿层,收太阳光产生电子光阳极(FTO/To)空穴对,从 而高效的传输电子和空穴; 玻璃空穴传输层(HTL):传输空穴;作用:促进电子和空穴在界面处的 分离,减钙钛矿太阳能电池的结构少复合,提高电池性能。实验中都 是spiro- OMe TAD,然而 spIro- OMe TAD的价格P型半导体昂贵、制备 工艺复杂,不利于大面积投入钙钛矿层到生产中,所以用P3HT, PCBM等有机物代替 背阴极:Au或Ag
的KNbO 3纳米晶体)越来越普及的电子设备,如手机和笔
钙钛矿太阳电池综述PPT演示课件

16
四、制备无铅钙钛矿材料
现在的有机金属卤化物钙钛矿材料含有铅元素, 在国际许多地方已被列为禁止使 用的材料, 如何通过金属元素替代的方法找到同等或更高转换效率的无铅钙钛矿 吸收材料依然是一个挑战。
17
五、氧化物钙钛矿太阳能材料
除了有机/无机复合钙钛矿材料以外, 具备高吸光性能的氧化物钙钛矿材料也引起 了大量的关注:
22
十、极限转换效率
我们还关心的是这种全固态钙钛矿太阳能电池的极限转换效率到底是多少, 它能 否达到单结太阳能电池的Schockley-Quisser理论极限, 以及通过元素替代制备出 具有梯度能带的叠层结构, 我们能否以较低成本获得像半导体多结太阳能电池 (Ge/InGaP/InGaAs)器件那样高达40%的转换效率。
23
具体表征手段
24
SEM(扫描电子显微镜)
使用SEM来观察器件的结构和成分与质量鉴定。
Zahner IM6e电化学工作站
使用该仪器来测量太阳能电池的参数,如短路电流、开路电压、填充因子和最 大转化效率等。
25
总结
基于钙钛矿的太阳能电池已经在光伏领域掀起了一场以高效低成本器件为目标的 新革命,UCLA的 Yang Yang 教授甚至把它称为新一代太阳能电池。因此, 由近一 年钙钛矿的迅猛发展速度可以预测, 随着相关研究组的不断努力, 我们完全有理 由相信, 综合利用结构工程、材料工程、界面工程、能带工程和入射光管理工程, 有可能通过低成本的制备工艺大规模生产出转换效率极高的绿色、高效钙钛矿基 太阳能新能源, 真正成为新一代的低成本、绿色能源产业的主流产品。
7
迅速发展
到2011年,研究者将实验方案进行了改进与优化,制备的CH3NH3PbI3量子点达到 2~3mm,电池效率增加了一倍达到6.54%
四、制备无铅钙钛矿材料
现在的有机金属卤化物钙钛矿材料含有铅元素, 在国际许多地方已被列为禁止使 用的材料, 如何通过金属元素替代的方法找到同等或更高转换效率的无铅钙钛矿 吸收材料依然是一个挑战。
17
五、氧化物钙钛矿太阳能材料
除了有机/无机复合钙钛矿材料以外, 具备高吸光性能的氧化物钙钛矿材料也引起 了大量的关注:
22
十、极限转换效率
我们还关心的是这种全固态钙钛矿太阳能电池的极限转换效率到底是多少, 它能 否达到单结太阳能电池的Schockley-Quisser理论极限, 以及通过元素替代制备出 具有梯度能带的叠层结构, 我们能否以较低成本获得像半导体多结太阳能电池 (Ge/InGaP/InGaAs)器件那样高达40%的转换效率。
23
具体表征手段
24
SEM(扫描电子显微镜)
使用SEM来观察器件的结构和成分与质量鉴定。
Zahner IM6e电化学工作站
使用该仪器来测量太阳能电池的参数,如短路电流、开路电压、填充因子和最 大转化效率等。
25
总结
基于钙钛矿的太阳能电池已经在光伏领域掀起了一场以高效低成本器件为目标的 新革命,UCLA的 Yang Yang 教授甚至把它称为新一代太阳能电池。因此, 由近一 年钙钛矿的迅猛发展速度可以预测, 随着相关研究组的不断努力, 我们完全有理 由相信, 综合利用结构工程、材料工程、界面工程、能带工程和入射光管理工程, 有可能通过低成本的制备工艺大规模生产出转换效率极高的绿色、高效钙钛矿基 太阳能新能源, 真正成为新一代的低成本、绿色能源产业的主流产品。
7
迅速发展
到2011年,研究者将实验方案进行了改进与优化,制备的CH3NH3PbI3量子点达到 2~3mm,电池效率增加了一倍达到6.54%
钙钛矿太阳能电池PPT课件

钙钛矿太阳能电池
岳世忠
-
1
钙钛矿
钙钛矿电池的光吸收层是一 种有机-无机杂化的材料,化学 式为 AMX3(A:CH3NH3+; M:PB2+;X:I–,BR–或 CL–)。是典型的钙钛矿 (CATIO3)晶体结构。
晶胞结构MX6构成八面体, 并相互接触,组成了三维结构, CH3NH3+嵌入其中。
-
2
-
6
能级和电子转移示意图
(1)电子注入; (2)空穴注入; (3)辐射激子复合; (4)非辐射激子复合; (5)反电子转移到TIO2的表面; (6)反电子转移到HTM表面; (7)电荷复合在纳米TIO2/HTM界 面。
-
7
优点
一般的带隙约为 1.5eV通过卤族 元素的替代可以 调节禁带宽度
合适的直接带 隙
-
9
-
10
-
厚度为 300 nm 左 右的钙钛矿材料 便能吸收紫外到近 红外几乎所有的光
子
高的吸收系数
优良的双极输运特 性,CH3NH3PbI3中, 电子和空穴的迁移 率达到 10 cm2/(V·s)
优异的载流子 输运性能
8
高的外量子效率
PBDTTT和非晶硅AM1.5G SOLAR SPECTRA
CH3NH3PBI3 AM1.5G SOLAR SPECTRA
高电池的开路电压。
钙钛矿电池的原理,在光 照下光敏层产生激子,由 于激子束缚能较小,在材 料内部就可以发生分离, 通过电子空穴层的输运,
最后被电极收集。
-
5
光敏层中的光物理过程
光吸收产生电子空穴对,然后演变形成高 度离域的瓦尼尔激子。其中一小部分会自 发的形成自由载流子,激子和自由载流子 共存,其动态数目根据它们寿命的变化而 变化。激子的成双重组是很弱的。缺陷辅 助的重组,在些CH3NH3PBX3钙钛矿也会 被抑制。从激子猝灭产生的电子和空穴的 复合也是很微弱的。俄歇复合在这里是占 主导地位的,在高泵入激励的条件下自放 大辐射会和俄歇复合竞争。在低的光强下, 俄歇和自放大复合会受到抑制。
岳世忠
-
1
钙钛矿
钙钛矿电池的光吸收层是一 种有机-无机杂化的材料,化学 式为 AMX3(A:CH3NH3+; M:PB2+;X:I–,BR–或 CL–)。是典型的钙钛矿 (CATIO3)晶体结构。
晶胞结构MX6构成八面体, 并相互接触,组成了三维结构, CH3NH3+嵌入其中。
-
2
-
6
能级和电子转移示意图
(1)电子注入; (2)空穴注入; (3)辐射激子复合; (4)非辐射激子复合; (5)反电子转移到TIO2的表面; (6)反电子转移到HTM表面; (7)电荷复合在纳米TIO2/HTM界 面。
-
7
优点
一般的带隙约为 1.5eV通过卤族 元素的替代可以 调节禁带宽度
合适的直接带 隙
-
9
-
10
-
厚度为 300 nm 左 右的钙钛矿材料 便能吸收紫外到近 红外几乎所有的光
子
高的吸收系数
优良的双极输运特 性,CH3NH3PbI3中, 电子和空穴的迁移 率达到 10 cm2/(V·s)
优异的载流子 输运性能
8
高的外量子效率
PBDTTT和非晶硅AM1.5G SOLAR SPECTRA
CH3NH3PBI3 AM1.5G SOLAR SPECTRA
高电池的开路电压。
钙钛矿电池的原理,在光 照下光敏层产生激子,由 于激子束缚能较小,在材 料内部就可以发生分离, 通过电子空穴层的输运,
最后被电极收集。
-
5
光敏层中的光物理过程
光吸收产生电子空穴对,然后演变形成高 度离域的瓦尼尔激子。其中一小部分会自 发的形成自由载流子,激子和自由载流子 共存,其动态数目根据它们寿命的变化而 变化。激子的成双重组是很弱的。缺陷辅 助的重组,在些CH3NH3PBX3钙钛矿也会 被抑制。从激子猝灭产生的电子和空穴的 复合也是很微弱的。俄歇复合在这里是占 主导地位的,在高泵入激励的条件下自放 大辐射会和俄歇复合竞争。在低的光强下, 俄歇和自放大复合会受到抑制。
钙钛矿太阳电池PPT物理模型

在考虑光子循环效应的情况下,利 用平衡模型预测了碘化铅甲基铵 (CH3NH3PbI3)钙钛矿太阳能电池 的效率极限。在模型中,采用了太 阳的AM1.5光谱和实验测量的复折 射率。
The PCE limit of the perovskite cell is about 31%, which approaches to the Shockley-Queisser limit (33%) achievable by gallium arsenide (GaAs) solar cells.
n(x)/p(x)是电子/空穴浓度,D和μ分别是扩散系数和迁移率,G(X) 代表相关位置产生的光激子。 另外:R(x)=0
(a) Samples #1 (Type-1 (p-i-n), efficiency = 15.7%, JSC = 22.7mA/cm2, VOC = 0.85 V, FF = 81%).
激子结合能
关于阐明第一激发的物质是电子空穴对还是自由载流子??
V. Sundström和他的团队,在2ps的光激发情况下,研究CH3NH3PbI3, 使用超快时间分辨光谱去揭示电子空穴对的分离形成更高能级的移动电 荷的证据。
Paul组在Nature Photonics上的文章Electro-optics of perovskite solar cells 就测量出,CH3NH3PbI3的激子束缚能小于10meV,激子束缚能 非常的小,小于室温下的热动能(26meV),光照后产生的肯定是自由 的载流子。
87% 58% 82%
机器学习能否用在钙钛矿电池的优良特性的寻找?乃至微观物理模型的建立??
1、机器学习(深度学习等)用于寻找更佳的电池参数
已有数据参数 (膜厚、退火时 间、效率等)
钙钛矿太阳能电池文献总结报告PPT课件

70℃加热搅拌至澄清后旋涂到介孔TiO2 上; 晾干 后,将衬底浸入含CH3NH3I 的异丙醇溶液中, 随后热处理即可制得钙钛矿薄膜。
Company Logo
制备方法
• 3)蒸发法:控制PbI2 和CH3NH3I 的蒸发速
率来控制钙钛矿薄膜的组成,由此形成了一种新型 的平面异质结型钙钛矿太阳电池。
• 发展
将一种固态的空穴传输材料(spiro-OMeTAD) 引入到钙钛矿太阳电池中,取代液态电解质。
• 继续发展
Snaith等人首次将Cl 元素引入钙钛矿中, 并使用Al2O3 替代TiO2, 证明钙钛矿不 仅可作为光吸收层, 还可作为电子传输层。
3
Company Logo
工作原理、结构和性能
Defects、benign grain boundary recombination Effects等优良性能,载流子复合
机率小,迁移率高
Company Logo
工作原理
电子通过电子传输
层(ETL),最后被 FTO收集;空穴通过空 穴传输层(HTL),最 后被金属电极收集。
最后将FTO与金属电极 连接成电路而产生光
艺下,SEOK小组获得了认证效率达 16.2%的钙钛矿太阳能电池器件。
或许是由于非溶剂(甲苯)的 加入,钙钛矿组份会从前驱体 溶液中迅速析出,形成MAI-PbI2DMSO 中间相,且结晶度很好。
最后一步,在100℃环境 下annealing(退火?)10分钟,除 去中间相中的DMSO得到MAPBI3
Company Logo
制备方法-前驱体的作用
• 1)氯在薄膜制备中的作用
Lee小组采用PbCl2与MAI作为前驱体溶液,并声称得到的产 物为MAPbI3xClx。
Company Logo
制备方法
• 3)蒸发法:控制PbI2 和CH3NH3I 的蒸发速
率来控制钙钛矿薄膜的组成,由此形成了一种新型 的平面异质结型钙钛矿太阳电池。
• 发展
将一种固态的空穴传输材料(spiro-OMeTAD) 引入到钙钛矿太阳电池中,取代液态电解质。
• 继续发展
Snaith等人首次将Cl 元素引入钙钛矿中, 并使用Al2O3 替代TiO2, 证明钙钛矿不 仅可作为光吸收层, 还可作为电子传输层。
3
Company Logo
工作原理、结构和性能
Defects、benign grain boundary recombination Effects等优良性能,载流子复合
机率小,迁移率高
Company Logo
工作原理
电子通过电子传输
层(ETL),最后被 FTO收集;空穴通过空 穴传输层(HTL),最 后被金属电极收集。
最后将FTO与金属电极 连接成电路而产生光
艺下,SEOK小组获得了认证效率达 16.2%的钙钛矿太阳能电池器件。
或许是由于非溶剂(甲苯)的 加入,钙钛矿组份会从前驱体 溶液中迅速析出,形成MAI-PbI2DMSO 中间相,且结晶度很好。
最后一步,在100℃环境 下annealing(退火?)10分钟,除 去中间相中的DMSO得到MAPBI3
Company Logo
制备方法-前驱体的作用
• 1)氯在薄膜制备中的作用
Lee小组采用PbCl2与MAI作为前驱体溶液,并声称得到的产 物为MAPbI3xClx。
钙钛矿太阳能电池报告ppt课件

➢ 双源气相沉积法
➢ 顺序气相沉积法
MA : CH3NH3+
MA : CH3NH3+
Journal of Nanomaterials, vol. 2018, Article ID 8148072, 15 pages, 2018.
合成方法 — 溶液法
➢ 一步法
➢ 两步法
MA : CH3NH3+
MA : CH3NH3+
ACS Appl. Mater. Interfaces 2018, 10, 42436-42443
含噻唑 240nm
界面钝化
功率转换效率
无噻唑
14%
50个太阳能电池功率转换效率直方图
含噻唑
ACS Appl. Mater. Interfaces 2018, 10, 42436-42443
18%
界面钝化
目录 CONTENTS
1 历史背景
2 钙钛矿太阳能电池的基本结构
3 高效率太阳能电池的实现
4 前景及挑战
钙钛矿光伏技术的起点:
Organometal halide perovskites as visible- light sensitizers for photovoltaic cells
被《Science》杂志评为 2013 年十大科学突破之一
无噻唑 120nm
Top-view SEM images MAPbI3 films: (a, b) fabricated without thiazole; (d, e) fabricated with a thiazole additive (c, f) Histogram of the grain size for MAPbI3 films w/o and with thiazole
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
四、制备无铅钙钛矿材料
现在的有机金属卤化物钙钛矿材料含有铅元素, 在国际许多地方已被列为禁止使 用的材料, 如何通过金属元素替代的方法找到同等或更高转换效率的无铅钙钛矿 吸收材料依然是一个挑战。
17
五、外, 具备高吸光性能的氧化物钙钛矿材料也引起 了大量的关注:
9
2013年
后来,随着工艺不断优化,转换效率仅约半年时间就猛增至15%。
利用序列沉积的方法制 备钙钛矿电池, 改进了 原有的一步制备法, 获 得了效率达 15%的有机 金属卤化物钙钛矿基太 阳能电池
10
2013年
用气相蒸发法制备了钙钛矿平面异质结电池, 摆脱了复杂的纳米结构, 得到了效率 高达 15.4%的器件.
钙钛矿太阳能电池
Perovskite Solar Cell
1
结构
钙钛矿结构是一种具有 ABX3 晶型的奇特结构, 呈现出丰富多彩的物理性质包括绝 缘体、铁电、反铁磁、巨磁/庞磁效应, 著名的是具有超导电性. 这种 ABX3 型钙钛矿 结构以金属 Pb 原子为八面体核心、卤素 Br 原子为八面体顶角、有机甲氨基团位于 面心立方晶格顶角位置, 这种有机卤化物钙钛矿结构的特点是: 1)卤素八面体共顶点连接, 组成三维网络, 根据 Pauling 的配位多面体连接规则, 此 种结构比共棱、共面连接稳定. 2)共顶连接使八面体网络之间的空隙比共棱、共面连接时要大, 允许较大尺寸离子 填入, 即使产生大量晶体缺陷, 或者各组成离子的尺寸与几何学要求有较大出入时, 仍然能够保持结构稳定; 并有利于缺陷的扩散迁移.
所以也必须研究一些能带合适、吸光能力强的无机氧化物钙钛矿材料在高效能量 转换方面的潜能。
18
六、具有梯度能带的钙钛矿吸光材料
如果能够通过元素替代或掺杂的方法, 制备出具有梯度能带的新型钙钛矿吸光材 料, 就可以制备类似于半导体多结太阳能电池器件(目前最高效率已经超过 40%), 以较低的生产成本大幅提升其转换效率.
22
十、极限转换效率
我们还关心的是这种全固态钙钛矿太阳能电池的极限转换效率到底是多少, 它能 否达到单结太阳能电池的Schockley-Quisser理论极限, 以及通过元素替代制备出 具有梯度能带的叠层结构, 我们能否以较低成本获得像半导体多结太阳能电池 (Ge/InGaP/InGaAs)器件那样高达40%的转换效率。
23
具体表征手段
24
SEM(扫描电子显微镜)
使用SEM来观察器件的结构和成分与质量鉴定。
Zahner IM6e电化学工作站
使用该仪器来测量太阳能电池的参数,如短路电流、开路电压、填充因子和最 大转化效率等。
25
总结
基于钙钛矿的太阳能电池已经在光伏领域掀起了一场以高效低成本器件为目标的新 革命,UCLA的 Yang Yang 教授甚至把它称为新一代太阳能电池。因此, 由近一年钙 钛矿的迅猛发展速度可以预测, 随着相关研究组的不断努力, 我们完全有理由相信, 综合利用结构工程、材料工程、界面工程、能带工程和入射光管理工程, 有可能通过 低成本的制备工艺大规模生产出转换效率极高的绿色、高效钙钛矿基太阳能新能源, 真正成为新一代的低成本、绿色能源产业的主流产品。
2
材料结构
以下为典型的钙钛矿晶体结构和与之匹配的高效空穴传导材料结构
3
典型电池结构
4
原理
5
发展状况
从2009年至今,发 展十分迅速,已有 接近20%的光电转 化率。右图为领域 上的重大进展。
6
起源
在2009年试制时,Akihiro Kojima首次将CH3NH3PbI3和CH3NH3PbBr3制备成量子点 (9~10mm)应用到太阳能电池中(DSSC),研究了在可见光范围内,该类材料 敏化TiO2太阳电池的性能,获得3.8%的光电效率。
7
迅速发展
到2011年,研究者将实验方案进行了改进与优化,制备的CH3NH3PbI3量子点达到 2~3mm,电池效率增加了一倍达到6.54%
但是由于部分金属卤化物在液态电解质中发生溶解,很大程度上降低了电池的稳 定性与使用寿命,这是该电池的致命缺点。
8
2012年
解决这一问题,就是将Spiro-OMeTAD作为有机空穴传输材料应用到钙钛矿电池中, 换上这种材料后,钙钛矿电池稳定性和工艺重复性大大提高。
11
今年
最高转化率已接近20%。
12
研究热点和方向
13
一、钙钛矿极高吸光能力的微观机理
这种新型钙钛矿吸光材料的最大优点是它的吸光系数很大, 吸光能力比传统染料 高10倍以上, 到目前为止其微观机理都没有定论。
14
二、光生载流子的产生机理
现有的理论解释存在两种机理的争论: 激发电子-空穴对(自由电荷)机理和激发激子 机理, 搞清楚光生载流子的产生机理将对大幅提高其转换效率至关重要; 此外, 在有 机金属卤化物钙钛矿太阳能电池中是否存在内建电场, 以及内建电场如何以如此低的 能耗下驱动载流子输运和分离也是一个尚待解决的问题。
21
九、大面积制备
迄今为止, Snaith 等人报道的高转换效率的有机金属卤化物钙钛矿型太阳能电池 都局限于小面积制备(约0.3 cm2), 面积放大会导致器件的转换效率急剧下降(填充 因子急剧变小); Kelly 等人报道的效率为10.2%的大柔性器件面积也仅略大于1cm2。 如何获得大面积的高转换效率器件是一大挑战。
15
三、高效能量转换的机理
在钙钛矿太阳能电池中, Grätzel 等利用序列沉积方法制备了分散质 TiO2 纳米骨架, 将有机金属卤化物钙钛矿吸收层夹在透明电极与空穴传输层之间, 整个器件由空穴输 运所主导;
而 Snaith 等则利用包覆钙钛矿的 Al2O3 纳米介孔材料来代替 TiO2, 获得了优于 15% 的转换效率, 并且发现电子输运主导了整个转换过程; 因此, 需要深入研究其中的机 理与制约效率进一步提高的关键因素。
19
七、新的电子/空穴传导材料
现在使用的与有机金属卤化物钙钛矿吸光层相匹配的是有机空穴传输材料SpiroOMeTAD,而其合成价格很高, 目前是黄金价格的五倍以上。必须寻找更加有效、 稳定且廉价的电子/空穴传输材料来提高钙钛矿太阳能电池的转换效率。
20
八、进一步提高器件稳定性与寿命
尽管 Grätzel 等人发现有机金属卤化物钙钛矿太阳能电池在全日光辐照下连续使 用 500 小时后依然保持 80%以上的转换效率, 是迄今为止薄膜太阳能电池中最稳 定的, 但尚需大幅改进才能实现工业化应用。
四、制备无铅钙钛矿材料
现在的有机金属卤化物钙钛矿材料含有铅元素, 在国际许多地方已被列为禁止使 用的材料, 如何通过金属元素替代的方法找到同等或更高转换效率的无铅钙钛矿 吸收材料依然是一个挑战。
17
五、外, 具备高吸光性能的氧化物钙钛矿材料也引起 了大量的关注:
9
2013年
后来,随着工艺不断优化,转换效率仅约半年时间就猛增至15%。
利用序列沉积的方法制 备钙钛矿电池, 改进了 原有的一步制备法, 获 得了效率达 15%的有机 金属卤化物钙钛矿基太 阳能电池
10
2013年
用气相蒸发法制备了钙钛矿平面异质结电池, 摆脱了复杂的纳米结构, 得到了效率 高达 15.4%的器件.
钙钛矿太阳能电池
Perovskite Solar Cell
1
结构
钙钛矿结构是一种具有 ABX3 晶型的奇特结构, 呈现出丰富多彩的物理性质包括绝 缘体、铁电、反铁磁、巨磁/庞磁效应, 著名的是具有超导电性. 这种 ABX3 型钙钛矿 结构以金属 Pb 原子为八面体核心、卤素 Br 原子为八面体顶角、有机甲氨基团位于 面心立方晶格顶角位置, 这种有机卤化物钙钛矿结构的特点是: 1)卤素八面体共顶点连接, 组成三维网络, 根据 Pauling 的配位多面体连接规则, 此 种结构比共棱、共面连接稳定. 2)共顶连接使八面体网络之间的空隙比共棱、共面连接时要大, 允许较大尺寸离子 填入, 即使产生大量晶体缺陷, 或者各组成离子的尺寸与几何学要求有较大出入时, 仍然能够保持结构稳定; 并有利于缺陷的扩散迁移.
所以也必须研究一些能带合适、吸光能力强的无机氧化物钙钛矿材料在高效能量 转换方面的潜能。
18
六、具有梯度能带的钙钛矿吸光材料
如果能够通过元素替代或掺杂的方法, 制备出具有梯度能带的新型钙钛矿吸光材 料, 就可以制备类似于半导体多结太阳能电池器件(目前最高效率已经超过 40%), 以较低的生产成本大幅提升其转换效率.
22
十、极限转换效率
我们还关心的是这种全固态钙钛矿太阳能电池的极限转换效率到底是多少, 它能 否达到单结太阳能电池的Schockley-Quisser理论极限, 以及通过元素替代制备出 具有梯度能带的叠层结构, 我们能否以较低成本获得像半导体多结太阳能电池 (Ge/InGaP/InGaAs)器件那样高达40%的转换效率。
23
具体表征手段
24
SEM(扫描电子显微镜)
使用SEM来观察器件的结构和成分与质量鉴定。
Zahner IM6e电化学工作站
使用该仪器来测量太阳能电池的参数,如短路电流、开路电压、填充因子和最 大转化效率等。
25
总结
基于钙钛矿的太阳能电池已经在光伏领域掀起了一场以高效低成本器件为目标的新 革命,UCLA的 Yang Yang 教授甚至把它称为新一代太阳能电池。因此, 由近一年钙 钛矿的迅猛发展速度可以预测, 随着相关研究组的不断努力, 我们完全有理由相信, 综合利用结构工程、材料工程、界面工程、能带工程和入射光管理工程, 有可能通过 低成本的制备工艺大规模生产出转换效率极高的绿色、高效钙钛矿基太阳能新能源, 真正成为新一代的低成本、绿色能源产业的主流产品。
2
材料结构
以下为典型的钙钛矿晶体结构和与之匹配的高效空穴传导材料结构
3
典型电池结构
4
原理
5
发展状况
从2009年至今,发 展十分迅速,已有 接近20%的光电转 化率。右图为领域 上的重大进展。
6
起源
在2009年试制时,Akihiro Kojima首次将CH3NH3PbI3和CH3NH3PbBr3制备成量子点 (9~10mm)应用到太阳能电池中(DSSC),研究了在可见光范围内,该类材料 敏化TiO2太阳电池的性能,获得3.8%的光电效率。
7
迅速发展
到2011年,研究者将实验方案进行了改进与优化,制备的CH3NH3PbI3量子点达到 2~3mm,电池效率增加了一倍达到6.54%
但是由于部分金属卤化物在液态电解质中发生溶解,很大程度上降低了电池的稳 定性与使用寿命,这是该电池的致命缺点。
8
2012年
解决这一问题,就是将Spiro-OMeTAD作为有机空穴传输材料应用到钙钛矿电池中, 换上这种材料后,钙钛矿电池稳定性和工艺重复性大大提高。
11
今年
最高转化率已接近20%。
12
研究热点和方向
13
一、钙钛矿极高吸光能力的微观机理
这种新型钙钛矿吸光材料的最大优点是它的吸光系数很大, 吸光能力比传统染料 高10倍以上, 到目前为止其微观机理都没有定论。
14
二、光生载流子的产生机理
现有的理论解释存在两种机理的争论: 激发电子-空穴对(自由电荷)机理和激发激子 机理, 搞清楚光生载流子的产生机理将对大幅提高其转换效率至关重要; 此外, 在有 机金属卤化物钙钛矿太阳能电池中是否存在内建电场, 以及内建电场如何以如此低的 能耗下驱动载流子输运和分离也是一个尚待解决的问题。
21
九、大面积制备
迄今为止, Snaith 等人报道的高转换效率的有机金属卤化物钙钛矿型太阳能电池 都局限于小面积制备(约0.3 cm2), 面积放大会导致器件的转换效率急剧下降(填充 因子急剧变小); Kelly 等人报道的效率为10.2%的大柔性器件面积也仅略大于1cm2。 如何获得大面积的高转换效率器件是一大挑战。
15
三、高效能量转换的机理
在钙钛矿太阳能电池中, Grätzel 等利用序列沉积方法制备了分散质 TiO2 纳米骨架, 将有机金属卤化物钙钛矿吸收层夹在透明电极与空穴传输层之间, 整个器件由空穴输 运所主导;
而 Snaith 等则利用包覆钙钛矿的 Al2O3 纳米介孔材料来代替 TiO2, 获得了优于 15% 的转换效率, 并且发现电子输运主导了整个转换过程; 因此, 需要深入研究其中的机 理与制约效率进一步提高的关键因素。
19
七、新的电子/空穴传导材料
现在使用的与有机金属卤化物钙钛矿吸光层相匹配的是有机空穴传输材料SpiroOMeTAD,而其合成价格很高, 目前是黄金价格的五倍以上。必须寻找更加有效、 稳定且廉价的电子/空穴传输材料来提高钙钛矿太阳能电池的转换效率。
20
八、进一步提高器件稳定性与寿命
尽管 Grätzel 等人发现有机金属卤化物钙钛矿太阳能电池在全日光辐照下连续使 用 500 小时后依然保持 80%以上的转换效率, 是迄今为止薄膜太阳能电池中最稳 定的, 但尚需大幅改进才能实现工业化应用。