选修2-3 2.2.1条件概率课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
n A
n B 6 1 6 1 (2) P B 36 6 36 6 n
P
2
2 P B | A
0
n AB n
3 1 6 2
9
2. 如图所示的正方形被平均分成9个部分,向大正 方形区域随机的投掷一个点(每次都能投中), 设投中最左侧3个小正方形的事件记为A,投中最 上面3个小正方形或中间的1个小正方形的事件记 为B,求 P(A|B), P(B|A),
P ( AB) n( AB) ( 3 )利用条件概率公式求 P B A P ( A) n( A)
8
1. 掷两颗均匀骰子,问: ⑴ “ 第一颗掷出6点”的概率是多少? ⑵ “掷出点数之和不小于10”的概率又是多少? ⑶ “已知第一颗掷出6点,则掷出点数之和不小于10”的概率呢?
11 12 13 14 15 16 33 34 35 36 43 44 45 46 53 54 55 56 63 64 65 66
练一练
21 22
31 32 41 42 51 52 61 62
23 24 25 26
61 62 63
64
65
66
B
A∩B
A
解:设Ω 为所有基本事件组成的全体,“第一颗掷出6点”为事件 “掷出点数之和不小于10”为事件B,则“已知第一颗掷出6点, 掷出点数之和不小于10”为事件AB
(1) P A n P AB 1 (3)1 P B | A
4
条件概率(conditional probability ) 1.定义
一般地,设A,B为两个事件,且 P ( A) 0 ,称
P ( AB ) 为事件A发生的条件下,事件B P B A P ( A) 发生的条件概率.
P(B|A)读作A发生的条件下B发生的概率,
n( AB) P ( AB) P B A n( A) P ( A)
1 1 P( B) 4 解:∵ P ( AB ) , , P ( A) 9 9 3 1 P ( AB ) 9 1 P( A | B) 4 4 P ( B) 9 1 P ( AB ) 9 1 P ( B | A) 1 3 P ( A) 3
10
收获
一、基本知识
P ( AB) 1. 条件概率的定义. P B A P( A) 0 P ( A) 2. 条件概率的性质. (1)有界性(2)可加性 n( AB) P ( AB ) P B A P B A 3. 条件概率的计算方法. n( A) P ( A)
(古典概型) (一般概型)
4. 求解条件概率的一般步骤
用字母表示有关事件 求相关量 代入公式求P(B|A)
二、思想方法
1.由特殊到一般 2.类比、归纳、推理 3.数形结合
11
作业
(1)课本54页练习1,2,3
12
13
在5道题中有3道理科题和2道文科题。 如果不放回地依次抽取2道题,求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率; (3)在第1次抽到理科题的条件下,第2次抽到理科题的概率。 解:设Ω为“从5道题中不放回地依次抽取2道题的样本 空间,“第1次抽到理科题”为事件A, “第2次抽到理科题”为事件B,则“第1次和第2次都抽到 理 n( A) 12 3 科题”就是事件 AB. 2 1 1 (1) n() A5 20, n( A) A3 A4 12, P( A) . n() 20 5 n(AB) 6 3 2 (2) n(AB ) A3 6, P( AB) . 3 n() 20 10
探究:
不妨记为 P( B
A)
AB B
B
已知A发生
A
3
思考: 计算 P(B A) ,涉及事件A和AB,那么用事件A 和
AB 的概率 P(A) 和P(AB)可以表P(B|A)吗?
B
n( A) P ( A) n( ) n( AB ) P ( AB ) n( )
已知A发生
AB
A
P ( B | A) ?
B
A∩B
A
P(B|A)相当于把A当做新的样本空间来计算AB发生的概率。
wenku.baidu.com
P(A|B)怎么读?怎么理解?怎么求解?
5
2.条件概率的性质: (1)有界性: 0 P B A 1
(2)可加性:如果B和C是两个互斥事件,则
P B C A P B A P C A
6
例1
高二数学 选修2-3
2.2.1条件概率
1
情景引入
三张奖券中只有一张能中奖,现分别由三名同学无放回 地抽取一张,奖品是“周杰伦演唱会门票一张”,那么问 最后一名同学中奖的概率是否比前两位小?
2
如果已经知道第一名同学没有中奖, 那么最后一名同学中奖的概率是多少? 知道第一名同学 的结果会影响最 后一名同学中奖 的概率吗?
(3)法1 P( B | A) P( AB) 10 1 . 3 2法2 P( A) 5
n( AB) 6 7 1 P( B | A) n( A) 12 2
想一想
你能归纳出求解条件概率的一般步骤吗?
求解条件概率的一般步骤: (1)用字母表示有关事件
(2)求P(AB),P(A)或n(AB),n(A)
n A
n B 6 1 6 1 (2) P B 36 6 36 6 n
P
2
2 P B | A
0
n AB n
3 1 6 2
9
2. 如图所示的正方形被平均分成9个部分,向大正 方形区域随机的投掷一个点(每次都能投中), 设投中最左侧3个小正方形的事件记为A,投中最 上面3个小正方形或中间的1个小正方形的事件记 为B,求 P(A|B), P(B|A),
P ( AB) n( AB) ( 3 )利用条件概率公式求 P B A P ( A) n( A)
8
1. 掷两颗均匀骰子,问: ⑴ “ 第一颗掷出6点”的概率是多少? ⑵ “掷出点数之和不小于10”的概率又是多少? ⑶ “已知第一颗掷出6点,则掷出点数之和不小于10”的概率呢?
11 12 13 14 15 16 33 34 35 36 43 44 45 46 53 54 55 56 63 64 65 66
练一练
21 22
31 32 41 42 51 52 61 62
23 24 25 26
61 62 63
64
65
66
B
A∩B
A
解:设Ω 为所有基本事件组成的全体,“第一颗掷出6点”为事件 “掷出点数之和不小于10”为事件B,则“已知第一颗掷出6点, 掷出点数之和不小于10”为事件AB
(1) P A n P AB 1 (3)1 P B | A
4
条件概率(conditional probability ) 1.定义
一般地,设A,B为两个事件,且 P ( A) 0 ,称
P ( AB ) 为事件A发生的条件下,事件B P B A P ( A) 发生的条件概率.
P(B|A)读作A发生的条件下B发生的概率,
n( AB) P ( AB) P B A n( A) P ( A)
1 1 P( B) 4 解:∵ P ( AB ) , , P ( A) 9 9 3 1 P ( AB ) 9 1 P( A | B) 4 4 P ( B) 9 1 P ( AB ) 9 1 P ( B | A) 1 3 P ( A) 3
10
收获
一、基本知识
P ( AB) 1. 条件概率的定义. P B A P( A) 0 P ( A) 2. 条件概率的性质. (1)有界性(2)可加性 n( AB) P ( AB ) P B A P B A 3. 条件概率的计算方法. n( A) P ( A)
(古典概型) (一般概型)
4. 求解条件概率的一般步骤
用字母表示有关事件 求相关量 代入公式求P(B|A)
二、思想方法
1.由特殊到一般 2.类比、归纳、推理 3.数形结合
11
作业
(1)课本54页练习1,2,3
12
13
在5道题中有3道理科题和2道文科题。 如果不放回地依次抽取2道题,求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率; (3)在第1次抽到理科题的条件下,第2次抽到理科题的概率。 解:设Ω为“从5道题中不放回地依次抽取2道题的样本 空间,“第1次抽到理科题”为事件A, “第2次抽到理科题”为事件B,则“第1次和第2次都抽到 理 n( A) 12 3 科题”就是事件 AB. 2 1 1 (1) n() A5 20, n( A) A3 A4 12, P( A) . n() 20 5 n(AB) 6 3 2 (2) n(AB ) A3 6, P( AB) . 3 n() 20 10
探究:
不妨记为 P( B
A)
AB B
B
已知A发生
A
3
思考: 计算 P(B A) ,涉及事件A和AB,那么用事件A 和
AB 的概率 P(A) 和P(AB)可以表P(B|A)吗?
B
n( A) P ( A) n( ) n( AB ) P ( AB ) n( )
已知A发生
AB
A
P ( B | A) ?
B
A∩B
A
P(B|A)相当于把A当做新的样本空间来计算AB发生的概率。
wenku.baidu.com
P(A|B)怎么读?怎么理解?怎么求解?
5
2.条件概率的性质: (1)有界性: 0 P B A 1
(2)可加性:如果B和C是两个互斥事件,则
P B C A P B A P C A
6
例1
高二数学 选修2-3
2.2.1条件概率
1
情景引入
三张奖券中只有一张能中奖,现分别由三名同学无放回 地抽取一张,奖品是“周杰伦演唱会门票一张”,那么问 最后一名同学中奖的概率是否比前两位小?
2
如果已经知道第一名同学没有中奖, 那么最后一名同学中奖的概率是多少? 知道第一名同学 的结果会影响最 后一名同学中奖 的概率吗?
(3)法1 P( B | A) P( AB) 10 1 . 3 2法2 P( A) 5
n( AB) 6 7 1 P( B | A) n( A) 12 2
想一想
你能归纳出求解条件概率的一般步骤吗?
求解条件概率的一般步骤: (1)用字母表示有关事件
(2)求P(AB),P(A)或n(AB),n(A)