迭代法的收敛性

合集下载

7.2 迭代法及其收敛性

7.2 迭代法及其收敛性

k4.1045
1/ 2
表 7.2.1 用不动点迭代法计算例7.2.1的结果
0 (a) 1.5 -0.625 6.447 -378.2 5.3697e7 -1.547e23 (b) 1.5 0.912871 2.454577 (c) (d) (e) 1.5 1.5 1.5 1.241638702 1.333333333 1.365079365 1.424290116 1.305205188 1.387624336 1.332682451 1.370291856 1.344991115 1.362217505 1.350582520 1.358732441 1.355350555 1.354767869 1.355301399 1.355384418 1.355301398 1.355288480 1.355303407 1.355301085 1.355301446 1.355301390
*
k
xk x L x0 x L max x0 a , b x0 ,
* k * k
从而 7.2.4 成立.
再由 7.2.3 , 对m k 1, 我们有
x m x k x m x m 1 x m 1 x m 2 x k 1 x k x m x m 1 x m 1 x m 2 x k 1 x k Lm 1 x1 x0 Lm 2 x1 x0 Lk x1 x0 Lk x1 x0 1 L L2 Lm k 1 .
(7.2.1)
其中 ( x )为连续函数,其取法不唯一,例如可取
方程(7.2.1)的解称为函数 ( x )的不动点, 求方程 (7.2.1)的解的问题称为不动点问题.

第5节_迭代法的收敛性

第5节_迭代法的收敛性
x ≠0
Bx x

Bx1 ቤተ መጻሕፍቲ ባይዱ1
= 1,与已知矛盾!
线性方程组迭代法收敛性
推论1:对任意初始向量x (0)和右端项g,若 M < 1, 由迭代式 x ( k +1) = Mx ( k ) + g产生的向量序列{ x ( k ) }收敛.
证明:矩阵范数性质3:ρ ( A) ≤ || A ||
迭代法收敛与否只决定于迭代矩阵的谱半径,与初始向 量及右端项无关。 对同一方程组,由于不同的迭代法迭代矩阵不同,可能 出现有的方法收敛,有的方法发散的情形。
且至少有一个i值,使上式中不等号严格成立,则称A为弱 对角占优阵。若对所有i,上式不等号均严格成立,则称A 为严格角占优阵。
定义:如果矩阵A不能通过行的互换和相应的列互换成 A11 为形式 A = 0 A12 ,其中A11,A22为方阵,则称A为不可约。 A22
1 1 0 2 1 0 P = I13 例: A = 1 1 0 PT AP = 0 1 1 → 0 1 2 0 1 1
k →∞
证:设u为A特征值λ对应的特征向量, 则:Ak u = λ Ak -1u =...=λ k u 即:λ k为矩阵Ak的特征值。
ρ 所以:(Ak) [ ρ ( A)]k =
线性方程组迭代法收敛性
1- ρ ( A) > 0, 2 定理:设A为任意n阶方阵, 存在矩阵范数 ,使得 则对任意正数ε , 存在矩阵 1 + ρ ( A) A ≤ ρ ( A) + ε = <1 范数 ,使得: 2 证: 充分性:若ρ ( A) < 1 ,取ε = 则有: A = 0 lim
Gauss-Seidel迭代收敛性:

5.2.2Jacobi迭代法和Gauss-Seidel迭代法的收敛性

5.2.2Jacobi迭代法和Gauss-Seidel迭代法的收敛性
其中第1行的第 k+1 个元素为1。于是有
i k j J ik (i I Ei )k Ck i Ei j Ckjik j Ei j j 0 j 0 k ni 1
第五章线性方程组迭代解法
ik
kik 1
ik
ni 1 k ni 1 Ck i , k 1 ki k i ni ni
lim e
k
(k )
0 ,即 lim x
k
(k )
x 。
*
k
第五章线性方程组迭代解法
再证必要性。设对任意初始向量x ( 0 ) 和右端顶 f ,均有 lim x ( k ) x * , 则得 x Bx f , x
* *
k
x ) 。因此,对任意 x 都有 lim B k ( x ( 0) x* ) 0 ,由此推出 lim B k 0 ,即得 ( B ) 1 。定理得证。
其中, Ei0 I , Ckj k! / j!(k j )! 。 由于 lim k s k 0( 1, s 0), 所以 lim J ik 0 的充分必要条件

i 1(i 1,2,, r) 。定理得证。
k
k
Байду номын сангаас
定理 5.2 对于任意的初始向量 x ( 0 )和右端向量 f ,解方程组(5.1.2) 的迭代法(5.1.3)收敛的充分必要条件是 ( B ) 1 。 证 先证充分性。设 ( B ) 1,则矩阵 I B 非奇异,方程组 (5.1.2)有惟一解 x* ,从而的(5.2.1)。由定理 5.1 知 lim B k 0 ,因此 ,
* e( k ) x ( k ) x ,则有

数值分析10迭代法的收敛性分析

数值分析10迭代法的收敛性分析
例如,Jacobi迭代法和Gauss-Seidel迭代法是两种常见的求解线性方程组的迭代法。通过收敛性分析,可以发现Jacobi迭代 法在一般情况下是收敛的,但收敛速度较慢;而Gauss-Seidel迭代法在一般情况下也是收敛的,且收敛速度较快。因此,在 实际应用中,可以根据问题的具体情况选择合适的迭代方法。
研究方向
进一步深入研究迭代法的收敛性,探索更有 效的迭代公式和算法,以提高收敛速度和稳 定性。
展望
随着计算技术的发展,迭代法在数值分析中 的应用将更加广泛,其收敛性分析将为解决 实际问题提供更有力的支持。同时,随着数 学理论的发展,迭代法的收敛性分析将更加 深入和完善。
感谢您的观看
THANKS
例如,梯度下降法和牛顿法是两种常见的求解优化问 题的迭代法。通过收敛性分析,可以发现梯度下降法 在一般情况下是收敛的,但可能会遇到收敛速度较慢 或者不收敛的情况;而牛顿法在一般情况下也是收敛 的,且收敛速度可能比梯度下降法更快。因此,在实 际应用中,可以根据问题的具体情况选择合适的迭代 方法。
06
迭代法收敛的充要条件
迭代法收敛的充要条件是迭代矩阵的谱半径小于1。谱半径是迭代矩阵所有特征值的模的最大值。
收敛性的判定方法
可以通过计算迭代矩阵的特征值来判断迭代法的收敛性,也可以通过迭代矩阵的范数来近似判断。
收敛速度的度量
01
02
03
迭代次数
迭代次数是衡量收敛速度 的一个直观指标,迭代次 数越少,收敛速度越快。
在非线性方程求解中的应用
非线性方程的求解是数值分析中的另一个重 要问题,迭代法也是求解非线性方程的重要 方法之一。与线性方程组求解类似,收敛性 分析在非线性方程求解中也有着重要的作用 。通过收敛性分析,可以判断迭代法的收敛 速度和收敛性,从而选择合适的迭代方法和 参数,提高求解效率。

类矩阵两种迭代法的收敛性比较

类矩阵两种迭代法的收敛性比较

类矩阵两种迭代法的收敛性比较引言:在科学计算中,线性方程组的求解是很普遍的问题。

尤其是在大型科学计算中,线性方程组的求解是最重要的任务之一。

线性方程组的求解有很多种方法,例如高斯消元法、LU分解法、迭代法等等,其中迭代法是一种高效的方法。

迭代法的思想是从一个初值解开始,逐步改进解的准确度,直到满足误差要求。

在本文中,我们将讨论两种类矩阵迭代法的收敛性比较,即雅可比迭代法和高斯-赛德尔迭代法。

1.雅可比迭代法(Jacobi Iterative Method):雅可比迭代法是最简单的迭代法之一。

它是基于线性方程组的矩阵形式 Ax=b,将 A 分解成 A=D-L-U(D为A的对角线元素,L为A的下三角矩阵,U为A的上三角矩阵),其中 D 为对角线元素,L为严格下三角矩阵,U 为严格上三角矩阵。

则有如下迭代关系式: x^{(k+1)}=D^{-1}(L+U)x^{(k)}+D^{-1}b (1)其中,x^{(k)} 为 k 次迭代后的解,x^{(0)} 为初始解。

雅可比迭代法的迭代矩阵为M = D^{-1}(L+U)。

以下是雅可比迭代法的收敛性分析:定理1:若矩阵 A 为对称正定矩阵,则雅可比迭代法收敛。

证明:由于 A 为对称正定矩阵,所以存在唯一的解。

假设迭代后得到的解为 x^{(k)},则我们可以用误差向量 e^{(k)} = x-x^{(k)} 表示剩余项,则有 Ax^{(k)}-b = e^{(k)}。

对 (1) 式两边同时乘以 A^-1,得:x^{(k+1)}=x^{(k)}-A^{-1}e^{(k)}。

(2)将 (2) 式代入 Ax^{(k)}-b = e^{(k)} 中,得:Ax^{(k+1)}-b = Ae^{(k)}.(3)由于 A 为对称正定矩阵,则存在 A=Q\\Lambda Q^{-1},其中Q 为正交矩阵,\\Lambda 为对角矩阵。

因此,我们可以将 (3) 式转化为:\\| x^{(k+1)}-x \\|_{A} =\\| Q^{-1}A^{-1}Qe^{(k)}\\|_{\\Lambda} \\leq \\rho (Q^{-1}A^{-1}Q)\\|e^{(k)}\\|_{A}。

2.2 迭代法的一般形式与收敛性定理

2.2 迭代法的一般形式与收敛性定理

设aii0 (i=1,2,,n),并将A写成三部分
0 a11 a 21 0 a 22 A a n 1 ,1 a n 1 , 2 0 a nn a n 2 a n , n 1 a n1 0 a12 a1,n1 a1n 0 a 2 , n 1 a 2 n 0 a n 1, n 0 D LU. 0

k
B ( H )
k
两边取对数得: k ln ( H ) ln k
ln ln ( H )
定义:
ln ( H )
为迭代法(2.2.3)的渐近收敛速 度。
解线性方程组的迭代法
线性方程组
a11 x1 a12 x2 a x a x 21 1 22 2 an1 x1 an 2 x2 a1n xn b1 a2 n xn b2 ann xn bn
复习:矩阵的谱半径 设λ是矩阵A相应于特征向量x的特征值,即 Ax=λx 向量-矩阵范数的相容性,得到 |λ| || x ||=||λx|| =|| Ax|| ≤ || A || ||x|| 从而,对A的任何特征值λ均成立 |λ|≤|| A || ( 3)
设n阶矩阵A的n个特征值为λ1,λ2,…λn,称 ( A) max i
x ( k 1) x* H ( x ( k ) x* )
由此递推:x ( k 1) x* H k 1 ( x ( 0) x* ), k 0,1,2,
x 是线性方程组Ax=b的解
x* Hx* g
x
k 1
*

第3章3-06迭代法和收敛性

第3章3-06迭代法和收敛性

解 方程组化为等价的方程组 0.2 x2 + 0.1x3 + 0.3 x1 = + 0.1x3 + 1.5 x2 = 0.2 x1 x = 0.2 x + 0.4 x + 2 1 2 3 构造高斯 赛德尔迭代公式 高斯构造高斯-赛德尔迭代公式 ( ( x1( k +1) = 0.2 x2k ) + 0.1x3k ) + 0.3 ( k +1) ( x2 = 0.2 x1( k +1) + 0.1x3k ) + 1.5, k = 0,1, 2,L ( k +1) ( x3 = 0.2 x1( k +1) + 0.4 x2k +1) + 2
雅可比迭代公式
i −1 n 1 ( k +1) (k ) (k ) xi = (bi − ∑ aij x j − ∑ aij x j ) , (i = 1,2,L, n) aii j =1 j =i +1
分量形式
( k +1) 1 ( ( ( x1 = (b1 − a12 x2k ) − a13 x3k ) − L − a1n xnk ) ) a11 ( k +1) 1 ( ( x2 = (b2 − a21 x1( k ) − a23 x3k ) − L − a2 n xnk ) ) a22 LLLL ( k +1) 1 ( ( ) xn = (bn − an1 x1( k ) − an 2 x2k ) − L − ann −1 xnk 1 ) − ann
高斯-赛德尔 高斯 赛德尔(Seidel)迭代公式 赛德尔 迭代公式
i −1 n 1 ( k +1) ( k +1) (k ) xi = (bi − ∑aij x j − ∑aij x j ), aii j =1 j =i +1

迭代法的收敛性

迭代法的收敛性


det[I (D L)1U ] 0
从而 det(D L)1 det[(D L) U ] 0
所以
det[(D L) U ] 0
可得
因为
|aii| |aij | ji
i1
n
|||aii||| |aij ||| |aij |
j1
j i 1
i1
n
n
|| |aij| |aij| (||1) |aij|
(1)写出解该方程组旳Jacobi迭代旳迭代
阵,并讨论迭代收敛旳条件;
(2)写出解该方程组旳G-S迭代旳迭代阵, 并讨论迭代收敛旳条件。
17
补充例题
例:AX=b为二元线性方程组, 证明:解该方程组旳Jacobi迭代与G-S迭 代同步收敛或同步发散。
18
9
特殊方程组迭代法旳收敛性
4 1 1 问题:该矩阵具有怎样旳特点?
2 5 1 1
2
3
结论:该矩阵是严格对角占优阵
定义:假如矩阵A旳元素满足
jn
| aii | | aij | i 1,2,3,, n j 1 ji
则称A为严格对角占优矩阵。
10
特殊方程组迭代法旳收敛性
定理:若线性方程组AX=b旳系数矩阵A为 严格对角占优矩阵,则解该方程组旳Jacobi 迭代法和G-S迭代法均收敛。
2
一阶定常迭代法旳收敛性
则: (k 1) B (k ) B 2 (k 1) B k 1 (0)
注意 (0) x(0) x * 为非零常数向量
所以迭代法收敛旳充要条件
lim (k1) lim( x(k1) x*) 0
k
k
可转变为
lim Bk1 0

数值分析中的迭代法收敛性分析

数值分析中的迭代法收敛性分析

数值分析中的迭代法收敛性分析迭代法是数值分析领域中常用的一种数值计算方法,通过迭代逼近的方式求解数值问题。

在使用迭代法时,我们需要关注其收敛性,即迭代过程是否能够逼近问题的解。

本文将探讨数值分析中的迭代法收敛性分析方法。

一、迭代法的基本概念迭代法是一种通过逐次逼近的方式求解数值问题的方法。

在求解问题时,我们通过不断使用公式迭代计算,直到满足某个特定的条件为止。

迭代法在实际应用中广泛使用,例如求解方程组、求解最优化问题等。

二、迭代法的数学模型我们可以用以下数学模型描述迭代法的过程:设迭代公式为:x_(n+1) = g(x_n),其中x_n表示第n次迭代的结果,g(x)为迭代函数。

三、迭代法的收敛性在使用迭代法时,我们希望迭代过程能够收敛到问题的解。

迭代法的收敛性分析是判断迭代过程是否能够收敛的关键。

1.线性收敛如果迭代法满足以下条件:1)对于任意的x_0,如果|x_n - x*| / |x_(n-1) - x*| ≤ C (0 < C < 1),其中x*为问题的解,那么称迭代法是线性收敛的。

2)线性收敛的迭代法需要满足条件|x_1 - x*| / |x_0 - x*| ≤ C (0 < C <1)。

2.超线性收敛如果迭代法满足以下条件:对于任意的x_0,如果|x_n - x*| / |x_(n-1) - x*|^p ≤ C (0 < C < 1, p > 1),那么称迭代法是超线性收敛的。

3.二次收敛如果迭代法满足以下条件:对于任意的x_0,如果|x_n - x*| / |x_(n-1) - x*|^2 ≤ C (0 < C < 1),那么称迭代法是二次收敛的。

四、判断迭代法的收敛性在实际应用中,判断迭代法的收敛性是非常重要的。

下面介绍几种常用的判断方法。

1.收敛准则根据数列极限的定义,如果一个数列{x_n}满足:对于任意ε > 0,存在正整数N,当n > N时,有|x_n - x*| < ε,则称{x_n}收敛于x*。

第二节迭代法及其收敛性PPT课件

第二节迭代法及其收敛性PPT课件

证明: 由微分中值定理可得
ek1 xk1 x g(xk)g(x) g(k)(xk x) g(k)ek
其中k在xk与x之间, 再由局部收敛可知
limek1 e k
k
lki mg(k)
g(x)
故迭代格式是线性收敛的.
定理7.2.3 设x是迭代函数g(x)的不动点,整数p 1, g(p)(x)在x
的邻域上连续,则迭代格式在x的邻域上是p阶收敛的充分必
1.732361 1.732051
注意 31.7,32从0计5算0 结8 果看到迭代法(1) 及(2)均不收敛,且它们均不满足定理3中的局部收敛条 件,迭代法(3)和(4)均满足局部收敛条件,且迭代法 (4)比(3)收敛快,因在迭代法(4)中 g(x*.)0
定义7.2.2 设迭代过程 xk1收g敛(x于k)方程
x2的根30
x* 3.
解 这里 f(x),可x2改写3为各种不同的等价形 式 xg,(x其) 不动点为 x*由此3构. 造不同的迭代法:
( 1 )x k 1 x k 2 x k 3 ,g ( x ) x 2 x 3 ,
g ( x ) 2 x 1 ,g ( x * g ) (3 ) 2 3 1 1 .
xg(x).
(2.1)
若要求 x满* 足 f (x*,) 则0 x;*反之g(亦x*然), 称 x为* 函数 g的( x一) 个不动点.
求 f的(x零) 点就等价于求 的不(x动) 点,选择一个 初始近似值 x,0 将它代入(2.1)右端,即可求得
x1 g(x0).
如此反复迭代计算
x k 1 g (x k) (k 0 ,1 , ).
34
又因 132g(x),故33 定 理2 1中条件1°也成立.

6.3迭代法的收敛定理

6.3迭代法的收敛定理
det( D L) aii 0
i 1 n
所以矩阵(D-L)为可逆下三角矩阵,其逆也是下三角矩阵, G-S迭代法的迭代矩阵是 BG =(D - L)-1U。
考虑BG的特征值λ ,其特征方程为
det(I-BG) = det(I-(D-L)-1U) = det(D-L)-1det((D-L)-U)=0
易求
BJ

max
1i n
1 j n , j i

aij aii
由严格对角占优定义(定义6.1 ),得 BJ ∞<1,所以, Jacobi 迭代法收敛。
下面证明G-S迭代法的收敛性。对于严格对角占优阵A, 其对角元素 aii ≠ 0 , i=1,2,,n(定义6.1 ),故
定理6.3的证明
证 首先证明Jacobi 迭代的收敛性。由
0 a 21 B J D 1 ( L U ) a 22 a n1 a nn a12 a11 0 a n2 a nn a1n a11 a2n a 22 , 0 b1 a 11 b2 fJ a 22 b n a nn
返回节
二、Jacobi 迭代法和Gauss-Seidel 迭代法的收敛速度


引子 对角占优矩阵 实例 相关定理 定理3.3的证明
返回节
引子
虽然利用定理6.1和定理6.2可以判定Jacobi 迭代 法和G-S迭代法的收敛性,但其中只有定理6.2对 Jacobi 迭代法使用比较方便,此外,对于大型方程 组,要求出G-S迭代矩阵BG和ρ(BG)以及Jacobi 迭代 矩阵BJ和ρ(BJ)都不是容易的事。

6-3迭代法的收敛性

6-3迭代法的收敛性

1
2 x1 2 x2 x3 3
讨论Jacobi法与Gauss-Seidel法旳收敛性。
解:由定理,迭代法是否收敛等价于迭代矩阵 旳谱半径是否<1,故应先求迭代矩阵。而
1 2 2
A 1 1
1
2 2 1
故A裂解后旳各矩阵分别为
1
D
1
1
0 0 0
L
1
0
0
2 2 0
0 2 2
| I
B |
1/a
2 / a 0
3 / a 2 / a

1 0 ,
2,3
|
4 a
|
故 (B) 4
|a|
由 (B) 1 得 | a | 4
故当 | a | 4 时,Jacobi迭代法收敛。
作业: 习题 1,2(2)
1 1 5
2 矩阵 B 1
1 2
0 1
不严格对角占优, 是弱对角占优
0 1 2
定义:假如矩阵A不能经过行旳互换和相应列 旳互换成为形式
A11 A12
0
A22
其中A11,A22为方阵,则称A为不可约.
例如:判断下列矩阵是否可约?
1 1 0
2 1 0
矩阵 A 1 1 0 是可约旳。 0 1 1
9 3
4 10
显然Aˊ是严格对角占优阵,所以对方程组
Ax b 用Jacobi法和Gauss-Seidel法均收敛。
例3*:设A=(aij)是二阶方阵,且a11a22≠0.试证 求解方程组Ax=b旳Jacobi法与Gauss-Seidel法 同步收敛或发散。
证明:Jacobi迭代矩阵为
0
BJ
a
21

迭代法的收敛性

迭代法的收敛性

谱半径分别是 ρ ( B ) =
30 15 , ρ ( M ) = 。均不收敛。 2 2
若交换方程的次序,得 Ax = b的同解方程组 Ax=b,
' '
3 − 10 9 −4 ' A= → A = 3 −10 9 −4 A '为严格对角占优阵,因而对方程组 A ' x = b '用 Jacobi与 Gauss − Seidel 迭代求解均收敛。
k →∞
x* = Mx* + g 由迭代公式有 x ( k ) − x* = Mx ( k −1) + g − Mx* − g = M ( x ( k −1) − x* ) = M 2 ( x ( k − 2) − x* ) = M k ( x (0) − x* ) 于是有 lim M k ( x (0) − x* ) = lim( x ( k ) − x* ) = 0
其特征方程
λ
1 λI − B = 2 1 2
1 2
λ
1 2 1 3 1 3 = λ − λ + 2 4 4
1 λ 2 1 2 = ( λ − ) ( λ + 1) = 0 2
1 , λ 3 = − 1, 因 而 ρ ( B ) = 1 得λ1 = λ 2 = 2 ⇒ J a c o b i迭 代 法 不 收 敛 。
移项得 代入得
(I − M ) x (k ) − x*
−1
1 ≤ 1− M
k
M ≤ 1− M
x (1 ) − x ( 0 ) 。
由误差估计式 x
(k )
−x
*

M
k
1− M
x (1) − x ( 0 )

8.3 迭代法收敛定理

8.3 迭代法收敛定理


5 7
其系数矩阵 A=
9 3
4 10
严格对角占优,故雅
可比迭代
xx1(2(kk11))
(5 4x2(k) ) / 9 0.7 0.3x1(k)
收敛
7
赛德尔迭代
xx2(1(kk11))
(5 4x2(k) ) / 9 0.7 0.3x1(k1)
A A
4
由于定理8.3揭示了第 k 次迭代的误差向量 与相邻两次迭代近似解之差的关系。
所以在设计迭代算法时可用相邻两次迭代近 似解之差 X (k1) X (k) 作为误差的估计值, 当误差估计值小于允许误差界时,便可以停 止迭代计算并输出数据结果。
5
定理8.2 若方程组AX = b 中,系数矩阵A是对
收敛
8
定理 若方程组AX = b 中,系数矩阵A是对称 正定阵,则对任意的初始向量X (0),赛德尔迭代法 是收敛的。
推论 A对称正定时,雅可比迭代法收敛的充要条 件是2D-A也对称正定,SOR迭代法收敛的充要条 件是 0 2
9
将迭代公式(8-26)改为

x (k 1) 1
§ 8.3 迭代法收敛定理
8.3.1 迭代法的收敛定理
雅可比迭代法 X (k+1) = BJ X(k)+ fJ 赛德尔迭代法 X (k+1) = BS X(k)+ fS 由此可知迭代法是通过变化等价方程组后, 建立迭代格式X (k+1) = B X(k)+ f ,其中B称为迭 代 矩阵。
10
当1<ω<2 时该迭代公式称为超松弛迭代法 超松弛迭代公式收敛的条件与赛德尔迭代收敛 条件相同。 很多数值计算的实例表明,超松弛迭代的收敛 速度比赛德尔迭代速度快。 在计算中对松弛因子的选取不好掌握。

复变函数迭代法的收敛性和稳定性分析

复变函数迭代法的收敛性和稳定性分析

复变函数迭代法的收敛性和稳定性分析复变函数迭代法是数值计算中常用的求解复变函数的数值方法。

在使用复变函数迭代法求解问题时,我们首先将复平面划分为若干个矩形或圆形区域,然后使用迭代公式进行迭代计算,直到达到预定的精度要求或满足一些停止准则为止。

本文将对复变函数迭代法的收敛性和稳定性进行详细的分析。

一、收敛性的分析在复平面上,定义一个函数f(z),其输入是复数z,输出也是复数。

对于给定的初始值z0,我们通过迭代公式z(n+1)=f(z(n))来进行迭代计算,直到满足一些停止准则为止。

那么我们需要分析迭代过程是否能收敛到问题的解。

下面是收敛性的分析过程。

1.收敛性定理在复平面上,如果函数f(z)是全局收敛的,即对于任意的初始值z0,迭代过程都会收敛到问题的解,那么我们称函数f(z)是全局收敛的。

收敛性定理指出,如果函数f(z)在一些区域R上解析,并且在该区域上的导数,f'(z),的模不大于1,即,f'(z),<=1,那么函数f(z)是局部收敛的。

2.收敛半径在复平面上,我们可以通过计算函数f(z)在一些点的导数值,f'(z),的模来判断收敛性。

当,f'(z),<1时,该点是函数f(z)的收敛点;当,f'(z),>1时,该点是函数f(z)的发散点。

收敛半径可以定义为函数f(z)收敛的最大半径,即,z,<R时,函数f(z)是收敛的。

3.收敛域和发散域根据函数f(z)在复平面上的性质,我们可以将复平面分为收敛域和发散域两部分。

收敛域是指函数f(z)在该区域内收敛的点的集合,发散域是指函数f(z)在该区域内发散的点的集合。

二、稳定性的分析稳定性是指在计算过程中的误差是否会扩散和放大。

在复变函数迭代法中,稳定性是一个重要的性质,对于保证计算结果的准确性和可靠性起到关键作用。

下面是稳定性的分析过程。

1.条件数和误差扩散在复变函数迭代法中,函数f(z)的条件数用来衡量函数的敏感性。

数值分析9(迭代法收敛性证明)

数值分析9(迭代法收敛性证明)

X (k1) X *
B( X (k) X * ) B2 ( X (k1) X * ) L Bk1( X (0) X * )
由X(0) 的任意性知
B* =lim Bk O (B) 1。
k
05:00
8/34
充分性 k
X (k1) BX (k) f B(BX (k1) f ) f L Bk1 X (0) B j f j0 则(I B)(I B B2 L Bk ) I Bk1,
(B) 1 lim Bk 0 k (I B)-1 = B j。 j0
lim X (k) (I B)1 f 说明迭代法产生的序列收敛。
k
05:00
9/34
谱半径小于1是迭代收敛的充要条件,但它不 易计算,所以在实际使用中通常并不好用。
由性质( A) A ,我们有如下推论 :
推论4.1 若||B||<1,则对任意的f和任意的初始向量 X(0)迭代法 X(k+1) =B X(k) +f 收敛。
是实对称正定矩阵时, Gauss-Seidel迭代法收敛。
定理 方程组 Ax=b 中, 若 A 是实对称正定矩阵,则
Jacobi迭法收敛?(反例)
05:00
20/34
定理4.5 设BJ元素均非负, 则下列关系有且 只有一个成立:
(1) (BJ ) (BGS ) 0; (2) 0<(BGS ) (BJ ) 1; (3) (BJ ) (BGS ) 1; (4) 1<(BJ ) (BGS )。
1 || B ||
证 X(k+1)–X* =B(X(k) – X* )
|| X(k+1) – X* || ≤ ||B(X(k) – X*) || ≤ ||B|| || X(k) – X* ||

迭代法收敛性分析

迭代法收敛性分析
(1) ||X(k)X *| | ||B|| ||X(k)X(k1)||
1||B||
(2) ||X(k)X*| | ||B|k | ||X(1)X(0)||
1||B||
博学之,审问之,慎寺之,明辩之, 笃行之。精心整理,欢迎收藏
1133 /18
证 由||B||<1,有
limX(k) X*
B注k+31: X(k) =B X(k-1) + f = B(B X(k-2) + f) + f =····
= Bk X(0) + ( I + B + ····+ Bk-1)f
≈ ( I – B )-1 f
博学之,审问之,慎寺之,明辩之, 笃行之。精心整理,欢迎收藏
99/18
例 线性方程组 A X = b, 分别取系数矩阵为
误差估计:
||X(k)X *| | ||B|| ||X(k)X(k1)|| 1||B||
||X(k)X*| | ||B|k | ||X(1)X(0)|| 1||B||
博学之,审问之,慎寺之,明辩之, 笃行之。精心整理,欢迎收藏
1155 /18
n
定义4.1 A=(aij)n×n, 如果 | a ii | | a ij |
2 2 0 B1=D\(D-A1); max(abs(eig(B1)))
(BJ)1 Ans= 1.2604e-005
博学之,审问之,慎寺之,明辩之, 笃行之。精心整理,欢迎收藏
1100 /18
0 2 2 BS 0 2 3
0 0 2
DL=tril(A1) B1=DL\(DL-A1) max(abs(eig(B1)))
迭ห้องสมุดไป่ตู้法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k
x* Mx* g 由迭代公式有 M (x
k k
x ( k ) x* Mx ( k 1) g Mx* g
( k 1)
x ) M (x
* 2 * k
( k 2) (k )
x ) M (x
* k
(0)
x )
*
于是有 lim M ( x
1 1 例:Ax b, A 2 1 2
1 2 1 1 讨论用三种迭代法求解的收敛性。 2 1 1 2 解:因A为对称且其各阶主子式皆大于零,故A为对称正定矩 1 2 阵。由判别条件3,Gauss-Seidel迭代法与松弛法(0 2) 均收敛。A不是弱对角占优阵,故不能用条件1判断。 0 1 -1 Jacobi迭代法的迭代矩阵为B I - D A 2 1 2 1 2 0 1 2 1 2 1 2 0

1,
1,由推论1无法判别收敛性。
对一些特殊的系数矩阵可给出几个常用的判 别收敛条件
设有线性方程组Ax b, 下列结论成立(收敛充分条件) 1.若A为严格对角占优阵或不可约弱对角占优阵,则 Jacobi迭代法和Gauss-Seidel迭代法均收敛。 2.若A为严格对角占优阵, 0 1, 则松弛法收敛。 3.若A为对称正定阵,则松弛法收敛的充要条件为 0 2。 10 1 2 2 1 0 B 1 2 1 上两例中: A 1 10 2 1 1 5 0 1 2 A为严格对角占优阵,故Jacobi与Gauss-Seidel迭 代均收敛。B为非严格对角占优阵,但为对称正定 阵, =1.4故松弛法收敛。
推论1 对任意初始向量x 和右端项g,若 M 1,由迭代
(0)
格式
x ( k 1) Mx ( k ) g
( k 0,1, 2, )

产生的向量序列{x ( k ) }收敛.
推论2 松弛法收敛的必要条件是0 2。
迭代法收敛与否只决定于迭代矩阵的谱半径,与初始向 量及右端项无关。对同一方程组,由于不同的迭代法迭代 矩阵不同,可能出现有的方法收敛,有的方法发散的情形。
Jacobi迭代法的迭代矩阵为
0 2 1 B I D A 1 0 2 2 2 1 0

其特征方程为
2
I B 1
2

2
2 1 3 0

因此有1 2 3 0, 于是 ( B ) 0 1, 所以Jacobi迭代法收敛。
x1 2 x2 2 x3 1 例:对方程组 x1 x2 x3 2 2 x 2 x x 3 2 3 1 讨论Jacobi迭代法与Gauss-Seidel迭代法的收敛性。
解:求迭代矩阵判别其谱半径是否小于1。 1 A 1 2 0 L 1 2 2 2 1 1 2 1 0 0 0 0 2 0 1 D 0 0 0 U 0 0 0 0 1 0 0 1 2 2 0 1 0 0
(0)
x ) lim( x
x )0
*
因为x (0)为任意n维向量,因此上式成立必须 由定理 (M ) 1.
lim M k 0
k
充分性:若 ( M ) 1, 则 1不是M 的特征值,因而有 det( I M ) 0, 于是对任意n维向量g , 方程组 I M x g 有唯一解,记为x* , 即 并且 又因为 lim M k 0
1.迭代法的收敛条件
定理:对任意初始向量x (0)和常数项g,由迭代格式 x ( k 1) Mx ( k ) g ( k 0,1, 2, ) 产生的向量序列{x ( k ) }收敛的充要条件是 (M ) 1.
证:必要性: 设存在n维向量x* , 使得 lim x ( k ) x*,则x*满足
1
特征方程 I M 0 2 3 ( 2) 2 0 0 0 2
特征值为1 0, 2 3 2, 故 ( M ) 2 1, 所以迭代发散。
上例说明了 0 2确实只是松弛法收敛的 必要条件,而非充要条件,因为Gauss-Seidel 迭代记为 1的情形。 判断定理虽然给出了判别迭代收敛的充要条 件,但要求逆矩阵和特征值。推论1与2仅分别 给出了收敛的充分与必要条件,许多情形下不 能起作用。如上例,两个方法均有 B M
k
x* Mx* g
x ( k ) x* M ( x ( k 1) x* ) M k ( x (0) x* ) lim (x ( k ) x* ) lim M k ( x (0) x* )=0
k k
所以,对任意初始向量x (0) , 都有 即由迭代公式x ( k 1) Mx ( k ) g 产生的向量序列{x ( k ) }收敛.
Gauss-Seidel迭代,M (D L) U ,由
1 0 0 DL 1 1 0 2 2 1 1 0 1 M ( D L ) U 1 1 0 2 1 0 0 ( D L) 1 1 1 0 0 2 1 0 0 2 2 0 2 2 0 0 0 1 0 2 3 1 0 0 0 0 0 2 2 2
相关文档
最新文档