三角形专项训练解析附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据平行线的性质和等腰三角形的判定即可判断C项;
由直角三角形的性质并结合∠1= 的结论即可判断D项,进而可得答案.
【详解】
解:A、由于点 在 上,点E不一定是AC中点,所以 不一定相等,所以本选项结论错误,符合题意;
B、过点A作AG⊥BC于点G,如图,∵AB=AC,∴∠1=∠2= ,
∵ ,∴ED∥AG,∴ ,所以本选项结论正确,不符合题意;
①x是顶角,2x-20°是底角时,x+2(2x-20°)=180°,
解得x=44°,
∴顶角是44°;
②x是底角,2x-20°是顶角时,2x+(2x-20°)=180°,
解得x=50°,
∴顶角是2×50°-20°=80°;
③x与2x-20°都是底角时,x=2x-20°,
解得x=20°,
∴顶角是180°-20°×2=140°;
【解析】
【分析】
如下图,先求得点A的坐标,然后根据点A、D的坐标刻碟AD的长,进而得出菱形ABCD的周长.
【详解】
如下图,连接AC、BD,交于点E
∵四边形ABCD是菱形,∴DB⊥AC,且DE=EB
又∵B ,D
∴E(2,1)
∴A(2,0)
∴AD=
∴菱形ABCD的周长为:
故选:C
【点睛】
本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A的坐标,从而求得菱形周长.
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
4.下列长度的三条线段能组成三角形的是()
A. B. C. D.
【答案】D
【解析】
【分析】
三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.
∵四边形 为正方形,
∴ ,
∵ 是以 为底的等腰三角形,
∴ ,则点E在AB的垂直平分线上,
∵ ≌ ,
∴ 为等腰三角形,
∴ ,则点G在CD的垂直平分线上,
∵四边形 为正方形,
∴AB的垂直平分线与CD的垂直平分线重合,
∴ 即为AB或CD的垂直平分线,
则 , ,
∵正方形 的边长为4,即 ,
∴ ,
设 ,则 ,
【详解】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,
由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,
∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,
∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.
故选:B.
【点睛】
8.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()
A.2 B. C.4 D.3
【答案】B
【解析】
【分析】
如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.
【详解】
如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;
A.2B. C. D.2
【答案】C
【解析】
【分析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.
【详解】
解:∵OP平分∠AOB,∠AOB=60°,
D.一个图形经过轴对称后得到的图形,与原来的图形全等
【答案】C
【解析】
A.一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;
B.一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;
C.一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;
D.一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,
6.如图,在 中, ,点 在 上, 于点 , 的延长线交 的延长线于点 ,则下列结论中错误的是()
A. B. C. D.
【答案】A
【解析】
【分析】
由题意中点E的位置即可对A项进行判断;
过点A作AG⊥BC于点G,如图,由等腰三角形的性质可得∠1=∠2= ,易得ED∥AG,然后根据平行线的性质即可判断B项;
5.将一个边长为4的正方形 分割成如图所示的9部分,其中 , , , 全等, , , , 也全等,中间小正方形 的面积与 面积相等,且 是以 为底的等腰三角形,则 的面积为()
A.2B. C. D.
【答案】C
【解析】
【分析】
【详解】
解:如图,连结EG并向两端延长分别交AB、CD于点M、N,连结HF,
3.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为( )
A.33°B.34°C.35°D.36°
【答案】B
【解析】
【分析】
由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.
∵△BAC是等腰直角三角形,AD⊥BC,
∴BD=CD=AD=3;
∴OD=AD-OA=2;
Rt△OBD中,根据勾股定理,得:
OB=
故答案为:B.
【点睛】
本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.
9.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()
10.如图,在 中, , ,以 为圆心,任意长为半径画弧分别交 、 于点 和 ,再分别以 、 为圆心,大于 的长为半径画弧,两弧交于点 ,连结 并延长交 于点 ,则下列说法中正确的个数是()
① 是 的平分线;② ;③点 在 的垂直平分线上;④
A.1B.2C.3D.4
【答案】D
【解析】
【分析】
根据题干作图方式,可判断AD是∠CAB的角平分线,再结合∠B=30°,可推导得到△ABD是等腰三角形,根据这2个判定可推导题干中的结论.
∴FB=FC,
∴∠FBC=∠FCB=25°,
∴∠CFB=180°-25°-25°=130°,
根据对称性可知:∠CFD=∠CFB=130°,
故选:A.
【点睛】
此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
14.等腰三角形的一个角比另一个角的 倍少 度,则等腰三角形顶角的度数是()
三角形专项训练解析附答案
一、选择题
1.如图,正方体的棱长为6cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()
A.9B. C. D.12
【答案】B
【解析】
【分析】
将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.
【详解】
∵ ,
∴ ,④正确
故选:D
【点睛】
本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.
11.对于图形的全等,下列叙述不正确的是( )
A.一个图形经过旋转后得到的图形,与原来的图形全等
B.一个图形经过中心对称后得到的图形,与原来的图形全等
C.一个图形放大后得到的图形,与原来的图形全等
解:如图,AB= .
故选:B.
【点睛】
此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.
2.如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为( )
A.30B.36C.45D.72
C、∵ED∥AG,∴∠1=∠F,∠2=∠AEF,∵∠1=∠2,∴∠F=∠AEF,∴ ,所以本选项结论正确,不符合题意;
D、∵AG⊥BC,∴∠1+∠B=90°,即 ,所以本选项结论正确,不符合题意.
故选:A.
【点睛】
本题考查了等腰三角形的判定和性质、平行线的判定和性质以及直角三角形的性质等知识,属于基本题型,熟练掌握等腰三角形的判定和性质是解题的关键.
A. B. 或 C. 或 D. 或 或
【答案】D
【解析】
【分析】
设另一个角是x,表示出一个角是2x-20°,然后分①x是顶角,2x-20°是底角,②x是底角,2x-20°是顶角,③x与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.
【详解】
设另一个角是x,表示出一个角是2x-20°,
【详解】
题干中作图方法是构造角平分线,①正确;
∵∠B=30°,∠C=90°,AD是∠CAB的角平分线
Hale Waihona Puke Baidu∴∠CAD=∠DAB=30°
∴∠ADC=60°,②正确
∵∠DAB=∠B=30°
∴△ADB是等腰三角形
∴点D在AB的垂直平分线上,③正确
在Rt△CDA中,设CD= ,则AD=2
在△ADB中,DB=AD=2
13.如图,在菱形 中, , 的垂直平分线交对角线 于点 ,垂足为 ,连接 、 ,则 的度数是()
A. B. C. D.
【答案】A
【解析】
【分析】
首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题;
【详解】
∵四边形ABCD是菱形,
∴∠ACD=∠ACB= ∠BCD=25°,
∵EF垂直平分线段BC,
【详解】
根据三角形三边关系可知,三角形两边之和大于第三边.
A、2+2=4<5,此选项错误;
B、1+ <3,此选项错误;
C、3+4<8,此选项错误;
D、4+5=9>6,能组成三角形,此选项正确.
故选:D.
【点睛】
此题考查三角形三边关系,解题关键在于掌握三角形两边之和大于第三边.即:两条较短的边的和小于最长的边,只要满足这一条就是满足三边关系.
【详解】
解:连接OD,设⊙O半径OD为R,
∵AB是⊙O的直径,弦CD⊥AB于点M,
∴DM= CD=4cm,OM=R-2,
在RT△OMD中,
OD²=DM²+OM²即R²=4²+(R-2)²,
解得:R=5,
∴直径AB的长为:2×5=10cm.
故选B.
【点睛】
本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.
∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE= CP=1,
∴PE= ,
∴OP=2PE=2 ,
∵PD⊥OA,点M是OP的中点,
∴DM= OP= .
故选C.
考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.
【答案】B
【解析】
【分析】
由CA=CB,可以设∠A=∠B=x.想办法构建方程即可解决问题;
【详解】
解:∵CA=CB,
∴∠A=∠B,设∠A=∠B=x.
∵DF=DB,
∴∠B=∠F=x,
∵AD=AE,
∴∠ADE=∠AED=∠B+∠F=2x,
∴x+2x+2x=180°,
∴x=36°,
故选B.
【点睛】
本题考查等腰三角形的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
∵正方形 的面积与 面积相等,
即 ,解得: ,
∵ 不符合题意,故舍去,
∴ ,则S正方形EFGH ,
∵ , , , 全等,
∴ ,
∵正方形 的面积 , , , , 也全等,
∴ S正方形ABCD− S正方形EFGH ,
故选:C.
【点睛】
本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得 的面积.
综上所述,这个等腰三角形的顶角度数是44°或80°或140°.
故答案为:D.
【点睛】
本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.
15.如图,在 中, 的垂直平分线交 于点 ,交 于点 . 的周长为 , 的周长为 ,则 的长为()
7.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()
A.9 cmB.10 cmC.11 cmD.12 cm
【答案】B
【解析】
【分析】
由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.
故选C.
【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.
12.如图,在菱形 中,点 在 轴上,点 的坐标轴为 ,点 的坐标为 ,则菱形 的周长等于()
A. B. C. D.
【答案】C
相关文档
最新文档