《随机抽样》高考题

合集下载

高考数学复习简单随机抽样专题复习题(带答案)-精选学习文档

高考数学复习简单随机抽样专题复习题(带答案)-精选学习文档

2019高考数学复习简单随机抽样专题复习题(带答案)简单随机抽样也称为单纯随机抽样、纯随机抽样、SRS 抽样,是指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。

以下是简单随机抽样专题复习题,请考生认真练习。

一、选择题1.关于简单随机抽样的特点,有以下几种说法,其中不正确的是()A.要求总体的个数有限B.从总体中逐个抽取C.它一般情况是一种不放回的抽取D.每个个体被抽到的可能性与抽取的顺序有关[答案] D[解析] 在简单随机抽样中,每个个体被抽到的可能性相等,它与抽取的顺序无关,故D错误.2.下列抽样中,用抽签法方便的有()A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验[答案] B[解析] 当样本个数比较小且制号签比较方便时,用抽签法.故选B.3.下列说法正确的是()A.抽签法中可一次抽取两个个体B.随机数法中每次只取一个个体C.简单随机抽样是有放回抽样D.抽签法中将号签放入箱子中,可以不搅拌直接抽取[答案] B[解析] 根据简单随机抽样的特点判断.4.下列抽样方法是简单随机抽样的是()A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中随机的抽取10个正整数分析奇偶性D.运动员从8个跑道中随机抽取一个跑道[答案] D[解析] 简单随机抽样每个样本是逐个抽取,并且是无放回的抽取,样本总体的容量为有限个,故A、B、C均错.5.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的概率是()A.0.01B.0.04C.0.2D.0.25[答案] C[解析] 明确是简单随机抽样且每个个体被抽到的概率是相等的,问题的突破口就找到了.因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的概率为=0.2.6.下列问题中,最适合用简单随机抽样方法抽样的是()A.某单位有员工40人,其中男员工30人,女员工10人,要从中抽8人调查吸烟情况B.从20台电视机中抽取5台进行质量检查C.中央电视台要对春节联欢晚会的收视率进行调查,从全国观众中选10000名观众D.某公司在甲、乙、丙三地分别有120个、80个、150个销售点,要从中抽取35个调查收入情况[答案] B[解析] 根据简单随机抽样的概念及其特点可知当总体中的个体数和样本容量都较小时可采用简单随机抽样.抽出的样本必须准确地反映总体特征.二、填空题7.抽签法中确保样本具有代表性的关键是________.[答案] 搅拌均匀[解析] 在数理统计里,为了使样本具有较好的代表性,设计抽样方法时,最重要的是将总体搅拌均匀,使每个个体有同样的机会被抽到,而抽签法是简单随机抽样,因此在给总体标号后,一定要搅拌均匀.8.某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽取一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为________.[答案] N[解析] 设m个个体中带有标记的个数为n,根据简单随机抽样的特点知=,解得n=N.三、解答题9.为了了解某校高三期中文、理科数学考试填空题的得分情况,决定从80名文科学生中抽取10名学生,从300名理科学生中抽取50名学生进行分析,请选择合适的抽样方法设计抽样方案.[分析] 应从文、理科学生中分别抽样,由于文科学生总人数较少,抽取的人数也较少,故宜用抽签法,但理科学生人数较多,抽取人数也较多,故抽取理科学生宜用随机数法. [解析] 文科抽样用抽签法,理科抽样用随机数法.抽样过程如下:(1)先抽取10名文科学生:将80名文科学生依次编号为1,2,3,,80;将号码分别写在相同形状、大小的纸片上,制成号签;把80个号签放入同一个容器中,搅拌均匀,每次从中不放回地抽取一个号签,连续抽取10次;与号签上号码相对应的10名学生的填空题得分就构成容量为10的一个样本.(2)再抽取50名理科学生:将300名理科学生依次编号为001,002,,081,082,,300; 从随机数表中任选一数字作为读数的起始数字,任选一方向作为读数方向,比如从教材附表的第4行第1列数字1开始向右读,每次读取三位,凡不在001300范围内以及重复的数都跳过去,得到号码125,210,142,188,264,这50个号码所对应的学生的填空题得分就是抽取的对象. 简单随机抽样专题复习题及答案的全部内容就是这些,查字典数学网希望对考生复习数学有帮助。

高考数学一轮复习同步检测题:《随机抽样》

高考数学一轮复习同步检测题:《随机抽样》

高考数学一轮复习同步检测题:《随机抽样》由查字典数学网编辑教员精心提供,2021年高考数学一轮温习同步检测题:«随机抽样»,因此考生及家长请仔细阅读,关注孩子的学习生长。

一、选择题1.为确保食品平安,质检部门反省一箱装有1 000件包装食品的质量,抽查总量的2%.在这个效果中以下说法正确的选项是( )(A)总体是指这箱1 000件包装食品(B)集体是一件包装食品(C)样本是按2%抽取的20件包装食品(D)样本容量为202.效果:①某社区有500个家庭,其中高支出家庭125户,中等支出家庭280户,低支出家庭95户,为了了解社会购置力的某项目的,要从中抽出一个容量为100的样本;②从10名先生中抽出3名参与座谈会.方法:Ⅰ复杂随机抽样法;Ⅱ系统抽样法;Ⅲ分层抽样法. 效果与方法配对正确的选项是( )(A)①Ⅲ,②Ⅰ (B)①Ⅰ,②Ⅱ(C)①Ⅱ,②Ⅲ (D)①Ⅲ,②Ⅱ3.从2 012名先生中选取10名先生参与全国数学联赛,假定采用下面的方法选取:先用复杂随机抽样法从2 012人中剔除2人,剩下的2 010人再按系统抽样的方法抽取,那么每人中选的概率( )(A)不全相等 (B)均不相等(C)都相等,且为 (D)都相等,且为4.应用复杂随机抽样,从n个集体中抽取一个容量为10的样本.假定第二次抽取时,余下的每个集体被抽到的概率为那么n的值为 ( )(A)30 (B)28 (C)20 (D)185.某连队身高契合国庆阅兵规范的战士共有45人,其中18岁~19岁的战士有15人,20岁~22岁的战士有20人,23岁以上的战士有10人,假定该连队有9个参与阅兵的名额,假设按年龄分层选派战士,那么,该连队年龄在23岁以上的战士参与阅兵的人数为( )(A)5 (B)4 (C)3 (D)26.(2021锦州模拟)某高中在校先生2 000人,高一年级与高二年级人数相反并都比高三年级多1人.为了照应阳光体育运动召唤,学校举行了跑步和登山竞赛活动.每人都参与而且只参与了其中一项竞赛,各年级参与竞赛人数状况如下表:高一年级高二年级高三年级跑步 a b c 登山 x y z 其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的为了了解先生对本次活动的满意水平,从中抽取一个200人的样本停止调查,那么从高二年级参与跑步的先生中应抽取( )(A)24人 (B)30人 (C)36人 (D)60人7.(2021中山模拟)用系统抽样法从160名先生中抽取容量为20的样本,将160名先生随机地从1~160编号,按编号顺序平均分红20组(1~8号,9~16号,,153~160号),假定第16组抽出的号码为126,那么第1组中用抽签的方法确定的号码是( )(A)5 (B)6 (C)7 (D)88.(2021莆田模拟)将参与夏令营的600名先生编号为:001,002,,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名先生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( ) (A)26,16,8 (B)25,17,8(C)25,16,9 (D)24,17,99.一工厂消费了某种产品16 800件,它们来自甲、乙、丙三条消费线,为检验这批产品的质量,决议采用分层抽样的方法停止抽样,在甲、乙、丙三条消费线抽取的集体数依次组成一个等差数列,那么乙消费线消费的产品数是( )(A)5 000 (B)5 200 (C)5 400 (D)5 60010.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n团体参与市里召开的迷信技术大会.假设采用系统抽样和分层抽样的方法抽取,不用剔除集体,假设参会人数添加1个,那么在采用系统抽样时,需求在总体中先剔除1个集体,那么n等于( )(A)5 (B)6 (C)7 (D)8二、填空题11.某单位200名职工的年龄散布状况如图,现要从中抽取40名职任务样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,,196~200号).假定从第5组抽出的号码为22,那么从第8组抽出的号码应是__________.假定用分层抽样方法,那么在40岁以下年龄段应抽取__________人.12.(2021盐城模拟)某企业三月中旬消费A,B,C三种产品共3 000件,依据分层抽样的结果,企业统计员制造了如下的统计表格:产品类别 A B C 产品数量(件) 1 300 样本容量 130 由于不小心,表格中A,C产品的有关数据已被污染看不清楚了,统计员只记得A产品的样本容量比C产品的样本容量多10,依据以上信息,可得C产品的数量是__________件.13.(2021泰安模拟)将一个总体中的100个集体编号为0,1,2,3,,99,并依次将其分为10个小组,组号为0,1,2,,9.要用系统抽样的方法抽取一个容量为10的样本,假设在第0组(号码为0,1,,9)随机抽取的号码为s,那么依次错位地抽取前面各组的号码,其第k组中抽取的号码个位数为k+s或k+s-10(假设k+s10),假定s=6,那么所抽取的10个号码依次是_________.14.(2021镇江模拟)某地有居民100 000户,其中普通家庭99 000户,高支出家庭1 000户.从普通家庭中以复杂随机抽样方式抽取990户,从高支出家庭中以复杂随机抽样方式抽取100户停止调查,发现共有120户家庭拥有3套以上住房,其中普通家庭50户,高支出家庭70户,依据这些数据并结合所掌握的统计知识,你以为该地拥有3套或3套以上住房的家庭所占比例的合理估量是__________.三、解答题15.(才干应战题)某中学举行了为期3天的新世纪体育运动会,同时停止全校肉体文明擂台赛.为了解这次活动在全校师生中发生的影响,区分在全校500名教职员工、3 000名初中生、4 000名高中生中作问卷调查,假设要在一切答卷中抽出120份用于评价.(1)应如何抽取才干失掉比拟客观的评价结论?(2)要从3 000份初中生的答卷中抽取一个容量为48的样本,假设采用复杂随机抽样,应如何操作?(3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何运用系统抽样抽取到所需的样本?答案解析1.【解析】选D.由从总体中抽取样本的意义知D是正确的.2.【解析】选A.①由于社会购置力与家庭支出有关,因此要采用分层抽样法;②从10名先生中抽取3名,样本和总体都比拟少,适宜采用复杂随机抽样法.3.【解析】选C.从N个集体中抽取M个集体,那么每个集体被抽到的概率都等于4.【解析】选B.由题意知n=28.5.【解析】选D.设该连队年龄在23岁以上的战士参与阅兵的人数为x,那么解得x=2.6.【解析】选C.∵登山的占总数的故跑步的占总数的又跑步中高二年级占高二年级跑步的占总人数的设从高二年级参与跑步的先生中应抽取x人,由得x=36.7.【解析】选B.设第1组抽出的号码为x,那么第16组应抽出的号码是815+x=126,解得x=6.8.【解析】选B.依题意及系统抽样的意义可知,将这600名先生按编号依次分红50组,每一组各有12名先生,第k(kN*)组抽中的号码是3+12(k-1).令3+12(k-1)300得因此第Ⅰ营区被抽中的人数是25;令3003+12(k-1)495得因此第Ⅱ营区被抽中的人数是42-25=17.结合各选项知,选B.9.【解析】选D.由于在甲、乙、丙三条消费线抽取的集体数依次组成一个等差数列.那么可设三项区分为a-x,a,a+x.故样本容量为(a-x)+a+(a+x)=3a,因此每个集体被抽到的概率为所以乙消费线消费的产品数为10.【思绪点拨】先依据样本容量是n时,系统抽样的距离及分层抽样中各层人数为整数,得出n的特征,再由当样本容量为n+1时,总体剔除1个集体后,系统抽样的距离为整数验证可得.【解析】选B.总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的距离为分层抽样的比例是抽取的工程师人数为技术员人数为技工人数为所以n应是6的倍数,36的约数,即n=6,12,18.当样本容量为n+1时,从总体中剔除1个集体,系统抽样的距离为由于必需是整数,所以n只能取6.即样本容量n=6.11.【解析】由系统抽样知,在第5组抽取的号码为22而分段距离为5,那么在第6组抽取的号码应为27,在第7组抽取的号码应为32,在第8组抽取的号码应为37.由图知40岁以下的人数为100,那么抽取的比例为为抽取人数.答案:37 2012.【解析】设样本容量为x,那么x=300.A产品和C产品在样本中共有300-130=170(件).设C产品的样本容量为y,那么y+y+10=170,y=80.C产品的数量为=800(件).答案:80013.【解析】由题意知,第1组为10+1+6=17,第2组为20+2+6=28.第3组为30+3+6=39,第4组为40+4+6-10=40,第5组为50+5+6-10=51,第6组为60+6+6-10=62,第7组为70+7+6-10=73,第8组为80+8+6-10=84,第9组为90+9+6-10=95.答案:6,17,28,39,40,51,62,73,84,9514.【思绪点拨】依据分层抽样原理,区分估量普通家庭和高支出家庭拥有3套或3套以上住房的户数,进而得出100 000户居民中拥有3套或3套以上住房的户数,用它除以100 000即可失掉结果.【解析】该地拥有3套或3套以上住房的家庭估量约有:(户).所以所占比例的合理估量约是5 700100 000=5.7%.答案:5.7%15.【解析】(1)由于这次活动对教职员工、初中生和高中消费生的影响不会相反,所以应当采取分层抽样的方法停止抽样.由于样本容量为120,总体个数为500+3 000+4 000=7 500,那么抽样比:所以有所以在教职员工、初中生、高中生中抽取的集体数区分是8,48,64.分层抽样的步骤是:①分层:分为教职员工、初中生、高中生,共三层.②确定每层抽取集体的个数:在教职员工、初中生、高中生中抽取的集体数区分是8,48,64.③各层区分按复杂随机抽样或系统抽样的方法抽取样本.④综合每层抽样,组成样本.这样便完成了整个抽样进程,就能失掉比拟客观的评价结论.(2)由于复杂随机抽样有两种方法:抽签法和随机数法.假设用抽签法,要作3 000个号签,费时费力,因此采用随机数法抽取样本,步骤是:①编号:将3 000份答卷都编上号码:0001,0002,0003,,3000.②在随机数表上随机选取一个起始位置.③规则读数方向:向右延续取数字,以4个数为一组,假设读取的4位数大于3000,那么去掉,假设遇到相反号码那么只取一个,这样不时到取满48个号码为止.(3)由于4 00064=62.5不是整数,那么应先运用复杂随机抽样从4 000名先生中随机剔除32个集体,再将剩余的3 968个集体停止编号:1,2,,3968,然后将全体分为64个局部,其中每个局部中含有62个集体,如第1局部集体的编号为1,2,,62.从中随机抽取一个号码,如假定抽取的是23,那么从第23号末尾,每隔62个抽取一个,这样失掉容量为64的样本:23,85,147,209,271,333,395,457,,3929.【方法技巧】三种常用抽样方法(1)抽签法制签:先将总体中的一切集体编号(号码可以从1到N),并把号码写在外形、大小相反的号签上,号签可以用小球、卡片、纸条等制造,然后将这些号签放在同一个箱子里,停止平均搅拌.抽签:抽签时,每次从中抽出1个号签,延续抽取n次;成样:对应号签就失掉一个容量为n的样本.抽签法简便易行,当总体的集体数不多时,适宜采用这种方法.(2)随机数表法编号:对总体停止编号,保证位数分歧.读数:当随机地选定末尾读数的数后,读数的方向可以向右,也可以向左、向上、向上等.在读数进程中,失掉一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个集体的号码.成样:将对应号码的集体抽出就失掉一个容量为n的样本.(3)系统抽样的步骤①将总体中的集体编号.采用随机的方式将总体中的集体编号;②将整个的编号停止分段.为将整个的编号停止分段,要确定分段的距离k.当是整数时,当不是整数时,经过从总体中剔除一些集体使剩下的集体数N能被n整除,这时③确定起始的集体编号.在第1段用复杂随机抽样确定起始的集体编号l;④抽取样本.依照先确定的规那么(常将l加上距离k)抽取样本:l,l+k,l+2k,,l+(n-1)k.【变式备选】某单位最近组织了一次健身活动,参与活动的职工分为登山组和游泳组,且每个职工至少参与其中一组.在参与活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参与活动总人数的且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组中不同年龄层次的职工对本次活动的满意水平,现用分层抽样的方法从参与活动的全体职工中抽取一个容量为200的样本.试确定(1)游泳组中青年人、中年人、老年人区分所占的比例.(2)游泳组中青年人、中年人、老年人区分应抽取的人数. 【解析】(1)方法一:设登山组人数为x,游泳组中青年人、中年人、老年人所占比例区分为a,b,c,那么有解得b=50%,c=10%.故a=100%-50%-10%=40%,即游泳组中青年人、中年人、老年人所占比例区分为40%,50%,10%.方法二:设参与活动的总人数为x,游泳组中青年人、中年人、老年人所占比例区分为a,b,c,那么参与登山组的青年人人数加上参与游泳组的青年人人数等于参与活动的青年人人数,即解得a=0.4=40%,同理b=50%,c=10%.即游泳组中青年人、中年人、老年人所占比例区分为40%,50%,10%.(2)游泳组中,抽取的青年人人数为抽取的中年人人数为抽取的老年人人数以上就是高考频道2021年高考数学一轮温习同步检测题:«随机抽样»的全部内容,查字典数学网会在第一时间为大家提供,更多相关信息欢迎大家继续关注!。

人教A版高中数学第九章第1节《随机抽样》解答题训练 (24)(含答案解析)

人教A版高中数学第九章第1节《随机抽样》解答题训练 (24)(含答案解析)

九章第1节《随机抽样》解答题训练 (24)一、解答题(本大题共20小题,共240.0分)1.2021届高考体检工作即将开展,为了了解高三学生的视力情况,某校医务室提前对本校的高三学生视力情况进行调查,在高三年级1000名学生中随机抽取了100名学生的体检数据,并得到如下图的频率分布直方图.年级名次11001011000是否近视近视4030不近视1020(1)若直方图中前四组的频数依次成等比数列,试估计全年级高三学生视力的中位数(精确到0.01);(2)该校医务室发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对抽取的100名学生名次在1100名和1011000名的学生的体检数据进行了统计,得到表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?(3)在(2)中调查的不近视的学生中按照分层抽样抽取了6人,进一步调查他们良好的护眼习惯,求在这6人中任取2人,至少有1人的年级名次在1100名的概率.P(K2≥k)0.100.050.0250.0100.005k 2.706 3.841 5.024 6.6357.879K2=n(ad−bc)2,其中n=a+b+c+d.(a+b)(c+d)(a+c)(b+d)2. 某社区管委会积极响应正在开展的“创文活动”,特制订了饲养宠物的管理规定.为了解社区住户对这个规定的态度(赞同与不赞同),工作人员随机调查了社区220户住户,将他们的态度和家里是否有宠物的情况进行了统计,得到如下2×2列联表(单位:户):同时,工作人员还从上述调查的不赞同管理规定的住户中,用分层抽样的方法按家里有宠物、家里没有宠物抽取了6户组成样本T,进一步研究完善饲养宠物的管理规定.(1)根据上述列联表,能否在犯错误的概率不超过0.001的前提下认为“社区住户对饲养宠物的管理规定的态度与家里是否有宠物有关系”?(2)工作人员在样本T中随机抽取2户住户进行访谈,求这6户住户中,至少有1户家里没有宠物的概率P(结果用数字表示).,其中n=a+b+c+d.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)3.新冠肺炎疫情期间,各地均响应“停课不停学,停课不停教”的号召开展网课学习.为检验网课学习效果,某机构对2000名学生进行了网上调查,发现有些学生上网课时有家长在旁督促,而有些没有。

高考数学简单随机抽样专项练习(带答案)

高考数学简单随机抽样专项练习(带答案)

2019届高考数学简单随机抽样专项练习(带答案)设一个总体含有N个个体, 如果通过逐个抽取的方法从中抽取一个样本, 且每次抽取时各个个体被抽到的概率相等, 则这样的抽样方法叫做简单随机抽样。

以下是2019届高考数学简单随机抽样专项练习, 请考生及时练习。

一、选择题1.对于简单随机抽样, 下列说法中正确的有()它要求被抽取样本的总体的个数有限, 以便对其中各个个体被抽取的概率进行分析;它是从总体中逐个地进行抽取, 以便在抽取实践中进行操作;它是一种不放回抽样;它是一种等概率抽样, 不仅每次从总体中抽取一个个体时, 各个个体被抽取的概率相等, 而且在整个抽样过程中, 各个个体被抽取的概率也相等, 从而保证了这种方法抽样的公平性.A.B.C.D.[答案] D[解析] 由简单随机抽样定义得D正确.2.下面的抽样方法是简单随机抽样的是()A.在某年的明信片销售活动中, 规定每100万张为一个开奖组, 通过随机抽样的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品, 在自动包装的传送带上, 每隔30分钟抽一包产品, 称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验[答案] D[解析] A.B不是简单随机抽样, 因为抽取的个体间的间隔是固定的, 不具有随意性;C不是简单随机抽样, 因为总体的个体之间差别比较大, 抽取的个体不一定具有代表性;D是简单随机抽样.二、填空题3.某总体共有60个个体, 并且编号为00,01, , 59, 现需从中抽取一个容量为8的样本, 请从随机数表的倒数第5行(下表为随机数表的最后5行)第11.12列的18开始, 依次向下读数, 到最后一行后向右, 直到取足样本为止(大于59及与前面重复的数字跳过), 则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60[答案] 18,24,54,38,08,22,23,01[解析] 由随机数表法可得.4.下列抽样方法属于简单随机抽样的有________.①从1000个个体中一次性抽取50个个体作为样本;将1000个个体编号, 并把编号写在形状、大小相同的签上, 然后将号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本;从10个乒乓球中抽取3个进行质量检验.首先将乒乓球进行编号0,1,2, , 9, 再将转盘分成10等份, 分别标上整数0,1,2, , 9, 转动转盘, 指针指向的数字是几就取几号个体, 直到抽出3个个体为止.[答案][解析] 简单随机抽样是逐个抽取, 不能是一次性抽取, 所以不属于简单随机抽样;属于简单随机抽样中的抽签法;属于简单随机抽样中的随机数法.故填.三、解答题5.某车间工人加工一种轴共100件, 为了了解这种轴的直径, 要从中抽取10件在同一条件下测量, 如何采用简单随机抽样的方法抽取样本?[分析] 由于本题的调查对象较少, 可采用简单随机抽样方法.简单随机抽样有两种方法:抽签法和随机数法, 所以有两种思路.[解析] 方法一: 抽签法:(1)将100件轴编号为1,2, , 100;(2)做好大小、形状相同的号签, 分别写上这100个号码;(3)将这些号签放在一个不透明的容器内, 搅拌均匀;(4)逐个抽取10个号签;(5)然后测量这10个号签对应的轴的直径.方法二: 随机数法:(1)将100件轴编号为00,01, , 99;(2)在教材表1-2的随机数表中选定一个起始位置, 如从第21行第1个数9开始;(3)规定读数的方向, 如向右读;(4)依次选取10个数为93,12,47,79,57,37,89,18,45,50,则与这10个编号相对应的个体即为所要抽取的样本.6.某次音乐颁奖典礼上, 欲邀请20名内地、港台艺人参加演出, 其中从30名内地艺人中随机挑选10人, 从18名香港艺人中随机挑选6人, 从10名台湾艺人中随机挑选4人, 试用抽签法确定选中的艺人并确定他们的演出顺序.[解析] 第一步: 确定演出人员: 将30名内地艺人从1到30编号, 然后将1到30这30个号码分别写到形状、大小相同的号签上, 然后放在一个不透明的容器中摇匀, 从中逐个抽出10个号签, 相应编号的艺人参加演出, 再运用相同的办法分别从18名香港艺人中抽取6人, 从10 名台湾艺人中抽取4人.第二步: 确定演出顺序: 确定了演出人员后, 再将1到20这20个号码分别写到形状、大小相同的号签上, 用来代表演出的顺序, 然后让每名演出者抽取1个号签, 抽到的号签上的数字就是这名演员的演出顺序.7.为了了解高一(10)班53名同学的牙齿健康状况, 需从中抽取10名做医学检验, 现已对53名同学编号00,01,02, , 50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去.则选取的号码依次为多少?随机数表如下:0154 3287 6595 4287 53467953 2586 5741 3369 83244597 7386 5244 3578 6241[解析] 从数5, 开始从左向右读下去, 两位两位地读, 在00~52范围内前面没有出现过的记下, 否则跳过, 直到取满10人为止.如下表01 54 32 87 65 95 42 87 53 4679 53 25 86 57 41 33 69 83 2445 97 73 86 52 44 3578 6241选取的号码依次为32,42,46,25,41,33,24,45,52,44.。

2022年高考分类题库考点43 随机抽样、用样本估计总体

2022年高考分类题库考点43 随机抽样、用样本估计总体

考点43随机抽样、用样本估计总体1.(2022·全国甲卷文科)(同2022·全国甲卷理科T2)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【命题意图】本题考查散点图、中位数、平均数、标准差、极差等基础知识,考查运算求解能力.【解析】选B.讲座前中位数为70%+75%2>70%,所以A错;讲座后问卷答题的正确率只有一个是80%,4个是85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前问卷答题的正确率的极差为95%-60%=35%>20%,所以D错.2.(2022·新高考Ⅱ卷)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【命题意图】本题考查频率分布直方图求平均数、频率,考查条件概率计算公式.【解析】(1)平均年龄=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023+55×0.020+65×0.017+75×0.006+85×0.002)×10=47.9(岁).(2)设A={一人患这种疾病的年龄在区间[20,70)},所以P(A)=1-P( )=1-(0.001+0.002+0.006+0.002)×10=1-0.11=0.89;(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式可得P(C|B)= ( ) ( )=0.1%×0.023×100.16=0.0014375≈0.0014.16%=0.001×0.23。

2020届高考数学(理)一轮必刷题 专题64 随机抽样(解析版)

2020届高考数学(理)一轮必刷题 专题64 随机抽样(解析版)

考点64 随机抽样1.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2 D .p 1=p 2=p 3【答案】D【解析】由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3.2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167【答案】C【解析】初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.3.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( ) A .40 B .36 C .30 D .20 【答案】C【解析】利用分层抽样的比例关系,设从乙社区抽取n 户,则270360+270+180=n 90,解得n =30.4.现用系统抽样方法从已编号(1~60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是( ) A .5,10,15,20,25,30 B .2,4,8,16,32,48 C .5,15,25,35,45,55 D .1,12,34,47,51,60【答案】C【解析】从60枚新型导弹中随机抽取6枚,采用系统抽样间隔应为606=10,只有C 选项中导弹的编号间隔为10.5.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( ) A .1,2,3,4,5,6 B .6,16,26,36,46,56 C .1,2,4,8,16,32 D .3,9,13,27,36,54【答案】B【解析】由系统抽样知识可知,所取学生编号之间的间距相等且为10,所以应选B.6.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 A .23 B .09 C .02 D .16【答案】D【解析】从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16.7.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8 C .25,16,9 D .24,17,9 【答案】B【解析】由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1). 令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17.故选B.8.某工厂的一、二、三车间在2017年11月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a 、b 、c ,且a 、b 、c 成等差数列,则二车间生产的产品数为( ) A .800 B .1 000 C .1 200D .1 500【答案】C【解析】因为a 、b 、c 成等差数列,所以2b =a +c ,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知,二车间生产的产品数占产品总数的13,所以二车间生产的产品数为3 600×13=1 200.故选C.9.从一个容量为N 的总体中抽取一个容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2 D .p 1=p 2=p 3【答案】D【解析】根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p 1=p 2=p 3.10.(2018·陕西西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是(注:下表为随机数表的第8行和第9行)( )⎭⎬⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎬⎫33 21 12 34 29 78 64 56 07 82 52 45 0744 38 15 51 00 13 42 99 66 02 79 54第9行A .07B .25C .42D .52【答案】D【解析】依题意得,依次选出的个体分别是12,34,29,56,07,52,…,因此选出的第6个个体是52,选D. 11.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为( ) A .9 B .8 C .10 D .7【答案】A【解析】由系统抽样方法知,72人分成8组,故分段间隔为72÷8=9.12.(2018·陕西部分学校摸底检测)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则应分别抽取老年人、中年人、青年人的人数是( ) A .7,11,18 B .6,12,18 C .6,13,17 D .7,14,21【答案】D【解析】因为该单位共有27+54+81=162(人),样本容量为42,所以应当按42162=727的比例分别从老年人、中年人、青年人中抽取样本,且应分别抽取的人数是7,14,21.故选D.13.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n =( ) A .660 B .720 C .780 D .800【答案】B【解析】由已知可得,抽样比为13780=160,从而35600+780+n =160,解得n =720.14.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( ) A .480 B .481 C .482 D .483 【答案】C【解析】根据系统抽样的定义可知样本的编号成等差数列,令a 1=7,a 2=32,d =25,所以7+25(n -1)≤500.所以n ≤20.72,故最大编号为7+25×(20-1)=482.15.某高校有教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n 的样本.已知从讲师中抽取的人数为16,那么n =________. 【答案】72【解析】依题意得,80120+100+80+60=16n,由此解得n =72.16.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k 为________. 【答案】40【解析】在系统抽样中,确定分段间隔k ,对编号进行分段,k =Nn (N 为总体的容量,n 为样本的容量),所以k =N n =1 20030=40.17.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =8,则在第8组中抽取的号码是________. 【答案】76【解析】由题意知m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.18.一汽车制造厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):10辆,则z 的值为________. 【答案】400【解析】设该厂这个月共生产轿车n 辆, 由题意得50n =10100+300,所以n =2 000,则z =2 000-100-300-150-450-600=400.19.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋进行检查,将3 000袋奶粉按1,2,…,3 000 随机编号.若第一组抽出的号码是11,则第六十一组抽出的号码为________. 【答案】1 211【解析】由题意知,抽样比为k =3 000150=20,又第一组抽出的号码是11,则11+60×20=1 211,故第六十一组抽出的号码为1 211.20.高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________. 【答案】45【解析】分组间隔为648=8,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为5+5×8=45.21.某学校高一、高二、高三年级的学生人数之比为4∶3∶3,现用分层抽样的方法从该校高中三个年级的学生中抽取一个容量为80的样本,则应从高一年级抽取________名学生. 【答案】32【解析】从高一年级抽取的学生人数为80×44+3+3=32.22.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________. 【答案】12【解析】抽样间隔为84042=20.设在1,2,…,20中抽取号码x 0(x 0∈[1,20]),在[481,720]之间抽取的号码记为20k +x 0,则481≤20k +x 0≤720,k ∈N *.∴24120≤k +x 020≤36.∵x 020∈⎣⎡⎦⎤120,1,∴k =24,25,26,…,35, ∴k 值共有35-24+1=12(个),即所求人数为12.23.某校三个年级共有18个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到18,现用系统抽样方法,抽取6个班进行调查.若抽到的编号之和为57,则抽到的最小编号为________. 【答案】2【解析】系统抽样的间隔为186=3.设抽到最小编号为x ,则x +(3+x )+(6+x )+(9+x )+(12+x )+(15+x )=57.解得x =2.24.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25,为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人. 【答案】36【解析】根据题意可知样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36(人).25.某校高中三年级的295名学生已经编号为1,2,3,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,请写出抽样过程. 【解析】按1∶5的比例抽样,295÷5=59.第一步,把295名同学分成59组,每组5人.第一组是编号为1~5的5名学生,第二组是编号为6~10的5名学生,…,依次类推,第59组是编号为291~295的5名学生.第二步,采用简单随机抽样,从第一组5名学生中随机抽取1名,不妨设其编号为k (1≤k ≤5).第三步,从以后各段中依次抽取编号为k +5i (i =1,2,3,…,58)的学生,再加上从第一段中抽取的编号为k 的学生,得到一个容量为59的样本.26.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图如图所示.根据统计图所提供的信息,解答下列问题:(1)本次共调查了________名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数.【答案】(1)2 000.(2)(3)96(万)【解析】(1)本次共调查的市民人数为800÷40%=2 000.(2)晚饭后选择“其他”的人数为2 000×28%=560,晚饭后选择“锻炼”的人数为2 000-800-240-560=400. 将条形统计图补充完整,如图所示.(3)晚饭后选择“锻炼”的人数所占的比例为:400÷2 000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).。

备考2020年高考数学复习:54 随机抽样

备考2020年高考数学复习:54 随机抽样

备考2020年高考数学复习:54 随机抽样一、单选题(共10题;共20分)1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是( )A. 1000名学生是总体B. 每名学生是个体C. 每名学生的成绩是所抽取的一个样本D. 样本的容量是1002.(2019•卷Ⅰ)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,……,1000。

从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是()A. 8号学生B. 200号学生C. 616号学生D. 815号学生3.某班有50名学生,编号从1到50,现在从中抽取5人进行体能测试,用系统抽样确定所抽取的第一个样本编号为3,则第四个样本编号是()A. 13B. 23C. 33D. 434.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A. 08B. 07C. 01D. 025.某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:——结伴步行,——自行乘车,——家人接送,——其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.根据图中信息,求得本次抽查的学生中类人数是()A. 30B. 40C. 42D. 486.某公司生产,,三种不同型号的轿车,产量之比依次为,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为的样本,若样本中种型号的轿车比种型号的轿车少8辆,则()A. 96B. 72C. 48D. 367.某工厂利用随机数表对生产的600 个零件进行抽样测试,先将600 个零件进行编号,编号分别为从中抽取个样本,如下提供随机数表的第行到第行:若从表中第行第列开始向右依次读取个数据,则得到的第个样本编号()A. B. C. D.8.一支由学生组成的校乐团有男同学人,女同学人,若用分层抽样的方法从该乐团的全体同学中抽取人参加某项活动,则抽取到的男同学人数为()A. B. C. D.9.某校有高中生1470人,现采用系统抽样法抽取49人作问卷调查,将高一、高二、高三学生(高一、高二、高三分别有学生495人、493人、482人)按1,2,3,…,1470编号,若第一组用简单随机抽样的方法抽取的号码为23,则所抽样本中高二学生的人数为()A. 15B. 16C. 17D. 1810.某校共有学生2000名,各年级男、女生人数如右表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的女学生人数为()A. 24B. 16C. 12D. 8二、填空题(共8题;共8分)11.某学校高一年级举行选课培训活动,共有1024名学生、家长、老师参加,其中家长256人.学校按学生、家长、老师分层抽样,从中抽取64人,进行某问卷调查,则抽到的家长有________人12.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________。

(完整版)《随机抽样》高考题精选

(完整版)《随机抽样》高考题精选


若用分层抽样方法,则 40 岁以下年龄段应抽取
人. 【答案】37, 20
莄 18.(2014 广东理)已知某地区中小学生人数和近视情况分别如图 1 和图 2 所示,为了解该 地区中小学生的近视形成原因,用分层抽样的方法抽取 2%的学生进行调查,则样本容量 和抽取的高中生近视人数分别为(A)
节 A、200,20

C. p1 p3 p2
B. p2 p3 p1 D. p1 p2 p3
蚁 11. (2014 重庆文)某中学有高中生 3500 人,初中生 1500 人,为了解学生的学习情况,用
分层抽样的方法从该校学生中抽取一个容量为 n 的样本。已知从高中生中抽取 70 人,则 n 为(A)
羅 A.100
芃 377
葿 370
螄生人数为( C )
膁 A.24
B.18 C.16
D.12
表1
膇 17.(2009 广东文)某单位 200 名职工的年龄
芄分布情况如图,现要从中抽取 40 名职工作样
袁本,用系统抽样法,将全体职工随机按 1-200
蚈编号,并按编号顺序平均分为 40 组(1-5 号,
袆 6-10 号…,196-200 号).若第 5 组抽出的号码为 22,则第 8 组抽出的号码应是
6572
0802
6314
0702
4369
9728
0198
聿 3204
923449358200Fra bibliotek3623
4869
6938
7481
肈 A.08
B.07
C.02
D.01
螅 13. (2013 新课标Ⅰ理)为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取 部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较 大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是

随机抽样

随机抽样

随机抽样1.为了了解某地参加高考数学考试的12000名学生的成绩,从中抽取了400名学生的成绩进行统计分析.在这个问题中,12000名学生成绩的全体是( )A.总体B.个体C.从总体中抽取的一个样本D.样本的容量2.对于简单随机抽样,个体被抽到的机会().A.相等B.不相等C.不确定D.与抽取的次数有关3.已知总体容量为106,若用随机数表法抽取一个容量为10的样本,下面对总体的编号正确的是().A.1,2,…,106 B.01,…,105 C.00,01,…,105 D.000,001,…,1054.下列问题中,最适合用简单随机抽样方法的是().A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480亩估计全乡农田平均产量5.为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本.那么总体中应随机剔除的个体数目是().A.2 B.4 C.5 D.66.现从已编号(1~50)的50部新生产的赛车中随机抽取5部进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5部赛车的编号可能是().A.5,10,15,20,25 B.8,18,28,38,48C.5,8,11,14,17 D.4,8,12,16,207.某校有高中生900人,其中高一年级300人,高二年级200人,高三年级400人,用分层抽样法抽取一个容量为45的样本,那么高一、高二、高三各年级的抽取人数分别为().A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,208.某校共有学生2 000名,各年级男、女生人数如下表,已知在全校学生中随机抽取1名,抽到二年级女生的机会是).A.24 B.18 C.16 D.129.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10。

高三数学随机抽样试题

高三数学随机抽样试题

高三数学随机抽样试题1.某私立校共有3600人,其中高中部、初中部、小学部的学生人数成等差数列递增,已知公差为600,现在按1:100的抽样比,用分层抽样的方法抽取样本,则应抽取小学部学生人数为 .【答案】18【解析】根据等差数列的性质可知,公差为600,连续的三项何为3600,可知中间的初中部的学生为1200,那么高中部为600,小学部为1800,则可知按照比例1:100的抽样比,那么小学生抽取的人数为1800,答案为18.【考点】分层抽样点评:考查了分层抽样的概念和等比例性质的运用,属于基础题。

2.某高中学校有高一学生400人,高二学生300人,高三学生300人,现通过分层抽样抽取一个容量为n的样本,已知每个学生被抽到的概率为0.2,则n=;【答案】200【解析】由,得.【考点】分层抽样.点评:本题考查分层抽样方法,涉及等可能事件的概率计算,是简单题;熟悉分层抽样方法的定义即可.3.一支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取________人.【答案】8【解析】男女运动员人数的比是,所以要抽取14人,需要抽取男运动员人.【考点】本小题主要考查分层抽样.点评:应用分层抽样抽取样本时,关键是找出各层的比例,按比例抽取即可.4.(本小题满分13分)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答下列问题:(Ⅰ)求全班人数及分数在之间的频数;(Ⅱ)不看茎叶图中的具体分数,仅根据频率分布直方图估计该班的平均分数;(Ⅲ)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.【答案】(Ⅰ)全班人数为25人,分数在之间频数为4;Ⅱ);Ⅲ). 【解析】(Ⅰ),即全班人数为25人,分数在之间频数为4 4分(Ⅱ)平均分数估计值 8分(Ⅲ)记这6份试卷代号分别为1,2,3,4,5,6.其中5,6是之间的两份,则所有可能的抽取情况有: 1,2 1,3 1,4 1,5 1,62,3 2,4 2,5 2,63,4 3,5 3,64,5 4,65,6 10分其中含有5或6的有9个,故. 13分【考点】本题考查了概率求法、统计.茎叶图、频率分布直方图的认识与应用点评:此类问题常常考查统计学知识,包括茎叶图,频率分布直方图,统计案例(线性回归分析和独立性检验).他们之间的综合问题更应引起重视,以及与概率等知识综合在一起进行设计试题是近几年高考的一种命题趋势5.某校有教师160人,男学生960人,女学生800人,现用分层抽样的方法从所有教师中抽取一个容量为n的样本,已知从女学生中抽取的人数为80人,则n的值为。

高考数学一轮复习简单随机抽样专题复习题(带答案)

高考数学一轮复习简单随机抽样专题复习题(带答案)

高考数学一轮复习简单随机抽样专题复习题(带答案)简单随机抽样是指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。

以下是简单随机抽样专题复习题,请考生认真练习。

一、选择题1.对于简单随机抽样,下列说法中正确的有()它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析;它是从总体中逐个地进行抽取,以便在抽取实践中进行操作;它是一种不放回抽样;它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性.A. B.C. D.[答案] D[解析] 由简单随机抽样定义得D正确.2.下面的抽样方法是简单随机抽样的是()A.在某年的明信片销售活动中,规定每100万张为一个开奖组,通过随机抽样的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验[答案] D[解析] A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的,不具有随意性;C不是简单随机抽样,因为总体的个体之间差别比较大,抽取的个体不一定具有代表性;D是简单随机抽样.二、填空题3.某总体共有60个个体,并且编号为00,01,,59,现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11、12列的18开始,依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60[答案] 18,24,54,38,08,22,23,01[解析] 由随机数表法可得.4.下列抽样方法属于简单随机抽样的有________.①从1000个个体中一次性抽取50个个体作为样本;将1000个个体编号,并把编号写在形状、大小相同的签上,然后将号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本;从10个乒乓球中抽取3个进行质量检验.首先将乒乓球进行编号0,1,2,,9,再将转盘分成10等份,分别标上整数0,1,2,,9,转动转盘,指针指向的数字是几就取几号个体,直到抽出3个个体为止.[答案][解析] 简单随机抽样是逐个抽取,不能是一次性抽取,所以不属于简单随机抽样;属于简单随机抽样中的抽签法;属于简单随机抽样中的随机数法.故填.三、解答题5.某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件在同一条件下测量,如何采用简单随机抽样的方法抽取样本?[分析] 由于本题的调查对象较少,可采用简单随机抽样方法.简单随机抽样有两种方法:抽签法和随机数法,所以有两种思路.[解析] 方法一:抽签法:(1)将100件轴编号为1,2,,100;(2)做好大小、形状相同的号签,分别写上这100个号码;(3)将这些号签放在一个不透明的容器内,搅拌均匀;(4)逐个抽取10个号签;(5)然后测量这10个号签对应的轴的直径.方法二:随机数法:(1)将100件轴编号为00,01,,99;(2)在教材表1-2的随机数表中选定一个起始位置,如从第21行第1个数9开始;(3)规定读数的方向,如向右读;(4)依次选取10个数为93,12,47,79,57,37,89,18,45,50,则与这10个编号相对应的个体即为所要抽取的样本.6.某次音乐颁奖典礼上,欲邀请20名内地、港台艺人参加演出,其中从30名内地艺人中随机挑选10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人,试用抽签法确定选中的艺人并确定他们的演出顺序.[解析] 第一步:确定演出人员:将30名内地艺人从1到30编号,然后将1到30这30个号码分别写到形状、大小相同的号签上,然后放在一个不透明的容器中摇匀,从中逐个抽出10个号签,相应编号的艺人参加演出,再运用相同的办法分别从18名香港艺人中抽取6人,从10 名台湾艺人中抽取4人.第二步:确定演出顺序:确定了演出人员后,再将1到20这20个号码分别写到形状、大小相同的号签上,用来代表演出的顺序,然后让每名演出者抽取1个号签,抽到的号签上的数字就是这名演员的演出顺序.7.为了了解高一(10)班53名同学的牙齿健康状况,需从中抽取10名做医学检验,现已对53名同学编号00,01,02,,50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去.则选取的号码依次为多少?随机数表如下:0154 3287 6595 4287 53467953 2586 5741 3369 83244597 7386 5244 3578 6241[解析] 从数5,开始从左向右读下去,两位两位地读,在00~52范围内前面没有出现过的记下,否则跳过,直到取满10人为止.如下表01 54 32 87 65 95 42 87 53 4679 53 25 86 57 41 33 69 83 2445 97 73 86 52 44 3578 6241选取的号码依次为32,42,46,25,41,33,24,45,52,44.简单随机抽样专题复习题及答案的全部内容就是这些,查字典数学网希望对考生复习数学有帮助。

简单随机抽样(高考题)

简单随机抽样(高考题)

简单随机抽样链接高考1.(2015湖北,2,5分,★☆☆)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1 365石2.(2013江西,5,5分,★☆☆)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08B.07C.02D.01三年模拟1.(2016甘肃西北师大附中检测,★☆☆)某中学进行了该学年度期末统一考试,该校为了了解高一年级1 000名学生的考试成绩,从中随机抽取了100名学生的成绩,就这个问题来说,下面说法正确的是()A.1 000名学生是总体B.每个学生是个体C.1 000名学生的成绩是一个个体D.样本容量是1002.(2016山东莱阳一中高一检测,★☆☆)下列抽样试验中,适合用抽签法的有()A.从某厂生产的5 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验D.从某厂生产的5 000件产品中抽取10件进行质量检验3.(2016江苏如东高中月考,★☆☆)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08B.07C.02D.014.(2016重庆外语学校周测,★☆☆)某工厂的质检人员对生产的100件产品采用随机数表法抽取10件进行检查,对100件产品采用下面的编号方法:①1,2,3, (100)②001,002, (100)③00,01,02, (99)④01,02,03, (100)其中正确的序号是()A.②③④B.③④C.②③D.①②5.(2015黑龙江哈尔滨六中期末,★☆☆)从某单位45名职工(编号为01,02, (45)中随机抽取5名职工参加一项社区服务活动,用随机数表法确定这5名职工.现将随机数表摘录部分如下:16 22 77 94 3949 54 43 54 8217 37 93 23 7887 35 20 96 4384 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 25从随机数表第一行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个职工的编号为()A.23B.37C.35D.176.(2014云南普洱月考,★☆☆)在简单随机抽样中,某一个个体被抽中的可能性()A.与第几次抽样有关,第一次被抽中的可能性要大些B.与第几次抽样无关,每次被抽中的可能性都相等C.与第几次抽样有关,最后一次被抽中的可能性要大些D.以上均不正确7.(2014吉林长春期末,★☆☆)为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量.下列说法正确的是()A.总体是240名学生B.个体是每一个学生C.样本是40名学生D.样本容量是408.(2016山东青岛期末,★☆☆)为了了解参加运动会的2 000名运动员的年龄情况,从中抽查了100名运动员的年龄,则样本的容量是________.。

高考专题:随机抽样

高考专题:随机抽样

随机抽样1.简单随机抽样(1)定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样方法有两种——抽签法和随机数法. (3)应用范围:总体个体数较少. 2.系统抽样的步骤一般地,假设要从容量为N 的总体中抽取容量为n 的样本. (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n ; (3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本. 3.分层抽样(1)定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样. (2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)简单随机抽样是一种不放回抽样.(√)(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.(×)(3)抽签法中,先抽的人抽中的可能性大.(×)(4)系统抽样在第1段抽样时采用简单随机抽样.(√)(5)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.(×)(6)分层抽样中,每个个体被抽到的可能性与层数及分层有关.(×)题组二教材改编2.[P100A组T1]在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本答案 A解析由题目条件知,5 000名居民的阅读时间的全体是总体;其中1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.3.[P100A组T2]某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为()A.33,34,33 B.25,56,19C.20,40,30 D.30,50,20答案 B解析因为125∶280∶95=25∶56∶19,所以抽取人数分别为25,56,19.4.[P59T2]某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号学生在样本中,那么样本中还有一个学生的学号是()A.10 B.11C.12 D.16答案 D解析从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16,故选D.题组三易错自纠5.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,6,16,32答案 B解析间隔距离为10,故可能的编号是3,13,23,33,43.6.从300名学生(其中男生180人,女生120人)中按性别用分层抽样的方法抽取50人参加比赛,则应该抽取的男生人数为________.答案30解析因为男生与女生的比例为180∶120=3∶2,所以应该抽取的男生人数为50×33+2=30.题型一简单随机抽样1.某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生,6名女生,则下列命题正确的是()A.这次抽样中可能采用的是简单随机抽样B.这次抽样一定没有采用系统抽样C.这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率D.这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率答案 A解析利用排除法求解.这次抽样可能采用的是简单随机抽样,A正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,B错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,C和D均错误,故选A.2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08 B.07 C.02 D.01答案 D解析由题意知前5个个体的编号为08,02,14,07,01.3.下列抽取样本的方式不属于简单随机抽样的个数为()①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③从20件玩具中一次性抽取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0 B.1 C.2 D.3答案 A解析①不是简单随机抽样.②不是简单随机抽样.由于它是放回抽样.③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.④不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.思维升华应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.题型二系统抽样典例(1)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3 B.4 C.5 D.6答案 B解析由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]内的运动员共有4组,故由系统抽样法知,共抽取4名.故选B.(2)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12 C.13 D.14答案 B解析由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12.引申探究1.若本例(2)中条件不变,若号码“5”被抽到,那么号码“55”________被抽到.(填“能”或“不能”)答案不能解析若55被抽到,则55=5+20n,n=2.5,n不是整数.故不能被抽到.2.若本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________. 答案 28解析 因为在编号[481,720]中共有720-480=240人,又在[481,720]中抽取8人,所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取的样本容量为84030=28.思维升华 (1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.跟踪训练 将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8 C .25,16,9 D .24,17,9答案 B解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.题型三分层抽样命题点1求总体或样本容量典例(1)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n等于() A.9 B.10 C.12 D.13答案 D解析∵360=n120+80+60,∴n=13.(2)某市电视台为调查节目收视率,想从全市3个区按人口数用分层抽样的方法抽取一个容量为n的样本.已知3个区人口数之比为2∶3∶5,如果最多的一个区抽出的个体数是60,那么这个样本的容量为()A.96 B.120C.180 D.240答案 B解析设样本容量为n,则52+3+5=60n,解得n=120.命题点2求某层入样的个体数典例(1)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师的人数为()A.90 B.100 C.180 D.300答案 C解析由题意得抽样比为3201 600=15,∴该样本中的老年教师的人数为900×15=180.(2)(优质试题·重庆一诊)我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣()A.104人B.108人C.112人D.120人答案 B解析由题意可知,这是一个分层抽样的问题,其中北乡可抽取的人数为300×8 1008 100+7 488+6 912=300×8 10022 500=108,故选B.思维升华分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.跟踪训练(1)(优质试题·南昌一模)某校为了了解学生学习的情况,采用分层抽样的方法从高一1 000人,高二1 200人,高三n人中抽取81人进行问卷调查,已知高二被抽取的人数为30,那么n等于()A.860 B.720C.1 020 D.1 040答案 D解析分层抽样是按比例抽样的,所以81×1 2001 000+1 200+n=30,解得n=1 040.(2)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________.答案200,20解析该地区中小学生总人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20.五审图表找规律。

福建省建瓯市第二中学高考数学 课时53 随机抽样练习(含解析)

福建省建瓯市第二中学高考数学 课时53 随机抽样练习(含解析)

课时53 随机抽样1.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小C.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与抽取几个样本有关2.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4B.5C.6D.73.一段高速公路有300盏太阳能标志灯,其中进口的有30盏,联合研制的有75盏,国产的有195盏.为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口标志灯的数量为( )A.2B.3C.5D.134.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )A.101B.808C.1212D.20125.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是( )A.5B. 7C.11D.136.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用简单随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则( )A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是B.①②两种抽样方法,这100个零件中每个被抽到的概率都是,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是,②并非如此D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同7.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是.若用分层抽样方法,则40岁以下年龄段应抽取人.8.在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样方法从中抽取容量为20的样本,则三级品a被抽到的概率为.9.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是.10.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上的人,现在抽取20人进行某项调查,若采用分层抽样,求各年龄段应抽人数.11.某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.12.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.1.答案:C解析:由随机抽样的特点知某个体被抽到的可能性与第几次抽样无关,每一次抽到的可能性相等.2.答案:C解析:抽取的植物油类种数:×20=2,抽取的果蔬类食品种数:×20=4,故抽取的植物油类与果蔬类食品种数之和是6.3.答案:A解析:抽取的样本容量与总体中的个体数的比值为,所以抽取的样本中,进口的标志灯抽取的数量为30×=2.4.答案:B解析:四个社区抽取的总人数为12+21+25+43=101,由分层抽样可知,,解得N=808.故选B.5.答案:B解析:间隔数k==16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数为7.6.答案:A解析:由抽样方法的性质知,抽样过程中每个个体被抽到的概率都相等,这个比例只与样本容量和总体有关.7.答案:37 20解析:由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为×100=20.8.答案:解析:每一个个体被抽到的概率都等于样本容量与总体中个体数的比值,即.9.答案:76解析:由题意知,m=8,k=8,则m+k=16.也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故在第8组中抽取的号码为76.10.解:设应在不到35岁的职工、35岁到49岁的职工、50岁以上的职工中分别抽取x人,y人,z人,则,所以x=9,y=5,z=6,故在各年龄段应抽取的人数分别为不到35岁的9人,35岁到49岁的5人,50岁以上的6人.11.解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,大学记为A6,则抽取2所学校的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6}, {A5,A6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种.所以P(B)=.12.解:(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目.所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众人数为×5=×5=3(名).(3)用分层抽样方法抽取的5名观众中,20至40岁有2名(记为Y1,Y2),大于40岁有3名(记为A1,A2,A3),5名观众中任取2名,共有10种不同取法:Y1Y2,Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,A1A2,A1A3,A2A3.设A表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”.则A中的基本事件有6种:Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,故所求概率为P(A)=.。

高考数学随机抽样专项提升题(有答案)

高考数学随机抽样专项提升题(有答案)

2019-2019高考数学随机抽样专项提升题(有答案)按照随机的原则,即保证总体中每一个对象都有已知的、非零的概率被选入作为研究的对象,保证样本的代表性。

下面是查字典数学网整理的随机抽样专项提升题,请考生及时进行练习。

1.(2019湖南,文3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p240岁15 27 42 总计55 45 100(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20~40岁的概率.1.D 解析:由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3,故选D.2.C 解析:A中个体不适合用系统抽样法;B中样本容量很小,适宜用简单随机抽样法中的随机数法;D中总体数很小,适宜用抽签法,只有C比较适宜用系统抽样法.3.B 解析:由题知C专业有学生1 200-380-420=400(名),所以C专业应抽取的学生人数为120=40.4.D 解析:因为在甲、乙、丙三条生产线抽取的个体数依次组成一个等差数列.则可设三项分别为a-x,a,a+x.故样本容量为(a-x)+a+(a+x)=3a,因而每个个体被抽到的概率为,所以乙生产线生产的产品数为=5 600.5. 解析:每一个个体被抽到的可能性都等于样本容量与总体中个体数的比值,即.6.1 800 解析:样本容量与总体容量的比值为,设甲设备生产的产品数为x,则x=50,x=3 000,乙设备生产的产品总数为4 800-3 000=1 800.故答案为1 800.7.解:(1)总体容量较小,用抽签法.(2)总体由差异明显的两个层次组成,需选用分层抽样法.(3)总体容量较大,样本容量较小,宜用随机数表法.①将300个篮球用随机方式编号,编号为001,002,,300;②在教材P103的随机数表中随机的确定一个数作为开始,如第8行第29列的数7开始.任选一个方向作为读数方向,比如向右读;③从数7开始向右读,每次读三位,凡不在001~300中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个个体的号码.(4)总体容量较大,样本容量也较大宜用系统抽样法.①将300个篮球用随机方式编号,编号为000,001,002,,299,并分成30段,其中每一段包含=10个个体;②在第一段000,001,002,,009这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;③将编号为002,012,022,,292的个体抽出,组成样本.8.解:(1)=0.33,a=660.∵b+c=2 000-673-77-660-90=500,应在C组抽取样本个数是360=90(个).(2)b+c=500,b465,c30,(b,c)的可能性是(465,35),(466,34),(467,33),(468,32),(469,31),(470,30), 若测试没有通过,则77+90+c2 000(1-90%)=200,c33,(b,c)的可能性是(465,35),(466,34),通过测试的概率是1-.9.B 解析:若m=8,在第8组中抽取的号码的个位数与8+8=16的个位数相同,即为6,所以应抽取76.10.B11.B 解析:设该班对摄影执不喜欢态度的有x人,喜欢的有y人,则执一般态度的有(x+12)人,由题意得,解得x=6,y=30,故全班人数为6+30+18=54,30-54=3,故选B.12.60 解析:由表知500人中生活不能自理的男性比女性多2人,则该地区15 000位老人生活不能自理的男性比女性约多2=60(人).13.解:可用分层抽样方法,其总体容量为12 000.很喜爱占,应抽取6012(人);喜爱占,应抽取6023(人);一般占,应抽取6020(人);不喜爱占,应抽取605(人).因此采用分层抽样在很喜爱,喜爱,一般和不喜爱的人中分别抽取12人,23人,20人和5人.14.解:(1)因为在20~40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目.所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众人数为5=5=3(名).(3)用分层抽样方法抽取的5名观众中,20~40岁的有2名(记为Y1,Y2),大于40岁的有3名(记为A1,A2,A3),5名观众中任取2名,共有10种不同取法:Y1Y2,Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,A1A2,A1A3,A2A3.一般说来,“教师”概念之形成经历了十分漫长的历史。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《随机抽样》高考题精选
1.(2015北京文)某校老年、中年和青年教师的人数见下
表,
采用分层抽样的方法调查教师的身体状况,在抽取的样
本中, 青年教师有320人,则该样本的老年教师人数为( C ) A .90 B .100
C .180
D .300
2.(2015福建文)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.25
3.(2015四川文)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( C )
(A )抽签法 (B )系统抽样法 (C )分层抽样法 (D )随机数法
4.(2015陕西理)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( B )
A .167
B .137
C .123
D .93
5. (2014四川文)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。

在这个问题中,5000名居民的阅读时间的全体是( A )
A 、总体
B 、个体
C 、样本的容量
D 、从总体中抽取的一个样本
6. (2014广东文)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,
类别 人数 老年教师 中年教师 青年教师
合计
则分段的间隔为(B)
7. (2014上海文)某校高一、高二、高三分别有学生1600名、1200名、800名。

为了了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样。

若高三抽取20名学生,则高一、高二共需抽取的学生数为___________.70
8.(2007全国Ⅱ文)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .120 9. (2013湖南理)某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显着差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是(D)
A .抽签法
B .随机数法
C .系统抽样法
D .分层抽样法
10. (2014湖南理)对一个容量为N 的总体抽取容量为m 的样本,若选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则( D )
A. 321p p p <=
B. 132p p p <=
C. 231p p p <=
D. 321p p p ==
11. (2014重庆文)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽
样的方法从该校学生中抽取一个容量为n 的样本。

已知从高中生中抽取70人,则n 为(A )
A.100
B.150
C.200
D.250
12. (2013江西文理)总体有编号为01,02,…,19,20的20个个体组成。

利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为(D)
13. (2013新课标Ⅰ理)为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生
进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( C )
A 、简单随机抽样
B 、按性别分层抽样
C 、按学段分层抽样
D 、系统抽样
14. (2014天津理)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的
方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.60
15. (2013陕西理)某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为(B)
(A) 11 (B) 12 (C) 13 (D) 14
16.(2008广东理)某校共有学生2000名,各年级男、
女生人数如表1.已知在全校学生中随机抽取1名,
抽到二年级女生的概率是0.19.现用分层抽样的方
法在全校抽取64名学生,则应在三年级抽取的学
生人数为( C )
A .24
B .18
C .16
D .12
表1
17.(2009广东文)某单位200名职工的年龄
分布情况如图,现要从中抽取40名职工作样
本,用系统抽样法,将全体职工随机按1-200
编号,并按编号顺序平均分为40组(1-5号, 6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。

若用分层抽样方法,则40岁以下年龄段应抽取 人. 【答案】37, 20
18.(2014广东理)已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为(A)
A 、200,20
B 、100,20
C 、200,10
D 、100,10
19.(2012四川文)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。

假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人。

若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( B )
A 、101
B 、808
C 、1212
D 、2012
20. (2012江西文) 小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小
波一星期的鸡蛋开支占总开支的百分比为( C )
A.30%
B.10%
C.3%
D.不能确定
21.(2012浙江文)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽
取一个容量为280的样本,则此样本中男生人数为__________.160
22.(2012湖北文)一支田径运动队有男运动员56人,女运动员42人。

现用分层抽样的方法抽取若
干人,若抽取的男运动员有8人,则抽取的女运动员有______人。

6
23.(2102福建文)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______.12.
24.(2012江苏)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生.15
25.(2012天津理)某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取________所学校. 18,9
25.(2012山东理)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( C )
男生 377 370
(A)7 (B) 9 (C) 10 (D)15
27.(2009年广东卷文)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,
用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是。

若用分层抽样方法,则40岁以下年龄段应抽取人. 37,20
图 2
28.(2008广东理)(3).某校共有学生2000名,各年级男、女生人数如表1.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C )
A.24 B.18 C.16 D.12
29.(2008重庆文)(5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,
从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是(D)
(A)简单随机抽样法(B)抽签法
(C)随机数表法(D)分层抽样法
30.(2004福建文)一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=6,则在第7组中抽取的号码是.63。

相关文档
最新文档