功分器、耦合器、电桥、双工器 原理与分析
功分器耦合器电桥原理与分析
功分器耦合器电桥原理与分析功分器(Power Divider)是一种用于将输入功率分配到多个输出端口的器件。
它在无线通信系统和微波电路中广泛应用,用于将信号平均分配到多个天线或传感器。
功分器有不同的结构和原理,其中最常见的有微带功分器、负载不平衡功分器和等分功分器。
微带功分器是一种常用的功分器结构。
它采用微带线作为传输介质,在微带线上设计一个特定的结构来实现功分作用。
微带功分器一般由三个端口组成,一个输入端口和两个输出端口。
输入信号通过微带线进入功分器,在功分器的特定结构中,信号被分配到两个输出端口。
微带功分器的原理基于微带线的电磁耦合效应,通过精确的线宽和间距设计来实现。
负载不平衡功分器是另一种常见的功分器结构。
它由两个变压器和一个负载组成。
输入信号通过其中一个变压器,经过变压器的轮流导通,被分配到不同的输出端口。
负载不平衡功分器的原理基于变压器工作原理,通过调整变压器参数和负载来实现功分作用。
等分功分器是一种特殊的功分器结构,它将输入功率均匀地分配到多个输出端口。
等分功分器的主要原理是基于相移和阻抗匹配。
输入信号经过功分器时,会根据设计的相位变化,将信号分配到不同的输出端口。
等分功分器的设计需要考虑相位平衡和阻抗匹配的问题。
对于功分器的分析,可以通过参数和性能指标来评估其性能。
常见的参数包括功分比、驻波比和插入损耗。
功分比表示功分器将输入功率平均分配到所有输出端口的能力,通常以分贝为单位表示。
驻波比表示功分器对输入信号的匹配情况,较低的驻波比表示较好的匹配性能。
插入损耗表示功分器将输入功率转移到输出端口时的损耗。
在功分器的设计过程中,需要考虑到频率响应、功率损耗和相位平衡等因素。
频率响应是指功分器在不同频率下的性能,通常以带宽和平坦度来表示。
功率损耗是指功分器在功率分配过程中的能量损失情况,通常以分贝为单位表示。
相位平衡是指功分器将输入信号平均分配到输出端口时的相位一致性,较好的相位平衡可以保证系统性能。
射频器件(双工器合路器滤波器功分器耦合器衰减器隔离器)
双工器双工器是异频双工电台,中继台的主要配件,其作用是将发射和接收讯号相隔离,保证接收和发射都能同时正常工作。
它是由两组不同频率的带阻滤波器组成,避免本机发射信号传输到接收机。
双工器,又称天线共用器,是一个比较特殊的双向三端滤波器。
双工器既要将微弱的接受信号耦合进来,又要将较大的发射功率馈送到天线上去,且要求两者各自完成其功能而不相互影响。
一般的双工器由螺旋振腔体构成,由于其工作频率高,分布参数影响较大?常做成一个密封套体,各信号馈线均用屏蔽效果较好的同轴电缆?腔体形材也要求一定的光洁度,为利于散热,外观常为黑色,三个信号端一般采用标准高频接插件Q9或L16型高频插座无线通讯对双工器的要求双工器用于移动通信和在野外作为无人值守的中转台工作,其本身就决定了它的使用环境和工作条件。
合路器在通信系统中合路器主要用作将多系统信号合路到一套室内分布系统。
在通信系统中:合路器主要用作将多系统信号合路到一套室内分布系统。
在工程应用中,需要将800MHZ的C网和900MHz的G 网两种频率合路输出。
采用合路器,可使一套室内分布系统同时工作于CDMA频段和GSM频段。
又如在无线电天线系统中,将几种不同频段的(如145MHZ与435MHZ)输入输出信号通过合路器合路后,用一根馈线与电台连接,这不仅节约了一根馈线,还避免了切换不同天线的麻烦。
合路器主要用作将多系统信号合路到一套室内分布系统。
在工程应用中,需要将800MHZ 的C网和900MHz的G 网两种频率合路输出。
采用合路器,可使一套室内分布系统同时工作于CDMA频段和GSM频段。
又如在无线电天线系统中,将几种不同频段的(如145MHZ与435MHZ)输入输出信号通过合路器合路后,用一根馈线与电台连接,这不仅节约了一根馈线,还避免了切换不同天线的麻烦滤波器滤波器是一种用来减少或消除谐波对电力系统影响的电气部件,将输入或输出经过过滤而得到纯净的直流电。
滤波器上海上恒电子滤波器一般有两个端口,一个输入信号、一个输出信号,利用这个特性可以选通通过滤波器的一个方波群或复合噪波,而得到一个特定频率的正弦波。
微波小狮妹的微波杂记(2)-你能分清功分耦合电桥这三兄弟吗?
微波小狮妹的微波杂记(2)-你能分清功分耦合电桥这三兄弟吗?Hi,大家好,又到了小狮妹“不喝雅哈咖啡也唠嗑”的时间了^^!在射频与微波领域我们常常会用到功分器,耦合器,3dB电桥这些无源器件。
这些器件都是三端口,或三端口以上的器件,它们比二端口器件使用稍微复杂一点,并且它们的功能也很容易混淆,大家能分清楚么?下面我介绍一下这三兄弟的功能与用法,方便大家以后使用哦,木木哒!先隆重登场的是“大师兄”——功分器:功分器全称功率分配器,英文名Power Divider,是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件;也可反过来将多路信号能量合成一路输出,此时可也称为合路器。
通俗的讲功分器就是把一路信号等分成多路信号,或者把多路信号合成一路信号(这种情况把功分器称为合路器)。
功分器由一个输入端,多个输出端构成,它的主要用途主要是功率分配和信号合成。
使用这种器件要注意:1. 功分器的分配损耗,分配的路数越多插损越大;2. 未使用的端口需接负载;3. 还要考虑输出端口之间的隔离度是否满足实际需求。
下面出场的是“二师兄”——定向耦合器:定向耦合器是微波系统中应用广泛的一种微波器件,它的本质是将微波信号按一定的比例进行功率分配,主要用于信号的隔离、分离和混合。
定向耦合器由输入端口,输出端口,耦合端口,隔离端口(出厂时已接好负载)构成,它也是一种功率分配器件。
如3dB耦合器的耦合端分配比例是50%,6dB耦合器的耦合端分配比例是25%,10dB 耦合器的耦合端分配比例是10%。
定向耦合器主要用于功率监测、源输出功率稳幅、功率合成、信号源隔离、反射系数测试等。
定向耦合器用于功率监测时要选用合适的耦合度;用于测量反射系数时要考虑耦合器的方向性足够大。
最后我们来详细介绍下“三师弟”——3dB电桥:3dB电桥是一种分路元件,属于四端口网络,在电路中起着功率分配及改变信号相位的作用;能将一个输入信号分为两个等幅且具有90°或180°相位差的信号。
室分无源器件介绍(联通)
电桥就是同频合路器,主要应用于同频段内不同载波间的合路应用。
3 功分器
功分器的电气指标参数 分配损耗:指的是信号功率经过理想功率分配以后和原输入信号 相比减小的量。比如二功分是3dB,三功分是4.8dB,四功分是 6dB。 插入损耗:器件直通损耗,其计算公式为所有路数的输出功率之 和与输入功率的比值,或者单路的实际直通损耗减去理想的分配 损耗。插入损耗一般取值范围:腔体0.1dB左右,微带根据2、3、 4功分不同分别约为:0.4~0.2dB,0.5~0.3dB,0.7~0.4dB。 在功率预算中,功分器的损耗由插入损耗和分配损耗组成。 隔离度:指的功分器输出各端口之间的隔离,通常2、3、4功分 约为18~22dB,19~23dB,20~25dB。
目前室内覆盖系统中基本使用3种馈线:7/8,1/2,1/2(超柔),根 据表皮材料的不通分为普通和阻燃两种。
15 天线
天线
目前室内覆盖系统中使用最多的包括全向吸顶天线,定向吸顶天线, 定向小板状天线。 在隧道覆盖中还采用对数周期天线和泄漏电缆。 在外打中还会采用各种美化天线或大板状天线。 一般全向天线的增益在2~5dBi左右,定向吸顶天线5~7dBi左右,定向 小板状天线7~10 dBi左右。 由于定向吸顶天线的前后比为13.5dB,而定向小板状天线前后比有 23dB,故定向吸顶天线的效果没有板状天线好。
16 致谢
两进两出的电桥如果只有一个端口输出使用的话,另一端口必须连接 匹配功率的负载,不能小于两个信号功率电平和的1/2,否则将严重 影响到系统的传输特性。
功分器、耦合器
功分器基本工作原理:威尔金森功率分配器的功能是将输入信号等分或不等分的分配到各个输出端口,并保持相同输出相位。
环形器虽然有类似功能,但威尔金森功率分配器在应用上具有更宽的带宽,微带型功分器的电路如图9-1所示。
其中,输入端口特性阻抗为Z0;两端分支微带线电长度为1/4波长,特性阻抗分别为Z02和Z O3,终端分别接Z O2端口1Z O3功分器各个端口的特性如下:1、端口1无反射2、端口2和端口3输出电压相等且同相3、端口2、端口3输出功率比值为任意指定值1/K2因此,1/Z IN2 +1/Z IN3 =1/Z0;K2=P3 /P2 , P3 =1/2*U32/R3, P2=1/2*U22 /R2U3= U2在四分之一波长传输线阻抗变换理论的:Z IN2 *R2= Z O22Z IN3*R3= Z O32设R2=K* Z0,则Z O2,Z O3,R3 为:Z O2= Z0 exp(K(1+ K2 ))Z O3= Z0 exp(K(1+ K2 )/K3)R3= Z0 /K为了增加隔离度在端口2和端口3之间加一贴片电阻R,隔离电阻R的电阻值为R=Z0 (K+1/K)当K=1时,上面的结果化简为功率相等情况,还可以看出,输出线是与R2=KZ0和R3=Z0/K 匹配的,而不与阻抗Z0匹配。
定向耦合器工作原理LANGE耦合器结构如图9-26所示。
端口1的输入功率一部分直接传递给直通端口2,另外一部分耦合到耦合端口3.在理想的定向耦合器中,没有功率传递到隔离端口4,LANGE耦合器的直递端口2与耦合端口3之间有90度的相位差,可见LANGE耦合器是正交耦合器。
图中。
Z0为输入微带线的特性阻抗;W为微带线的宽带,S为微带线之间的间距;λ/4为工作带宽中心频点处的四分之一波长。
LANGE耦合器的耦合系数常用C表示,耦合系数C的参数有线宽比率W/H、缝隙宽度比率S/H、基板介电常数εr;导体厚度比率T/H和频率,这5个参数的微小偏差会导致耦合器奇偶模阻抗发生相应变化,从而在耦合线数目N固定的情况下使耦合系数C和特性阻抗Z0发生变化,缝隙宽带比率S/H、导体厚度比率T/H的偏差对耦合系数C又较大影响,而其余三个参数的偏差对于耦合的影响比较小,但对于特性阻抗Z0的影响是不可忽略的。
功分器工作原理(图文)
功分器工作原理(图文)功分器是一种常见的电子器件,广泛应用于无线通信、雷达、卫星通信等领域。
它能够将输入信号分成多个不同频率的输出信号,具有重要的信号处理功能。
本文将详细介绍功分器的工作原理,并通过图文的方式进行解析。
一、功分器的基本概念功分器,全称为功率分配器,是一种被动器件,用于将输入信号按照一定的比例分配到多个输出端口上。
它通常由微带线、耦合器、隔离器等组成,具有低损耗、高隔离度等特点。
1.1 微带线功分器中的微带线是一种常用的传输线,由导体和绝缘层组成。
它的特点是结构简单、成本低廉,能够在高频率范围内传输信号。
微带线的宽度、长度和介质常数等参数会影响功分器的性能。
1.2 耦合器功分器中的耦合器用于将输入信号分配到不同的输出端口上。
常见的耦合器有平面耦合器、同轴耦合器等。
耦合器的设计需要考虑耦合度、带宽和插入损耗等因素。
1.3 隔离器功分器中的隔离器用于隔离不同的输出端口,防止信号之间的相互干扰。
隔离器通常由衰减器、隔离阻抗等组成。
隔离器的设计需要考虑隔离度、带宽和插入损耗等因素。
二、功分器的工作原理功分器的工作原理基于电磁场的相互作用和传输线的特性。
当输入信号进入功分器时,经过微带线、耦合器和隔离器等组件的作用,信号被分配到不同的输出端口上。
2.1 输入信号的传输输入信号首先通过微带线传输,微带线的特性阻抗和传输损耗会对信号产生影响。
通过合理设计微带线的宽度、长度和介质常数等参数,可以实现对输入信号的传输。
2.2 信号的分配经过微带线后,输入信号进入耦合器,耦合器将信号按照一定的比例分配到不同的输出端口上。
耦合器的设计需要考虑耦合度和插入损耗等因素,以实现对信号的精确分配。
2.3 信号的隔离分配到不同输出端口上的信号经过隔离器的作用,实现信号之间的隔离。
隔离器的设计需要考虑隔离度和插入损耗等因素,以实现对信号的有效隔离。
三、功分器的应用领域功分器作为一种重要的信号处理器件,广泛应用于无线通信、雷达、卫星通信等领域。
功分器耦合器电桥_原理与分析
功分器耦合器电桥_原理与分析一、功分器(Power Divider)功分器是一种被动器件,用于将输入功率平均分配到多个输出端口上,广泛应用于无线通信、雷达和微波器件等领域。
功分器的原理是基于二端口网络的设计,其中输入端口与输出端口之间具有固定的功率分配比例。
功分器的原理可以通过阻抗匹配和功率分配的方法实现。
常见的功分器有平分器和非平分器两种类型。
1.平分器(Equal Power Divider):平分器是将输入功率均匀分配到多个输出端口的功分器。
根据网络中的功率匹配特性,输入阻抗要等于输出阻抗的开方,即Z_in =Z_out/sqrt(n),其中n为输出端口的数量。
平分器可以采用传输线、微带线、同轴线等实现。
2.非平分器(Unequal Power Divider):非平分器是将输入功率按照不同比例分配到多个输出端口的功分器。
根据负载阻抗的不同,可以实现不同的功率分配比例。
非平分器常用于天线系统中,用于实现不同天线的功率平衡。
功分器在实际应用中需要考虑尽可能少的功率损耗、尽可能平衡的功率分配和良好的阻抗匹配等特性。
二、耦合器(Coupler)耦合器是一种被动器件,用于将信号从一个电路传递到另一个电路,常用于分配功率、耦合信号和测量功率等应用。
耦合器的原理是基于传输线的相互耦合。
1.固定耦合器:固定耦合器是将一部分信号从一个传输线传播到另一个传输线上的器件。
常见的固定耦合器有平行耦合器、串联耦合器和倍频耦合器等。
这些耦合器通过精确控制传输线之间的耦合长度和耦合系数来实现所需的耦合程度。
2.可变耦合器(Directional Coupler):可变耦合器是一种能够调整耦合程度的耦合器。
它由四个传输线组成,其中两个用于输入和输出信号,另外两个用于耦合信号。
可变耦合器通过改变耦合信号传输线之间的距离来实现不同的耦合程度。
耦合器在实际应用中需要考虑尽可能小的插入损耗、良好的信号隔离和适当的耦合程度等特性。
功分器、耦合器、电桥_原理与分析
功分器、耦合器、电桥原理与分析本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。
1功分器1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。
2)种类:功分器一般有二功分、三功分和四功分3种。
功分器从结构上分一般分为:微带和腔体2种。
腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是几条微带线和几个电阻组成,从而实现阻抗变换.主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。
以下对各项指标进行说明:l 分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。
此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。
(因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测得与理论值接近的分配损耗)耦合器和三功分器图示分配损耗的理论计算方法:如上图所示。
比如有一个30dBm的信号,转换成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,每份功率=1000÷3=333.33毫瓦,将333.33毫瓦转换成dBm=10lg333.33=25.2dBm, 那么理想分配损耗=输入信号-输出功率=30-25.2=4.8dB,同样可以算出2功分是3dB,4功分是6dBl 插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量)。
插入损耗的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分器不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。
插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗=5.3dB-4.8dB=0.5dB.微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为0.1dB左右。
功分器耦合器电桥双工器原理与分析
功分器耦合器电桥双工器原理与分析功分器原理与分析:功分器(Power Divider),也称功分耦合器,是一种用于将输入信号分配到多个输出端口的电路器件。
其基本原理是将输入的信号能量平均分配到各个输出端口上,实现功率的分配或组合。
功分器一般由一组耦合结构和天线结构组成,可分为平衡型功分器和不平衡型功分器两种。
平衡型功分器能够将输入的信号能量平均分配到各个输出端口上,而不平衡型功分器则有一定的不平衡度。
功分器的主要优点是能实现高功率的分配和组合,同时具有低插入损耗和高隔离度的特点。
它广泛应用于无线通信、雷达、广播电视等领域的信号分配和组合。
电桥原理与分析:电桥是一种测量电阻、电容或电感值的仪器。
其基本原理是通过在电路中建立一个平衡条件,进而测量电路中一些元件的未知值。
电桥一般由四个电阻组成,其中两个电阻位于一个电桥臂上,称为“已知电阻”,另外两个电阻位于另一个臂上,称为“未知电阻”。
电桥中还包括一个滑动电阻,用于调节电桥的平衡状态。
电桥的平衡状态取决于电桥四个臂上电阻的比例关系。
当电桥平衡时,通过电压表或电流表读数为零,此时可以通过调节滑动电阻来获得未知电阻的值。
电桥的主要应用领域是测量和校准电阻、电容和电感值。
它具有高精度、灵敏度高的特点,可以实现对电子元器件参数的精确测量。
双工器原理与分析:双工器(Duplexer)用于在同一频率上实现双向传输,即同时允许发送和接收信号。
双工器的基本原理是通过利用物理效应,在发送和接收频率之间建立一种隔离,使得发送和接收信号能够同时在同一频率上进行传输。
传统的双工器采用滤波器并结合耦合器的方式来实现发送和接收信号的隔离。
具体来说,发送和接收信号通过耦合器进入双工器,然后经过滤波器进行频率分离。
发送信号会被滤波器传输到发送端,而接收信号则会被滤波器传输到接收端。
双工器的主要优点是能够实现正向和反向信号的同时传输,提高了通信效率。
它广泛应用于无线通信系统中,如手机、卫星通信等领域。
功分器、耦合器、电桥_原理与分析
功分器、耦合器、电桥原理与分析2010-05-21 13:00本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。
1功分器1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。
2)种类:功分器一般有二功分、三功分和四功分3种。
功分器从结构上分一般分为:微带和腔体2种。
腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是几条微带线和几个电阻组成,从而实现阻抗变换•主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。
以下对各项指标进行说明:l分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。
此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。
(因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测a得与理论值接近的分配损耗)____________________耦合器和三功分器图示分配损耗的理论计算方法:如上图所示。
比如有一个30dBm勺信号,转换成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,每份功率=1000十3= 333.33毫瓦,将333.33毫瓦转换成dBm=10lg333.33=25.2dBm,那么理想分配损耗二输入信号—输出功率= 30-25.2=4.8dB,同样可以算出2功分是3dB, 4功分是6dBl插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量)。
插入损耗的取值范围一般腔体是:0.1dB 以下;微带的则根据二、三、四功分器不同而不同约为:0.4~0.2dB 、0.5~0.3dB 、0.7~0.4dB 。
插损的计算方法:通过网络分析仪可以测出输入端 A 到输出端B、C、D 的损耗,假设3功分是5.3dB,那么,插损二实际损耗—理论分配损耗二5.3dB-4.8dB=0.5dB.微带功分器的插损略大于腔体功分器, 一般为0.5dB 左右, 腔体的一般为0.1dB 左右。
功分器与耦合器
功分器、耦合器、电桥原理与分析2010-05-21 13:00本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。
1功分器1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。
2)种类:功分器一般有二功分、三功分和四功分3种。
功分器从结构上分一般分为:微带和腔体2种。
腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是几条微带线和几个电阻组成,从而实现阻抗变换.主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。
以下对各项指标进行说明:l 分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。
此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。
(因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测得与理论值接近的分配损耗)耦合器和三功分器图示分配损耗的理论计算方法:如上图所示。
比如有一个30dBm的信号,转换成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,每份功率=1000÷3=333.33毫瓦,将333.33毫瓦转换成dBm=10lg333.33=25.2dBm, 那么理想分配损耗=输入信号-输出功率=30-25.2=4.8dB,同样可以算出2功分是3dB,4功分是6dBl 插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量)。
插入损耗的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分器不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。
插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗=5.3dB-4.8dB=0.5dB.微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为0.1dB左右。
功分器和耦合器的区别??
功分器和耦合器的区别??1、功分器:功率分配器,将一个端口的信号功率等分给输出端口;合路器:功率合成,将两路或多路信号相加到一个端口;耦合器:将信号按照比例耦合到耦合端口。
功分器反过来用,就是合路器。
耦合器可以认为是功分器的一种,只不过不是等分。
2、耦合器:是把一路输入信号按比例分配多路输出;例如10db耦合器,输入信号为50db,则输出信号分别为直接输出和耦合输出,分别为50db-插入损耗,40db-插入损耗。
合路器:是把多路输入信号合成一路输入;1. 在移动通信中,由于多信道的共用,为避免不同信道间的射频耦合引起的互调干扰,并考虑经济、技术及架设场地的因素,发射应使用天线共用器。
2. 合路器由空腔谐振器及环行器组成,空腔谐振器是一个高Q值的、低插损的带通滤波器。
环行器是一个正向损耗小(0.8dB)反向损耗大(20dB)三断口器件。
3. 为增强合路器工作的稳定性,现在一般采用内匹配技术既腔体之间不用软电缆连接。
为减小体积,一般采用方腔结构合路器主要技术指标:1. 插入损耗,4信道通常小于3.6dB, 8信道通常小于4.0dB;2. 信道间隔离度,通常要大于80dB;3. 输出与输入端口隔离度,通常要大于80dB;4. 频率漂移,通常经过一年老化不应超过3ppm;5. 输入驻波比,小于1.5dB合路器测试:1. 插入损耗测试;2. 信道间隔离度测试;3. 输入驻波比测试;4. 以上测量网络分析仪的测试线要做校正。
合路器也分为同频合成器和异频段合路器两种。
对同频段信号的合路(合成),由于信道间隔很小(250KHz),无法采用谐振腔选频方式来合路,常见的是采用3dB电桥。
3dB电桥有两个输入口和两个输出口,两载频合路后,两个输出口均可作信号输出用,若只需要一个输出信号,则另一输出口需要负载吸收,此时的负载功率根据输入信号的功率来定,不能小于两个信号功率电平和的1/2,建议将两路信号分别接在不同走线方向的信号传输电缆上,这样可以避免采用过高成本的功放。
第八章功分器耦合器设计
第八章功分器耦合器设计第八章内容概述:本章将介绍功分器和耦合器的设计原理和方法。
功分器是一种被广泛应用于微波和射频电路中的被动器件,用于将一个输入信号分为若干等幅的输出信号。
耦合器是一种用于耦合电路中的能量转移的器件,常用于功率放大器、混频器等电路中。
一、功分器设计1.功分器的原理:功分器是一种能将输入信号分为两个或多个等幅输出信号的器件。
常见的功分器有二分器、三分器、四分器等。
功分器的设计原理是基于电路中电压的分配和功率的守恒定律。
2.功分器的设计方法:功分器的设计方法有两种:电压比法和负载匹配法。
电压比法是通过确定每个输出端口上的电压比例来设计功分器,而负载匹配法是通过调整输出端口的负载阻抗来设计功分器。
3.功分器的实现:功分器可以通过多种方式来实现,如线型功分器、平面功分器和耦合线功分器等。
线型功分器通常由三个或多个等长的传输线组成,而平面功分器则由微带线、槽线或共面波导等结构组成。
1.耦合器的原理:耦合器是一种用于将电路中的能量从一个传输线传递到另一个传输线的器件。
耦合器可以实现能量的单向或双向传输。
常见的耦合器有耦合线耦合器、互感耦合器和反射耦合器等。
2.耦合器的设计方法:耦合器的设计方法主要有四种:频率平衡法、功率平衡法、阻抗平衡法和阶梯阻抗法。
频率平衡法是通过控制耦合线的长度和耦合间隔来实现耦合的平衡,而功率平衡法则是通过调整端口的负载阻抗来实现平衡。
3.耦合器的实现:耦合器可以通过多种方式来实现,如耦合线耦合器、微带耦合器、槽线耦合器和同轴耦合器等。
耦合线耦合器是最简单的一种耦合器,由两条等长的传输线组成,而微带耦合器则是通过把一条微带线与另一条微带线的一段连接起来来实现耦合。
三、总结:功分器和耦合器是微波和射频电路中常见的被动器件,其设计涉及到电压的分配、功率的守恒和能量的转移等原理。
功分器的设计方法有电压比法和负载匹配法,而耦合器的设计方法则主要有频率平衡法、功率平衡法、阻抗平衡法和阶梯阻抗法。
功分器、耦合器、电桥、双工器 原理与分析
功分器、耦合器、电桥、双工器原理与分析本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。
1功分器1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。
2)种类:功分器一般有二功分、三功分和四功分3种。
功分器从结构上分一般分为:微带和腔体2种。
腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是几条微带线和几个电阻组成,从而实现阻抗变换.3)主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。
以下对各项指标进行说明:l 分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。
此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。
(因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测得与理论值接近的分配损耗)耦合器和三功分器图示分配损耗的理论计算方法:如上图所示。
比如有一个30dBm的信号,转换成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,每份功率=1000÷3=333.33毫瓦,将333.33毫瓦转换成dBm=10lg333.33=25.2dBm, 那么理想分配损耗=输入信号-输出功率=30-25.2=4.8dB,同样可以算出2功分是3dB,4功分是6dBl 插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量)。
插入损耗的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分器不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。
插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗=5.3dB-4.8dB=0.5dB.微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为0.1dB左右。
功分器耦合器电桥双工器原理与分析
功分器耦合器电桥双工器原理与分析功分器(Power Dividers):功分器是一种用来将输入功率按照一定比例分配到多个输出端口的无源电路器件。
其主要原理是基于能量的守恒定律,输入功率在功分器内部按照一定的比例分配到各个输出端口上。
常见的功分器有二分器(2-way power divider)、三分器(3-way power divider)和N分器(N-way power divider)。
在功分器设计中,常用的结构有平面波导分支线结构和微带线结构。
不同的功分器结构在频率范围、插入损耗、功率容量等方面会有所差异。
耦合器(Couplers):耦合器是一种用来将输入信号按照一定程度传输到输出端口,同时在耦合器内部引入耦合而不会干扰输入信号的无源电路器件。
耦合器常用于功率监测、信号分配以及干扰抑制等应用。
常见的耦合器有方向耦合器(Directional Couplers)和反向耦合器(Wilkinson Power Dividers)。
方向耦合器通过引入一对耦合结构,将输入信号按照一定比例耦合到输出端口,同时阻止从输出端口到输入端口的反向信号传播。
反向耦合器则通过将输入信号分成两个相位相反的部分,使其中一个部分流向输出端口,另一个部分则回流到输入端口,从而实现输出信号的分配。
电桥(Bridge):电桥是一种基于桥路平衡原理的测量仪器。
它通常由四个电阻组成的电路桥路,用来测量未知电阻、电容、电感等参数。
电桥的基本原理是利用平衡条件,当电桥两边的电阻、电容或电感等元件满足一定关系时,桥路中不会出现电流通过,称为平衡状态。
通过调节用于比较的标准电阻,可以判断未知元件的参数。
常见的电桥包括韦斯顿电桥、维尔斯通电桥、麦克斯韦电桥等,它们适用于不同类型的电阻、电容和电感等元件的测量。
双工器(Duplexer):双工器是一种用来在同一个频段上实现双向通信的无源电路器件。
它通过将发送和接收信号分离,使两个信号能够共享同一条传输线而不相互干扰。
双工器,环形器,功分器,合路器,耦合器
双⼯器,环形器,功分器,合路器,耦合器功分器作⽤是是将⼀路信号平均分为两路,理论上功率均为原来⼀半多⽤于通信信号的分布;双⼯器是将上下⾏通路整合在⼀个模块中,下⾏信号可通过此模块发出,上⾏信号也可通过此模块输⼊,多⽤于和天线连接。
耦合器:是在正常通路中耦合出⼀部分能量,供其它⽤途,它只是使主通路上的能量稍微减少⼀部分,⼀般不影响系统⼯作合路器:类似于功分器,⽬的是把⼏个信号合成以后通过⼀个端⼝输出,合成的信号可以是相同频率的,也可以是不同频率的,但输⼊信号的频率要在合路器要求的范围之内环形器:⼀般⽤在TDD的系统中做收发隔离⽤,逆时针⽅向逐⼀直通,有磁介质。
按照定义,环形器应该即可实现同频双⼯,⼜可实现收发不同频的双⼯。
双⼯器:⼀般⽤在FDD的系统中作收发隔离⽤,⾥⾯有两个滤波器、不同频段,⼀个发射⼀个接收定向耦合器:有耦合端(c)、隔离端(i)之分,具有⽅向性(i-c)双⼯器的隔离度⼀般来说⽐较好铁氧体环形器TX信号发送⾄天线接⼝,因为环形器和天线匹配问题也势必有⼀部分信号反射⾄RX端⼝影响接收电路,⽽双⼯器即使在接收端接收到反射信号也通过RX滤波器把⽆⽤信号滤除掉,所以综合考虑双⼯器的性能肯定更好,否则还那么费劲设计滤波器双⼯器⼲什么直接都⽤铁氧体多⽅便同频双⼯:TX和RX同时⼯作于同⼀⼯作频带内,只能通过类似环⾏器这样的铁氧体器件的单向传输特性来实现TX/RX的隔离,实现天线共⽤。
这⼀类天线共⽤器称为环⾏器型天线共⽤器双频双⼯:TX和RX分别⼯作于具有⼀定频率分隔的频带内,采⽤两个滤波器分别调谐在相应的频带内,采⽤Y结形式共⽤天线。
这⼀类称为滤波器型天线共⽤器,在实际使⽤中,通常也称为双⼯器(同频半双⼯:TX和RX⼯作于同⼀频带,两者之间的隔离通过开关切换来实现,通常都是SPDT的开关)。
电桥、耦合器和功分器的选择
3dB 电桥、耦合器和功分器的选择3dB 电桥、耦合器和功分器,这三类器件在射频电路中用来分配或者合成信号。
本文就三种器件的主要参数及它们之间的区别做一些描述。
3dB 电桥 (Hybrid Couplers)3dB 电桥是四端口网络,分为90度Hybrid 和180度Hybrid 两种。
图1,以90度电桥为例,射频信号从PORT1输入,从PORT3、PORT4输出,两路信号幅度大小相等,相位相差90度;PORT2为隔离端。
电桥并没有固定哪个端口一定作为输入端,任意一个端口都可以作为射频输入口,但是其他端口的也顺序改变。
耦合器 (Directional Couplers) 图1 3dB 电桥耦合器也是四端口网络,如图2所示:设四个端口的功率依次为P1、P2、P3、P4,则:耦合度Coupling : 110log3P C P = 方向性Directivity: 310log 4P D P =图2 耦合器 隔离度Isolation : 110log 4P I P =功分器 (Power Divider)2-way 功分器是三端口网络,图3所示:图3 功率分配器与合成器功率从P1端口进去,从P2、P3端口出来。
当P2=P3时,为等功分器;若P 2≠P3,为非等功分器。
一个功分器既可以作为功率分配器,也可以反过来,作为功率合成器。
三者的异同点:1、3dB电桥和功率器都有功率分配的作用,两路输出的幅度都相等。
电桥两路输出相位相差90或180度;而功分器两路输出不仅功率相等,相位也相同。
2、耦合器的耦合输出一般是6dB以上,且相位与主通道相位一致。
若耦合度为3dB,则耦合端输出和主通道输出幅度相等,相位相同,这时等效于功分器。
伟达电子代理的品牌中,RF Labs和Synergy有完整系列的3dB电桥、耦合器和功分器。
这里只列出部分型号,以供参考。
需要更多的型号资料,请直接联系我们或者访问.RF Labs 3dB HYBRIDSynergy表贴器件: 90度HYBRIDDirectional coupler2-Way Power Divider。
5g功分器和耦合器
5g功分器和耦合器5G功分器和耦合器是5G通信系统中不可或缺的重要组件,它们在电信领域具有广泛的应用。
功分器用于将输入功率平均地分配到多个输出端口上,而耦合器则用于将输入信号从一个端口耦合到另一个端口上。
本文将详细介绍功分器和耦合器的原理、分类、应用以及相关的设计指导。
首先,功分器是一种多端口网络设备,广泛应用于无线通信和雷达系统中。
其主要功能是将输入功率按照一定的分配比例均匀地分配到各个输出端口上。
功分器根据功分方式的不同可分为平衡功分器和不平衡功分器。
平衡功分器是指功率在各个输出端口上的幅度和相位均相等,适用于需要精确功率分配的场景,如天线阵列系统。
而不平衡功分器则是指功率在各个输出端口上的幅度不相等,适用于功率分配要求相对宽松的场景,如基站系统。
其次,耦合器是一种用于在低功率系统中将信号从一个端口传输到另一个端口的无源无源器件。
耦合器根据其工作原理可分为向前耦合器和向后耦合器。
向前耦合器主要用于将信号从一个端口耦合到另一个端口,并且在两个端口间有一定的幅度损耗。
向后耦合器则是将信号从一个端口耦合到另一个端口,并在两个端口间提供一定程度的反射。
耦合器在通信系统中广泛应用,如功率检测,匹配器网络,信号分析等。
5G功分器和耦合器在5G通信系统中具有重要的应用价值。
例如,功分器可以用于天线阵列中将输入功率均匀地分配到每个天线元素上,从而提高系统的信号覆盖范围和数据传输速率。
耦合器则可以用于信号检测和匹配器网络的设计,从而提高系统的灵敏度和效率。
在设计功分器和耦合器时,需要考虑一些关键因素。
首先是频率范围,功分器和耦合器的工作频率范围应与系统要求相匹配。
其次是功分比和耦合度,功分器应确保在不同输出端口上的功率分配比例相等,而耦合器应具备一定的耦合度来实现信号的传输。
另外,功分器和耦合器的插入损耗和反射损耗也是需要考虑的因素,这会影响系统的性能。
综上所述,5G功分器和耦合器是5G通信系统中不可或缺的重要组件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功分器、耦合器、电桥、双工器原理与分析本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。
1功分器1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。
2)种类:功分器一般有二功分、三功分和四功分3种。
功分器从结构上分一般分为:微带和腔体2种。
腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是几条微带线和几个电阻组成,从而实现阻抗变换.3)主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。
以下对各项指标进行说明:l 分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。
此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。
(因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测得与理论值接近的分配损耗)耦合器和三功分器图示分配损耗的理论计算方法:如上图所示。
比如有一个30dBm的信号,转换成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,每份功率=1000÷3=333.33毫瓦,将333.33毫瓦转换成dBm=10lg333.33=25.2dBm, 那么理想分配损耗=输入信号-输出功率=30-25.2=4.8dB,同样可以算出2功分是3dB,4功分是6dBl 插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量)。
插入损耗的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分器不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。
插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗=5.3dB-4.8dB=0.5dB.微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为0.1dB左右。
由于插损不能使用网络分析仪直接测出,所以一般都以整个路径上的损耗来表示(即分配损耗+插损):3.5dB/5.5dB/6.5dB等来表示二/三/四功分器的插损。
l 隔离度:指的是功分器输出各端口之间的隔离,通常也会根据二、三、四功分器不同而不同约为:18~22dB、19~23dB、20~25dB。
隔离度可通过网络分析仪测,直接测出各个输出端口之间的损耗,如上图淡蓝色曲线所示,BC间,及 CD间的损耗。
l 输入/输出驻波比:指的是输入/输出端口的匹配情况,由于腔体功分器的输出端口不是50欧姆,所有对于腔体功分器没有输出端口的驻波要求,输入端口要求则一般为:1.3~1.4 甚至有1.15的;微带功分器则每个端口都有要求,一般范围为输入:1.2~1.3 输出:1.3~1.4。
l 功率容限:指的是可以在此功分器上长期(不损坏的)通过的最大工作功率容限,一般微带功分器为:30~70W平均功率,腔体的则为:100~500W平均功率。
l 频率范围:一般标称都是写800~2200MHz,实际上要求的频段是:824-960MHz加上1710~2200MHz,中间频段不可用。
有些功分器还存在800~2000MHz和800~2500MHz频段l 带内平坦度:指的是在整个可用频段内插损含分配损耗的最大值和最小值之间的差值,一般为:0.2~0.5dB。
2耦合器1) 耦合器的作用是将信号不均匀地分成2分(称为主干端和耦合端,也有的称为直通端和耦合端)2)种类:耦合器型号较多如5 dB、10 dB、15 dB、20 dB、25 dB、30 dB等。
从结构上分一般分为:微带和腔体2种。
腔体耦合器内部是2条金属杆,组成的一级耦合.微带耦合器内部是2条微带线,组成的一个类似于多级耦合的网络.3主要指标:耦合度、隔离度、方向性、插入损耗、输入输出驻波比、功率容限、频段范围、带内平坦度。
以下对各项指标进行说明:l 耦合度:信号功率经过耦合器,从耦合端口输出的功率和输入信号功率直接的差值。
(一般都是理论值如:6dB、10dB、30dB等)耦合器和三功分器图示耦合度的计算方法:如上图所示。
是信号功率 C-A 的值比如输入信号A为30dBm 而耦合端输出信号C为24dBm 则耦合度=C-A=30-24=6dB,所以此耦合器为6dB耦合器。
因为耦合度实际上没有这么理想,一般有个波动的范围,比如标称为6dB的耦合器,实际耦合度可能为:5.5~6.5之间波动。
l 隔离度:指的是输出端口和耦合端口之间的隔离;一般此指标仅用于衡量微带耦合器。
并且根据耦合度的不同而不同:如:5-10dB为18~23dB,15dB为20~25dB,20dB(含以上)为:25~30dB;腔体耦合器的隔离度非常好所以没有此指标要求。
计算方法:如上图指的是图中的淡蓝色曲线上的损耗,使用网络分析仪将信号由B输入,测C处减小的量即为隔离度。
l 方向性:指的是输出端口和耦合端口之间的隔离度的值再减去耦合度的值所得的值,由于微带的方向性随着耦合度的增加逐渐减小最后30dB以上基本没有方向性,所以微带耦合器没有此指标要求,腔体耦合器的方向性一般为:1700~2200MHz时:17~19dB,824~960MHz时:18~22dB。
计算方法:方向性=隔离度-耦合度例如6dB的隔离度是38dB,耦合度实测是6.5dB,则方向性=隔离度-耦合度=38-6.5=31.5dB。
l 插入损耗:指的是信号功率经过耦合器至输出端出来的信号功率减小的值再减去分配损耗的值所得的数值。
一般插损对于微带耦合器则根据耦合度不同而不同,一般为:10dB以下的:0.35~0.5dB,10dB以上的:0.2~0.5dB。
计算方法:由于实际上耦合器的内导体是有损耗的,如上图所示以6dB耦合器为例,在实际测试中假设输入A是:30dBm,耦合度实测是:6.5dB,输出端的理想值是28.349dBm(根据实测的输入信号,和耦合度可以计算得出),再实测输出端的信号,假设是27.849dBm,那么插损=理论输出功率-实测输出功率=28.349-27.849=0.5dB;l 输入/输出驻波比:指的是输入/输出端口的匹配情况,各端口要求则一般为:1.2~1.4;l 功率容限:指的是可以在此耦合器上长期(不损坏的)通过的最大工作功率容限,一般微带耦合器为:30~70W平均功率,腔体的则为:100~200W平均功率。
l 频率范围:一般标称都是写800~2200MHz,实际上要求的频段是:824-960MHz加上1710~2200MHz,中间频段不可用。
有些功分器还存在800~2000MHz和800~2500MHz频段l 带内平坦度:指的是在整个可用频段耦合度的最大值和最小值之间的差值,微带一般为:0.5~0.2dB。
腔体:由于耦合度是一条曲线,所以没有此要求。
耦合损耗:理想的耦合器输入信号为A,耦合一部分到B,则输出端口C必定就要有所减少。
耦合器和功分器均为无源器件,在工作中不使用电源(即不消耗能源),没有功率补充,因为能量是守恒的,输入信号与多个输出信号之和相等(不计插入损耗)。
计算方法是:首先将所以端口的“dBm”功率转换成“毫瓦”为单位表示,比如A输入端的功率原来是30dBm,转换成“毫瓦”是1000毫瓦,而耦合端的输出是25.5dBm(先假设用的是6dB耦合器,并且6dB耦合器实际耦合度是6.5dB),将25.5dBm转换成毫瓦是:316.23毫瓦。
再假设此耦合器没有其它损耗,那么剩下的功率应该是1000-316.23=683.77毫瓦,全部由输出端输出。
将683.77毫瓦转换成“dBm”=28.349, 那么此耦合器的耦合损耗就等于输入端的功率(dBm)-输出端的功率(dBm)=30dBm-28.349dBm=1.651dB,这个值指的是耦合器没有额外损耗(器件损耗)的情况下的耦合损耗。
微带耦合器平坦度: 10dB以下一般为0.5dB,10~20dB一般为1.5dB,20~30一般为2.0dB腔体耦合器的平坦度:由于腔体耦合器的耦合度是一条类似于抛物线的曲线,所以平坦度非常差.实际使用中表示起来比较困难可以参考下表:3合路器和电桥1)作用:合路器的主要作用是将几路信号合成起来.双频合路器照片电桥照片2)种类:合路器分为双频合路器和电桥合路器2种。
双频合路器分为GSM/CDMA两网合路器和GSM/DCS两网合路器。
3)工作机理说明:双频合路器的工作原理类似于双工器,但要求被合成的信号不在同一频段范围内,比如G网和C网,G网和D网,有C网和D网之间的合路均可以才用双工合路器,而且双频合路器具有插损低(有的只有零点几dB)隔离度大(大于70~90dB) 等特点。
由于C网二次谐波落在D网内,因此,C 网和D网的隔离度比其他种类的小约10 dB。
当被合路的信号在同一频段内是就只能采用电桥合路器了.电桥合路器有合路损耗,比如2合1有3dB的合路损耗,而且电桥合路器的隔离度远远低于双工合路器,一般只有20dB左右。
双工器双工器是异频双工电台,中继台的主要配件,其作用是将发射和接收讯号相隔离,保证接收和发射都能同时正常工作.它是由两组不同频率的阻带滤波器组成,避免本机发射信号传输到接收机。
一般双工器由六个阻带滤波器(陷波器)组成,各谐振于发射和接收频率。
接收端滤波器谐振于发射频率,并防指发射功率串入接收机,发射端滤波器谐振于接收频率。
有些双工器不标发射和接收端而只标LOW和HIGH ,如某双工器LOW=450, HIGH=460, 表示LOW端可联接450兆接收机HIGH端联接460兆发射机,也可将LOW端联接450兆发射机,HIGH端联接460兆接收机,收发频率可颠倒使用,但是不能将发射频率460的机器接置双工器450兆一端以免损坏电台和双工器。
双工器选用:应根据电台发射接收频率定制双工器。
400兆收发频率差10MHZ 双工器的工作带宽在+-250kHZ可保证隔离度90db左右,单频点工作隔离度可达120db..当使用频率超过双工器额定带宽时,收发隔离度将急剧下降发射驻波增大,接收电路因受发射部分影响灵敏度下降不能正常工作。
业余无线中转台U段一般收发差5兆HZ 使用的双工器采用窄带设计,可保证隔离度不下降但工作带宽变窄为+-100KHZ. 实践证明使用双工器比用两颗天线收发效果要好。
耦合器与合路器作用正好相反。
耦合器用于接收端,合路器用于发射端。
耦合器将接收到的无线信号分为几路给不同的接收机,合路器则将几路从不同发射机过来的射频信号合为一路到天线发射。
双工器接在天线下面,将发射和接收用一根天线来实现。