常见汽车悬挂解析

合集下载

图技术讲堂之详解纵臂扭转梁式非独立悬架

图技术讲堂之详解纵臂扭转梁式非独立悬架

决定操控性能汽车悬挂系统结构解析料子足决定操控性能汽车悬挂系统结构解析悬挂对于汽车的操控性能有着决定性的作用,不同构造的悬挂有着不同的操控性能。

弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬挂系统多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。

多连杆悬挂,就是通过各种连杆配置把车轮与车身相连的一套悬挂机构,其连杆数比普通的悬挂要多一些,一般把连杆数为三或以上的悬挂称为多连杆悬挂。

强柱弱梁nickelchem强柱弱梁。

先科普一下,为什么希望框架结构的破坏遵循强柱弱梁的模式呢?如下图所示(红点表示塑性铰),左边为强柱弱梁模式(即梁铰机制),框架结构中的梁端首先屈服,形成塑性铰,耗散地震输入能量,保护框架柱。

因此在能力设计法中将梁铰机制(或者允许出现梁柱铰混合机制)作为框架结构的预期破坏模式,于是有了所谓的强柱弱梁的设计概念。

桥梁钢-混凝土组合结构设计原理Luqiaocn面向21世纪交通版高等学校试用教材:本书共三部分十一章,包括钢——混凝土组合梁结构、预弯组合梁结构和钢管混凝土结构。

主要讲解了三种组合结构的基本概念、设计原理和方法、结构特性和施工要点。

软硬有道汽车白车身安全部位详细解析shiwuji乘员舱一般由车身立柱、底板总成和车顶总成三部分组成。

这些立柱除了有支撑车身顶盖、保证车身车顶强度的共同作用外,立柱的刚度又很大程度上决定了车身的整体刚度,因此在整个车身结构中,立柱是关键件,它要有很高的刚度。

底板总成。

一个完整的底板总成由底板纵梁、车身横梁(因为汽车座椅一般装在该横梁上,也称为座椅横梁)、地板和门槛总成组成。

底板横梁也叫座椅横梁,其主要的作用也是两个:一是承载座椅以及乘员重量;半挂车详细分类gooney0低平板半挂车结构和装载低平板半挂车通常采用凹梁式(或者井型)车架,既车架前段为鹅颈(鹅颈前段的牵引销与牵引车上的牵引鞍座相连,鹅颈后端与半挂车架相连),中段为货台(车架最低部分),后端为轮架(含车轮)。

悬挂系统名词解释

悬挂系统名词解释

悬挂系统名词解释悬挂系统是指车辆或机械中用于连接和悬挂车轮或部件的装置,其主要功能是传递和分散负荷、缓和冲击以及控制行驶方向等。

在车辆中,悬挂系统通常由一系列的杆件、弹簧和减震器组成,这些组件协同工作以确保车轮与地面之间有适当的接触和稳定性。

在悬挂系统中,弹簧的作用是吸收和释放能量,以缓和冲击和振动。

减震器则用于控制弹簧的振动,以进一步改善乘坐舒适性和稳定性。

此外,减震器还有助于减少车辆在行驶过程中产生的噪音。

根据设计目的和用途,悬挂系统可以分为独立悬挂和非独立悬挂两种类型。

独立悬挂指的是每个车轮都有独立的悬挂装置,使得车轮能够独立地与地面接触和运动。

这种悬挂形式可以提高汽车的操控性能和行驶稳定性,并且在转弯和颠簸路面上提供更好的性能。

非独立悬挂则是指两个车轮共用一个悬挂装置,这种设计结构相对简单,成本较低,但在行驶过程中容易产生侧倾和摆动。

除了上述提到的悬挂系统组件外,还有一些其他的名词也与悬挂系统相关。

例如:1、麦弗逊悬挂:一种常见的独立悬挂形式,其结构简单、重量轻且占用空间小,广泛应用于轿车和小型车中。

2、多连杆悬挂:一种高级的独立悬挂形式,可以提供更好的操控性能和乘坐舒适性,常用于高档轿车或运动车型中。

3、扭力梁悬挂:一种非独立悬挂形式,通常用于后轮,其结构简单、成本低廉,但操控性能相对较差。

4、空气悬挂:一种通过充气或放气来调整车辆高度的悬挂形式,可以根据行驶需求和驾驶模式来调整高度和姿态。

5、可调悬挂:一种可以通过电子或液压方式来调整弹簧刚度和阻尼的悬挂形式,使得车辆在不同行驶状态下都能保持良好的稳定性和舒适性。

综上所述,悬挂系统是车辆中不可或缺的重要组成部分,其性能直接影响到车辆的操控性、舒适性和稳定性。

了解和掌握悬挂系统的基本概念、类型和组件以及相关名词,对于正确选择和使用适合的悬挂系统以及进行合理的保养和维护至关重要。

汽车基础理论知识单选题100道及答案解析

汽车基础理论知识单选题100道及答案解析

汽车基础理论知识单选题100道及答案解析1. 汽车的发明者是()A. 卡尔·本茨B. 亨利·福特C. 戈特利布·戴姆勒D. 瓦特答案:A解析:卡尔·本茨发明了第一辆现代汽车。

2. 四冲程汽油机一个工作循环,曲轴旋转()A. 一周B. 两周C. 三周D. 四周答案:B解析:四冲程汽油机一个工作循环包括进气、压缩、做功、排气四个冲程,曲轴旋转两周。

3. 汽车发动机的动力来自于()A. 电池B. 汽油燃烧C. 电动机D. 太阳能答案:B解析:汽车发动机通常是内燃机,其动力来自汽油等燃料的燃烧。

4. 以下哪个不是汽车底盘的组成部分()A. 传动系统B. 制动系统C. 电气系统D. 转向系统答案:C解析:电气系统不属于汽车底盘,底盘主要包括传动、制动、转向和行驶系统。

5. 汽车轮胎上的花纹主要作用是()A. 美观B. 增加摩擦力C. 减少噪音D. 节省材料答案:B解析:轮胎花纹可增加轮胎与地面的摩擦力,提高行驶安全性。

6. 汽车的冷却系统主要是为了冷却()A. 机油B. 变速器油C. 发动机D. 制动液答案:C解析:冷却系统的主要作用是给发动机降温。

7. 汽车发动机的进气门一般比排气门()A. 大B. 小C. 一样大D. 不确定答案:A解析:进气门通常比排气门大,以增加进气量。

8. 以下哪种燃料不是汽车常用燃料()A. 汽油B. 柴油C. 天然气D. 氢气答案:D解析:目前氢气在汽车上的应用还不广泛。

9. 汽车的悬挂系统主要作用是()A. 支撑车身B. 减少震动C. 增加稳定性D. 以上都是答案:D解析:悬挂系统能支撑车身、减少震动、增加行驶稳定性。

10. 汽车的变速器可以改变()A. 车速B. 扭矩C. 发动机转速D. 以上都是答案:D解析:变速器通过改变传动比来改变车速、扭矩和发动机转速。

11. 汽车发动机的气缸排列方式不包括()A. 直列B. V 型C. W 型D. Z 型答案:D解析:常见的气缸排列方式有直列、V 型和W 型,没有Z 型。

简单介绍一下常见的汽车底盘悬架类型

简单介绍一下常见的汽车底盘悬架类型

汽车底盘悬架是指连接车身和车轮之间的一系列装置,主要作用是传递作用在车轮和车身之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,以保证汽车能平顺地行驶。

下面是几种常见的汽车底盘悬架类型:
- 麦弗逊式独立悬架:麦弗逊式独立悬架是当今世界用的最广泛的轿车前悬挂之一,其主要结构由螺旋弹簧、减震器、三角形下摆臂组成,绝大部分车型还会加上横向稳定杆。

它的优点是结构简单、占用空间小、响应较快、制造成本低,但缺点是稳定性不佳,抗侧倾和制动点头能力较弱。

- 双叉臂式独立悬架:双叉臂式独立悬架拥有上下两个叉臂,横向力由两个叉臂同时吸收,支柱只承载车身重量,因此横向刚度大。

其优点是侧向支撑好、抓地力强、路感清晰,但缺点是制造成本高、悬架定位参数设定复杂。

- 多连杆式独立悬架:多连杆式独立悬架是由连杆,减震器和弹性元件组成的,它的优点是舒适性好、操控性好、结构简单,但缺点是占用空间大、成本高、高速稳定性较差。

- 扭力梁式非独立悬架:扭力梁式非独立悬架是由两个纵摆臂和一个横梁组成的,其优点是结构简单、占用空间小、成本低,但缺点是舒适性较差、操控性较差、抗侧倾能力较弱。

不同类型的汽车底盘悬架具有不同的特点,在选择汽车底盘悬架时,要根据车辆的用途、行驶环境等因素进行综合考虑。

大众汽车悬挂系统解析ppt课件

大众汽车悬挂系统解析ppt课件

可以独立运动,从而提高汽车的稳定性和舒适性及安全性。
1
该图是典型的麦弗逊式独立悬挂
2
该图是常见的双叉臂式独立悬挂
主要优点:横向刚度大、抗侧倾性能优异、抓地性
能好、路感清晰;
主要缺点:制造成本高、悬架定位参数设定复杂;
适用车型:运动型轿车、超级跑车以及高档SUV前后
பைடு நூலகம்
悬架。
3
该图是典型的多连杆式独立悬挂,同时也是悬挂系统里 的主流悬挂。
麦弗逊式独立悬挂: 主要优点:结构简单、占用空间小、响应较快、制造成本低。 主要缺点:横向刚度小、稳定性不佳、转弯侧倾较大。 适用车型:中小型轿车、中低端SUV前悬架。
5
此图是一个侧面分析图,主要是阐明多连杆的自身结构。
6
此车是一汽奥迪S4轿车它采用的是多连杆式独立悬挂
7
此图是一汽迈腾轿车,其中前桥采用的是麦弗逊式独立 悬挂。
多连杆悬挂能实现主销后倾角的最佳位置,同时多连杆悬挂在收缩时能自动
调整外倾角,前束角以及使后轮获得一定的转向角度,大幅度减少来自路面的
前后方向力,从而改善加速和制动时的平顺性和舒适性,同时也保证了直线
行驶的稳定性,因为由螺旋弹簧拉伸或压缩导致的车轮横向偏移量很小,不
易造成非直线行驶。
4
此图是一个完整的麦弗逊式独立悬挂
8
该车前桥也采用的是麦弗逊式独立悬挂,而 后桥则采用的是 多连杆式独立悬挂。
9
通过以上图例可以总结汽车悬挂大致可以分为五种:麦弗逊式 独立悬挂、双叉臂式独立悬挂、多连杆式独立悬挂、单纵臂扭 杆梁式半独立悬挂(俗称扭力梁式)、拖曳臂式半独立悬挂 (俗称连杆自柱式独立悬挂)
10
汽车悬挂在车上的位置:主要集中在车前与车后

常见的五种车辆悬挂系统解析

常见的五种车辆悬挂系统解析

优点。:它结具构有简单与、麦节弗省逊空悬间挂、造相价近低的廉操。控
连杆支柱悬挂的优缺点及适用车型:
通大过限性对 度能连的,接发又运挥动轮有点胎比的抓麦约地弗束力逊角从悬度而设提挂计高更使整高得车的悬的连挂操在控压极缩限时。能主优动点调:整车结轮构定简位(单这个、设节计省自由空度间非、常大造),价能低完廉全针。对车型做匹配和调校以最
A型下控制臂(下摆臂)
麦佛逊式悬挂结构图
广州本田飞度、一汽 丰田卡罗拉、东风标 致307、一汽大众迈腾 等车型前悬挂均采用 麦佛逊式独立悬挂
典型的麦佛逊式悬挂
麦佛逊式独立悬挂的优缺点及适用车型: 优点:结构简单、节省空间、响应速度快、造价低廉。 缺点:横向刚度小、稳定性不好、过弯侧倾严重 适用车型:中小型轿车、中低端SUV前悬
多连身杆连式接独的立悬A字挂优型缺控点制及臂适改用成车型了:三根
的多连杆式悬挂,成本也低于多连杆悬挂故被不少厂家采用。
通过连对杆连定接位运动。点转的弯约时束产角生度设的计横使向得力悬,挂在压缩时能主动调整车轮定位(这个设计自由度非常大),能完全针对车型做匹配和调校以最
大限主度要的由发减挥轮振胎器抓支地柱力和从横而提拉高杆整来车承的担操控极限。
麦佛逊式悬挂的重量轻,对车轮变化的响应速度快,并且一个下摆臂和支柱的结构设计能够自动调整车轮外倾角,使其能在过弯时自
适应路面,能够达到车轮与路面接触面积最大化。
奔驰S级车型多连杆前悬挂结构图
舒适性有限
连杆支柱与麦弗逊悬挂一样,用来支撑车体也是减振器支柱,这种悬挂把减振器,减振弹簧组装在一个总成中。
多连杆悬挂能实现主销后倾角的最佳位置,大幅度减少来自路面的前后方向力,从而改善加速和制动时的平顺性和舒适性,同时也保

独立悬架的后轮为什么易偏磨啃胎多图超详细

独立悬架的后轮为什么易偏磨啃胎多图超详细

四轮定位基本知识luosanping从汽车的正上方向下看,由轮胎的中心线与汽车的纵向轴线之间的夹角称为前束角。

总前束值等于两个车轮的前束值之和,即两个车轮轴线之间的夹角。

☆作用:消除车轮外倾造成的不良后果.车轮外倾使前轮有向两侧张开的趋势,由于受车桥约束,不能向外滚开,导致车轮边滚边滑,增加了磨损,有了前束后可使车轮在每瞬间的滚动方向都接近于正前方,减轻了轮毂外轴承的压力和轮胎的磨损。

通常情况下汽车的侧倾角为外倾。

吃胎doggog前轮前束,是使汽车两前轮的前端距离小于后端距离。

从汽车的上面往下看,左右两个前轮形成一个开口向后的“八”字形。

采用这种结构目的是修正上述前轮外倾角引起的车轮向外侧转动。

另一方面,由于车轮倾斜,左右前轮分别向外侧转动,为了修正这个问题,如果左右两轮带有向内的角度,则正负为零,左右两轮可保持直线行进,减少轮胎磨损。

未曾曝光的最高机密四轮定位工序详解e探索发现我们都知道前束值对于车身行驶方向的影响,前束出现偏差,车辆会跑偏,但如果仅将前轮的前束调整到位而不去管后轮的偏差(很多人都觉得只要把转向轮调到标准就可以了),完全可以改善跑偏的现状,以达到车主的满意,但对于整个车身而言是非常不利的,后轮前束的不正确会致使车身处于较劲的状态,这些力会从轮胎与地面的摩擦中释放出去,长此以往,则加剧了轮胎的磨损。

用方向盘和转向机的角度来弥补四轮定位调整上的不足。

汽车前轮的设计,四轮定位,主销后倾,主销内...瞬间刹那汽车前轮的设计,四轮定位,主销后倾,主销内倾,前轮外倾,前轮前束汽车前轮的设计,四轮定位,主销后倾,主销内倾,前轮外倾,前轮前束。

四轮定位1. 四轮定位内容:主销后倾角,主销内倾角,前轮外倾角,前轮前束,外侧车轮二十度时,内外转向轮转角差,后轮外倾角,后轮前束。

如同时需要调转弯半径和前轮前束,必须先调前轮前束,因为条前轮前束会改变转弯半径,调转弯半径不会改变前轮前束。

车轮定位基础知识厚德务实一般来说,汽车维修工需要检查前轮的5个定位参数:主销后倾角、车轮外倾角、车轮前束、转向轴内倾角和转弯外倾角(转弯时前轮后束)。

解析双叉臂悬架(珍藏版)

解析双叉臂悬架(珍藏版)

在常见的集中独立悬挂结构中,双叉臂式悬架被公认是操控性最出色一种,绝大多数的性能跑车乃至于F1赛车使用的都是双叉臂的悬架结构。

那么下面就带大家一起了解一下这种最具有运动基因的悬挂形式。

历史及概述:由于叉臂长的很像许愿骨,所以得名(双愿骨式悬架)双叉臂悬挂也叫做双A臂悬挂或者双摇臂悬挂,属于双横臂悬架中的一种,英文名为double wishbone suspension(双愿骨式悬架),这个名字据说来源于西方圣诞节上一种吃火鸡的习俗,当人们开始吃的时候,首先要对火鸡身上一根V字形的骨头许愿,而这根骨头就叫许愿骨(Wish bone)。

而因为在双叉臂悬架结构中的A臂或者是V臂和许愿骨的形状非常相似,故得名双愿骨(double wishbone)式悬架。

packard 120是首款使用了双叉臂悬挂的量产车双叉臂悬架最早出现于上世纪30年代,当时的方程式赛车已经开始使用类似双叉臂的悬挂结构,而1935年,来自美国底特律的汽车制造商packard在旗下车型packard 120上首次使用了双叉臂悬挂,作为当时豪华汽车的代表,pachard创造性的在量产车上首次使用了这种结构复杂的悬架,从而提升车辆的操控性能。

时至今日,双叉臂悬挂仍旧在除了各种性能跑车、豪华轿车和大型SUV上广泛使用。

关于双叉臂悬架起源的误区相似的结构让不少人误以为双叉臂悬挂来源于麦弗逊悬挂此前,在网络上流传着一种错误的说法,认为双叉臂悬挂的灵感来自于麦弗逊悬挂,是由麦弗逊悬挂改进得来的。

这个说法的根据就是双叉臂悬挂和麦弗逊悬挂都拥有相似的A字形下摆臂和支柱式减震器的结构,所不同的是双叉臂结构在减震器上方还增加了连接车轮的A臂。

不过在事实上,双叉臂悬挂和麦弗逊悬挂并没有任何亲缘关系。

为何这么说呢?前面我们说过,早在上世纪30年代,双叉臂悬挂就已经开始在赛车运动上大量使用,而1935年则首次被使用在了量产的商品车上,而麦弗逊悬挂开始研发的时间为上世纪30年代中期,其设计灵感则是来源于飞机的起落架,而首次出现在商品车上则是在1949年的福特Vedette上。

图解汽车(10) 汽车悬挂系统结构解析

图解汽车(10) 汽车悬挂系统结构解析

图解汽车(10)汽车悬挂系统结构解析● 悬挂的作用汽车悬挂是连接车轮与车身的机构,对车身起支撑和减振的作用。

主要是传递作用在车轮和车架之间的力,并且缓冲由不平路面传给车架或车身的冲击力,衰减由此引起的震动,以保证汽车能平顺地行驶。

典型的悬挂系统结构主要包括弹性元件、导向机构以及减震器等部分。

弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬挂系统多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。

● 独立悬挂和非独立悬挂的区别汽车悬挂可以按多种形式来划分,总体上主要分为两大类,独立悬挂和非独立悬挂。

那怎么来区分独立悬挂和非独立悬挂呢?独立悬挂可以简单理解为,左右两个车轮间没有硬轴进行刚性连接,一侧车轮的悬挂部件全部都只与车身相连。

而非独立悬挂两个车轮间不是相互独立的,之间有硬轴进行刚性连接。

从结构上看,独立悬挂由于两个车轮间没有干涉,可以有更好的舒适性和操控性。

而非独立悬挂两个车轮间有硬性连接物,会发生相互干涉,但其结构简单,有更好的刚性和通过性。

● 麦弗逊式悬挂麦弗逊悬挂是最为常见的一种悬挂,主要有A型叉臂和减振机构组成。

叉臂与车轮相连,主要承受车轮下端的横向力和纵向力。

减振机构的上部与车身相连,下部与叉臂相连,承担减振和支持车身的任务,同时还要承受车轮上端的横向力。

麦弗逊的设计特点是结构简单,悬挂重量轻和占用空间小,响应速度和回弹速度就会越快,所以悬挂的减震能力也相对较强。

然而麦弗逊结构结构简单、质量轻,那么抗侧倾和制动点头能力弱,稳定性较差。

目前麦弗逊悬挂多用于家用轿车的前悬挂。

● 双叉臂式悬挂双叉臂式悬挂(双A臂、双横臂式悬挂),其结构可以理解为在麦弗逊式悬挂基础上多加一支叉臂。

车轮上部叉臂,与车身相连,车轮的横向力和纵向力都是由叉臂承受,而这时的减振机构只负责支撑车体和减振的任务。

由于车轮的横向力和纵向力都由两组叉臂来承受,双叉臂式悬挂的强度和耐冲击力比麦弗逊式悬挂要强很多,而且在车辆转弯时能很好的抑制侧倾和制动点头等问题。

麦弗逊减震器解析

麦弗逊减震器解析

简练而实用之选麦弗逊独立悬挂解析麦弗逊悬挂(MacPhersan),是现在非常常见的一种独立悬挂形式,大多应用在车辆的前轮。

简单地说,麦弗逊式悬挂的主要结构即是由螺旋弹簧加上减震器以及A字下摆臂组成,减震器可以避免螺旋弹簧受力时向前、后、左、右偏移的现象,限制弹簧只能作上下方向的振动,并且可以通过对减震器的行程、阻尼以及搭配不同硬度的螺旋弹簧对悬挂性能进行调校。

麦弗逊悬挂最大的特点就是体积比较小,有利于对比较紧凑的发动机舱布局。

不过也正是由于结构简单,对侧向不能提供足够的支撑力度,因此转向侧倾以及刹车点头现象比较明显。

下面就为大家详细的介绍一下麦弗逊悬挂的构造以及性能表现。

●麦弗逊悬挂的历史:麦弗逊式悬挂是应前置发动机前轮驱动(ff)车型的出现而诞生的。

ff车型不仅要求发动机要横向放置,而且还要增加变速箱、差速器、驱动机构、转向机,以往的前悬挂空间不得不加以压缩并大幅删掉,因此工程师才设计出节省空间、成本低的麦弗逊式悬挂,以符合汽车需求。

麦弗逊(Macphersan)是这套悬挂系统发明者的名字,他是美国伊利诺伊州人,1891年生。

大学毕业后他曾在欧洲搞了多年的航空发动机,并于1924年加入通用汽车公司的工程中心。

30年代,通用的雪佛兰公司想设计一种真正的小型汽车,总设计师就是麦弗逊。

他对设计小型轿车非常感兴趣,目标是将这种四座轿车的质量控制在0.9吨以内,轴距控制在2.74米以内,设计的关键是悬挂。

麦弗逊一改当时盛行的板簧与扭杆弹簧的前悬挂方式,创造性地将减振器和螺旋弹簧组合在一起,装在前轴上。

实践证明这种悬架形式的构造简单,占用空间小,而且操纵性很好。

后来,麦弗逊跳槽到福特,1950年福特在英国的子公司生产的两款车,是世界上首次使用麦弗逊悬架的商品车。

●麦弗逊悬挂的构造:麦弗逊式悬挂由螺旋弹簧、减震器、A字形下摆臂组成,绝大部分车型还会加上横向稳定杆。

麦弗逊式独立悬架的物理结构为支柱式减震器兼作主销,承受来自于车身抖动和地面冲击的上下预应力,转向节(也可说车轮,因为转向节作用于车轮)则沿着主销转动;此外,其主销可摆动,特点是主销位置和前轮定位角随车轮的上下跳动而变化,且前轮定位变化小,拥有良好的行驶稳定性。

全面解析5种常见悬挂—麦弗逊式独立悬挂

全面解析5种常见悬挂—麦弗逊式独立悬挂

全面解析5种常见悬挂随着汽车产销量的高速发展,国内汽车的保有量也达到了空前的规模,消费者在购车的时候也不再简单把汽车看成是面子工程,而是越来越关心其汽车的各项性能,尤其是汽车的操控性能受到了极大关注。

在这个言必谈操控、论必说运动的年代里,几乎所有汽车品牌多在大力的宣传自己产品优秀的操控性能,从欧系的宝马、奥迪、萨伯到日系的讴歌、英菲尼迪等高端品牌无不在极力宣传自己良好的操控性和运动性,就连一向以舒适性能为取向的奔驰、凯迪拉克、雷克萨斯等高端品牌也在新近的设计中加入了更多的运动取向。

从以福克斯为代表的紧凑型轿车到以迈腾为代表的中级车到以宝马5系Li为代表的高档车无不标榜自己的运动性能。

那么他们是否如宣传所说这么优秀,此次汽车探索就为大家解读影响汽车运动性能的汽车底盘的核心——悬挂系统,并分析不同悬挂对汽车操控性及舒适性的影响。

悬挂在汽车底盘安放位置的示意图悬挂的概念和分类首先让我们来了解一下什么是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。

典型的汽车悬挂结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。

绝大多数悬挂多具有螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。

根据结构不同可分为非独立悬挂和独立悬挂两种。

奥迪运动轿车S4前后均采用了独立悬挂非独立悬挂由于是用一根杆件直接刚性地连接在两侧车轮上,一侧车轮受到的冲击、振动必然要影响另一侧车轮,这样自然不会得到较好的操纵稳定性及舒适性,同时由于左右两侧车轮的互相影响,也容易影响车身的稳定性,在转向的时候较易发生侧翻。

独立悬挂底盘扎实感非常明显。

由于采用独立悬挂汽车的两侧车轮彼此独立地与车身相连,因此从使用过程来看,当一侧车轮受到冲击、振动后可通过弹性元件自身吸收冲击力,这种冲击力不会波及另一侧车轮,使得厂家可在车型的设计之初通过适当的调校使汽车在乘坐舒适性、稳定性、操纵稳定性三方面取得合理的配置。

《汽车底盘构造》课件

《汽车底盘构造》课件

底盘调校:注重舒适 性和操控性
底盘特点:结构紧凑, 重量轻,强度高
案例三:某电动车底盘构造解析
底盘类型:电动车专 用底盘
底盘结构:电池组、 电机、电控系统、悬 挂系统、制动系统等
电池组:采用锂电池, 容量大,续航里程长
电机:采用永磁同步 电机,效率高,噪音

电控系统:采用智能 控制技术,实现车辆 行驶、制动、转向等
制动系统:盘式制动、鼓式制动等
单击添加项标题
排气系统:单排气管、双排气管等
单击添加项标题
底盘调校:舒适性、操控性等
案例二:某SUV车型底盘构造解析
底盘类型:承载式车 身
悬挂系统:前麦弗逊 式独立悬挂,后多连
杆式独立悬挂
驱动方式:前置前驱
转向系统:电动助力 转向
制动系统:前后盘式 制动器
底盘防护:底盘装甲, 防锈处理
智能底盘技术: 智能悬架系统: 智能转向系统: 智能制动系统: 智能驱动系统:
通过传感器、 根据路况自动 根据车速和转 根据路况和车 根据路况和驾
控制器和执行 调节悬架软硬, 向角度自动调 速自动调节制 驶需求自动调
器实现底盘智 提高舒适性和 节转向力,提 动力,提高安 节动力输出,
能化
操控性
高安全性和操 全性和舒适性 提高燃油经济
底盘性能:良好的操控性、舒适性和 安全性
底盘设计趋势:环保、节能、智能化
THANKS
汇报人:
Part Six
汽车底盘构造案例 分析
案例一:某品牌轿车底盘构造解析
单击添加项标题
底盘类型:前驱、后驱或四驱
单击添加项标题
转向系统:电动助力转向、液压助力转向等
单击添加项标题

悬架相对阻尼系数解析

悬架相对阻尼系数解析

悬架相对阻尼系数解析标题:深入探析悬架相对阻尼系数引言:悬架相对阻尼系数是一项重要的参数,对于汽车悬架系统的性能和稳定性具有至关重要的影响。

通过对悬架相对阻尼系数进行深入的解析,我们可以更好地理解其工作原理、对车辆行驶的影响以及优化悬架系统的方法。

本文将全面介绍悬架相对阻尼系数的定义、计算方法,探讨其在不同路况下的变化,以及讨论如何通过调整悬架相对阻尼系数来提高行驶的舒适性和稳定性。

第一部分:悬架相对阻尼系数的定义和计算方法(500字)1.1 定义:悬架相对阻尼系数是指悬架系统的阻尼力与临界阻尼力之间的比值,反映了悬架系统的阻尼特性。

1.2 计算方法:根据牛顿第二定律和配重法,可以通过测量悬架系统的阻尼力和临界阻尼力来计算悬架相对阻尼系数。

第二部分:悬架相对阻尼系数的影响因素(1000字)2.1 悬架类型:不同类型的悬架系统具有不同的阻尼特性,从而对相对阻尼系数产生影响。

2.2 轴负荷:车辆的轴负荷会改变悬架系统的工作状态,进而影响悬架相对阻尼系数的大小。

2.3 悬架调校:悬架系统的调校方式和参数设置会对相对阻尼系数产生直接影响。

2.4 车速和路况:不同的车速和路况条件下,悬架相对阻尼系数会发生变化。

第三部分:悬架相对阻尼系数在不同路况下的变化(1000字)3.1 平整路面:在平整路面行驶时,悬架相对阻尼系数的变化较小,主要起到减震和支撑的作用。

3.2 不平整路面:在不平整路面行驶时,悬架相对阻尼系数会发生较大的变化,对车辆的稳定性和舒适性产生重要影响。

3.3 过段路面:在通过段状路面时,如减速带或坑洼,悬架相对阻尼系数会发生急剧变化,对车辆的悬架系统和驾驶员的身体产生冲击。

第四部分:优化悬架相对阻尼系数以提高行驶性能(500字)4.1 调校悬架硬度:通过调整悬架的硬度可以改变相对阻尼系数,以提高行驶的舒适性和稳定性。

4.2 悬架控制系统:采用主动悬架控制系统可以根据驾驶条件来智能调整悬架相对阻尼系数,以提高悬架系统的适应性和性能。

汽车悬挂详细解析

汽车悬挂详细解析

五种常见悬挂解析麦弗逊式独立悬挂在这个言必谈操控、论必说运动的年代里,几乎所有汽车品牌多在大力的宣传自己产品优秀的操控性能,从欧系的宝马、奥迪、萨伯到日系的讴歌、英菲尼迪等高端品牌无不在极力宣传自己良好的操控性和运动性,就连一向以舒适性能为取向的奔驰、凯迪拉克、雷克萨斯等高端品牌也在新近的设计中加入了更多的运动取向。

从以福克斯为代表的紧凑型轿车到以迈腾为代表的中级车到以宝马5系Li为代表的高档车无不标榜自己的运动性能。

那么他们是否如宣传所说这么优秀,此次汽车探索就为大家解读影响汽车运动性能的汽车底盘的核心——悬挂系统,并分析不同悬挂对汽车操控性及舒适性的影响。

『悬挂在汽车底盘安放位置的示意图』● 悬挂的概念和分类首先让我们来了解一下什么是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。

典型的汽车悬挂结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。

绝大多数悬挂多具有螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。

根据结构不同可分为非独立悬挂和独立悬挂两种。

『奥迪S4前后均采用了独立悬挂』非独立悬挂由于是用一根杆件直接刚性地连接在两侧车轮上,一侧车轮受到的冲击、振动必然要影响另一侧车轮,这样自然不会得到较好的操纵稳定性及舒适性,同时由于左右两侧车轮的互相影响,也容易影响车身的稳定性,在转向的时候较易发生侧翻。

独立悬挂底盘扎实感非常明显。

由于采用独立悬挂汽车的两侧车轮彼此独立地与车身相连,因此从使用过程来看,当一侧车轮受到冲击、振动后可通过弹性元件自身吸收冲击力,这种冲击力不会波及另一侧车轮,使得厂家可在车型的设计之初通过适当的调校使汽车在乘坐舒适性、稳定性、操纵稳定性三方面取得合理的配置。

车辆减震关键技术的解析

车辆减震关键技术的解析

车辆减震关键技术的解析车辆能够正常行驶控制,当路面状况较差时,驾驶员必须忍受来自路面的强烈震动和冲击,随着车辆行驶速度的增加,震动强度也会随之增强,这就极大的限制了车辆作业质量及行驶的平稳性。

为了使车架和车身的震动得到衰减,改善汽车行驶过程的平稳性和舒适性,车辆悬架系统上需要安装减震器,减震器是汽车的悬挂系统的核心组成部件,也是车辆的一个主要零部件。

现代的减震器结构一头连接车身,一头连接车轮,使得其既是整个车身的受力部件,又能够减少并吸收车身的震动功能。

一、车辆减震的工作原理该减震器是干式、摩擦片式减震器,主要由连接臂、轴、体、摩擦片(内齿摩擦片和外齿摩擦片)、弹子盘、滚珠和弹簧组(碟形弹簧)等构成。

摩擦减震器中共有39片摩擦片,其中内齿摩擦片20片,可进行转动和轴向移动,称为主动摩擦片;外齿摩擦片19片,可轴向移动,但不能转动,称为被动摩擦片。

工作过程中,减震阻力是通过摩擦片之间相对滑动形成的摩擦力产生的。

二、车辆减震器的主要数学模型车辆减震器数学模型的建立一直是汽车动力学领域中的重要研究课题。

就被动悬架减震器的研究而言,已建立了三类数学模型。

第一类为复杂非线性模型。

该类模型是应用流体力学中的物理定律,根据减震器内部油液的流动情况建立的。

模型中参数较多,如Segel及Lang模型有82个参数。

该类模型可用于研究减震器本身的特性,但不能方便地用于汽车动力学系统的仿真。

第二类是线性化模型,如Wallaschek模型。

该类模型不能比较准确地描述减震器配特性。

第三类是简单非线性模型。

该类模型是通过试验的方法建立的,模型虽然仅含有较少的参数,但能比较准确地描述减震器的性能又能方便地用于汽车动力学系统仿真。

该类模型的典型代表是剑桥大学Besinger等人的7参数模型。

该模型在10Hz以内与试验结果比较吻合,标志减震器数学模型研究的最新进展。

Besinger模型。

将真实的减震器简化为某种物理模型。

图1是一种可能的物理模型,由一阻尼器与一非线性弹簧组成。

电控悬架系统常见故障原因

电控悬架系统常见故障原因

电控悬架系统常见故障原因电控悬架系统是一种通过电子控制器控制悬架系统工作的汽车悬挂系统。

它通过感知车辆的行驶状况、操纵车辆悬挂系统的工作来实现对车辆悬挂高低调节、硬度调节、悬挂角度调节等功能。

然而,由于其复杂的结构和工作原理,电控悬架系统也会面临一些常见故障。

下面将介绍几种常见的电控悬架系统故障原因。

首先,电子控制单元(ECU)故障是导致电控悬架系统故障的常见原因之一。

ECU 是电控悬架系统的核心部件,负责接收传感器信号、控制执行器工作,同时也接收和解析司机的悬挂调节命令。

如果ECU出现故障,将会导致悬挂系统工作不正常,表现为悬挂高度调节异常、悬挂硬度调节失效等问题。

其次,传感器异常也是导致电控悬架系统故障的原因之一。

电控悬架系统中的传感器主要用于感知车辆的行驶状况和悬挂系统的工作状态。

这些传感器包括高度传感器、加速度传感器、角度传感器等。

如果传感器出现故障,将无法准确感知车辆的行驶状态,进而导致悬挂系统工作不正常。

第三,执行器故障也是导致电控悬架系统故障的重要原因。

执行器是悬挂系统的执行部件,负责根据ECU的控制信号实现悬挂高度、硬度和角度的调节。

如果执行器出现故障,将无法正常工作,导致悬挂系统无法正确调节,从而影响到车辆的悬挂性能和驾驶舒适性。

此外,电控悬架系统还可能因为驱动电源供电异常、电气连接不良、悬挂系统的机械结构故障等原因导致故障。

这些因素可能会影响到电控悬架系统的工作稳定性和可靠性,导致系统不能正常工作。

针对电控悬架系统故障这些原因,可以采取以下解决措施。

首先,定期检查和维护电控悬架系统,保持传感器的灵敏度和执行器的工作状态良好。

其次,及时更换和修复出现故障的电子控制单元、传感器和执行器。

同时,加强对驱动电源的监测和维护,确保电控悬架系统的正常供电。

此外,要保证悬挂系统的机械结构完好,及时修复和更换出现故障的部件。

综上所述,电控悬架系统的常见故障原因包括电子控制单元故障、传感器异常、执行器故障、驱动电源供电异常、电气连接不良以及悬挂系统的机械结构故障等。

车辆底盘常见总成结构

车辆底盘常见总成结构

常见车辆驱动方式
前置四驱
常见车辆驱动方式
前置四驱
前置四驱是指汽车发动机前置,并且是四轮驱动,多用于高性能轿 车或者SUV,用在轿车上的优点就是操控性高,而用在越野车上则是 通过性更强。
汽车驱动方式
二、悬挂类型
整 体 式
独 立 式
悬挂类型
独立悬架
悬挂类型
前桥结构-四方架型
悬挂类型
前桥结构-普通型
悬挂类型
后桥结构(整体式)
悬挂类型
后桥Байду номын сангаас构(整体式)
悬挂类型
后桥结构(新速腾整体式)
悬挂类型
后桥结构(新速腾整体式)
悬挂类型
后桥结构(多连杆独立式)
悬挂类型
减震器总成 后轮前束调整拉杆 后轮横拉杆 后轮支撑拉杆
后桥结构(双连杆独立式)
悬挂类型
后桥结构(双连杆独立式)
悬挂类型
后桥结构(途胜双连杆独立式)
车辆构造
学习内容与目的
•认识了解车辆常见总成结构布局
•易损部件的故障表现 •底盘件拆卸更换过程
一、常见车辆驱动方式
驱动方式: 发动机的布置方式以及驱动轮的数量、位置的形式。 常见驱动方式有: 前置前驱(FF)、前置后驱(FR)、前置四驱
常见车辆驱动方式
前置前驱(FF)
常见车辆驱动方式
前置后驱(FR)
转向系统
转向系统
传动系统常见部件 传动半轴
传动系统常见部件 传动半轴
传动系统常见部件 传动半轴 •内、外球笼 •防尘套 •平衡块
九、车辆油液渗漏型故障解析
2.密封垫、密封胶圈、密封套老化,造成密封不严。
半轴球笼防尘套
传动系统常见部件 传动半轴

汽车智能技术专业《全面解析5种常见悬挂 双叉臂式独立悬挂2》

汽车智能技术专业《全面解析5种常见悬挂 双叉臂式独立悬挂2》

下面我们就来介绍:式。

『典型的式结构图』
式又称双A臂式,拥有上下两个叉臂,横向力由两个叉臂同时吸收,支柱只承载车身重量,因此横向刚度大。

式的上下两个A字形叉臂可以精确的定位前轮的各种参数,前轮转弯时,上下两个叉臂能同时吸收轮胎所受的横向力,加上两叉臂的横向刚度较大,所以转弯的侧倾较小。

『阿尔法·罗密欧159的前悬采用了式』
『的结构图』
式通常采用上下不等长叉臂〔上短下长〕,让车轮在上下运动时能自动改变外倾角并且减小变化减小轮胎磨损,并且能自适应路面,轮胎接地面积大,贴地性好。

『式运动性出色,为、等超级跑车所运用』
相比式多了一个上摇臂,不仅需要占用较大的空间,而且其定位参数较难确定,因此小型轿车的前桥出于空间和本钱考虑一般不会采用此种。

但其具有侧倾小,可调参数多、轮胎接地面积大、抓地性能优异,因此绝大局部纯粹血统的跑车的前均选用式,可以说式是为运动而生的,、等超级跑车以及F1方程式赛车均采用了式前。

国内采用式前的轿车主要有和,以及的豪华SUV Q7、等。

另外需要说明的是,式和式有着许多的共性,只是结构比式简单些可以称之为简化版的式。

同式一样式的横向刚度也较大,一般也采用上下不等长摇臂设置。

『的式』
式设计偏向运动性,其性能优于式式、但比起真正的式以及前要稍差一些。

国内采用式前的主要有:广州、轿车以及-戴克的。

而采用式后的有。

『后悬采用式的具有不错的运动性』
主要优点:横向刚度大、抗侧倾性能优异、抓地性能好、路感清晰;
主要缺点:制造本钱高、悬架定位参数设定复杂;
『前后悬均采用了式』
适用车型:运动型轿车、超级跑车以及高档SUV前后悬架。

汽车底盘的液压悬挂系统构造与工作原理解析

汽车底盘的液压悬挂系统构造与工作原理解析

汽车底盘的液压悬挂系统构造与工作原理解析在汽车工程领域,汽车底盘的液压悬挂系统是一个关键的技术部件,它能够有效提高车辆的悬挂性能和乘坐舒适性。

本文将从液压悬挂系统的构造和工作原理两个方面展开探讨,帮助读者更好地理解这一重要的汽车技术。

一、构造分析1. 液压悬挂系统的主要构成部分包括液压油箱、液压泵、液压缸、控制阀门和液压管路等。

2. 液压油箱:液压油箱一般位于车辆底盘的前部或后部,用于储存液压油,并通过液压泵将液压油送入液压缸中。

3. 液压泵:液压泵是液压悬挂系统的动力源,它通过转动产生液压油的压力,推动液压缸的活塞进行工作。

4. 液压缸:液压缸是液压悬挂系统的执行元件,它接受液压泵输送的液压油,通过活塞的升降来调节车辆的悬挂高度。

5. 控制阀门:控制阀门用于控制液压油的流动方向和流量大小,从而实现对液压悬挂系统的操作和调节。

6. 液压管路:液压管路将液压油从液压泵输送至液压缸,是液压悬挂系统的液压传动通道。

二、工作原理解析1. 液压悬挂系统的工作原理是利用液压油的压力来调节车辆的悬挂高度,以提高车辆行驶的稳定性和乘坐舒适性。

2. 当车辆行驶在不同路况下时,液压悬挂系统通过感应车轮的运动和车身的倾斜角度,实时控制液压泵的运转,调节液压缸的工作压力。

3. 在车辆通过不平路面或急转弯时,液压悬挂系统可以实现自动调节悬挂高度,使车辆底盘与地面保持适当的间隙,有效减少冲击力对车身的影响。

4. 液压悬挂系统还可以根据车辆的载重情况自动调节悬挂高度,保持车身的平稳性和通过性,提升驾驶体验。

通过以上对汽车底盘液压悬挂系统的构造与工作原理的解析,我们可以更好地理解这一重要的汽车技术,并认识到其在提高车辆行驶性能和驾驶舒适性方面的重要作用。

希望本文能帮助读者对液压悬挂系统有更深入的了解,从而更好地应用于实际的汽车生产和维护中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档