四年级奥数智取火柴

合集下载

小学数学奥数基础教程(四年级)--25

小学数学奥数基础教程(四年级)--25

小学数学奥数基础教程(四年级)本教程共30讲智取火柴在数学游戏中有一类取火柴游戏,它有很多种玩法,由于游戏的规则不同,取胜的方法也就不同。

但不论哪种玩法,要想取胜,一定离不开用数学思想去推算。

例1桌子上放着60根火柴,甲、乙二人轮流每次取走1~3根。

规定谁取走最后一根火柴谁获胜。

如果双方都采用最佳方法,甲先取,那么谁将获胜?分析与解:本题采用逆推法分析。

获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜。

现在桌上有60根火柴,甲先取,不可能留给乙4的倍数根,而甲每次取完后,乙再取都可以留给甲4的倍数根,所以在双方都采用最佳策略的情况下,乙必胜。

在例1中为什么一定要留给对方4的倍数根,而不是5的倍数根或其它倍数根呢?关键在于规定每次只能取1~3根,1+3=4,在两人紧接着的两次取火柴中,后取的总能保证两人取的总数是4。

利用这一特点,就能分析出谁采用最佳方法必胜,最佳方法是什么。

由此出发,对于例1的各种变化,都能分析出谁能获胜及获胜的方法。

例2在例1中将“每次取走1~3根”改为“每次取走1~6根”,其余不变,情形会怎样?分析与解:由例1的分析知,只要始终留给对方(1+6=)7的倍数根火柴,就一定获胜。

因为60÷7=8……4,所以只要甲第一次取走4根,剩下56根火柴是7的倍数,以后总留给乙7的倍数根火柴,甲必胜。

由例2看出,在每次取1~n根火柴,取到最后一根火柴者获胜的规定下,谁能做到总给对方留下(1+n)的倍数根火柴,谁将获胜。

例3将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?分析与解:最后留给对方1根火柴者必胜。

按照例1中的逆推的方法分析,只要每次留给对方4的倍数加1根火柴必胜。

奥数思维训练小火柴教案

奥数思维训练小火柴教案

奥数思维训练小火柴教案教案标题:奥数思维训练小火柴教案教案目标:1. 培养学生的逻辑思维能力和创新思维能力。

2. 提高学生的问题解决能力和数学应用能力。

3. 培养学生的团队合作精神和沟通能力。

教学重点:1. 引导学生学习奥数思维的基本原则和方法。

2. 培养学生在解决问题时的灵活性和创造力。

3. 培养学生的团队合作能力。

教学准备:1. 小火柴棍若干。

2. 黑板、白板或投影仪。

3. 学生练习册或工作纸。

教学过程:一、导入(5分钟)1. 引导学生回顾奥数思维的概念和重要性。

2. 提问学生,小火柴棍有哪些用途?为什么小火柴棍可以用来进行奥数思维训练?二、知识讲解(10分钟)1. 介绍小火柴棍的基本性质和用途,如长度、形状等。

2. 解释小火柴棍在奥数思维训练中的作用,如建模、解决问题等。

三、示范与练习(15分钟)1. 示范一道奥数思维训练题目,使用小火柴棍进行建模和解决。

2. 引导学生分组进行练习,每组选择一道题目进行解决。

四、讨论与总结(10分钟)1. 学生展示他们的解题思路和方法。

2. 引导学生讨论不同解题方法的优缺点。

3. 总结奥数思维训练中使用小火柴棍的经验和技巧。

五、拓展练习(15分钟)1. 提供一些更复杂的奥数思维训练题目,让学生进行拓展练习。

2. 鼓励学生尝试不同的解题方法和思路。

六、作业布置(5分钟)1. 布置奥数思维训练的作业,要求学生使用小火柴棍进行建模和解决。

2. 强调作业的重要性和学生的个人努力。

教学反思:1. 教师在教学过程中要注重引导学生思考和讨论,培养他们的创新思维能力。

2. 教师要及时给予学生肯定和鼓励,激发学生的学习兴趣和动力。

3. 教师要根据学生的实际情况,调整教学内容和难度,确保学生能够有效地掌握奥数思维训练的方法和技巧。

四年级下册数学试题-奥数专题讲练:11 数学游戏 精英篇(解析版)全国通用

四年级下册数学试题-奥数专题讲练:11 数学游戏 精英篇(解析版)全国通用

第十一讲 数学游戏在今天这节课中,我们来研究数学游戏中的必胜策略.由于策略的制定是没有固定模式的,教师引导学生通过具体问题具体分析,不断积累经验,以提高观察和分析问题的能力。

知识点:1、取火柴以及与其同类型的游戏中的策略2、其他游戏中的取胜策略.分析:30是3的倍数,你能保证每轮结束时得到3的倍数就可赢,但为了保证第一轮报完得到3,你必须让对手先报.而报到30算输,即“让30”的游戏,实际上是得29赢,29除以3余2,所以你必须每一轮结束时得到除以3余2的数(2,5,8,11……),第一轮要得到2这个数,你必须选报(1,2)才能赢,小山懂得这个规律,所以无论“得30”还是“让30”都会赢.研究一下,所有自然数都可分为被3整除、除以3余1、除以3余2三组,这样你也可以掌握主动权了.我们在进行竞赛与竞争时,往往要认真分析情况,制定出好的方案,使自己获胜,这种方案就是对策.在小学数学竞赛中,常有与智力游戏相结合而提出的一些简单的对策问题,它所涉及的数学知识都比较简单.但这类题的解答对我们的智力将是一种很有益的锻炼.这类问题也属于我们所说的“博弈问题”.在数学游戏中有一类取火柴游戏,它有很多种玩法,由于游戏的规则不同,取胜的方法也就不同.但不论哪种玩法,要想取胜,一定离不开用数学思想去推算.其核心思想有:逆推和对称分组.(一) 智取火柴 教学目标专题精讲 想 挑 战吗?小山和小明玩“得30”的报数游戏.规则是:从1开始轮流报数,每次可报一个或两个数.比如小山先报1,小明可以接着报2,或2、3;小山接着报3,或3、4,或4,或4、5.谁报到30这个数,谁就获胜.小山每次都让小明先报数,结果是小山每次都赢,小明不服气,觉得这里面有鬼,于是小明让小山先报数,小山说那也行,咱们改个规矩,谁报30谁输行吗?小明一想也行,结果还是小山赢,你知道小山为什么每次都赢吗?【例1】桌上放着100根火柴,甲、乙二人轮流取,每次取1~4根,规定谁取到最后一根谁获胜.假定双方都采用最佳方法,甲先取,谁一定获胜?给出一种获胜方法.分析:乙一定获胜,甲取几根,乙就接着取5减几根火柴.甲取几根,乙取4减几根可以么?不可以,那样的话甲取4根,乙就没法取了.甲取几根,乙取6减几根可以么?不可以,那样的话甲取1根,乙就没法取了.这里我们把(1+4)根火柴看成一组,100共有20组,因为甲先取,所以每一组乙都可以取到最后一根.[前铺]桌子上放着10根火柴,甲、乙二人轮流每次取走1~2根.规定谁取走最后一根火柴谁获胜.如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:如果获胜方在最后取得最后一根火柴,那么在倒数第二次取时,必须留给对方3根,要想留给对方3根,倒数第三次取时,必须留给对方6根.要想留给对方6根,倒数第四次取时必须留给对方9根,而甲每次取完都能留给乙3的倍数根,所以在双方都采用最佳策略的情况下,甲必胜.[拓展一]在例1中将“每次取走1~4根”改为“每次取走1~6根”,其余不变,情形会怎样?分析:由例1的分析知,只要始终留给对方(1+6=)7的倍数根火柴,就一定获胜.因为100÷7=14……2,所以只要甲第一次取走2根,剩下98根火柴是7的倍数,以后总留给乙7的倍数根火柴,甲必胜.由例题看出,在每次取1~n根火柴,取到最后一根火柴者获胜的规定下,谁能做到总给对方留下(1+n)的倍数根火柴,谁将获胜.[拓展二]将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?分析:最后留给对方1根火柴者必胜,按照例1中的逆推的方法分析,只要每次留给对方5的倍数加1根火柴必胜.甲先取,只要第一次取4根,剩下96根(96除以5余1),以后每次都将除以5余1的根数留给乙,甲必胜.由此看出,在每次取1~n根火柴,取到最后一根火柴者为负的规定下,谁能做到总给对方留下(1+n)的倍数加1根火柴,谁将获胜.[小结]我们可以把解决这类问题的一般方法总结为余数问题.,即如果有余数,则先取者胜,且取余数根数;如果没有余数,则后取者胜,每“回合”共取N+1根.【例2】甲、乙两人轮流往一张圆桌面上放同样大小的硬币,规定每人每次只能放一枚,硬币平放且不能有重叠部分,放好的硬币不再移动.谁放了最后一枚,使得对方再也找不到地方放下一枚硬币的时候就赢了.说明放第一枚硬币的甲百战百胜的策略.分析:采用“对称”思想.设想圆桌面只有一枚硬币那么大,当然甲一定获胜.对于一般的较大的圆桌面,由于圆是中心对称的,甲可以先把硬币放在桌面中心,然后,乙在某个位置放一枚硬币,甲就在与之中心对称的位置放一枚硬币.按此方法,只要乙能找到位置放一枚硬币,根据圆的中心对称性,甲定能找到与这一位置中心对称的地方放上一枚硬币.由于圆桌面的面积是有限的,最后,乙找不到放硬币的地方,于是甲获胜.[巩固]今有两堆火柴,一堆35根,另一堆24根.两人轮流在其中任一堆中拿取,取的根数不限,但不能不取.规定取得最后一根者为赢.问:先取者有何策略能获胜?分析:本题虽然也是取火柴问题,但由于火柴的堆数多于一堆,故本题的获胜策略与前面的例题完全不同.先取者在35根一堆火柴中取11根火柴,使得取后剩下两堆的火柴数相同.以后无论对手在某一堆取几根火柴,你只须在另一堆也取同样多根火柴.只要对手有火柴可取,你也有火柴可取,也就是说,最后一根火柴总会被你拿到.这样先取者总可获胜.请同学们想一想,如果在上面玩法中,两堆火柴数目一开始就相同,例如两堆都是35根火柴,那么先取者还能获胜吗?[拓展]有3堆火柴,分别有1根、2根与3根火柴.甲先乙后轮流从任意一堆里取火柴,取的根数不限,规定谁能取到最后一根或最后几根火柴就获胜.如果采用最佳方法,那么谁将获胜?分析:谁在某次取过火柴之后,恰好留下两堆数目相等的火柴,谁就能取胜.甲先取,共有六种取法:从第1堆里取1根,从第2堆里取1根或2根;第3堆里取1根、2根或3根.无论哪种取法,乙采取正确的取法,都可以留下两堆数目相等的火柴(同学们不妨自己试试),所以乙采用最佳方法一定获胜.【例3】有1994个球,甲乙两人用这些球进行取球比赛.比赛的规则是:甲乙轮流取球,每人每次取1个,2个或3个,取最后一个球的人为失败者.(1)甲先取,甲为了取胜,他应采取怎样的策略?(2)乙先拿了3个球,甲为了必胜,应当采取怎样的策略?分析:为了叙述方便,把这1994个球编上号,分别为1~1994号.取球时先取序号小的球,后取序号大的球.还是采用倒推法.甲为了取胜,必须把1994号球留给对方,因此甲在最后一次取球时,必须使他自己取到球中序号最大的一个是1993(也许他取的球不止一个).为了保证能做到这一点,就必须使乙最后第二次所取的球的序号为1990(=1993-3)~1992(=1993-1).因此,甲在最后第二次取球时,必须使他自己所取的球中序号最大的一个是1989.为了保证能做到这一点,就必须使乙最后第三次所取球的序号为1986(=1989-3)~1988(=1989-1).因此,甲在最后第三次取球时,必须使他自己取球中序号最大的一个是1985,….把甲每次所取的球中的最大序号倒着排列起来:1993、1989、1985、….观察这一数列,发现这是一等差数列,公差d=4,且这些数被4除都余1.因此甲第一次取球时应取1号球.然后乙取a个球,因为a+(4-a)=4,所以为了确保甲从一个被4除余1的数到达下一个被4除余1的数,甲就应取4-a个球.这样就能保证甲必胜.由上面的分析知,甲为了获胜,必须取到那些序号为被4除余1的球.现在乙先拿了3个,甲就应拿5-3=2个球,以后乙取a个球,甲就取4-a个球.所以,(1)甲为了获胜,甲应先取1个球,以后乙取a个球,甲就取4-a个球.(2)乙先拿了3个球,甲为了必胜,甲应拿2个球,以后乙取a个球,甲就取4-a个球.【例4】有一种“抢某个数字”的游戏,是两个人从自然数1开始轮流报数,规定每次至少报几个数与至多报几个数(都是自然数),最后谁报到规定的“某个数字”为胜.如“抢50”游戏,规定每次必须报1.2个自然数,从1开始,谁抢报到50为胜.例如甲先报l,乙就可接着报2或2,3;若乙报2,甲就可接着报3或3,4;若乙报2,3;甲就可接着报4或4,5.依次下去,谁能报到50为胜.如果你是甲,并且先报数,有没有必胜的策略?分析:由于每次必须报1~2个自然数,那么甲先报1次后,就可保证每次与乙刚报的数字数目之和为3.如乙报1个数,甲就接着报2个数;若乙报2个数,甲就接着报1个数.因此,甲若想必胜,报完第一次数剩下的数的个数必须是3个倍数才可以.而50=3×16+2,因此甲有必胜的策略:甲先报1,2,然后,乙若报1个数,甲就报2个数;乙若报2个数,甲就报1个数.[拓展]若是抢别的数字,规定每次必须报别的一定数目的自然数,先报数的人还有没有必胜的策略?分析:借鉴前面经验,若是“抢40”游戏,规定每次必须报1~3个自然数,从1开始轮流往后报数.若甲先乙后,则乙有必胜的策略.因为乙可以保证每次与甲刚报完的数字数目之和为4,而40=4×10刚好是4的倍数.推广开来,若是“抢数字a”游戏,每次必须报1~n个自然数,从1开始轮流往后报数,且甲先乙后,那么会有两种情况:情况1:若a是(1+n)的整数倍,则后报数的乙有必胜的策略;情况2:若a不是(1+n)的整数倍,则先报数的甲有必胜的策略,且甲先报的数字个数必须是数字.除以(1+n)的余数.说明:“抢数字”游戏还有很多与之类似的变形游戏.如果你对“抢数字”游戏的规则与玩法非常熟悉的话,那么类似的变形游戏就会“如鱼得水”.不费功夫了.[小笑话]某天军训中,教练对同学说:“第一排报数!”小明惊讶的看着教练.教练很奇怪的又说了一遍:“第一排报数!”小明还是很无奈很惊讶的看着教练.教练又大声说了一遍:“第一排报数!”于是小明极其不情愿的走到大树前抱着树.(二)其它游戏中的取胜策略【例5】有100个人站成一排,从左到右依次进行1,2报数,凡是报1的人离开队伍,剩下的人继续从左到右进行1,2报数,最后留在队伍中的人获胜,如此下去,要想获胜,应站在队列中的第几个位置?分析:将这100个人从左到右依次编号为1,2,3,…,98,99,100.第一次报完后.剩下的是2的倍数, 2,4,6,8,10,…,96,98,100.第二次报完后,剩下的是4的倍数,4,8,12,16,…,92,96,100.第三次报完后,剩下的是8的倍数,8,16,24,…,80,88,96.第四次报完后,剩下的是16的倍数,16,32,48,64,80,96.第五次报完后,剩下的是32的倍数,32,64,96.第六次报完后,还剩下一人,也就是第64人.所以要想获胜,应站在队伍中的第64个位置.[数学趣题]神父的诡计一艘不大的船只在海上遇到了风暴,摆在船上25位乘客面前的路只有两条:要么全部乘客与船只同归于尽;要么牺牲一部分人的生命,把他们抛进大海,减轻船的载重量,船及其他人还有得救的可能,但是这样做至少得把一半以上的人抛进海里.大家都同意走第二条路,然而谁也不愿意自动跳进海里.乘客里有11个基督徒,其中一个是神父,于是大家就公推神父出个主意.奸诈的神父想了一下,就让大家坐成一个环形,并且从他依序报数,“1,2,3”,规定报到“3”的人就被抛进海里,下一个继续由“1”报起,同时声称这是上帝的旨意,大家的命运都由上帝来安排,不得抗拒.结果有14个人被抛进海里,而剩下的11个人全部都是基督徒.大难不死的其它10个基督徒突然醒悟过来,原来神父是用诡计救了他们.请你想想,这11个人应在什么位置,才可以避免被抛进海里去呢?分析:神父只要让11个基督徒占领1、4、5、8、10、13、14、17、19、22、23这11个位置,就可以保证他们不被抛进海里.【例6】 右图是一种“红黑棋”,甲、乙两人玩棋,分别取红、黑两方.规定:下棋时,每人每次只能走任意一枚棋,每枚棋子每次可以走一格或几格.红棋从左向右走,黑棋从右向左走,但不能跳过对方棋子走,也不能重叠在对方有棋子的格中.一直到谁无法走棋时,谁就失败.甲先乙后走棋,问甲有没有必胜的策略?分析:甲若想必胜,那么甲走一次棋后,“乙能走甲就能走”,观察棋盘,第二、三行都有9个空格,第四、五行都有5个空格,而第一行只有1个空格,第六行有3个空格,因此甲第1次只要将第六行也变为1个空格,那么就形成一种对称局面,“乙能走甲就能走”.因此甲有必胜的策略:甲先把第六行的红棋向右走两格,使中间只有一个空格.以后乙走第一行,甲就相应地走第六行;乙走第二行,甲就相应地走第三行;乙走第三行;甲就相应地走第二行;乙走第四行,甲就相应地走第五行,乙走第五行,甲就相应地走第四行;乙走第六行,甲就相应地走第一行.且每次甲与乙走的格数要相同,那么最后肯定是乙无法走棋失败,甲必胜.【例7】 把一棋子放在如右图左下角格内,双方轮流移动棋子(只能向右、向上或向右上移),一次可向一个方向移动任意多格.规定不能将棋子直接从左下角移到顶格处,谁把棋子走进顶格,夺取红旗,谁就获胜.问应如何取胜? E DCBA分析:采用倒推法.由于只能向右、向上或向右上移,要把棋子走进顶格,应让对方最后一次把棋子走到最右边一列的格中,为了保证能做到这一点,倒数第二次应让棋子走进右图中的A 格中.(对方从A 格出发,只能向右或向上移至最后一列的格中)所以要获胜,应先占据A 格.同理可知,每次都占据A ~E 这五个格中的某一格的人一定获胜.为保证取胜,应先走.首先把棋子走进E 格,然后,不管对方走至哪一格,(肯定不会走进A ~D 格),先走者可以选择适当的方法一步走进A ~D 格中的某一格.如此继续,直至对方把棋子走进最后一列的某个格中,此时先走者一步即可走进顶格,夺取红旗,从而获胜.【例8】 在9×9棋盘的右上角放有一枚棋子,每一步只能向左、向下或向左下对角线走一格.二人交替走,谁先到达左下角,谁为胜者.问必胜的策略是什么?分析:还是采用倒推法分析.要想占领图9—1左下角的O 点,就必须先占领图9—1黑黑黑黑黑黑红红红红红红中的A 、B 、C 三点之一.因为:(1)如果你占领了A 点,按照游戏规则,对方只能向下走一步,O 必然被你占领.(2)如果你占领了C 点,按照游戏规则,对方只能向左走一步,O 点同样被你占领.(3)如果你占领了B 点,按照游戏规则,对方只能向左、向下或向左下对角线走一步.若向左走一步,你可占领A 点,可以获胜;若向下走一步,你可占领C 点,也可以获胜;若向左下对角线走一步,你可继续向左下对角线走一步而到达O 点.下面继续倒推,采用同样的方法分析出:要想占领A 点,就必须占领D 、E 、B 三点之一;要想占领B 点,就必须占领E 、F 、G 三点之一;要想占领C 点,就必须占领B 、G 、H 三点之一.如图9—2所示.依此类推,即可找出应该抢占的所有“制高点”,见图9—3,一旦你占领了一个“制高点”,不管对方怎样走,你都可以去占领下一个“制高点”.所以必胜的策略是:(1)先走,将棋子向左下对角线走一步,到达一个“制高点”.(2)对方每走一步后,你都设法去占领下一个“制高点”(“制高点”如图9—3中的黑点所示),而最终先到达O 点.【例9】 甲、乙两个人轮流在一个凸七边形中画对角线.规定新画的对角线不能与已经有的相交,画最后一条获胜.如果甲先画,问:谁有必胜的策略?分析:分两种情况讨论:(1)如图a ,甲连1A ,3A ,分出一个三角形和一个六边形.乙只须连15A A ,,将六边形分两个四边形,接下来甲只能在其中一个四边形中画,而乙可在另一个里画,之后甲无法再画,乙胜. (2)如图b ,甲连14A A ,,分出一个四边形和一个五边形.乙只须连15A A ,,则甲只能在余下的两个四边形中的一个里画,而乙就可在另一个里画,仍然是甲先没得画.仍是乙胜.所以,乙有必胜策略.【例10】桌子上有8颗瓜子,甲、乙两人轮流拿瓜子,他们规定,假如甲先拿(当然,乙也可以先拿),甲可拿任意颗瓜子,但不能拿光,接着乙拿,乙可以拿不多于甲所拿瓜子的2倍,又轮到甲拿,甲可以拿不多于乙拿瓜子的2倍,这样交替进行,谁最后把瓜子拿光就算胜利.分析:假如甲先拿,且拿3颗以上,则剩下的瓜子可由乙一次拿走,于是乙胜,甲输;甲为了不让乙胜,显然不能拿多于3颗的瓜子数,而只能拿2或1颗.若甲决定拿2颗,乙就可以拿1(或2、3、4)颗,如乙拿2或3或4都将认输,故乙只能拿1颗.现在桌子上只剩下5颗瓜子,且又轮到甲拿瓜子,因刚才乙只拿了一颗,故甲可拿1或2颗瓜子,如拿2颗,乙就能把剩下的瓜子拿光而获胜.所以甲只能拿1颗,接着拿瓜子的乙也可拿1或2颗,为保证胜利,乙也拿1颗,这样桌子上只剩下3颗瓜子,仍轮到甲拿瓜子,且只能拿1颗或2颗,不管怎样拿,甲都是输定了.若甲决定拿1颗,则乙就拿2颗,此时桌上只剩下5颗且甲拿,情形和以上一样.故无论何种取法甲必输.这个数字游戏和斐波那契数列:1,1,2,3,5,8,13,21,…有关.8为该数列中的一项.事实上是:如果甲、乙两人都清楚这个游戏的“窍门”,那么如瓜子数是该数列的某一项,则先拿者输,如瓜子数不是该数列的某一项,则先拿者赢.专题展望本讲主要讲了游戏中的取胜策略问题,希望同学们通过本讲的学习掌握在游戏中取胜的数学思想方法,在游戏中学到知识,请同学们再接再厉,加油!练习十一1.(例1)桌上放着60根火柴,甲、乙二人轮流取,每次可取1到3根,规定谁取到最后一根谁获胜.假设甲先取,那么谁一定获胜,如何获胜?分析:乙一定获胜.每次可取1~3根,则甲、乙每轮所取的火柴之和总可以凑成4,例如,甲取1根,乙就取3根;甲取2根,乙就取2根;甲取3根,乙就取1根,因为60是4的倍数,无论甲如何取,乙总有相应的取法使得这一轮里火柴共被取走4根,因此,乙必定可以取走最后一根火柴.2.(例2)现有7根火柴,甲乙两人轮流从中取1根、2根或3根,直到取完为止,最后计算各人所得火柴总数,得数为偶数者获胜,问先拿的人是否能取胜?应怎样安排策略?分析:由于7是奇数,所以两人所拿的火柴数必然是一个奇数,一个偶数.而如果火柴总数是偶数的话,分成两个自然数必为同奇或同偶,因此无论如何取,只能是平局,可见如果火柴总数是偶数,比赛就没有意义了,那么我们就对火柴总数为奇数的情况,从少到多开始讨论.(1)如果共有1根火柴,那么先取的人必败,而后取的人必胜.(2)如果共有3根火柴,这时先取的人就占据了有利位置,只要甲直接取2根,乙就只能取1根.那么先取的人必胜,后取的人必败.(3)如果共有5根火柴,由(2)知,甲不能拿2根.因为给乙剩下3根则甲必败.如果甲选择拿1根还剩4根,那么乙有3种选择.①乙拿1根,还剩3根,甲拿3根后总数为1+3=4根,乙只有1根,甲胜;②乙拿2根,还剩2根,甲再拿1根后总数有1+1=2根,乙只能再拿1根,总数为2+1:3根,甲胜;③乙拿3根,还剩1根,甲拿走后总数有1+1=2根,乙有3根,甲胜.(4)如果有7根火柴.甲取走了3根还剩4根,该乙拿.这时的情况与共5根火柴甲取先1根一样,甲有必胜的策略.所以先拿的人有必胜的策略,他要先取走3根火柴.3.(例5)两人轮流报数,但报出的数只能是1至10的自然数.同时把所报数一一累加起来,谁先使这个累加和达到100,谁就获胜.问怎样才能确保获胜?分析:这个问题可以倒着想,要想使总和先达到100,应该最后给对方留下多少个数呢?由于每个人报的数最大是10,最小是1,因此对方最后一次报完数后,总和最大是99,最小是90,所以最后一次应该给对方留下11个数,也就是说要先达到100,就必须先达到89.如何抢到89这个数呢?采用同样的分析方法可知,应先达到78.依此类推,可以得到每次报数应占领的“制高点”是:100,89,78,67,56,45,34,23,12,1.所以获胜的策略是:(1)先报1;(2)每次对方报a(1≤a≤10),你就报11-a.这样,每次你都能占领一个“制高点”,以确保获胜.4.(例6)甲、乙二人轮流报数,报出的数只能是1至7的自然数.同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜.问怎样才能确保获胜?分析:采用倒推法.因为每次报1至7的自然数,所以要想报到80,应抢先报到72,给对方留下8个数;同理,要报到72,应抢先报到64;以此类推,每次应抢报的数为80,72,64,56,48,40,32,24,16,8.因此获胜的方法是:(1)让对方先报;(2)对方报a(1≤a≤7),你就报8-a,必胜.BA5.(例8)在下图的A点有一枚棋子,甲先乙后轮流走这枚棋子,每次必须向上或向右走1步或2步(走2步时可以拐弯),最终将棋子走到B点者获胜.甲有没有必胜的策略?分析:因为每次走棋子必须向上或向右走,所以不管走什么路径,从A到B的步数是定的,都是10步.而每次必须走1步或2步,因此,甲先走一次后,每次可保证与乙刚走的步数和为3,如乙走1步,甲就走2步;乙走2步,甲就走1步.这样,甲若想必胜,走完第一次后剩下的步数必须是3的倍数,这一点是可以做到的.所以甲有必胜的策略:甲先走1步,然后,若乙走1步,甲就走2步;若乙走2步,甲就走1步.数学故事大海盗雷斯家族世代都是海盗头子,到十六世纪中叶时,更是盛况空前,希尔顿·雷斯和艾登·雷斯兄弟各自拥有自己强大的海盗军队,在地中海一带不可一世.终于有一天两兄弟闹不和,都想掌握整个家族,享用家族世代积攒的财宝.但是他们又都不敢跟对方开战,因为他们都没有必胜的把握,而且就算战胜了对方自己的军队也必定伤亡惨重,也许从此就一蹶不振,所以双方一直僵持不下,难以解决.他们的父亲眼见分裂之势已成,无法挽回,又不忍见两个儿子自相残杀,于是想了一个办法,以使事情顺利解决.于是他找了一天把两个儿子召集在一起,说道:“我知道要你们像以前一样相处是不可能了,但你们要是自相残杀岂不是让我们的敌人占了便宜,或许我们的家族也会有灭亡的危险,所以我想了一个办法,能令你们和平地分成两个强大的海盗军团,但你们要答应我遵守我所说的规则!”两兄弟见父亲说的有理便答应了.于是老人接着说:“是这样的,我相信你的军队实力足以自立当世.你们惟一想争的只是家族的财宝,我把财宝中最贵重的部分装在一个箱子中,其余的分别平均装在99个箱子中,你们两个轮流来我这里取箱子,每次取1到lO箱都可以,不能少取也不能多取,我会把最贵重的一箱放在最后,你们取到的箱子都归自己所有,谁取到最贵重的一箱谁就继续留在这里,而另一方必须离开地中海到别处发展,以免互相之间产生摩擦,手足相残.”两兄弟均觉依照这个办法虽然自己有可能被赶出家门,但机会是平等的,还算公平,便答应了.等父亲把财宝准备好,又出现了一个问题:谁先取呢?于是讨论决定:双方划拳,胜者决定先取还是后取.划拳的结果是希尔顿.雷斯赢了,他想了一下决定先取.于是两兄弟轮流到父亲处取财宝,几轮下来最后一箱贵重的财宝被希尔顿·雷斯取走了.艾登·雷斯依照约定离开了地中海,再也没有回来.父亲虽然眼见家族分裂老怀伤感,但见两兄弟相安无事也心怀安慰.几十年后,雷斯家族日趋没落,雷斯兄弟也各自在战斗中被西班牙皇家海军击败,他们逃出来后流落异乡,从此一蹶不振.一日,他们在某个小镇碰见,十分高兴,于是来到酒吧喝酒,后来聊到当年的分裂,艾登·雷斯说:“唉,当初运气不佳,被你碰巧取到了大财宝,我才被迫背井离乡!”那知希尔顿·雷斯哈哈一笑,说到:“我决定先取的时候就知道我赢定了!”艾登·雷斯非常诧异,问道:“怎么会?你怎么能知道我每次会取几箱呢?”希尔顿·雷斯回答道:“不用知道,我先取一箱,以后每次所取的箱数都与你取的凑够1l箱,这样我就赢定了.”艾登·雷斯想了一下顿时恍然大悟,后悔当时没有明白.。

小学4年级暑假奥数:策略问题-讲义-教师

小学4年级暑假奥数:策略问题-讲义-教师

第13讲策略问题【学习目标】1、学习策略问题;2、提升分析问题和解决问题的能力。

【知识梳理】1、倒推法:从结果逆向推游戏过程,采用逆向思维从后面往前面的一种策略;2、对称法:通过模仿对方的游戏步骤,使得对方始终面临平衡状态的一种策略。

【典例精析】【例1】两个人做移火柴棍游戏.比赛规则是:两人从一堆火柴中可轮流移走1至5根火柴,但不可以不取,直到移完为止,谁最后移走火柴就算谁赢.如果开始有55根火柴,首先移火柴的人在第一次移走__1__根时才能在游戏中保证获胜.甲先移1根,还剩54根,接着乙移,不管以移走几根(1﹣5根),随后的甲只要保证每次移动的根数和前面乙移的根数和为6就行,这样当乙移完第8次(即甲移完第9次),总共移了1+6×8=49,还最后剩6根,这时乙开始他的第9次移动,但不管怎么移,最后还是会有剩下(最多5,最少1),于是甲就可以移完最后剩下的.【趁热打铁-1】61根小棒,两人轮流拿,规定每人每次至少拿1根,最多拿3根,直到拿完为止,谁拿到最后一根,谁就获胜.如果甲先拿,甲第一次要拿___1_根小棒,才能保证获胜.先取者可获胜,如果甲先取,甲获胜的策略:61÷(1+3)=15…1,甲先取1根,则余下的根数为4的倍数,如果乙取m根(m<4),则甲取(4﹣m)根,甲乙共取了4根,余下的根数仍为4的倍数.如此反复,直至余下的根数为4根后,乙再取了若干根后,甲就可全部取光,甲就可获胜.【例2】桌子上有2014枚棋子,甲乙两人轮流取走棋子.规则是:每人每次取的个数是1枚至5枚,谁最后取光桌上的棋子谁就获胜.如果甲先取,那么甲先取_____枚棋子,才能保证自己必胜.2014÷(1+5)=335(次)……4(个);只要甲先取4个,然后再看看乙每次取几个,只要每次与乙所取棋子数和满足是6,甲就能取胜.【趁热打铁-2】有75个棋子,两人轮流拿,每次只能拿1个、2个、3个,谁拿到最后一颗,谁获胜.如果你先拿,第一次应该拿几颗,接下来怎样拿才能确保获胜?75÷(3+1)=18……3,为了确保获胜,自己先取3个,别人再取走n(1≤n≤3)个,接着自己取走(4﹣n)个;以后每次在别人取球后,自己所取棋子数均为4减去对方所取棋子数之差;则保证自己获胜.【例3】一堆计数卡片分别写着2,3,4,5,…,2012.甲先从中抽走1张,然后乙再从中抽走1张,如此轮流下去.如果最后的2张上的数是互质数时,甲胜;如果最后剩下的2个数不是互质数时,乙胜.甲想要获胜有几种抽取方法?各应该怎样抽取卡片?如果甲取偶数4,那么剩下的数同样可以这样去分组:(2,3)(5,6)…(2011,2012).接下来当乙取一个数时,甲就取这个组中剩下的另一个数,取到最后剩下的数必是相邻的两个数,必定互质.从2到2012一共有2012÷2=1006个偶数,因此就有1006种取法.【趁热打铁-3】在黑板上写有100个数,1,2,3…,100,甲乙两人轮流擦去黑板上的一个数(甲先擦,乙后擦),如果最后剩下的两个数互质,则甲胜,否则乙胜,谁能必胜?必胜的策略是什么?从1到100共100个数字,100÷2=50,所以有50个偶数,50个奇数,根据条件,甲先擦,乙后擦,甲无论擦哪个数,乙都擦和它相邻的那个数,所以乙必胜.【例4】甲、乙两人轮流报数,每人都只能报2、3、5、7中的一个,把两人报的数累加.如果某个人报完数后,累加的和第一次为三位数,那么这个人就获胜.请问:谁有必胜策略?甲有必胜策略,甲要抢占到92,甲首先报2,之后与乙配对和为5或10即可,即乙选7,则跟着选3,若乙选5,则甲跟着选5,若乙选2,则甲选3…一定甲首先报92,乙即使报最大的数7,加上92,只是99,甲然后报四个中任意一个都可获胜;则甲必胜.【趁热打铁-4】小明和小丽两人从1开始按自然数顺序轮流报数,每人每次只能报1个数或2个数,谁能报出60,谁就能获胜.小明后报,为了确保获胜,小明应该怎样报数?如果小明想获胜,那么就让小丽先报数.如果小丽报的是一个,小明就报两个;如果小丽报的是两个,那么小明就报一个.那么就会两人固定报三个数,也就是小明始终使两人每一轮报的个数的和是3个,这样,小丽最后报的数肯定是“58”或“58、59”,那么小明就可以报60了.必胜的策略是:第一,让小丽先报;第二,小丽报一个数小明就报两个数,小丽报两个数小明就报一个数,小明始终使两人每一轮报的个数的和是3个.【例5】桌上有一块巧克力,它被直线划分成3×7个小方块,如下图,现在两人轮流切巧克力,规则是:①每次只许沿一条直线把巧克力切成两块;②拿走其中一块,把另一块留给对方再切;③谁能留给对方恰好一个小方块,谁就获胜,问如何取胜?甲能获胜,因为甲先切的,甲先切去4×3拿走,给乙留下3×3 Array的方,这时乙有两种方式来切,如果乙这时切走2×3拿走给甲留下1×3的话,那甲就再切走1×2拿走给乙留下1×1一个小方格,这时乙输;如果乙切走1×3拿走给甲留下2×3的话,那甲会切走1×2拿走再给乙留下2×2,这时乙只有一种方式就是切走1×2拿走留下1×2的小方格,那甲就要以切走1×1拿走给乙留下1×1一个小方格,乙输.【趁热打铁-5】甲、乙两人轮流往一张圆桌面上放同样大小的硬币,规定每人每次只能放一枚,硬币平放且不能有重叠部分,放好了硬币不能再移动。

四年级奥数火柴棒数学题

四年级奥数火柴棒数学题

四年级奥数火柴棒数学题一、数字变换类。

1. 移动一根火柴棒,使等式成立:1 + 7 = 8。

- 题目分析:这是一个简单的等式,需要通过移动一根火柴棒来改变数字。

- 解题思路:把数字7上面的一横移到1前面,变成11 - 3 = 8。

2. 移动一根火柴棒,使3 + 5 = 10成立。

- 题目分析:等式左边计算结果与右边不相等,要调整数字。

- 解题思路:把5右上角的一竖移到3的左上角,使3变成9,5变成3,即9+1 = 10。

3. 用火柴棒摆出12 - 2 + 7 = 11,移动一根火柴棒使等式成立。

- 题目分析:原等式不成立,要改变某个数字的值。

- 解题思路:把12中的1移到减号上,变成加号,即2+2 + 7 = 11。

二、图形变换类(用火柴棒摆成的图形)4. 用火柴棒摆成一个三角形和一个正方形,三角形用3根火柴棒,正方形用4根火柴棒。

移动2根火柴棒,使三角形和正方形的个数总共为3个。

- 题目分析:要通过移动有限的火柴棒改变图形的组合数量。

- 解题思路:将正方形的一条边和三角形的一条边移走,再用这两根火柴棒组成一个小三角形,这样就有2个小三角形和1个正方形,总共3个图形。

5. 用12根火柴棒摆成一个田字形(4个小正方形),移动3根火柴棒,使它变成3个小正方形。

- 题目分析:要从4个小正方形的组合通过移动火柴棒变成3个小正方形。

- 解题思路:将田字左上角的两根和右下角内部的一根移走,重新组合成一个小正方形与原来田字剩下的两个小正方形组成3个小正方形。

6. 用9根火柴棒摆成3个三角形,移动3根火柴棒,使它变成5个三角形。

- 题目分析:改变三角形的组合方式来增加三角形的个数。

- 解题思路:把原来三个三角形中每个三角形的一条边(共3条边)移到合适的位置,使这3根火柴棒组成2个小三角形在原来的大三角形内部,这样就有5个三角形(3个小三角形和2个由小三角形组成的大三角形)。

三、等式两边同时调整类。

7. 在下面的等式中,移动2根火柴棒使等式成立:14 - 1 + 1 = 3。

学而思讲义四年级第三讲(游戏与对策)(2024版)

学而思讲义四年级第三讲(游戏与对策)(2024版)

第三讲 游戏与对策一、基本前提游戏双方足够聪明,目的都是获胜。

二、方法:倒推三、游戏类型(一)拿火柴棍/抢数如:桌子上放着10根火柴,二人轮流每次取走1—2根,规定谁取走最后一根火柴谁获胜。

你知道必胜的方法吗?分析:如果从开始分析,“局面”太大,有太多种取法要讨论。

所以我们尝试从结果倒推。

如上图,要必胜,也就是要让自己拿到10号火柴,那就应给对方留下8,9,10三根火柴供他取,这样对方不管取一根还是两根,自己都能拿到最后的10号火柴。

照这样分析,自己应该拿到7号火柴(这样就是给对方留下了8,9,10号三根)就必胜。

同理分析,要想取7号,就应该取4号,要想取4号,就应该取1号。

那么,本题的制胜点就是1,4,7,10号火柴,对于足够聪明的人来说,拿到第一个制胜点1号火柴,一定能拿到其余的制胜点。

所以本题要必胜,就要抢先取1根,然后对方取a 根,自己就取3-a 根,这样保证自己能取到每一个制胜点,最终取到10号火柴。

总结一下,同学们应该能看出,这里面有周期现象(只是周期是从后往前排布的),周期是几呢?是可取的最大限度2再加1等于3,制胜点是哪些呢?是每个周期的最后一根。

掌握此规律,就不难总结出这类题的解题方法了:解题方法:(1)找周期:周期等于可拿最大限度+1(2)总数÷周期1 桌子上放着60根火柴,聪明昊、神奇涛二人轮流每次取走1—3根,规定谁取走最后一根火柴谁获胜。

你知道必胜的方法吗?解析: 周期为 3+1=4(根)60÷4=15(组) (整除,应该抢后)制胜点:4,8,12 (60)做法:1、让对方先取2、对方取a 根,自己就取4-a 根2 有一种抢数游戏,是两个人从自然数1开始轮流报数,规定每次至少报几个数与至多报几个数(都是自然数),最后谁报到规定的“某个数字”为胜。

如“抢50”,规定每次必须报1或2个1 2 3 4 5 6 7 8 9 10有余数:抢先拿余数整除(余数为0):抢后自然数,从1开始,谁抢报到50为胜。

奥数思维训练---火柴棒游戏ppt课件

奥数思维训练---火柴棒游戏ppt课件

可编辑版课件
18
可编辑版课件
19
• 你能用7根火柴棒摆成3个相同的三角形吗?
可编辑版课件
20
你能用有9根火柴棒拼出 4个相同的三角形吗?
可编辑版课件
21
你能用有9根火柴棒拼出 4个相同的三角形吗?
可编辑版课件
22
你能用10根火柴你能只移动三根就使“田” 字变为三个相同的正方形吗?
可编辑版课件
1
请移动一根火柴棒,使等式成立。
可编辑版课件
2
请移动一根火柴棒,使等式成立。
可编辑版课件
3
请移动一根火柴棒,使等式成立。
可编辑版课件
4
请只移动一根火柴棒,帮小猫把 错题改正过来。

可编辑版课件
5
请只移动一根火柴棒,帮小猫把 错题改正过来。

可编辑版课件
6
请只移动一根火柴棒,帮小猫把 错题改正过来。

可编辑版课件
12
你能只移动两根火柴,让小狗调头走 吗?
可编辑版课件
13
你能只移动两根火柴,让小狗调头走 吗?
可编辑版课件
14
你能只移动两根火柴,让小狗调头走 吗?
可编辑版课件
15
你能只移动两根火柴,让小狗调头走 吗?
可编辑版课件
16
你能只移动两根火柴,让小狗调头走 吗?
可编辑版课件
17
移动3根火柴棒,使这条鱼 的鱼头朝右,鱼尾朝左。

可编辑版课件
7
请只移动一根火柴棒,帮小猫把 错题改正过来。

可编辑版课件
8
请只移动一根火柴棒,帮小猫把 错题改正过来。

可编辑版课件

火柴智力测试题大全(3篇)

火柴智力测试题大全(3篇)

第1篇一、入门级火柴智力题1. 题目:0+1=8,移动一根火柴使等式成立。

答案:将数字8左下角的火柴移动到原来数字0的中间,这样0就变成了8,8就变成了9。

2. 题目:1+1=8,移动一根火柴使等式成立。

答案:将数字8左下角的火柴移动到原来数字1的上方,这样1就变成了7,7加1等于8。

3. 题目:018,移动一根火柴使等式成立。

答案:将原来数字0的中间一根火柴移动到左边,形成数字9,即819。

4. 题目:118,移动一根火柴使等式成立。

答案:将数字1左边的火柴移动到右边,形成数字-1,即-110。

5. 题目:5+3=7,移动一根火柴使等式成立。

答案:将数字5中间的横杠移动到左边,形成数字7,即+7。

二、提升级火柴智力题1. 题目:8+9=18,移动一根火柴使等式成立。

答案:将数字9中间的横杠移动到右边,形成数字8,即17。

2. 题目:4+5=9,移动一根火柴使等式成立。

答案:将数字4中间的横杠移动到右边,形成数字9,即+9。

3. 题目:6+2=8,移动一根火柴使等式成立。

答案:将数字2中间的横杠移动到左边,形成数字8,即+8。

4. 题目:3+4=7,移动一根火柴使等式成立。

答案:将数字3中间的横杠移动到右边,形成数字7,即+7。

5. 题目:2+3=5,移动一根火柴使等式成立。

答案:将数字2中间的横杠移动到右边,形成数字5,即+5。

三、高级火柴智力题1. 题目:5+6=11,移动一根火柴使等式成立。

答案:将数字5中间的横杠移动到左边,形成数字11,即-11。

2. 题目:7+8=15,移动一根火柴使等式成立。

答案:将数字7中间的横杠移动到右边,形成数字15,即+15。

3. 题目:9+10=19,移动一根火柴使等式成立。

答案:将数字9中间的横杠移动到右边,形成数字19,即+19。

4. 题目:4+5=9,移动一根火柴使等式成立。

答案:将数字4中间的横杠移动到右边,形成数字9,即+9。

5. 题目:6+7=13,移动一根火柴使等式成立。

四年级 奥数 讲义 教案库 2第二讲 游戏与对策

四年级 奥数 讲义   教案库 2第二讲 游戏与对策

第二讲游戏与对策知识点拨我们在进行竞赛与竞争时,往往要认真分析情况,制定出好的方案,使自己获胜,这种方案就是对策.在小学数学竞赛中,常有与智力游戏相结合而提出的一些简单的对策问题,不论哪种玩法,要想取胜,一定离不开用数学思想去推算。

它所涉及的数学知识都比较简单.但这类题的解答对我们的智力将是一种很有益的锻炼.例题精讲智取火柴棍游戏【例1】桌子上放着55根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方采用最佳方法,甲先取,那么谁将获胜?【巩固】将例题中的条件“每次取走1~3根”改为“每次取走1~4根”,其余不变,情形会怎样?【例2】桌子上放着55根火柴,甲、乙二人轮流每次取走1~3根,谁取走最后一根火柴谁输,如果双方采用最佳方法,甲先取,那么谁将获胜?【巩固】桌子上放着60根火柴,甲、乙二人轮流每次取走1~3根。

规定谁取走最后一根火柴谁获胜。

如果双方都采用最佳方法,甲先取,那么谁将获胜?【巩固】在例题中将“每次取走1~3根”改为“每次取走1~6根”,其余不变,情形会怎样?【例3】(1)1998个空格排成一排,第一格中放有一枚棋子,现有两人做游戏,轮流移动棋子,每人每次可前移1格、2格、3格或4格.谁先移到最后一格,谁为胜者.问怎样的移法才能确保获胜?(2)桌面上放着54张扑克牌,两人轮流从中取走1张、2张或3张,取了最后一张者输.问应怎样取,才能确保获胜?想一想:该如何制定“作战”策略呢?【巩固】1111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7个格.规定将棋子移到最后一格者输.甲为了获胜,第一步必须向右移多少格?【例4】甲、乙二人轮流报数,必须报不大于6的自然数,把两人报出的数依次加起来,谁报数后加起来的数是2000,谁就获胜.如果甲要取胜,是先报还是后报?报几?以后怎样报?【巩固】两人从1开始按自然数顺序轮流依次报数,每人每次只能报1~5个数,谁先报到50谁胜。

第15讲 智取火柴

第15讲 智取火柴

例1、桌子上放着60根火柴,甲、乙二人轮流 每次取走1~3根。规定谁取走最后一根火柴 谁获胜。如果双方都采用最佳方法,甲先取, 那么谁将获胜? 例3、谁取走最后一根火柴谁输 解:最后留给对方1根火柴者必胜。只要每次 留给对方4的倍数加1根火柴必胜。甲先取,只 要第一次取3根,剩下57根(57除以4余1), 以后每次都将除以4余1的根数留给乙,甲必胜。
例4、两人从1开始按自然数顺序轮流依次报 数,每人每次只能报1~5个数,谁先报到50 谁胜。你选择先报数还是后报数?怎样才 能获胜?
解:因为50÷(1+5)=8……2,所以要想获胜, 应选择先报,第一次报2个数,剩下48个数是(1+5 =)6的倍数,以后总把6的倍数个数留给对方,必 胜。
例5、今有两堆火柴,一堆35根,另一堆24根。 两人轮流在其中任一堆中拿取,取的根数 不限,但不能不取。规定取得最后一根者 为赢。问:先取者有何策略能获胜?
例1、桌子上放着60根火柴,甲、乙二人轮流 每次取走1~3根。规定谁取走最后一根火柴 谁获胜。如果双方都采用最佳方法,甲先取, 那么谁将获胜?
解:获胜方只要每次留给对方的都是4的倍数 根,则必胜。而60就是4的倍数,所以双方都 采用最佳方法的情况下,后取的乙必胜。
例1、桌子上放着60根火柴,甲、乙二人轮流 每次取走1~3根。规定谁取走最后一根火柴 谁获胜。如果双方都采用最佳方法,甲先取, 那么谁将获胜? 例2、每次取走1~6根 解:获胜方只要每次留给对方的都是7的倍数 根,则必胜。60根火柴甲先取走4根后剩56根 是7的倍数,所以双方都采用最佳方法的情况 下,先取的甲必胜。
解:先取者让两堆火柴数量相等,必胜。
例6、有3堆火柴,分别有1根、2根与3根火柴。 甲先乙后轮流从任意一堆里取火柴,取的 根数不限,规定谁能取到最后一根或最后 几根火柴就获胜。如果采用最佳方法,那 么谁将获胜?

小学四年级数学奥数基础教程--30讲全

小学四年级数学奥数基础教程--30讲全

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

生活中的数学问题 火柴游戏

生活中的数学问题 火柴游戏

生活中的数学问题火柴游戏
生活中的数学问题火柴游戏
生活中的数学知识火柴游戏
一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最後一根火柴者获胜。

规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?
例如:桌面上有n=15根火柴,甲﹑乙两人轮流取,甲先取,则甲应如何取才能致胜?
为了要取得最後一根,甲必须最後留下零根火柴给乙,故在最後一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。

如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。

同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取後留下4根火柴,最後也一定是甲获胜。

由上之分析可知,甲只要使得桌面上的火柴数为4﹑8﹑12﹑16...等让乙去取,则甲必稳操胜券。

因此若原先桌面上的火柴数为15,则甲应取3根。

(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根
(∵18-2=16)。

规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?
每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最後剩下2根,那时乙只能取1,甲便可取得最後一根而获胜。

通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。

最新四年级奥数教程(完美修复版本)

最新四年级奥数教程(完美修复版本)

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

四年级奥数基础教程第25讲智取火柴(范文大全)

四年级奥数基础教程第25讲智取火柴(范文大全)

四年级奥数基础教程第25讲智取火柴(范文大全)第一篇:四年级奥数基础教程第25讲智取火柴第25讲智取火柴在数学游戏中有一类取火柴游戏,它有很多种玩法,由于游戏的规则不同,取胜的方法也就不同。

但不论哪种玩法,要想取胜,一定离不开用数学思想去推算。

例1桌子上放着60根火柴,甲、乙二人轮流每次取走1~3根。

规定谁取走最后一根火柴谁获胜。

如果双方都采用最佳方法,甲先取,那么谁将获胜?分析与解:本题采用逆推法分析。

获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜。

现在桌上有60根火柴,甲先取,不可能留给乙4的倍数根,而甲每次取完后,乙再取都可以留给甲4的倍数根,所以在双方都采用最佳策略的情况下,乙必胜。

在例1中为什么一定要留给对方4的倍数根,而不是5的倍数根或其它倍数根呢?关键在于规定每次只能取1~3根,1+3=4,在两人紧接着的两次取火柴中,后取的总能保证两人取的总数是4。

利用这一特点,就能分析出谁采用最佳方法必胜,最佳方法是什么。

由此出发,对于例1的各种变化,都能分析出谁能获胜及获胜的方法。

例2在例1中将“每次取走1~3根”改为“每次取走1~6根”,其余不变,情形会怎样?分析与解:由例1的分析知,只要始终留给对方(1+6=)7的倍数根火柴,就一定获胜。

因为60÷7=8……4,所以只要甲第一次取走4根,剩下56根火柴是7的倍数,以后总留给乙7的倍数根火柴,甲必胜。

由例2看出,在每次取1~n根火柴,取到最后一根火柴者获胜的规定下,谁能做到总给对方留下(1+n)的倍数根火柴,谁将获胜。

例3将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?分析与解:最后留给对方1根火柴者必胜。

数学小故事小火柴

数学小故事小火柴

数学小故事小火柴火柴游戏是一个非常经典的趣味数学游戏,这个是一个锻炼脑力和协作能力的游戏,想挑战一下吗?快快玩玩这个游戏吧! 一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最後一根火柴者获胜。

规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜? 例如:桌面上有n=15根火柴,甲﹑乙两人轮流取,甲先取,则甲应如何取才能致胜?为了要取得最後一根,甲必须最後留下零根火柴给乙,故在最後一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。

如果留下4 根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。

同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取後留下4根火柴,最後也一定是甲获胜。

由上之分析可知,甲只要使得桌面上的火柴数为4﹑8﹑12﹑16...等让乙去取,则甲必稳操胜券。

因此若原先桌面上的火柴数为15,则甲应取3根。

(15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(18-2=16)。

规则二:限制每次所取的火柴数目为1至4根,则又如何致胜? 原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。

通则:有n支火柴,每次可取1至k支,则甲每次取後所留的火柴数目必须为k+1之倍数。

规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1﹑3﹑7,则又该如何玩法? 分析:1﹑3﹑7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1﹑3﹑7根火柴後获得0,但假使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的。

因为〔偶-奇=奇,奇-奇=偶〕,所以每次取後,桌上的火柴数奇偶相反。

若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随後又把偶数变成奇数,甲又把奇数回覆到偶数,最後甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。

小学数学奥数四升五

小学数学奥数四升五

小学奥数基础教程(四年级)第1讲速算及巧算(一)第2讲速算及巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题及归总问题第12讲年龄问题第13讲鸡兔同笼问题及假设法第14讲盈亏问题及比较法(一)第15讲盈亏问题及比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算及巧算(一)两位数乘法速算口诀一般口诀:首位之积排在前,首尾交叉积之和十倍再加尾数积。

如37x64=1828+(3x4+7x6)x10=23681、同尾互补,首位乘以大一数,尾数之积后面接。

如:23×27=6212、尾同首互补,首位之积加上尾,尾数之积后面接。

87×27=23493、首位差一尾数互补者,大数首尾平方减。

如76×64=48644、末位皆一者,首位之积接着首位之和,尾数之积后面接。

如:51×21=1071------- “几十一乘几十一”速算特殊:用于个位是1的平方,如21×21=4415、首同尾不同,一数加上另数尾,整首倍后加上尾数积。

23×25=575速算1),首位皆一者,一数加上另数尾,十倍加上尾数积。

17×19=323---- “十几乘十几”速算包括了十位是1(即11~19)的平方,如11×11=121---- “十几平方”速算 2)首位皆二者,一数加上另数尾,廿倍加上尾数积。

25×29=725----“二十几乘二十几”速算 3)首位皆五者,廿五接着尾数积,百位再加尾数之和半。

四年级奥数

四年级奥数

只要把算术符号放在数字之间的适当位置,就能使下列的算式成立:1 2 3 4 5 6 7 8 9=100解答不只一种,看看你能找到几种.把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

例1桌子上放着60根火柴,甲、乙二人轮流每次取走1~3根。

规定谁取走最后一根火柴谁获胜。

如果双方都采用最佳方法,甲先取,那么谁将获胜?分析与解:本题采用逆推法分析。

获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜。

现在桌上有60根火柴,甲先取,不可能留给乙4的倍数根,而甲每次取完后,乙再取都可以留给甲4的倍数根,所以在双方都采用最佳策略的情况下,乙必胜。

在例1中为什么一定要留给对方4的倍数根,而不是5的倍数根或其它倍数根呢?关键在于规定每次只能取1~3根,1+3=4,在两人紧接着的两次取火柴中,后取的总能保证两人取的总数是4。

利用这一特点,就能分析出谁采用最佳方法必胜,最佳方法是什么。

由此出发,对于例1的各种变化,都能分析出谁能获胜及获胜的方法。

例4两人从1开始按自然数顺序轮流依次报数,每人每次只能报1~5个数,谁先报到50谁胜。

你选择先报数还是后报数?怎样才能获胜?分析与解:因为50÷(1+5)=8……2,所以要想获胜,应选择先报,第一次报2个数,剩下48个数是(1+5=)6的倍数,以后总把6的倍数个数留给对方,必胜。

某剧院有25排座位,后一排都比前一排多2个座位,最后一排有70个座位,问这个剧院一共有多少个座位?小林家有大、小两个鱼缸,原来两个鱼缸里的金鱼条数相等,如果从小鱼缸里拿4条放到大鱼缸里,这时大鱼缸里的金鱼条数是小鱼缸里的2倍,小鱼缸里原来有鱼多少条?Q:一百馒头一百僧,大僧三个更无争(就是说大僧每人吃三个馒头),小僧三人分一个,大小和尚各几人?(出自明代程大位《算法统宗》)一本书有500页,分别编上1,2,3……的页码,问数字1共出现了几次?(出自美国“小学数学奥林匹克”试题)A:1~99这段可分为1~9,10~19,20~29……90~99十组,除了10~19这一组中“1”出现了11次之外(数11中“1”出现了两次),其余九组,都只出现了一次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超锐教育学科教师辅导讲义
学员编号:年级:四年级课时数:1
学员姓名:李思彤辅导科目:数学学科教师:王长宝
授课类型T 智取火柴
C逆推法T分析、计算能力
授课日期及时段2016/4/1
教学内容
引导回顾
我们在学校学了什么呢?我们上课的内容还记得多少呢?
1、 2、
在数学游戏中有一类取火柴游戏,它有很多种玩法,由于游戏的规则不同,取胜的方法也就不同。

但不论哪种玩法,要想取胜,一定离不开用数学思想去推算。

【例1】桌子上放着60根火柴,甲、乙二人轮流每次取走1~3根。

规定谁取走最后一根火柴谁获胜。

如果双方都采用最佳方法,甲先取,那么谁将获胜?
【思路简析】
本题采用逆推法分析。

获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜。

现在桌上有60根火柴,甲先取,不可能留给乙4的倍数根,而甲每次取完后,乙再取都可以留给甲4的倍数根,所以在双方都采用最佳策略的情况下,乙必胜。

在例1中为什么一定要留给对方4的倍数根,而不是5的倍数根或其它倍数根呢?关键在于规定每次只能取1~3根,1+3=4,在两人紧接着的两次取火柴中,后取的总能保证两人取的总数是4。

利用这一特点,就能分析出谁采用最佳方法必胜,最佳方法是什么。

由此出发,对于例1的各种变化,都能分析出谁能获胜及获胜的方法。

【经典题型练习】
1.桌子上放着60根火柴,甲、乙二人轮流每次取走1~3根。

规定谁取走最后一根火柴谁获胜。

如果双方都采用最佳方法,甲先取,那么谁将获胜?
2.将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?
【例2】今有两堆火柴,一堆35根,另一堆24根。

两人轮流在其中任一堆中拿取,取的根数不限,但不能不取。

规定取得最后一根者为赢。

问:先取者有何策略能获胜?
【思路简析】
本题虽然也是取火柴问题,但由于火柴的堆数多于一堆,故本题的获胜策略与前面的例题完全不同。

先取者在35根一堆火柴中取11根火柴,使得取后剩下两堆的火柴数相同。

以后无论对手在某一堆取几根火柴,你只须在另一堆也取同样多根火柴。

只要对手有火柴可取,你也有火柴可取,也就是说,最后一根火柴总会被你拿到。

这样先取者总可获胜。

【经典题型练习】
1、有两堆枚数相等的棋子,甲、乙两人轮流在其中任意一堆里取,取的枚数不限,但不能不取,谁取到最后一枚棋子谁获胜。

如果甲后取,那么他一定能获胜吗?
2.黑板上写着一排相连的自然数1,2,3,…,51。

甲、乙两人轮流划掉连续的3个数。

规定在谁划过之后另一人再也划不成了,谁就算取胜。

问:甲有必胜的策略吗??
【课堂练习】
1、桌上有30根火柴,两人轮流从中拿取,规定每人每次可取1~3根,且取最后一根者为赢。

问:先取者如何拿才能保证获胜?
2、有1999个球,甲、乙两人轮流取球,每人每次至少取一个,最多取5个,取到最后一个球的人为输。

如果甲先取,那么谁将获胜?
3、有3堆火柴,分别有1根、2根与3根火柴。

甲先乙后轮流从任意一堆里取火柴,取的根数不限,规定谁能取到最后一根或最后几根火柴就获胜。

如果采用最佳方法,那么谁将获胜?
【课后练习】
一、回答下列问题。

1、甲、乙二人轮流报数,甲先乙后,每次每人报1~4个数,谁报到第888个数谁胜。

谁将获胜?怎样获胜?
2、有三行棋子,分别有1,2,4枚棋子,两人轮流取,每人每次只能在同一行中至少取走1枚棋子,谁取走最后一枚棋子谁胜。

问:要想获胜是先取还是后取?。

相关文档
最新文档