第5章物质的跨膜运输
第5章 跨膜运输

脂溶性与扩散速率
质 壁 分 离 , 而 置 于 高 浓 度 的 酒 精 溶 液 中 时 则 不 会 ?
当 把 植 物 细 胞 置 于 高 浓 度 蔗 糖 溶 液 时, 很 快 会 发 生
7
人工膜对各类物质的通透率: 疏水分子(非极性分子)容易透过; 带电离子不容易透过;
极性不带电荷的小分子比大分子容易透过;
14
Typical gated channels
电压门通道 配体门通道 压力激活通道
15
■压力激活通道
(Stretch-gated channels)
听觉毛状细胞的离子通道就是一例。声音的振动激 活通道,门开放,允许离子进入毛状细胞,这样建 立起一种电信号,并且从毛状细胞传递到听觉神经, 然后传递到脑。
8
◆水分子不溶于脂, 并具有极性,理应不能自由 通过质膜, 但实际却是很容易通过膜。原因是:
plasma membranes of many cells contain proteins, called aquaporins, that allow the passive movement of water from one side to the other. such as cells of the kidney tubule and plant roots 水分子本身比较小; 膜上有水孔蛋白通道
24
作用:
维持细胞内一定的Na+/K+浓度; 该浓度梯度为葡萄糖协同运输提供驱动力; 有助于建立膜电位。
25
2
2+ Ca
pump,
2+ Ca
ATPase
● The Ca2+ -ATPase present in both the plasma membrane and the membranes of the endoplasmic reticulum.
细胞生物学-物质的跨膜运输(翟中和第四版)-含注释!!!

动物、植物细胞主动运输比较
三、ABC 超家族
• ABC 超家族也是一 类ATP 驱动泵 • 广泛分布于从细菌 到人类各种生物中, 是最大的一类转运 蛋白 • 通过ATP 分子的结 合与水解完成小分 子物质的跨膜转运
(一)ABC转运蛋白的结构与工作模式
• 4 个“核心”结构域
– 2 个跨膜结构域,分别含6 个跨
H+/K+ ATPase Control of acid secretion in the stomach
二、V 型质子泵和 F 型质子泵
• V 型质子泵广泛存在 于动物细胞的胞内体 膜、溶酶体膜,破骨 细胞和某些肾小管细 胞的质膜,以及植物、 酵母及其他真菌细胞 的液泡膜上 (V 为 vesicle) • 转运 H+ 过程中不形成 磷酸化的中间体
导兴奋)
B. 配体门通道(胞外配体)
(突触后膜接收乙酰胆碱的
受体)
C. 配体门通道(胞内配体)
D. 应力激活通道(内耳的 听毛细胞)
含羞草“害羞”的机制
• 估计细胞膜上与物质转运有关的蛋白占核基因编码蛋白的 15~30%,细 胞用在物质转运方面的能量达细胞总消耗能量的2/3。
• 两类主要转运蛋白:
P型泵的主要特点:都是跨膜蛋白,并且是由一条多肽完成 所有与运输有关的功能,包括ATP的水解、磷酸化和离子 的跨膜运输。
Na+-K+ATP酶的分子结构:
α β 两种亚基组成的二聚体。
α 亚基具有ATP酶的活性;
β 亚基是具有组织特异性的糖蛋白。
(一)Na+-K+ 泵(Na+-K+ ATPase)
Figure 11-14 Molecular Biology of the Cell (© Garland Science 2008)
细胞生物学 第五章 物质的跨膜运输

离子通道的三种类型
编辑ppt
电压门控离子通道:铰链细胞失水 原理:含羞草的叶柄基部和复叶基部,都有一个膨大部分,叫作 叶枕。叶枕细胞 (铰链细胞)受刺激时,其膜钙离子门控通 道打开,钙内流,产生AP,致使铰链细胞的液泡快速失水而 失去膨压,从而叶枕就变得瘫软,小羽片失去叶枕的支持,依次 地合拢起来。
编辑ppt
应力激活的离子通道:2X1013N,0.04nm
编辑ppt
❖ 2、通道蛋白 ❖ 离子通道的特征: ❖ (1)具有极高的转运速率 ❖ 比载体转运速率高1000倍以上;带电离子
的跨膜转运动力来自跨膜电化学梯度。 ❖ (2)离子通道没有饱和值 ❖ 离子浓度增大,通过率也随之增大。 ❖ (3)离子通道是门控的,并非连续开放 ❖ 离子通道的开与闭编辑p受pt 控于适当的细胞信号。
❖ Couple uphill transport to the hydrolysis of ATP.
❖ Mainly in bacteria, couple uphill transport to an input of
energy from light.
编辑ppt
第二节 离子泵和协同转运 ❖ ATP 驱动泵分类:
编辑ppt
水分子 通过水孔蛋白
编辑ppt
第一节 膜转动蛋白与物质的跨膜运输
❖ 二、物质的跨膜运输 ❖ (一)被动运输 ❖ 2、协助扩散 ❖ 各种极性分子和无机离子,以及细
胞代谢产物等顺其浓度梯度或电化学 梯度跨膜转运,无需细胞提供能量, 但需膜转运蛋白“协助”。
编辑ppt
葡萄糖载体蛋白家族
❖ 人类基因组编码12种与糖转运相关的载体 蛋白GLUT1~GLUT12,构成GLUT。
第五章 物质的跨膜运输习题及答案

细胞生物学章节习题-第五章一、选择题1、物质进入细胞的过程,需消耗能量,但不需要载体的一项是(C )。
A. 根吸收矿质元素离子B. 红细胞保钾排钠C. 腺细胞分泌的酶排出细胞D. 小肠对Ca、P的吸收2、母鼠抗体从血液上皮细胞进入母乳,或者乳鼠的肠上皮细胞将抗体摄入体内,都涉及将胞吞和胞吐作用相结合。
这种跨膜转运方式称为(B )。
A. 吞噬作用B. 跨细胞转运C. 协同转运D. 胞吞作用3、既能执行主动运输,又能执行被动运输的膜转运蛋白是(A )。
A. 载体蛋白B. 通道蛋白C. 孔蛋白D. ABC转运蛋白4、动物细胞对葡萄糖或氨基酸等有机物的吸收依靠(B )。
A. 受体介导的胞吞作用B. Na+-K+泵工作行程的Na+电化学梯度驱动C. Na+-K+泵工作行程的K+电化学梯度驱动D. H+-ATPase行程的H+电化学梯度驱动5、有关动物细胞胞内体膜或溶酶体膜上的V型质子泵的描述,错误的是(B)。
A. V型质子泵利用ATP水解供能从细胞质基质中逆H+电化学梯度将H+泵入细胞器B. V型质子泵利用ATP水解供能从细胞器中逆H+电化学梯度将H+泵入细胞质基质C. V型质子泵可以维持细胞质基质pH中性D. V型质子泵有利于维持胞内体或溶酶体的pH酸性6、流感病毒进入细胞的方式为(C )。
A. 吞噬作用B. 胞膜窖蛋白依赖的胞吞作用C.网格蛋白依赖的胞吞作用D. 大型胞饮作用7、表皮生长因子及其受体通过胞吞作用进入细胞后(D)。
A. 将通过夸细胞转运到细胞的另一侧发挥作用B. 受体返回质膜,而表皮生长因子进入溶酶体降解C. 表皮生长因子被活化,刺激细胞生长D. 进入溶酶体被降解,从而导致细胞信号转导活性下降8、一种带电荷的小分子物质,其胞外浓度比细胞内浓度高。
那么,该物质进入细胞的可能方式为(A )。
A. 被动运输B. 简单扩散C. 主动运输D.以上都错9、对P型泵描述正确的是(D )。
A. 位于液泡膜上B. 位于线粒体和叶绿体上C. 其ATP结合位点位于质膜外侧D. 水解ATP使自身形成磷酸化的中间体二、填空题1、质膜中参与物质运输的P型泵在物质运输中有两个特点:其一是水解ATP 功能,其二是磷酸化和去磷酸化作用。
细胞生物学-第5章-物质的跨膜运输(翟中和第四版)

二、V 型质子泵和 F 型质子泵
• V 型质子泵广泛存在 于动物细胞的胞内体 膜、溶酶体膜,破骨 细胞和某些肾小管细 胞的质膜,以及植物、 酵母及其他真菌细胞 的液泡膜上 (V 为 vesicle)
• 转运 H+ 过程中不形成 磷酸化的中间体
• 维持细胞质基质 pH 中 性和细胞器内 pH 酸性
– 载体蛋白介导 – 通道蛋白介导
(一)载体蛋白及其功能
• 多次跨膜;通过构象改变介导溶质分子跨膜转运 • 与底物(溶质)特异性结合;具有高度选择性;具有类似
于酶与底物作用的饱和动力学特征;但对溶质不做任何共 价修饰
(一)载体蛋白及其功能
• 不同部位的生物膜往往含有各自功能相关的不同 载体蛋白
(二)通道蛋白及其功能
• 两类主要转运蛋白:
– 载体蛋白:又称做载体、通透酶和转运器。介导被动运输与主动运 输
– 通道蛋白:能形成亲水的通道,允许特定的溶质通过。只介导被动 运输
两者区别:以不同方式辨别溶质。通道蛋白主要根据溶质大小和电荷和进 行辨别,假如通道处于开放状态,则足够小和带有适当电荷的分子或离子 就能通过;而载体蛋白只允许与其结合部位相适应的溶质分子通过,并且 每次转运都发生自身构象的变化。
动物、植物细胞主动运输比较
三、ABC 超家族
• ABC 超家族也是一 类ATP 驱动泵
• 广泛分布于从细菌 到人类各种生物中, 是最大的一类转运 蛋白
• 通过ATP 分子的结 合与水解完成小分 子物质的跨膜转运
(一)ABC转运蛋白的结构与工作模式
• 4 个“核心”结构域
– 2 个跨膜结构域,分别含6 个跨 膜α 螺旋,形成底物运输通路决 定底物特异性
• 3 种类型:离子通道、孔蛋白以及水孔蛋白 • 大多数通道蛋白都是离子通道 • 转运底物时,通道蛋白形成选择性和门控性跨膜通道
大学分子细胞学第五章细胞运输

囊泡中,又称膜泡运输;或称批量运输(bulk
transport)。属于主动运输。
● 胞吞作用
● 胞吐作用
胞吞作用:
通过细胞膜内陷形成囊泡,称胞吞泡 (endocytic vesicle),将外界物质裹进并输入 细胞的过程。
胞饮作用(pinocytosis) 吞噬作用(phagocytosis)。
水孔蛋白的功能
水孔蛋白 功 能
近曲肾小管水分的重吸收,眼中水状液
肾集液管中水通透力
AQP-1
AQP-2
AQP-3
AQP-4
肾集液管中水的保持
中枢神经系统中脑脊髓液的重吸收
AQP-5
唾液腺、泪腺、肺泡上皮细胞的液体分泌
植物液泡水的摄入,调节膨压
γ – TIP
3、协助扩散 faciliated diffusion
的胆固醇酯被水解成
游离的胆固醇而被利用。
受体回收途径:
• ①大部分受体返回它们原来的质膜结构域 ,如 LDL受体;
• ②有些进入溶酶体,在那里被消化,如EGF的受 体 , 称 为 受 体 下 行 调 节 ( receptor downregulation);
2003年,美国科学家彼得· 阿格雷和罗德里克· 麦金农,分别 因对细胞膜水通道,离子通道结构和机理研究而获诺贝尔化
学奖。
Peter Agre
Roderick MacKinnon
AQP1水通道蛋白
水孔蛋白的特点:
水分子高度特异的通道。
内在膜蛋白的一个家族,是有4个亚基组成的四
聚体,每个亚基有6个α螺旋组成 。
4、ABC 超家族
结构:
每个成员 都 含有 两 个高 度 保守 的 ATP结合 区 (A),两个跨膜结构域(T),他们通过结合 ATP发生二聚化,ATP水解后解聚,通过构象的 改变将与之结合的底物转移至膜的另一侧。
第五章跨膜运输《细胞生物学》.

第五章跨膜运输细胞膜是防止细胞外物质自由进入细胞的屏障,它保证了细胞内环境的相对稳定,使各种生化反应能够有序运行。
但是细胞必须与周围环境发生信息、物质与能量的交换,才能完成特定的生理功能。
因此细胞必须具备一套物质转运体系,用来获得所需物质和排出代谢废物,据估计细胞膜上与物质转运有关的蛋白占核基因编码蛋白的15~30%,细胞用在物质转运方面的能量达细胞总消耗能量的三分之二。
细胞膜上存在两类主要的转运蛋白,即:载体蛋白(carrier protein)和通道蛋白(channel protein)。
载体蛋白又称做载体(carrier)、通透酶(permease)和转运器(transporter),能够与特定溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧,载体蛋白有的需要能量驱动,如:各类APT驱动的离子泵;有的则不需要能量,以自由扩散的方式运输物质,如:缬氨酶素。
通道蛋白与所转运物质的结合较弱,它能形成亲水的通道,当通道打开时能允许特定的溶质通过,所有通道蛋白均以自由扩散的方式运输溶质。
第一节被动运输一、简单扩散也叫自由扩散(free diffusing),特点是:①沿浓度梯度(或电化学梯度)扩散;②不需要提供能量;③没有膜蛋白的协助。
某种物质对膜的通透性(P)可以根据它在油和水中的分配系数(K)及其扩散系数(D)来计算:P=KD/t,t为膜的厚度。
脂溶性越高通透性越大,水溶性越高通透性越小;非极性分子比极性容易透过,小分子比大分子容易透过。
具有极性的水分子容易透过是因水分子小,可通过由膜脂运动而产生的间隙。
非极性的小分子如O2、CO2、N2可以很快透过脂双层,不带电荷的极性小分子,如水、尿素、甘油等也可以透过人工脂双层,尽管速度较慢,分子量略大一点的葡萄糖、蔗糖则很难透过,而膜对带电荷的物质如:H+、Na+、K+、Cl—、HCO3—是高度不通透的(图5-1)。
事实上细胞的物质转运过程中,透过脂双层的简单扩散现象很少,绝大多数情况下,物质是通过载体或者通道来转运的。
第五章物质跨膜运输

第一节 膜转运蛋白与物质的跨膜运输 第二节 离子泵和协同运输 第三节 胞吞作用与胞吐作用
MEMBRANE TRANSPORT
细胞进行物质运输的三种不同范畴:
● 细胞运输(cellular transport) 这种运输 主要是细胞与环境间的物质交换;
● 胞内运输(intracellular transport) 是真 核生物细胞内膜结合细胞器与细胞内环 境进行的物质交换;
(二)Ca2+ pump
P型离子泵,其原理与钠钾泵相似,每分解一个ATP分子,泵出2个Ca2+。 两类: ①肌质网膜上的Ca 2+泵: 1000个AA;与Na-K泵 的α亚基同源;10个跨
膜α螺旋;胞质侧有2个Ca2+结合位点和ATP结合位点,但无钙调蛋白(CaM) 结合位点。
P型钙泵作用模式
②质膜上的Ca 2+泵,其C端是钙调蛋白的结 合位点,当胞内钙离子浓度升高时,钙离子 与钙调蛋白结合,形成激活的Ca 2+-CaM复合 物。与Ca 2+泵结合,进而调节Ca 2+泵的活性。
• 目前在人类细胞中已发现至少10种此类蛋白, 被命名为水孔蛋白(Aquaporin,AQP)。
水孔蛋白结构
由4个亚基组成的四聚 体;每亚基由3对同源 的跨膜α螺旋(1-4、 2-5、3-6)组成
水分子通过水孔蛋白
2003年,美国科学家彼得·阿格雷和罗德里克·麦 金农,分别因对细胞膜水通道,离子通道结构和 机理研究而获诺贝尔化学奖。
• 产生的机制: ①取决于一套特殊的膜转运蛋白的活性。 如:钠泵、钾泵、钙泵等 ②取决于质膜本身脂双层所具有的疏水性特征。 脂双层形成疏水性分子和离子的渗透屏障,对绝大多数溶质分子和离子是高 度不透的。
第五章-跨膜转运PPT课件

1、同向协同(symport)
物质运输方向与离子转移方向相同。如小肠细胞对葡萄糖 的吸收伴随着Na+的进入。载体蛋白有两个结合位点,同 时与Na+和特异的氨基酸或葡萄糖分子结合,进行同向转 运。
2、反向协同(antiport)
物质跨膜运动的方向与离子转移的方向相反。如动物细胞 分裂时,常通过Na+/H+反向协同运输的方式来向细胞外转 运H+,以调高细胞内的PH值。
6. 2K+释放到细胞内, α亚基
4. 3Na+释放到细胞外 5. 2K+结合;去磷酸化 构象恢复原始状态。
每一循环消耗一个ATP;转运出三个Na+, 转进两个K+。 是一种基本的、典型的主动 运输方式。
Na+-K+泵的作用: ①维持细胞的渗透压,保持细胞的体积; ②维持低Na+高K+的细胞内环境; ③维持细胞的静息电位。
➢分泌蛋白合成后立即包装入高尔基复合体的分泌囊 泡中,然后被迅速带到细胞膜处排出。
➢所有真核细胞,连续分泌过程 ➢转运途径:粗面内质网→高尔基体→分泌泡 →细胞表面
(二)钙泵(Ca2+ pump )
又称Ca2+-ATP酶。
构成:1个多肽构成的整合膜蛋白,每个泵 单位含有10个跨膜α螺旋。
分布:
❖ 细胞质膜和内质网膜上。 ❖ 肌细胞的肌质网膜上。
工 作 原 理 :
3. 构象改变,破坏Ca2+结 4. 去磷酸化
1. 2Ca2+与位点结合 2. ATP水解;磷酸化
第三节 胞吞作用(endocytosis) 与胞吐作用(exocytosis)
大分子与颗粒性物质的跨膜运输 膜泡运输:转运过程中,物质包裹在囊泡中。 批量运输:同时转运一种或多种数量不等的
第5章_物质的跨膜运输

动物细胞 中常常利 用膜两侧 Na+浓度梯 度来驱动 。
植物细胞和细菌 常利用H+浓度 梯度来驱动。
1. 同向协同(symport)
定义: 物质运输方向与离子转移方向相同 例:小肠细胞对葡萄糖的吸收伴随着Na+的进入。 某些细菌对乳糖的吸收伴随着H+的进入。
2转移方向相反
光能驱动(light drive) 由 ATP 直接提供能量的主动运 输、初级主动运输( primary active transport ) 、 ATP 泵 (ATP-drive pump)
对比
比较三种物质运输方式的异同:
项 目 运输方向 是否需要载 体蛋白 是否消耗细 胞内的能量 代表例子 自由扩散 协助扩散 主动运输 逆浓度梯度 需要 需要消耗
载体蛋白(carrier proteins):通透酶 (permease);介 导被动运输与主动 运输;特异性,具 有酶的饱和动力学 特征;构象变化
通道蛋白( channel proteins ) : 介 导 被动运输;非特异 性,其选择性在于 溶质足够小和所带 电荷合适;转运速 率极高,接近自由 扩散的理论值;无 饱和性;门控性
通过细胞质膜运出细胞的过程
胞吞作用
胞吞泡
•胞饮泡 •吞噬泡
胞饮作用(pinocytosis): 胞吞物若为溶液,形成 的囊泡较小,称为胞饮 作用。胞饮作用形成的 胞吞泡称胞饮泡()
吞噬作用( phagocytosis): 胞吞物若为大的颗 粒性物质(如微生 物&细胞碎片), 形成的囊泡较大, 称为吞噬作用。吞 噬作用形成的胞吞 泡称吞噬泡()
4
Ca2+-ATPase结构特点
钙泵功能
(1)红血球的细胞内外Ca2+的浓度梯度很大,可以 认为这是由存在于膜上的Ca2+依赖性ATP酶所引 起的Ca2+的主动排出; (2)肌浆网是靠膜上的Mg2+、 Ca2+ATP酶来进行 Ca2+的主动运输的; (3)线粒体膜依靠电子传递能,以1∶1之比摄取 Ca2+和磷酸; (4)小肠粘膜上皮细胞从食物中摄取Ca2+,此时维 生素D是必需因子。所有这些都可称作钙泵。
第五章物质跨膜运输

高浓度
通道蛋白
低浓度
LDL颗粒
LDL受体
有被小窝
有被小泡 无被小泡 去被 胞内体部分
胞内体
融 合
融 合
吞 噬 溶 酶 体 初级溶酶体
受体与大分子颗粒分开
胞内体部分
低密度脂蛋白
(low-density lipoproteins,LDL ):是胆固醇在肝 细胞合成后与磷 脂和蛋白质形成 的复合物,进入血 液,通过与细胞 表面的LDL受体 结合形成受体LDL复合物,通 过网络蛋白有被 小泡的内化作用 进入细胞,经脱 被与胞内体融合。
第一节
生物膜与物质的跨膜运输
一、脂双层分子的透性与膜转运蛋白
二、被动运输与主动运输
一、脂双层分子的透性与膜转运蛋白
膜脂的透性 膜转运蛋白:
载体蛋白(carrier proteins)——与特定的溶质分子 结合 (运输的溶质与载体有互补结合的结构域);具通透酶 (permease)性质:P102; 介导被动运输与主动运输 通道蛋白(channel proteins)——一般不与溶质
分子结合。只有大小和电荷适宜的离子或颗粒才能
通过,只介导被动运输
通道蛋白(channel proteins)
一类为非选择性,例如:线粒体外膜上的孔 蛋白; 一类具有离子选择性,例如:离子通道
三个特征:转运速率高、没有饱和值、受门控开关
离子通道类型:电压门通道(voltage-gated channel)
第二节 离子泵和协同运输
一、离子泵 二、协同运输 三、离子跨膜转运与膜电位 P115-117
复习思考题
• 细胞可以利用质膜两侧的离子浓度梯度来驱动物质的主动运输, 这种方式称为________作用. • Na+-K+泵的能量来源是____,植物细胞中协同运输时能量的 直接来源是____。 • 母鼠抗体从血液通过上皮细胞进入母乳,再经乳鼠的肠上皮细 胞被摄入体内 ,这种将内吞作用与外排作用相结合的跨膜转 运方式称为______运输。 • 存在于质膜上的质子泵称为_________________型质子泵, 存在于溶酶体膜和植物液泡膜上的质子泵称为 _______________型质子泵 • 细胞对Ca2+的运输有四种方式:____;____;____;____。 • 钙泵的主要作用是 A、降低细胞质C a2+的浓度; B、提高胞质中C a2+浓度 C、降低内质网中C a2+ 的浓度;D、降低线粒体中C a2+浓度
细胞生物学 第五章 物质的跨膜运输与信号传递

钙泵和质子泵
钙泵:动物细胞质膜及内质网膜,1000 Aa组成的 跨膜蛋白,与Na+-K+ 泵的亚基同源,每一泵单位 约10个跨膜螺旋,与胞内钙调蛋白结合调节其活 性
质子泵
P型质子泵:真核细胞膜 V型质子泵:溶酶体膜和液泡膜 H+-ATP酶:顺浓度梯度,线粒体内膜,类囊体膜和细菌
质膜
在动物、植物细胞由载体蛋白介导的协同运输异同点的比较
调节型胞吐途径:蛋白分选由高尔基体反面 管网区受体类蛋白决定
BACK
第二节 细胞通信与信号传递
细胞通讯与信号传递 通过细胞内受体介导的信号传递 通过细胞表面受体介导的信号跨膜传递 由细胞表面整联蛋白介导的信号传递 细胞信号传递的基本特征与蛋白激酶的网络整合
信息
一、细胞通讯与信号传递
道
主动运输(active transport)
●特点:运输方向、能量消耗、膜转运蛋白 ●类型:
由ATP直接提供能量的主动运输 钠钾泵 钙泵 质子泵
协同运输(cotransport) 由Na+-K+泵(或H+-泵)与载体蛋白协同作用
物质的跨膜转运与膜电位
钠钾泵(Na+-K+ pump)
动物细胞 1/3-2/3能量用于细胞内外Na+-K+ 浓度 和二亚基组成, 亚基120kD, 亚基50kD 亚基Asp磷酸化与去磷酸化 1ATP转运3 Na+和2K+ 抑制剂:乌本苷 促进:Mg2+和膜脂 作用:保持渗透平衡
载体蛋白(carrier proteins)及其功能
与特定溶质分子结合,通过一系列构象变化 介导溶质分子的跨膜转运
通透酶,但改变平衡点,加速物质沿自由能 减少方向跨膜运动的速率
第五章 物质的跨膜运输——翟中和细胞生物学

3.光驱动泵
光驱动泵主要在细菌细胞中发现,对溶质的主动运输 与光能的输入相耦联。
协同转运
概念
由Na+-K+泵(或H+-泵)与载体蛋白协同作用,靠
间接消耗ATP所完成的主动运输方式。
类型与机制
根据物质运输方向与离子顺电化学梯度的转移方向的关系,协同转 运又可分为:
同向转运:物质运输方向与离子转移方向相同(图示)
膜电位:细胞膜两侧各种带电物质形成的电位差的总和。
静息电位的产生
静息电位主要是由质膜上相对稳定的离子跨膜运输或 离子流形成的。
过程: Na+—K+泵的工作使细胞内外的Na+和K+浓度远离平 衡态分布,胞内高浓度的K+是细胞内有机分子所带负电 荷的主要平衡者。处于静息状态的动物细胞,质膜上许 多非门控的K+渗漏通道通常是开放的,而其他离子通道 却很少开放。所以静息膜允许K+通过开放的渗漏通道顺 电化学梯度流向胞外。随着正电荷转移到胞外而留下胞 内非平衡负电荷,结果是膜外阳离子过量和膜内阴离子 过量,从而产生外正内负的静息膜电位。
即使在很高的离子浓度下它们通过的离子量依然没 有最大值。
是非连续性开放 , 而是门控的,即离子通道的活性由 通道开或关两种构象调节。 通道打开时,同时结合膜两侧的离子 .
电压门通道
带电荷的蛋白结构域会随 跨膜电位梯度的改
细胞内外的某些小分子配 体与通道蛋白结合继而引 起通道蛋白构象的改变。
β α
ATP催化位点
Fig. Na+-K+泵的结构与工作模式示意图
1. 由ATP直接提供能量的主动运输——钙泵和质子泵
Ca2+泵:是由1000个氨基酸残基组成的多肽构成的跨膜蛋白。
2013(5)细胞生物学第5章教程

分子的跨膜转运。
通道蛋白形成的跨膜亲水性离子通道具有
3个显著特点:
1)具有极高的转运速率,
2)没有饱和值,
3)非连续性开放,而是门控的。
离子载体( ionophore)在膜运输蛋白功 能研究中的应用
1、离子载体是一些能够极大提高膜对某些
离子通透性的物质,是疏水性的小分子,可
简单扩散限制因素?
物质的脂溶性、分子大小和带电性
协助扩散(facilitated diffusion)
简 单 扩 散 与 协 助 扩 散 的 比 较
协助扩散也称促进扩散(facilitated diffusion)
特点:
① 比自由扩散转运速率高;
② 运输速率与 物质浓度成非线性关系;
③ 特异性;饱和性(即存在最大转运速率)。
第五章 物质的跨膜运输
一、膜转运蛋白与物质的跨膜运输
二、离子泵和协同运输
三、胞吞作用与胞吐作用
物质的跨膜运输是细胞维持正常生 命活动的基础之一。
第一节 膜转运蛋白与物质的跨膜运输
组分 胞内/(mmol.L-1) 5-15 胞外/(mmol.L-1) 145
典型哺 乳类细
阳离子 Na+
胞胞内
外离子 浓度的 比较
一、脂双层的不透性和膜转运蛋白 1、控制细胞内外的离子差别分布的两种主 要机制:
(1)膜转运蛋白(膜运输蛋白)的活性
(2)脂双层所具有的疏水性
2、膜转运蛋白的两种类型
参考被动运输或主动运输膜蛋白称为膜转运
蛋白。膜转运蛋白是整合膜蛋白,或是大的跨膜
分子复合物。分两种类型:
(1)载体蛋白(carrier proteins
第五讲 物质的跨膜运输

● 消耗能量 主动运输是消耗代谢能的运输方式,有三种不同 的直接能量来源(表3-7) 能量来源: ①协同运输中的离子梯度动力(次级主动运输); ② ATP驱动的泵通过水解ATP获得能量(初级主动运输); ③光驱动的泵利用光能运输物质,见于细菌。
表3-7 主动运输中能量来源
载体蛋白 直接能源 Na+-K+泵 细菌视紫红质 磷酸化运输蛋白 间接能源 Na+、葡萄糖泵协同运输蛋白 F1-F0 ATPase Na+、葡萄糖同时进入细胞 H+质子运输, Na+离子梯度 H+质子梯度驱动 Na+的输出和K+的输入 H+从细胞中主动输出 细菌对葡萄糖的运输 ATP 光能 磷酸烯醇式丙酮酸 功能 能量来源
图中用较大号字母表示溶液的高浓度。 (a)通过脂双层的简单扩散;(b)通过膜
整合蛋白形成的水性通道进行的被动运
输;(c)通过同膜蛋白的结合进行的帮助 扩散,也同(a)和(b)一样,只能从高浓
度向低浓度运输;(d) 通过载体介导的
主动运输,这种载体主要是酶,能够催
图3-47 物质跨膜运输的二种基本机制
一)、被动运输(passive transport)
■ 扩散与渗透
细胞质膜具有两个基本的特性∶允许小分子物质通过扩散穿 过细胞质膜,也可以让水通过渗透进出细胞质膜。但是扩散 和渗透是两个不同的概念(图3-51)。 ● 扩散(diffusion)是指物质沿着浓度梯度从半透性膜浓度高 的一侧向低浓度一侧移动的过程,通常把这种过程称为简单
为什么所有带电荷的分子(离子),不管它多小, 都不能自 由扩散?
2、协助扩散
促进扩散是指非脂溶性物质或亲水性物质, 如氨基酸、糖和 金属离子等借助细胞膜上的膜蛋白的帮助顺浓度梯度或顺电 化学浓度梯度, 不消耗ATP进入膜内的一种运输方式。促进 扩散同样不需要消耗能量,并且也是从高浓度向低浓度进行。 促进扩散同简单扩散相比,具有以下一些特点∶ ● 促进扩散的速度要快几个数量级。 ● 具有饱和性: 当溶质的跨膜浓度差
第五章-物质的跨膜运输1

P105
第一节 膜转运蛋白与物质的跨膜运输
(二)水孔蛋白:水分子的跨膜通道
传统上认为水主要通过简单扩散运输
令人困惑的现象:
•红细胞移入低渗溶液后,很快吸水膨胀而溶血;
•而水生动物的卵母细胞在低渗溶液不膨胀。
提出了水通道的可能性。
P106
第一节 膜转运蛋白与物质的跨膜运输
水通道蛋白的发现
1988年Agre在分离纯化红细胞膜上的Rh血型抗原 时,发现了一个28 KD 的疏水性跨膜蛋白,称为 CHIP28 (Channel-Forming integral membrane protein)。
P111
第二节 离子泵和协同转运
(三)H+ 泵(H+ -ATPase)
存在于植物、真菌和酵母的细胞质膜上; 植物细胞膜上的H+泵; 动物胃表皮细胞的H+-K+泵(分泌胃酸)
P112
第二节 离子泵和协同转运
二、V-型质子泵和F-型质子泵 V-type Proton Pump:������ 位于小泡(vacuole)的膜上 由许多亚基构成。 水解ATP产生能量,但不发生自身 磷酸化 从细胞质中逆H+电化学梯度泵出H+进入细胞器
1991年Agre发现CHIP28的mRNA能引起非洲爪蟾 卵母细胞吸水破裂,已知这种吸水膨胀现象会被Hg2+ 抑制。 目前在人类细胞中已发现至少11种此类蛋白,被命 名为水通道蛋白(Aquaporin,AQP)。
第一节 膜转运蛋白与物质的跨膜运输
水通道蛋白 AQP1是人 的红细胞膜的一种主 要蛋白。它能够让水 自由通过,但是不允 许离子或是其他的小 分子通过。 AQP1是由四个相同的亚基 构成,每个亚基的相对分子 质量为28kDa,每个亚基有 六个跨膜结构域,在跨膜结 构域2与3、5与6之间有一个 P106 环状结构,是水通过的通道。
细胞生物学-第五章 物质的跨膜运输

活通道。
通道蛋白所介导的被动运输不需要与溶质分子 结合,它横跨膜形成亲水通道,允许适宜大小 的分子和带电荷的离子通过。目前发现的通道 蛋白已有50多种,主要是离子通道蛋白
Ion Channels
----or----
1、配体门通道(ligand gated channel)
特点:受体与细胞外的配体结合,引起门通道蛋白发生构 象变化, “门”打开。又称离子通道型受体。 可分为阳离子通道,如乙酰胆碱、谷氨酸和五羟色胺受 体,和阴离子通道,如甘氨酸和γ-氨基丁酸受体。 Ach受体是由4种不同的亚单位组成的5聚体蛋白质,形成 一个结构为α2βγδ的梅花状通道样结构,其中的两个α亚单 位是同两分子Ach相结合的部位。
个磷酸基团转移到钠钾泵的一个天冬氨酸残基上,导致构
象变化),所以这类离子泵叫做P-type。 Na+-K+泵的作用: ①维持细胞的渗透性,保持细胞的体积; ②维持低Na+高K+的细胞内环境; ③维持细胞的静息电位。 地高辛、乌本苷等强心剂抑制其活性;Mg2+和少量膜脂有 助提高于其活性。
(二)、钙离子泵
Na+、而与K+结合。K+与磷酸化酶结合后促使酶去磷酸化,酶的构象恢复
原状,于是与K+ 结合的部位转向膜内侧,K+ 与酶的亲和力降低,使K+在 膜内被释放,而又与Na+结合。其总的结果是每一循环消耗一个ATP;转 运出三个Na+,转进两个K+。
钠钾泵对离子的转运循环依赖自磷酸化过程(ATP上的一
③肌肉细胞膜的去极化, ④肌肉细胞去极化又引起 肌浆网上的Ca2+ 通道开放。 又使膜上的电压闸门Na+ Ca2+ 从肌浆网内流入细胞 更多的涌入,进一步促 质,细胞质内Ca2+ 浓度急 进膜的去极化,扩展到 剧升高,肌原纤维收缩。
第五章 物质的跨膜运输与信号传导

第五章物质的跨膜运输与信号传导填空题1.物质跨膜运输的主要途径是。
2.被动运输可以分为和两种方式。
3.协助扩散中需要特异的完成物质的跨膜转运,根据其转运特性,该蛋白又可以分为和两类。
4.主动运输按照能量来源可以分为。
5.协同运输在物质跨膜运输中属于类型。
6.协同运输根据物质运输方向于离子顺电化学梯度的转移方向的关系,可以分为7.在钠钾泵中,每消耗1分子的ATP可以转运个钠离子和个钾离子。
8.钠钾泵、钙泵都是多次跨膜蛋白,它们都具有酶活性。
9.真核细胞中,质子泵可以分为三种。
10.真核细胞中,大分子的跨膜运输是通过和来完成的。
11.根据胞吞泡的大小和胞吞物质,胞吞作用可以分为和两种。
12.胞饮泡的形成需要的一类蛋白质的辅助。
13.细胞的吞噬作用可以用特异性药物来阻断。
14.生物体内的化学信号分子一般可以分为两类,一是,一是。
15.细胞识别需要细胞表面的和细胞外的之间选择性的相互作用来完成。
16.具有跨膜信号传递功能的受体可以分为、和1.一般将细胞外的信号分子称为,将细胞内最早产生的信号分子称为。
2.受体一般至少包括两个结构域;。
3.由G蛋白介导的信号通路主要包括:。
4.有两种特异性药物可以调节G蛋白介导的信号通路,即可以使G蛋白α亚基持续活化,而则使G蛋白α亚基不能活化。
磷脂酰肌醇信使系统产生的两个第二信使是。
5.催化性受体主要分为。
6.Ras蛋白在RTK介导的信号通路中起着关键作用,具有,当结合时为活化状态,当结合时为失活状态。
7.Rho蛋白在膜表面整联蛋白介导的信号通路中起重要作用,当其结合时处于活化状态,当其结合时处于失活状态。
8.小分子物质通过脂双层膜的速度主要取决于。
9.协助扩散和主动运输的相同之处主要在于都,主要区别在于10.G蛋白的а亚基上有三个活性位点,分别是。
11.PKC有两个功能域,一个是,另一个是。
12.DAG可被而失去第二是信使的作用,另一个是。
13.EGF的信号接触是通过内吞作用进行的,即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Three types of ion channels
Voltage-gated channel
Ligand-gated channel——AChR
Stress-activated channels
How stress activated ion channel allow us to hear
• Slow rate • The nature of saturation kinetics
Carrier and its function
• 不同部位的生物膜往往含有各自功能相关的不同 载体蛋白
(2) Channel and its function
离子通道
水孔蛋白
孔蛋白 2-3nm
•Three types of channel proteins : ion channel, porin and aquaporin •Most channel proteins are ion channels
for the solutes depends on their size and the polarity .
1.3 Passive transport
• Facilitated diffusion • Move the solutes down
the concentration gradient.or the electrochemical gradient • Need membrane transport proteins – Carriers mediated – Channels mediated
• Transport big molecules and particles across membrane
– The receptor mediated endocytosis
Transport processes within an eukaryotic cell
Plasma membrane: selectively permeable barrier.
Aquaporin:水分子的跨膜通道
• 水分子借助质膜上的水孔蛋白实现快速跨膜转运
Fig. Xenopus oocytes microinjected with AQP1 mRNA swell rapidly when placed in a hypo-osmotic medium, in contrast to noninjected oocytes.
1. 1 Two classes of membrane transport proteins
载体蛋白(carrier protein,transporter) 通道蛋白(channel protein)
❖Multipass transmembrane proteins; ❖Carrier proteins are responsible for both the passive and the active transport; Channel proteins are only responsible for passive transport.
Ion channels and its distinct features
• Form hydrophilic transmembrane channel • Interact with the solute much more weakly • Gated: fluctuate between open and closed
/nobel_prizes/chemistry/laureates/2003/popular.html
Structure of the water-channel protein: aquaporin
0.28nm
Aquaporin
• 调节细胞渗透压以及生理与病理作用
(1) Carrier and its function
• Highly selective: binding the specific solute to be transported and undergoing a series of conformational changes to transfer the bound solute across the membrane.
Chapter 5
The Movement of Substances Across Cell Membranes
Learning Objectives
• Transport small molecules and ions across membrane
– Carriers and channels – Simple diffusion – Passive transport – Active transport
states • Highly fast rate • No nature of saturation kinetics
How to transport small solutes across the membrane?
• Three ways : simple diffusion、 passive transport and active transport
1.2. Simple diffusion
• Move the solutes down the concentration gradient or the electrochemical gradient
• No metabolic energy • No transport proteins • The membrane permeability
Fig . Passage of water molecules through the aquaporin AQP1. Because of the positive charge at the center of the cห้องสมุดไป่ตู้annel, positively charged ions such as H3O+, are deflected. This prevents proton leakage through the channel.