支护桩计算书
钢板桩支护计算书二

深基坑支护设计2设计单位:XXX设计院设计人:XXX设计时间:2022-03-09 15:02:16[支护方案]排桩支护单位mιrrrπtπitτπrτπrrftτuruτffπfr!fi[基本信息]规范与规程《建筑基坑支护技术规程》JGJ 120-2012内力计算方法增量法支护结构安全等级二级层号 黏聚力 水下(kPa)内摩擦角 水下(度)水土 计算方法 m, c, K 值 不排水抗剪 强度(kPa)1 — — — In 法 4. 33 —2 — — — m 法0. 62—[土压力模型及系数调整]一般分布层号 土类 名称 水土 水压力 调整系数 外侧土压力 调整系数1 外侧土压力 调整系数2 内侧土压力 调整系数 内侧土压力 最大值(kPa) 1 素填土 分算 1.000 1.000 1.000 1.000 10000.000 2淤泥质土 分算1.0001.0001.0001.00010000.000[工况信息]工况 号 工况 类型 深度 (m) 支锚 道号 1 开挖 4. 000 —[设计参数]整体稳定计算方法瑞典条分法 稳定计算采用应力状态有效应力法 稳定计算合算地层考虑孔隙水压力 √ 条分法中的土条宽度(m) 1.00 刚度折减系数K0. 850弹性法土压力模型: 经典法土压力模型:一般[设计结果][结构计算] 各工况:工况 1 —刑(4 OOm )地表沉降图:土丘那 N∕m)色断mm)∣⅛(KN -m)财KN)(-65 49)-(74 22) (-10782)--(2375)(-2303)--(015) (O.O)-(OO)(-15 8β)-(28.91) (-0 00)—(35 35)(-24 12)-(1568) (-27 89)—(000)内力位移包络图:工% 1 —刑(4.00m )包络图支反力(KN) 解(mm)蟠 KN-m)* KN)(-23 03)-(015) (0 00)-(0 00)(-1588)--一(28 91) (-0 00)---(35 35)(-24 12)-(15.68) (-27 89)--(000)Λ⅛i(mm)------- 三角形法 景灿H 26mm[截面计算] [截面参数] 弯矩折减系数0. 85 剪力折减系数 1.00 荷载分项系数 1.25[内力取值] 段 号内力类型 弹性法 计算值 经典法 计算值 内力 设计值 内力 实用值基坑内侧最大弯矩(kN. m) 15. 88 0. 00 16. 87 16. 87 1基坑外侧最大弯矩(kN. m) 28.9135. 35 30. 72 3(). 72最大剪力(kN)24. 1227. 8930. 1530. 15[截面验算]基坑内侧抗弯验算(不考虑轴力) 。
钢板桩支护计算书

钢板桩支护计算书以开挖深度3.5米和宽度1.1米为准计算一设计资料1桩顶高程H1:1.900m 施工水位H2:1.600m2 地面标高H0:2.40m开挖底面标高H3:-1.100m 开挖深度H:3.500m3土的容重加全平均值γ1:18.3KN/m3土浮容重γ’: 10.0KN/m3内摩擦角加全平均值Ф:20.10°4均布荷q:20.0KN/m25每段基坑开挖长a=10.0m 基坑开挖宽b=1.1m二外力计算1作用于板桩上的土压力强度及压力分布图k a=tg2(45°-φ/2)=tg2(45-20.10/2)=0.49k p=tg2(45°+φ/2)=tg2(45+20.10/2)=2.05板桩外侧均布荷载换算填土高度h,h=q/r=20.0/18.3=1.09m桩顶以上土压力强度Pa1Pa1=r×(h+0.25)Ka=18.3×(1.09+0.25) ×0.49=12.0KN/m2水位土压力强度Pa2Pa2=r×(h+3.5 -3.00 )Ka=18.3×(1.09+3.5 -3.00 )× 0.49=14.3KN/m2开挖面土压力强度Pa3Pa3=[r×(h+3.5 -3.00 )+(r-rw)(3.00 +3.40)}Ka=[18.3×(1.09+3.6 -3.00 )+(18.3-10) ×(3.00+3.40)] ×0.49=40.28KN/m2三确定内支撑层数及间距按等弯距布置确定各层支撑的30#B型钢板桩能承受的最大弯距确定板桩顶悬臂端的最大允许跨度h:弯曲截面系W Z0=0.001350m3,折减系数β=0.7采用值W Z=βW Z0=0.00135×0.7=0.000945m3容许抗拉强[σ]= 200000.0KPa由公式σ=M/Wz得:最大弯矩M0=Wz×[σ]=189.0KN*m1假定最上层支撑位置与水位同高,则支点处弯矩M'=Pa1*(H1-H2)2/2+(Pa2-Pa2)(H1-H2)2/6=9.2KN*m<M0=189.0KN*m 故,支撑点可设置在水位下。
钢板桩支护结构设计计算书

钢板桩支护结构设计计算书一、计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑施工计算手册》江正荣编著3、《实用土木工程手册》第三版杨文渊编著4、《施工现场设施安全设计计算手册》谢建民编著5、《土力学与地基基础》二、参数信息1、基本参数2、土层参数3、荷载参数4、计算系数三、土压力计算土压力分布示意图附加荷载布置图1、主动土压力计算1)主动土压力系数K a1=tan2(45°- φ1/2)= tan2(45-13.15/2)=0.629;K a2=tan2(45°- φ2/2)= tan2(45-13.15/2)=0.629;K a3=tan2(45°- φ3/2)= tan2(45-15/2)=0.589;K a4=tan2(45°- φ4/2)= tan2(45-15/2)=0.589;K a5=tan2(45°- φ5/2)= tan2(45-15/2)=0.589;K a6=tan2(45°- φ6/2)= tan2(45-15/2)=0.589;K a7=tan2(45°- φ7/2)= tan2(45-15/2)=0.589;2)土压力、地下水产生的水平荷载第1层土:0-1.2mH1'=[∑γ0h0+∑q1]/γi=[0+3]/19.4=0.155mP ak1上=γ1H1'K a1-2c1K a10.5=19.4×0.155×0.629-2×32.25×0.6290.5=-49.263kN/m2 P ak1下=γ1(h1+H1')K a1-2c1K a10.5=19.4×(1.2+0.155)×0.629-2×32.25×0.6290.5=-34.62kN/m2第2层土:1.2-2.55mH2'=[∑γ1h1+∑q1]/γsati=[23.28+3]/20=1.314mP ak2上=[γsat2H2'-γw(∑h1-h a)]K a2-2c2K a20.5+γw(∑h1-h a)=[20×1.314-10×(1.2-1.2)]×0.629-2×32.25×0.6290.5+10×(1.2-1.2)=-34.625kN/m2P ak2下=[γsat2(H2'+h2)-γw(∑h1-h a)]K a2-2c2K a20.5+γw(∑h1-h a)=[20×(1.314+1.35)-10×(2.55-1.2)]×0.629-2×32.25×0.6290.5+10×(2.55-1.2)=-12.633kN/m2第3层土:2.55-4mH3'=[∑γ2h2+∑q1]/γsati=[50.28+3]/22=2.422mP ak3上=[γsat3H3'-γw(∑h2-h a)]K a3-2c3K a30.5+γw(∑h2-h a)=[22×2.422-10×(2.55-1.2)]×0.589-2×62×0.5890.5+10×(2.55-1.2)=-58.233kN/m2P ak3下=[γsat3(H3'+h3)-γw(∑h2-h a)]K a3-2c3K a30.5+γw(∑h2-h a)=[22×(2.422+1.45)-10×(4-1.2 )]×0.589-2×62×0.5890.5+10×(4-1.2)=-33.484kN/m2第4层土:4-5.55mH4'=[∑γ3h3+∑q1+∑q1b1/(b1+2a1)]/γsati=[82.18+3+1.167]/22=3.925mP ak4上=[γsat4H4'-γw(∑h3-h a)]K a4-2c4K a40.5+γw(∑h3-h a)=[22×3.925-10×(4-1.2)]×0.589-2×62×0.5890.5+10×(4-1.2)=-32.797kN/m2P ak4下=[γsat4(H4'+h4)-γw(∑h3-h a)]K a4-2c4K a40.5+γw(∑h3-h a)=[22×(3.925+1.55)-10×(5.55-1.2)]×0.589-2×62×0.5890.5+10×(5.55-1.2)=-6.342kN/m2第5层土:5.55-7mH5'=[∑γ4h4+∑q1+∑q1b1/(b1+2a1)]/γsati=[116.28+3+1.167]/22=5.475mP ak5上=[γsat5H5'-γw(∑h4-h a)]K a5-2c5K a50.5+γw(∑h4-h a)=[22×5.475-10×(5.55-1.2)]×0.589-2×62×0.5890.5+10×(5.55-1.2)=-6.342kN/m2P ak5下=[γsat5(H5'+h5)-γw(∑h4-h a)]K a5-2c5K a50.5+γw(∑h4-h a)=[22×(5.475+1.45)-10×(7-1.2 )]×0.589-2×62×0.5890.5+10×(7-1.2)=18.407kN/m2第6层土:7-8.55mH6'=[∑γ5h5+∑q1+∑q1b1/(b1+2a1)+∑q1b1l1/((b1+2a1)(l1+2a1)]/γsati=[148.18+3+1.167+0. 5]/22=6.948mP ak6上=[γsat6H6'-γw(∑h5-h a)]K a6-2c6K a60.5+γw(∑h5-h a)=[22×6.948-10×(7-1.2)]×0.589-2×62×0.5890.5+10×(7-1.2)=18.705kN/m2P ak6下=[γsat6(H6'+h6)-γw(∑h5-h a)]K a6-2c6K a60.5+γw(∑h5-h a)=[22×(6.948+1.55)-10×(8.55-1.2)]×0.589-2×62×0.5890.5+10×(8.55-1.2)=45.16kN/m2第7层土:8.55-9mH7'=[∑γ6h6+∑q1+∑q1b1/(b1+2a1)+∑q1b1l1/((b1+2a1)(l1+2a1)]/γsati=[182.28+3+1.167+0.5]/20=9.347mP ak7上=[γsat7H7'-γw(∑h6-h a)]K a7-2c7K a70.5+γw(∑h6-h a)=[20×9.347-10×(8.55-1.2)]×0.589-2×0×0.5890.5+10×(8.55-1.2)=140.316kN/m2P ak7下=[γsat7(H7'+h7)-γw(∑h6-h a)]K a7-2c7K a70.5+γw(∑h6-h a)=[20×(9.347+0.45)-10×(9-1.2 )]×0.589-2×0×0.5890.5+10×(9-1.2)=147.467kN/m23)水平荷载临界深度:Z0=7-P ak5下h5/(P ak5上+P ak5下)=7-18.407×1.45/(6.342+18.407)=5.922m;第1层土E ak1=0kN;第2层土E ak2=0kN;第3层土E ak3=0kN;第4层土E ak4=0kN;第5层土E ak5=0.5P ak5下Z0b a=0.5×18.407×5.922×0.001=0.055kN;a a5=(7-Z0)/3+∑h6=(7-5.922)/3+2=2.359m;第6层土E ak6=h6(P a6上+P a6下)b a/2=1.55×(18.705+45.16)×0.001/2=0.049kN;a a6=h6(2P a6上+P a6下)/(3P a6上+3P a6下)+∑h7=1.55×(2×18.705+45.16)/(3×18.705+3×45.16)+0.45=1.118m;第7层土E ak7=h7(P a7上+P a7下)b a/2=0.45×(140.316+147.467)×0.001/2=0.065kN;a a7=h7(2P a7上+P a7下)/(3P a7上+3P a7下)=0.45×(2×140.316+147.467)/(3×140.316+3×147.467)=0.223m;土压力合力:E ak=ΣE aki=0+0+0+0+0.055+0.049+0.065=0.169kN;合力作用点:a a=Σ(a ai E aki)/E ak=(0×0+0×0+0×0+0×0+2.359×0.055+1.118×0.049+0.223×0.065)/0.169=1.178m;2、被动土压力计算1)被动土压力系数K p1=tan2(45°+ φ1/2)= tan2(45+15/2)=1.698;K p2=tan2(45°+ φ2/2)= tan2(45+15/2)=1.698;K p3=tan2(45°+ φ3/2)= tan2(45+15/2)=1.698;K p4=tan2(45°+ φ4/2)= tan2(45+15/2)=1.698;2)土压力、地下水产生的水平荷载第1层土:5-5.55mH1'=[∑γ0h0]/γi=[0]/20=0mP pk1上=γ1H1'K p1+2c1K p10.5=20×0×1.698+2×62×1.6980.5=161.581kN/m2P pk1下=γ1(h1+H1')K p1+2c1K p10.5=20×(0.55+0)×1.698+2×62×1.6980.5=180.259kN/m2 第2层土:5.55-6.2mH2'=[∑γ1h1]/γi=[11]/20=0.55mP pk2上=γ2H2'K p2+2c2K p20.5=20×0.55×1.698+2×62×1.6980.5=180.259kN/m2P pk2下=γ2(h2+H2')K p2+2c2K p20.5=20×(0.65+0.55)×1.698+2×62×1.6980.5=202.333kN/m2 第3层土:6.2-8.55mH3'=[∑γ2h2]/γsati=[24]/22=1.091mP pk3上=[γsat3H3'-γw(∑h2-h p)]K p3+2c3K p30.5+γw(∑h2-h p)=[22×1.091-10×(1.2-1.2)]×1.698 +2×62×1.6980.5+10×(1.2-1.2)=202.336kN/m2P pk3下=[γsat3(H3'+h3)-γw(∑h2-h p)]K p3+2c3K p30.5+γw(∑h2-h p)=[22×(1.091+2.35)-10×(3.55 -1.2)]×1.698+2×62×1.6980.5+10×(3.55-1.2)=273.72kN/m2第4层土:8.55-9mH4'=[∑γ3h3]/γsati=[75.7]/20=3.785mP pk4上=[γsat4H4'-γw(∑h3-h p)]K p4+2c4K p40.5+γw(∑h3-h p)=[20×3.785-10×(3.55-1.2)]×1.69 8+2×0×1.6980.5+10×(3.55-1.2)=112.136kN/m2P pk4下=[γsat4(H4'+h4)-γw(∑h3-h p)]K p4+2c4K p40.5+γw(∑h3-h p)=[20×(3.785+0.45)-10×(4-1.2 )]×1.698+2×0×1.6980.5+10×(4-1.2)=124.277kN/m23)水平荷载第1层土E pk1=b a h1(P p1上+P p1下)/2=0.001×0.55×(161.581+180.259)/2=0.094kN;a p1=h1(2P p1上+P p1下)/(3P p1上+3P p1 )+∑h2=0.55×(2×161.581+180.259)/(3×161.581+3×180.259)+3.45=3.72m;下第2层土E pk2=b a h2(P p2上+P p2下)/2=0.001×0.65×(180.259+202.333)/2=0.124kN;a p2=h2(2P p2上+P p2下)/(3P p2上+3P p2)+∑h3=0.65×(2×180.259+202.333)/(3×180.259+3×202.333)+2.8=3.119m;下第3层土E pk3=b a h3(P p3上+P p3下)/2=0.001×2.35×(202.336+273.72)/2=0.559kN;a p3=h3(2P p3上+P p3下)/(3P p3上+3P p3)+∑h4=2.35×(2×202.336+273.72)/(3×202.336+3×273.72)+0.45=1.566m;下第4层土E pk4=b a h4(P p4上+P p4下)/2=0.001×0.45×(112.136+124.277)/2=0.053kN;a p4=h4(2P p4上+P p4下)/(3P p4上+3P p4下)=0.45×(2×112.136+124.277)/(3×112.136+3×124.277)=0.221m;土压力合力:E pk=ΣE pki=0.094+0.124+0.559+0.053=0.83kN;合力作用点:a p=Σ(a pi E pki)/E pk=(3.72×0.094+3.119×0.124+1.566×0.559+0.221×0.053)/0.83=1.956m;3、基坑内侧土反力计算1)主动土压力系数K a1=tan2(45°-φ1/2)= tan2(45-15/2)=0.589;K a2=tan2(45°-φ2/2)= tan2(45-15/2)=0.589;K a3=tan2(45°-φ3/2)= tan2(45-15/2)=0.589;K a4=tan2(45°-φ4/2)= tan2(45-15/2)=0.589;2)土压力、地下水产生的水平荷载第1层土:5-5.55mH1'=[∑γ0h0]/γi=[0]/20=0mP sk1上=(0.2φ12-φ1+c1)∑h0(1-∑h0/l d)υ/υb+γ1H1'K a1=(0.2×152-15+62)×0×(1-0/4)×0.012/0 .012+20×0×0.589=0kN/m2P sk1下=(0.2φ12-φ1+c1)∑h1(1-∑h1/l d)υ/υb+γ1(h1+H1')K a1=(0.2×152-15+62)×0.55×(1-0.55/4 )×0.012/0.012+20×(0+0.55)×0.589=50.121kN/m2第2层土:5.55-6.2mH2'=[∑γ1h1]/γi=[11]/20=0.55mP sk2上=(0.2φ22-φ2+c2)∑h1(1-∑h1/l d)υ/υb+γ2H2'K a2=(0.2×152-15+62)×0.55×(1-0.55/4)×0. 012/0.012+20×0.55×0.589=50.121kN/m2P sk2下=(0.2φ22-φ2+c2)∑h2(1-∑h2/l d)υ/υb+γ2(h2+H2')K a2=(0.2×152-15+62)×1.2×(1-1.2/4)×0.012/0.012+20×(0.55+0.65)×0.589=91.416kN/m2第3层土:6.2-8.55mH3'=[∑γ2h2]/γsati=[24]/22=1.091mP sk3上=(0.2φ32-φ3+c3)∑h2(1-∑h2/l d)υ/υb+[γsat3H3'-γw(∑h2-h p)]K p3+γw(∑h2-h p)=(0.2×152-1 5+62)×1.2×(1-1.2/4)×12/12+[22×1.091-10×(1.2-1.2)]×0.589+10×(1.2-1.2)=91.417kN /m2P sk3下=(0.2φ32-φ3+c3)∑h3(1-∑h3/l d)υ/υb+[γsat3(H3'+h3)-γw(∑h3-h p)]K p3+γw(∑h3-h p)=(0.2×152-15+62)×3.55×(1-3.55/4)×12/12+[22×(1.091+2.35)-10×(3.55-1.2)]×0.589+10×(3. 55-1.2)=90.989kN/m2第4层土:8.55-9mH4'=[∑γ3h3]/γsati=[75.7]/20=3.785mP sk4上=(0.2φ42-φ4+c4)∑h3(1-∑h3/l d)υ/υb+[γsat4H4'-γw(∑h3-h p)]K p4+γw(∑h3-h p)=(0.2×152-1 5+0)×3.55×(1-3.55/4)×12/12+[20×3.785-10×(3.55-1.2)]×0.589+10×(3.55-1.2)=66.22 7kN/m2P sk4下=(0.2φ42-φ4+c4)∑h4(1-∑h4/l d)υ/υb+[γsat4(H4'+h4)-γw(∑h4-h p)]K p4+γw(∑h4-h p)=(0.2×152-15+0)×4×(1-4/4)×12/12+[20×(3.785+0.45)-10×(4-1.2)]×0.589+10×(4-1.2)=61.39 6kN/m23)水平荷载第1层土P sk1=b0h1(P s1上+P s1下)/2=0.001×0.55×(0+50.121)/2=0.014kN;a s1=h1(2P s1上+P s1下)/(3P s1上+3P s1下)+∑h2=0.55×(2×0+50.121)/(3×0+3×50.121)+3.45=3.633m;第2层土P sk2=b0h2(P s2上+P s2下)/2=0.001×0.65×(50.121+91.416)/2=0.046kN;a s2=h2(2P s2上+P s2下)/(3P s2上+3P s2 )+∑h3=0.65×(2×50.121+91.416)/(3×50.121+3×91.416)+2.8=3.093m;下第3层土P sk3=b0h3(P s3上+P s3下)/2=0.001×2.35×(91.417+90.989)/2=0.214kN;a s3=h3(2P s3上+P s3下)/(3P s3上+3P s3 )+∑h4=2.35×(2×91.417+90.989)/(3×91.417+3×90.989)+0.45=1.626m;下第4层土P sk4=b0h4(P s4上+P s4下)/2=0.001×0.45×(66.227+61.396)/2=0.029kN;a s4=h4(2P s4上+P s4下)/(3P s4上+3P s4下)=0.45×(2×66.227+61.396)/(3×66.227+3×61.396)=0.228m;土压力合力:P pk=ΣP pki=0.014+0.046+0.214+0.029=0.303kN;合力作用点:a s=Σ(a si P ski)/P pk=(3.633×0.014+3.093×0.046+1.626×0.214+0.228×0.029)/0.303=1.808m;P sk=0.303kN≤E p=0.83kN满足要求!四、稳定性验算1、嵌固稳定性验算E pk a pl/(E ak a al)=0.83×1.956/(0.169×1.178)=8.155≥K e=1.2满足要求!2、整体滑动稳定性验算圆弧滑动条分法示意图K si=∑{c j l j+[(q j b j+ΔG j)cosθj-μj l j]tanφj}/∑(q j b j+ΔG j)sinθc j、φj──第j土条滑弧面处土的粘聚力(kPa)、内摩擦角(°);b j──第j土条的宽度(m);θj──第j土条滑弧面中点处的法线与垂直面的夹角(°);l j──第j土条的滑弧段长度(m),取l j=b j/cosθj;q j──作用在第j土条上的附加分布荷载标准值(kPa) ;ΔG j──第j土条的自重(kN),按天然重度计算;u j──第j土条在滑弧面上的孔隙水压力(kPa),采用落底式截水帷幕时,对地下水位以下的砂土、碎石土、粉土,在基坑外侧,可取u j=γw h waj,在基坑内侧,可取u j=γw h wpj;滑弧面在地下水位以上或对地下水位以下的粘性土,取u j =0;γw──地下水重度(kN/m3);h waj──基坑外侧第j土条滑弧面中点的压力水头(m);h wpj──基坑内侧第j土条滑弧面中点的压力水头(m);min{ K s1,K s2,……,K si,……}=0.855< K s=1.3不满足要求,增加内支撑,详见支撑计算书3、渗透稳定性验算渗透稳定性简图承压水作用下的坑底突涌稳定性验算:D γ /(h wγw) =∑h iγi /(h wγw)=(0.55×20+3×20+0.75×20.5)/(6×10)=1.44D γ /(h wγw) =1.44≥K h=1.1满足要求!五、结构计算1、材料参数2、支护桩的受力简图计算简图弯矩图(kN·m)M k=0.324kN.m剪力图(kN)V k=0.21kN3、强度设计值确定M=γ0 γF M k=1×1.25×0.324=0.405kN·mV=γ0γF V k=1×1.25×0.21=0.263kN4、材料的强度计算σmax=M/(γW)=0.405×106/(1.05×88×103)=4.383N/mm2≤[f]=205N/mm2满足要求!H`=(WH2-(H-t)2(W-2t))/(2(WH-(H-t)(W-2t))=(400×852-(85-8)2(400-2×8))/(2(400×85 -(85-8)(400-2×8))=69mmS=t(H-H`)2=8×(85-69)2=2048mm3,τmax=VS/It=0.263×2048×103/(598×104×8)=0.011N/mm2≤[f]=125N/mm2满足要求!。
支护桩工程量计算书

5.39
t
43
A3-803
直螺纹接头 Φ16mm以内
23×6
பைடு நூலகம்138
个
44
A3-805
直螺纹接头 Φ20mm以内
23×10
230
个
45
A9-62
基础梁 九夹板模板 钢支撑
210.4×0.5×2+210.4×0.1×2
252.48
m2
46
47
四、排水沟
48
G1-252
人工挖沟槽土方 三类土,深度 2m以内 【基坑顶】
工 程 量 计 算 书
sheet1
第 3 页
行号
定额编号
名 称
代号
计 算 式
结 果
单位
61
第二排
土钉
0.8×164[根]×1.58[kg/m]
207.3
62
第三排
土钉
0.8×139[根]×1.58[kg/m]
175.7
63
第四排
土钉
0.8×139[根]×1.58[kg/m]
175.7
64
65
六、钢板网混凝土护面
43.96
m3
27
A3-744
钢筋笼制、安
SUM(钢筋笼)÷1000
74.33
t
编制人:工 程 量 计 算 书
工 程 量 计 算 书
sheet1
第 2 页
行号
定额编号
名 称
代号
计 算 式
结 果
单位
28
主筋 10Φ22
钢筋笼
12[m]×10[根]×175[根]×2.986[kg/m]
深基坑支护设计计算书(钢板桩)

----------------------------------------------------------------------
[ 基本信息 ]
----------------------------------------------------------------------
规范与规程
工况 类型 开挖 加撑 开挖 加撑
深度 (m) 2.000 --5.500 ---
支锚 道号 --1.内撑 --2.内撑
内摩擦角 水下(度)
13.00 33.00
水土
合算 分算
计算方法 m,c,K 值
m法
4.68
m法
18.48
不排水抗剪 强度(kPa)
-----
----------------------------------------------------------------------
[ 支锚信息 ]
└每延米抗弯模量 W(cm3) └抗弯 f(Mpa) 有无冠梁 防水帷幕 放坡级数 超载个数 支护结构上的水平集中力
2200.00 215 无 无 0 1 0
----------------------------------------------------------------------
----------------------------------------------------------------------
支锚道数
2
支锚 道号
1 2
支锚类型
内撑 内撑
水平间距 (m)
0.400 0.400
竖向间距 (m)
1.500 3.500
入射角 (°)
12米钢板桩支护计算书

南三路基坑工程计算书1 工程概况该基坑设计总深7.2m,按一级基坑、选用《浙江省标准—建筑基坑工程技术规程(DB33/T1008-2000)》进行设计计算。
1.1 土层参数续表地下水位埋深:2.00m。
1.2 基坑周边荷载地面超载:0.0kPa2 开挖与支护设计基坑支护方案如图:南三路基坑工程基坑支护方案图2.1 挡墙设计·挡墙类型:钢板桩;·嵌入深度:7.700m;·露出长度:0.300m;·型钢型号:Q295bz-400×170;·桩间距:800mm;2.2 放坡设计2.2.1 第1级放坡设计坡面尺寸:坡高3.20m;坡宽2.00m;台宽3.10m。
放坡影响方式为:一。
2.3 支撑(锚)结构设计本方案设置1道支撑(锚),各层数据如下:第1道支撑(锚)为平面内支撑,距墙顶深度1.500m,工作面超过深度0.300m,预加轴力0.00kN/m。
该道平面内支撑具体数据如下:·支撑材料:钢支撑;·支撑长度:8.000m;·支撑间距:4.000m;·与围檩之间的夹角:90°;·不动点调整系数:0.800;·型钢型号:钢管300*8;·根数:1;·松弛系数:1.000。
计算点位置系数:0.500,围檩数据:围檩型钢型号:300*300*10*15、根数:1。
2.4 工况顺序该基坑的施工工况顺序如下图所示:3 内力变形计算3.1 计算参数水土计算(分算/合算)方法:按土层分/合算;水压力计算方法:静止水压力,修正系数:1.0;主动侧土压力计算方法:朗肯主动土压力,分布模式:三角形,调整系数:1.0,负位移不考虑土压力增加;被动侧基床系数计算方法: "m"法,土体抗力不考虑极限土压力限值;墙体抗弯刚度折减系数:1.0。
3.2 计算结果3.2.1 水土压力计算结果计算宽度:0.80m。
计算书配置

聊夏路钢板桩支护方案计算书1 工程概况涵洞采用明挖基础,钻孔桩施工。
既有路基采用H型桩进行防护,桩长12.0m,防护高度6米,嵌入深度6m,对沿线路方向型钢桩打设1排,共计29根。
2 工程基本设计计算参数2.1 基本参数本工程按三级进行计算。
2.2 土层参数编号名称厚度(m) 重度(kN/m3) 内聚力(kPa) 内摩擦角(°) 比重天然孔隙比1 路堤土 1.80 19.00 15.00 25.00 2.50 1.002 粉土 5.00 18.10 21.00 25.00 2.50 1.003 粉土1 3.00 18.10 21.00 25.00 2.50 1.00编号名称厚度(m) 重度(kN/m3) 内聚力(kPa) 内摩擦角(°) 比重天然孔隙比4 粉土2 3.70 18.00 21.00 25.00 2.50 1.00地下水位埋深0.50m2.3 桩墙设计钢板桩型号:HN400*200桩距:200.00mm嵌入深度:4.00m2.4 地下水处理设计处理方法:降水坑内水位设计降深:0.50m2.5 支锚结构设计2.5.1 支撑设计支撑编号:1支撑类型:钢支撑支撑长度:1.50m支撑间距:2.00m型钢型号:HN400*200根数:1预加力:0.0kN松弛系数:1.00m支撑编号:2支撑类型:钢支撑支撑长度:1.50m支撑间距:2.00m型钢型号:HN400*200根数:1预加力:0.0kN松弛系数:1.00m支撑编号:3支撑类型:钢支撑支撑长度:1.50m支撑间距:2.00m型钢型号:HN400*200根数:1预加力:0.0kN松弛系数:1.00m2.5.2 锚杆设计2.6 施工工况设计序号名称工况类型支锚编号距桩顶深度(m) 施工荷载(kPa)1 开挖至0.3m 开挖- 0.30 20.002 安装3 加支撑 3 0.00 20.003 开挖至2.5m 开挖- 2.50 20.004 安装1 加支撑 1 2.20 20.005 开挖至4.5m 开挖- 4.50 20.006 安装2 加支撑 2 4.20 20.00序号 名称 工况类型 支锚编号距桩顶深度(m)施工荷载(kPa)7 开挖至8.0m 开挖 - 8.00 20.003 内力变形计算3.1 《上海市基坑工程设计规程》DBJ08-61-97方法3.1.1 计算参数3.1.1.1 水土压力计算方法:朗肯主动土压力计算模式: 水土分算,矩形分布模式 3.1.1.1 基床系数土层编号土类 m(MN/m4) kH(MN/m3)1 压实填土 11.5 NaN2 粉土 12.1 NaN3 粉土 12.1 NaN 4粘性土12.1NaN3.1.1.1 支点刚度 支撑支撑编号支撑深度(m)支撑刚度(MN/m2)3 0.0 1680.0 1 2.2 1680.0 24.21680.03.1.2 位移内力包络图3.1.3 支点反力汇总支撑支撑编号支撑深度(m)支撑压力范围(kN/m)支撑编号支撑深度(m) 支撑压力范围(kN/m)3 0.0 -12.9~0.51 2.2 -31.9~37.62 4.2 0.0~141.14 地表沉降计算4.1 自定义方法4.1.1 计算参数计算方法:同济抛物线方法。
钢板桩支护计算书

钢板桩支护计算书采用12m的拉森钢板桩进行基坑围护,围护示意图如下:沿钢板桩深度方向设立二道斜角400×400H型钢支撑,相应位置见上图。
根据地质勘探报告,得各土层物理参数如下:①层平均层厚为2.4m,容重取20kN/m3,粘结力c=0,主动侧压力系数取0.2;②层平均层厚为 3.0m,容重取20.3kN/m3,粘结力c=0,内摩擦角为33.33°,主动土压力系数Ka=tan2(45-33.33/2)=0.29,被动土压力系数Kp= tan2(45+33.33/2)=3.44;③层平均层厚为2.6m,容重取20.2kN/m3,粘结力c=51.3,内摩擦角为9.9°,主动土压力系数Ka=tan2(45-9.9/2)=0.71,被动土压力系数Kp= tan2(45+9.9/2)=1.42;④层平均层厚为7.4m,容重取19.7kN/m3,粘结力c=33.2,内摩擦角为11.4°,主动土压力系数Ka=tan2(45-11.4/2)=0.67,被动土压力系数Kp= tan2(45+11.4/2)=1.49;⑤层平均层厚为8.15m,容重取20.1kN/m3,粘结力c=68,内摩擦角为13.7°,主动土压力系数Ka=tan2(45-13.7/2)=0.62,被动土压力系数Kp= tan2(45+13.7/2)=1.62;一、钢板桩最小入土深度(根据C点支撑反力为零计算出最小入土深度)基坑开挖深度6m,取钢板桩单位长度为计算单元。
钢板桩为拉森III型钢板桩,围囹、支撑、锚桩均采用400×400的H型钢,相应的截面性能参数见计算书后附件。
按上图的支护方式,计算图式可简化为三点支撑的连续梁,结构简图及荷载分布图如下(采用结构力学求解器进行求解):结构弯矩图如下:剪力图如下:在此支撑模式下,坑底最小入土深度为1.2m。
此时支撑点C的反力为零。
出于安全考虑,钢板桩入土深度实际施工时按3m施工。
拉森钢板桩支护方案评估计算书

拉森钢板桩支护方案评估计算书1. 概述本文档旨在评估拉森钢板桩支护方案的设计和计算。
拉森钢板桩是一种常用的地基支护结构,适用于土方开挖、河道治理、基坑支护等工程中。
本评估计算书将根据设计要求和计算方法对拉森钢板桩支护方案进行综合评估。
2. 设计要求2.1. 土壤力学参数:根据现场勘探数据和试验结果,确定土壤斜坡角、内摩擦角、内聚力等基本参数。
2.2. 桩材料和尺寸:选择合适的拉森钢板桩材料,并确定桩长、板厚等尺寸参数。
2.3. 水平支撑和排水设计:根据工程需求,确定水平支撑和排水设施的设计要求。
2.4. 安全系数:根据国家相关标准和规范,确定各个设计参数的安全系数。
3. 计算方法3.1. 土压力计算:根据土壤力学理论,计算拉森钢板桩承受的土压力,并考虑土体的侧向土压力和摩阻力等因素。
3.2. 桩身受力计算:计算拉森钢板桩桩身所受的水平和垂直力,并考虑土压力的作用。
3.3. 稳定性评估:评估拉森钢板桩的整体稳定性,包括侧向稳定性和纵向稳定性。
3.4. 桩-土交互作用分析:分析拉森钢板桩与土壤之间的相互作用,确定桩-土界面的剪切应力和阻力等参数。
4. 评估结果通过使用上述的设计要求和计算方法,对拉森钢板桩支护方案进行评估,得出方案的稳定性、承载力和变形等评估结果。
5. 结论综合评估表明,拉森钢板桩支护方案满足设计要求,具备良好的稳定性和承载能力。
然而,还需要进行进一步的施工方案设计和现场监测,以确保该方案在实际工程中的可行性和安全性。
以上为拉森钢板桩支护方案评估计算书的简要内容,详细的设计和计算数据请参考相关附件。
拉森钢板桩支护方案计算书

拉森钢板桩⽀护⽅案计算书xxx有限公司拉森钢板桩⽀护⽅案计算书⽂件编号:受控状态:分发号:修订次数:第 1.0 次更改持有者:桂林市西⼆环路道路建设⼯程排⽔管道深基坑开挖施⼯⽅案计算书⼀、⼯程概况桂林市西⼆环路⼆合同段污⽔管道⼯程的起点K12+655,终点K17+748,埋设管道为聚氯⼄烯双壁波纹管(Ф500)和钢筋砼管(Ф800),基础采⽤粗砂垫层,基础⾄管顶上50cm范围为粗砂回填,其上为级配碎⽯回填⾄路床;起点管道底部标⾼为,管道平均埋深为⽶左右,最深为⽶,地下⽔位较⾼,其中有局部⾥程段厚⼟层以下是流沙层,开挖时垮塌较严重,为防⽌开挖时坍塌事故发⽣,特制定该⽅案,施⼯范围为K12+655~K14+724段左侧污⽔管。
本段施⼯段地质为松散耕⼟、粉质粘⼟,地下⽔位⾼,遇⽔容易形成流砂。
⼆、⽅案计算依据1、《桂林市西⼆环路道路建设⼯程(⼆期)施⼯图设计第三册(修改版-B)》(桂林市市政综合设计院)。
2、《市政排⽔管道⼯程及附属设施》(06MS201)。
3、《埋地聚⼄烯排⽔管管道⼯程技术规程》(CECS164:2004)。
4、《钢结构施⼯计算⼿册》(中国建筑⼯业出版社)。
5、《简明施⼯计算⼿册》(中国建筑⼯业出版社)。
三、施⼯⽅案简述1、钢板桩⽀护布置钢板桩采⽤拉森ISP-Ⅳ型钢板桩,其长度为12⽶/根,每个施⼯段50m需260根钢板桩。
根据施⼯段⼀般稳定⽔位154.0m和⽬前⽔位情况,取施⼯⽔位为154.00m。
根据管沟开挖深度(),钢板桩⽀护设置1道型钢圈梁和⽀撑。
以K14+100左侧排污管道钢板桩⽀护为例,桩顶标⾼为157.83m,桩底标⾼为148.83m,依次穿越松散耕⼟→粉质粘⼟层。
2、钢板桩结构尺⼨及截⾯参数拉森ISP-Ⅳ型钢板桩计算参数如下表所⽰:四、计算假设1、根据设计图纸中地勘资料提供的⼟层描述,本计算中⼟层参数按经验取值如下(K14+100钢板桩⽀护处):则计算取值:γ=18 KN/m3 ,φ=150,c=10 KPa 。
钢板桩支护计算手册

支护计算书一.设计资料该项目的支护结构非主体结构的一部分;开挖深度为9.7m<10m ;在等于开挖深度的水平距离内无临近建筑物.故可以认为该坑的安全等级为二级.重要性系数取γ0=1.0. 地面标高:-0.5m基础底面标高:-10.2m开挖深度:9.7m地下水位:-1.5m地面均布荷载:20kN/m 2土层:地表层有1m 厚的杂填土,其下为均质粉质粘土基坑外侧的粘土都看做饱和粘土;基坑内侧因为排水,看做有1.8m 深含水量16%的粘土,其下为饱和粘土.二.选择支护形式由于土质较好,水位较高,开挖深度一般,故选择钢板桩加单层土层锚杆支护.三.土压力计算1.竖向土压力的计算公式:j mj rk z γσ=基坑外侧:基坑内侧:2.主动土压力的计算取0'2 a e主动土压力零点:主动土压力示意图3.被动土压力的计算4.土压力总和开挖面以上只有主动土压力.开挖面以下:再往下,每米增加29.45kpa 的负向土压力.1m 条带中,土压力分块的合力 压力区块压力合力kN 距上端距离m 距下端距离m 1 15.19 0.58 0.42119.73k四.嵌固深度计算1.反弯点解得h=0.569m2.支点力Tc1设支点位于地面以下4m,即支点处标高为-4,5m对反弯点处弯矩为03.嵌固深度hd用软件解如下方程求最小hd,161.66x+5.7+29.45x+41.04x-1.8x-1.8/6+19.296x-1.39-1.215.19+275.74+4.125x -1.2845.57=0=7.500m解得hd五.弯矩计算根据建筑基坑支护技术规程JGJ120-99的规定按下列规定计算其设计值:截面弯矩设计值MM=1.25γ0M c式中γ——重要性系数,取1.01.锚固点弯矩设计值2.剪力为0处弯矩设计值开挖面上方设地面到该点距离为h23.剪力为0处弯矩设计值开挖面下方设开挖面到该点距离为h3选用FSP-Ⅲ型钢板桩日本产拉森钢板桩.钢板桩所受最大弯曲应力为:满足允许应力要求.基坑四角采用0.2×0.2的角桩.则钢板桩的支护面积为:该型号钢板桩每平米的质量为150kg 钢板桩总重:t kg 6.50150155268.3343150==⨯六.锚杆计算根据规范JGJ120-994.6.9锚杆长度设计应符合下列规定:1锚杆自由段长度不宜小于5m 并应超过潜在滑裂面1.5m ;2土层锚杆锚固段长度不宜小于4m ;3锚杆杆体下料长度应为锚杆自由段、锚固段及外露长度之和,外露长度须满足台座、腰梁尺寸及张拉作业要求.锚杆布置应符合以下规定:1锚杆上下排垂直间距不宜小于2.0m,水平间距不宜小于1.5m;2锚杆锚固体上覆土层厚度不宜小于4.0m ;3锚杆倾角宜15°-25°,为且不应大于45°.选用25°倾角.1.锚杆自由段长度锚杆自由段长度取5.2m,外伸长度0.5m.2.锚杆锚固长度设锚杆锚固长度为10m,其中点到地面距离为8.31m,直径为14cm.水平分力kN T T c d 49.2425.115.1=⨯=若取K=1.50,则修正为12m最后确定的锚固段长度为12m.3.钢拉杆截面选择取361φ,则其抗拉强度设计值:满足要求.七.围檩受力计算围檩受到拉锚和钢板桩传来作用力,可按简支梁计算.选用两排18的槽钢,33310⨯=⨯=W⨯10120mm2414.7.2满足要求.共需要376m的18热轧轻型槽钢.七.抗倾覆验算满足要求.。
设计采用钻孔灌注桩支护计算书

设计采用钻孔灌注桩支护计算书一、工程概况本次工程位于_____,周边环境较为复杂,场地地势起伏不大。
该工程为_____建筑,地上_____层,地下_____层,基础埋深_____m。
为确保基坑开挖及地下结构施工过程中的安全稳定,拟采用钻孔灌注桩进行支护。
二、地质条件根据地质勘察报告,场地土层自上而下依次为:1、填土:厚度约_____m,松散,主要由粉质黏土组成。
2、粉质黏土:厚度约_____m,可塑,承载力特征值为_____kPa。
3、粉土:厚度约_____m,稍密,承载力特征值为_____kPa。
4、粉砂:厚度约_____m,中密,承载力特征值为_____kPa。
地下水位埋深约_____m,年变化幅度约_____m。
三、支护方案钻孔灌注桩直径为_____mm,桩间距为_____m,桩长为_____m。
桩顶设置冠梁,截面尺寸为_____×_____mm。
四、计算参数1、土的物理力学参数填土:重度γ1 =____kN/m³,内摩擦角φ1 =____°,黏聚力 c1 =____kPa。
粉质黏土:重度γ2 =____kN/m³,内摩擦角φ2 =____°,黏聚力 c2 =____kPa。
粉土:重度γ3 =____kN/m³,内摩擦角φ3 =____°,黏聚力 c3 =____kPa。
粉砂:重度γ4 =____kN/m³,内摩擦角φ4 =____°,黏聚力 c4 = 0kPa。
2、桩的参数桩的弹性模量 E =____MPa。
桩的抗弯刚度 EI =____kN·m²。
3、地面超载 q =____kN/m²。
五、土压力计算采用朗肯土压力理论计算主动土压力和被动土压力。
1、主动土压力系数 Ka填土:Ka1 =tan²(45° φ1/2) =____粉质黏土:Ka2 =tan²(45° φ2/2) =____粉土:Ka3 =tan²(45° φ3/2) =____粉砂:Ka4 =tan²(45° φ4/2) =____2、被动土压力系数 Kp填土:Kp1 = tan²(45°+φ1/2) =____粉质黏土:Kp2 = tan²(45°+φ2/2) =____粉土:Kp3 = tan²(45°+φ3/2)=____粉砂:Kp4 = tan²(45°+φ4/2) =____3、各土层的主动土压力填土:ea1 =Ka1γ1h1 =____kN/m²粉质黏土:ea2 =Ka2γ2h2 +Ka1γ1h1 =____kN/m²粉土:ea3 =Ka3γ3h3 +Ka2γ2h2 +Ka1γ1h1 =____kN/m²粉砂:ea4 =Ka4γ4h4 +Ka3γ3h3 +Ka2γ2h2 +Ka1γ1h1 =____kN/m²4、各土层的被动土压力填土:ep1 =Kp1γ1h1 =____kN/m²粉质黏土:ep2 =Kp2γ2h2 +Kp1γ1h1 =____kN/m²粉土:ep3 =Kp3γ3h3 +Kp2γ2h2 +Kp1γ1h1 =____kN/m²粉砂:ep4 =Kp4γ4h4 +Kp3γ3h3 +Kp2γ2h2 +Kp1γ1h1 =____kN/m²六、桩的内力计算采用等值梁法计算桩的内力。
桩基计算书

桩基钢筋笼计算书一、CD段支护桩抗压桩共37根,配筋长度为11米,桩径A800。
1、主筋12C18 锚固筋长度为35d 容重2.0kg/m[(11+35d)+10d]×12×2×37/1000=10.49t。
2、加强定位筋C16@2000 容重1.58kg/mΠD=3.14×0.7=2.20m加强定位筋圈数6(2.20+10d)×6×1.58×37/1000=0.83t3、螺旋筋A8 容重0.395kg/m螺旋筋A8长度为11m,A8@20011/0.20.395×37/1000=1.77t注:d为钢筋直径D为钢筋笼直径0.7m4、水下C30混凝土方量(11+1)×3.14×D2×37/4=223.07m3二、DE段支护桩抗压桩共42根,配筋长度为12.5米,桩径A800。
1、主筋12C18 锚固筋长度为35d 容重2.0kg/m[(12.5+35d)+10d]×12×2×42/1000=13.42t。
2、加强定位筋C16@2000 容重1.58kg/mΠD=3.14×0.7=2.20m加强定位筋圈数7(2.20+10d)×7×1.58×42/1000=1.10t3、螺旋筋A8 容重0.395kg/m螺旋筋A8长度为12.5m,A8@20012.5/0.20.395×42/1000=2.29t注:d为钢筋直径D为钢筋笼直径0.7m4、水下C30混凝土方量(12.5+1)×3.14×D2×42/4=284.86m3三、①EF段支护桩抗压桩共46根,配筋长度为11.5米,桩径A800。
1、主筋12C18 锚固筋长度为35d 容重2.0kg/m[(11.5+35d)+10d]×12×2×46/1000=13.59t。
地下工程支护(钢板桩)设计及计算书

地下工程支护(钢板桩)设计及计算书
项目概述
本项目是一块地下空间的支护设计,采用钢板桩支撑结构。
钢
板桩作为一种常用的工程支撑方式,经济实用,施工方便,适用范
围广泛,在地下工程中得到越来越广泛的应用。
本计算书将对支撑
设计进行详细说明。
设计计算
1. 钢板桩长度计算
根据地下结构深度及土壤性质等因素,确定钢板桩的长度。
2. 钢板桩截面尺寸计算
根据地下工程条件,选取合适的钢板桩型号,计算其截面尺寸。
3. 钢板桩嵌入深度计算
根据地下结构的要求和设计条件,确定钢板桩的嵌入深度。
4. 钢板桩桩身稳定性设计计算
根据钢板桩截面尺寸及其嵌入深度,计算钢板桩桩身稳定性设计。
5. 钢板桩锚杆设计计算
根据地下结构及土体条件,设计合适的锚固结构以保证钢板桩
稳定。
结论
本文对地下工程中采用钢板桩进行支撑的设计进行了详细说明,包括长度、截面尺寸、嵌入深度、桩身稳定性及锚杆等方面的计算。
希望对地下工程的相关设计及施工有所帮助。
钢支撑支护计算书

广汽集团汽车工程研究院基地建设与研发项目基坑支护局部砼支撑改钢支撑设计计算书一、工程概况拟建广汽集团汽车工程研究院基地建设与研发项目位于番禺区化龙镇金山大道南侧,设一层地下室,地下室基坑周长约447m, 建筑物{\L+}0.000的绝对高程为8.700m,场地现地面标高平均约为-0.50m,底板垫层底的标高约为-6.10m,一般承台底的标高约为-6.80~ -7.40m,电梯井承台底的标高约为-8.7m。
基坑开挖计算深度考虑到一般承台底约为6.9m,电梯井处坑中坑的开挖深度约为1.3m~1.60m。
周边建、构筑物情况为:目前场地周边比较开阔,无重要建(构)筑物,北侧的金山大道距离场地用地红线约40m,距离基坑边线约70m,可以不考虑与基坑开挖的相互影响。
二、地质情况根据地质察揭露,场地岩土层有第四系人工填土层(Q ml)、冲积层(Q al)淤泥、淤泥质砂、粗(砾)砂,残积层(Q el)粉质粘土,下伏基岩为第三系(E2)泥岩。
场地岩土层情况自上至下分述如下:1、人工填土层(Q ml),层序号为①本层分布广泛,层厚2.80~6.40m,平均3.71m;层顶高程7.73~8.60m,平均8.16m;埋深0.00m。
为素填土,褐红色、黄褐色、灰褐色等,湿-稍湿,松散,欠压实,新近堆填,主要由粘性土及石英砂堆填而成,局部夹有风化岩块。
标准贯入试验15次,参加统计15次,实测击数1~7击,平均4.3击;校正击数0.9~6.6击,平均4.0击,标准差σ=1.531,变异系数δ=0.380,修正系数γS=0.825,标准值3.3击。
2、第四系冲积层(Q al),层序号为②根据钻探揭露,自上而下可分为3个亚层,分述如下:(1)淤泥、淤泥质土层序号②-1本层场区内广泛分布,层厚3.00~14.50m,平均9.27m;层顶高程-6.54~5.48m,平均4.34m;层顶深度2.80~14.50m,平均3.82m。
以淤泥为主,少量为淤泥质土,局部夹粉砂或中粗砂、粉质粘土薄层。
钢板桩支护计算书

1#~10#雨水检查井钢板桩支护设计计算书\1#~10#雨水检查井钢板桩支护设计计算书计算:复核:审核:审定:目录1.计算说明 (1)1.1 概况 (1)1.2 计算容 (1)2.计算依据 (1)3.参数选取及荷载计算 (1)3.1 支护平面布置 (1)3.2 板桩、圈梁截面 (1)3.3 计算荷载参数 (2)3.4 材料容许用力值 (3)4.主要结构计算及结果 (4)4.1 计算模型 (4)4.2 计算工况说明 (4)4.3 钢板桩的计算及结果 (4)4.4 圈梁的计算及结果 (7)5.结论及建议 (9)1.计算说明1.1 概况陇海快速路―中州大道互通式立交上跨陇海铁路立交桥工程位于省市中州大道与陇海铁路交汇处,桥位处既有5+2×16+5m四孔分离式箱桥,与陇海铁路下行线交叉点里程:K561+246,在既有箱桥两侧新建中州大道互通式立交上跨陇海铁路立交桥,本桥为双幅桥,主线桥桥面宽26.75m。
根据总体布置,原下穿立交雨水泵房和检查井受新设桥墩影响,需要拆除迁建。
1#-4#为矩形混凝土雨水检查井,最大平面尺寸为2.1×1.9m,5#-10#为圆形混凝土雨水检查井,平面尺寸为φ2.2m,所有检查井最大深度h=4.2m,井壁均需做防水处理。
检查井开挖围,土层以细砂、粉土为主,拟采用钢板桩支护辅助施工。
钢板桩使用SKSP-Ⅳ型板桩,长度为9m,支护设置一层圈梁。
1.2 计算容采用容许应力法和有限元法对支护施工过程中的各工况进行计算,计算容包括钢板桩、圈梁等的强度、刚度。
2.计算依据《钢结构设计规》(GB 50017-2003)《公路桥涵地基与基础设计规》(JTG D63-2007)《建筑基坑工程监测技术规》(GB 50497-2009)《基坑工程手册》中国建筑国斌王卫东主编《陇海快速路-中州大道互通式立交上跨陇海铁路立交桥工程第四册给排水工程》(中铁工程设计咨询集团)《陇海快速路-中州大道互通式立交上跨陇海铁路立交桥工程岩土工程勘察报告》项目部提供的地质等相关资料3.参数选取及荷载计算3.1 支护平面布置支护施工采用单层支撑,钢板桩长度为9m,具体布置如下图1所示:3.2 板桩、圈梁截面SKSP-Ⅳ型板桩参数如下:I=38600cm³,W=2270cm³; (按1m宽度计)。
支护桩计算书

新建杭州至长沙铁路客运专线工程浙江段支护桩计算书编制:王仁淑复核:审核:中铁四局集团公司二〇一一年五月1.工程概况汤溪特大桥于DK192+718处上跨既有沪昆线,新建铁路与既有铁路夹角19°,跨越处铁路宽13m ,对应既有沪昆里程为K395+338,新线铁路采用门式墩+24简支跨越,通行净空按7.96m 考虑。
承台开挖施工时,因承台边线距离既有铁路距离较近,按1:1.5放坡开挖,开挖边坡线在安全线外,承台施工时必须对既有铁路做防护桩才能进行承台开挖。
2.支护桩的布置根据营业线路基横断面结构尺寸、与基坑的位置关系、承台设计尺寸以及底设计标高,计划营业线安全放坡边线范围以内的基坑开挖采用支护桩进行防护,根据现场实测,汤溪特大桥邻近营业线基坑开挖深度均在5m 范围以内。
取离营业线最近,开挖深度为4.9米的371#墩K3桩作为设计计算依据。
3.支护桩的设计支护桩采用φ1.00m 挖孔桩,混凝土等级C30,桩身配筋根据开挖完成时工况设计。
支护桩采用人工挖孔,每开挖1m 浇筑1m 钢筋混凝土护壁,护壁混凝土等级C30,厚度20cm 。
护壁等强后进行下一层开挖,直至设计桩底。
4.工况计算4.1.工况一开挖深度4.9m 以内的基坑支护采用直径1.00m 挖孔桩,设计桩长10m ,其中基底以下锚固长度5.1m ,查阅《高速铁路设计规范(试行)》TB10621-2009,列车竖向荷载、铁路线路结构可换算成土柱,分布宽度3.3m ,分布高度3.1m ,距坑边距3.6m, 桩板墙所受的主动土压力采用公式:ai ik ai ajk ajk K c K e 2-=σ计算。
ai K :主动土压力系数:)245(2ikai tg K ϕ-︒=rk σ:计算点深度zj 处自重竖向应力。
k 0σ:基坑外侧任意深度附加竖向应力标准值。
k 1σ:基坑外侧深度CD 范围内附加竖向应力标准值。
桩板墙所受的被动土压力采用公式:pi ik pi pjk pjk K c K e 2-=σ计算。
支护桩间距计算

单排灌注桩支护间距计算书1.土拱效应在基坑或边坡工程中,由于支护结构的施加,使的基坑或边坡岩土体在支护结构附近的变形减小,而在远离支护结构处的变形加大,即在基坑土体或边坡岩土体内产生不均匀变形现象,从而可以引起岩土体中的土拱效应。
土拱效应主要是利用土体抗压性能好、抗拉能力差的特点,是土体变形后受力的自我优化调整的结果。
因此,在基坑支护桩后土体推力均匀分布于桩间土体的假定下,可以认为土拱的形状为合理的拱轴线,合理拱轴线的每一截面上只存在压力,没有弯矩和拉力,适合土体抗压不抗拉的特点。
设土拱的拱跨为桩间距L ,则此时土拱的形状是二次抛物线,建立如图1所示的力学计算模型,可推导出拱轴线的合理方程。
当拱上承受均布荷载R 时,对任一截面x 而言,由于其上弯矩为零,应有:y H Rx g =22其中g H 为土拱中截面(拱顶)上的压力,fR L H g 82=,f 为失高,L 为拱跨。
2.桩间距的确定土拱承受土体推力后将向两侧岩土体或桩及拱前岩土体传递其后作用的土体变形推力。
如图2所示土拱,拱高为f ,拱轴如图中的虚线所示。
当土体处于极限平衡状态时,设土拱受力也处于极限平衡状态,在均布荷载R 作用下的拱脚处的受力最大,设A 点应力达到极限应力状态,则对A 点受力进行分析如图3所示。
设拱脚A 点处土体沿着拱轴压力线方向(即拱轴在A 点的切线方向)发生剪切破坏,则破坏面与小主应力3σ作用面的夹角θ为245φ-o(φ为土体的内摩擦角)。
至于1σ、3σ的作用方向,由于土拱收到R 的作用,土拱产生向两侧的横向扩张力,所以A 点在水平向的变形收到约束,而在竖向的约束相对较弱。
根据郎肯土压力求解理论,可以认为A 点应力达到极限平衡状态时大主应力1σ的作用方向为两桩水平连线方向,而于此垂直的方向为小主应力3σ的作用方向,如图3所示。
由于θ即为拱轴线在A 点处的切向角,所以有: Lf 4)245tan(tan o =-=φθ 则拱矢f 为:4245tan ⎪⎭⎫ ⎝⎛-=φo L f将上式代人前述分析,可得跨中B-B 截面的水平作用力g H 为:)245tan(282φ-==o g LR f R L H 最终可以推出公式:][φφδφγδφδtan )tan (tan 31)245tan(tan )tan (tan 12++-++≤qk L hc L o 式中 q 为超载强度;k 为主动土压力系数;δ为外摩擦角;h 为桩的有效宽度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新建至铁路客运专线工程段支护桩计算书编制:王仁淑复核:审核:中铁四局集团公司二〇一一年五月1.工程概况汤溪特大桥于DK192+718处上跨既有沪昆线,新建铁路与既有铁路夹角19°,跨越处铁路宽13m ,对应既有沪昆里程为K395+338,新线铁路采用门式墩+24简支跨越,通行净空按7.96m 考虑。
承台开挖施工时,因承台边线距离既有铁路距离较近,按1:1.5放坡开挖,开挖边坡线在安全线外,承台施工时必须对既有铁路做防护桩才能进行承台开挖。
2.支护桩的布置根据营业线路基横断面结构尺寸、与基坑的位置关系、承台设计尺寸以及底设计标高,计划营业线安全放坡边线围以的基坑开挖采用支护桩进行防护,根据现场实测,汤溪特大桥邻近营业线基坑开挖深度均在5m 围以。
取离营业线最近,开挖深度为4.9米的371#墩K3桩作为设计计算依据。
3.支护桩的设计支护桩采用φ1.00m 挖孔桩,混凝土等级C30,桩身配筋根据开挖完成时工况设计。
支护桩采用人工挖孔,每开挖1m 浇筑1m 钢筋混凝土护壁,护壁混凝土等级C30,厚度20cm 。
护壁等强后进行下一层开挖,直至设计桩底。
4.工况计算4.1.工况一4.1.1.支护概况及布置图开挖深度4.9m 以的基坑支护采用直径1.00m 挖孔桩,设计桩长10m ,其中基底以下锚固长度5 .1m ,查阅《高速铁路设计规(试行)》TB10621-2009,列车竖向荷载、铁路线路结构可换算成土柱,分布宽度3.3m ,分布高度3.1m ,距坑边距3.6m,4.1.2.土压力的确定桩板墙所受的主动土压力采用公式:ai ik ai ajk ajk K c K e 2-=σ计算。
ai K :主动土压力系数:)245(2ikai tg K ϕ-︒=k k rk ajk 10σσσσ++=rk σ:计算点深度zj 处自重竖向应力。
k 0σ:基坑外侧任意深度附加竖向应力标准值。
k 1σ:基坑外侧深度CD 围附加竖向应力标准值。
桩板墙所受的被动土压力采用公式:pi ik pi pjk pjk K c K e 2-=σ计算。
pi K :被动土压力系数:)245(2ikpi tg K ϕ+︒=j mj pjk z γσ=4.1.3.支护桩简算采用理正深基坑支护软件进行计算: [ 支护方案 ]最大开挖深度4.90m排桩支护---------------------------------------------------------------------- [ 基本信息 ]---------------------------------------------------------------------- [ 超载信息 ]---------------------------------------------------------------------- [ 附加水平力信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 土层信息 ]---------------------------------------------------------------------- [ 土层参数 ]---------------------------------------------------------------------- [ 土压力模型及系数调整 ]---------------------------------------------------------------------- 弹性法土压力模型: 经典法土压力模型:---------------------------------------------------------------------- [ 工况信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 设计结果 ]---------------------------------------------------------------------- ----------------------------------------------------------------------[ 结构计算 ]---------------------------------------------------------------------- 各工况:力位移包络图:地表沉降图:---------------------------------------------------------------------- [ 截面计算 ]---------------------------------------------------------------------- [ 截面参数 ][ 力取值 ]---------------------------------------------------------------------- [ 整体稳定验算 ]----------------------------------------------------------------------计算方法:瑞典条分法应力状态:总应力法条分法中的土条宽度: 0.40m滑裂面数据整体稳定安全系数 K s = 2.065圆弧半径(m) R = 8.559圆心坐标X(m) X = -0.415圆心坐标Y(m) Y = 3.341---------------------------------------------------------------------- [ 抗倾覆稳定性验算 ]----------------------------------------------------------------------抗倾覆安全系数:M p——被动土压力及支点力对桩底的抗倾覆弯矩, 对于支撑支点力由支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。
M a——主动土压力对桩底的倾覆弯矩。
注意:锚固力计算依据锚杆实际锚固长度计算。
工况1:K s = 2.308 >= 1.200, 满足规要求。
--------------------------------------------------------------------------------------------------------------------[ 抗隆起验算 ]----------------------------------------------------------------------Prandtl(普朗德尔)公式(K s>= 1.1~1.2),注:安全系数取自《建筑基坑工程技术规》YB 9258-97(冶金部):K s = 2.873 >= 1.1, 满足规要求。
Terzaghi(太沙基)公式(K s>= 1.15~1.25),注:安全系数取自《建筑基坑工程技术规》YB 9258-97(冶金部):K s = 3.262 >= 1.15, 满足规要求。
[ 隆起量的计算 ]注意:按以下公式计算的隆起量,如果为负值,按0处理!tan=i h 6.37c)式中δ———基坑底面向上位移(mm);n———从基坑顶面到基坑底面处的土层层数;ri———第i层土的重度(kN/m3);地下水位以上取土的天然重度(kN/m3);地下水位以下取土的饱和重度(kN/m3);hi———第i层土的厚度(m);q———基坑顶面的地面超载(kPa);D———桩(墙)的嵌入长度(m);H———基坑的开挖深度(m);c———桩(墙)底面处土层的粘聚力(kPa);φ———桩(墙)底面处土层的摩擦角(度);r———桩(墙)顶面到底处各土层的加权平均重度(kN/m3);=δ = 61(mm)----------------------------------------------------------------------[ 嵌固深度计算 ]----------------------------------------------------------------------嵌固深度计算参数:嵌固深度计算过程:按《建筑基坑支护技术规程》 JGJ 120-99悬臂式支护结构计算嵌固深度h d值,规公式如下 h p∑E pj - βγ0h a∑E ai>=0β = 1.200 ,γ0 = 1.000h p = 1.268m,∑E pj = 348.763 kPah a = 2.729m,∑E ai = 133.297 kPa得到h d = 3.100m[ 支护方案 ]最大开挖深度3.50m排桩支护---------------------------------------------------------------------- [ 基本信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 超载信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 附加水平力信息 ]---------------------------------------------------------------------- [ 土层信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 土层参数 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 土压力模型及系数调整 ]---------------------------------------------------------------------- 弹性法土压力模型: 经典法土压力模型:---------------------------------------------------------------------- [ 工况信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 设计结果 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 结构计算 ]---------------------------------------------------------------------- 各工况:力位移包络图:地表沉降图:---------------------------------------------------------------------- [ 截面计算 ]---------------------------------------------------------------------- [ 截面参数 ][ 力取值 ]---------------------------------------------------------------------- [ 整体稳定验算 ]----------------------------------------------------------------------计算方法:瑞典条分法应力状态:总应力法条分法中的土条宽度: 0.40m滑裂面数据整体稳定安全系数 K s = 1.651圆弧半径(m) R = 7.669圆心坐标X(m) X = 0.417圆心坐标Y(m) Y = 4.647---------------------------------------------------------------------- [ 抗倾覆稳定性验算 ]----------------------------------------------------------------------抗倾覆安全系数:M p——被动土压力及支点力对桩底的抗倾覆弯矩, 对于支撑支点力由支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。