高考数学万能公式口诀大全完整版
高中数学必备必考公式大全
高考数学必备必考公式大全一、集合1.并集的运算A∪B={x|x∈A,或x∈B}2. 并集的运算性质(1) A∪A=A(2)A∪∅=A(3)A∪B=B∪A(4) A∪B=A⇔B⊆A3. 交集的运算A∩B={x|x∈A,且x∈B}4. 交集的运算性质(1)A∩A=A(2)A∩∅=∅(3)A∩B=B∩A(4)A∩B=A⇔A⊆B5. 补集的运算∁U A={x|x∈U,且x∉A}6. 补集的运算性质(1) ∁U (∁U A)=A(2) ∁U U=∅,∁U∅=U(3)A∪(∁U A)=U,A∩(∁U A)=∅(4) ∁U (A∩B)=( ∁U A)∪(∁U B), ∁U (A∪B)=( ∁U A)∩(∁U B)二、函数与导数公式1. 有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q)(2)=a r-s(a>0,r,s∈Q)(3)(a r)s=a rs(a>0,r,s∈Q)(4)(ab)r=a r b r(a>0,b>0,r∈Q)2.对数运算公式(1)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:log a(M·N)=log a M+log a N;log a=log a M-log a N;log a M n=n log a M(n∈R)(2)对数恒等式a log aN =N(a>0,且a≠1,N>0)(3)对数运算的换底公式log a b=(a>0,且a≠1;c>0,且c≠1;b>0)(4)换底公式的变形log a b·log b a=1,即log a b=lo b n=log a blog N M==(5)换底公式的推广log a b·log b c·log c d=log a d3.求导公式及运算法则(1)基本初等函数的导数公式a.若f(x)=c(c为常数),则f'(x)=0.b.若f(x)=x n(n∈Q*),则f'(x)=nx n-1.c.若f(x)=sin x,则f'(x)=cos x.d.若f(x)=cos x,则f'(x)=-sin x.e.若f(x)=a x,则f'(x)=a x ln a.f.若f(x)=e x,则f'(x)=e x.g.若f(x)=log a x,则f'(x)=.h.若f(x)=ln x,则f'(x)=.(2)导数运算法则a.[f(x)±g(x)]'=f'(x)±g'(x)b.[f(x)·g(x)]'=f'(x)g(x)+f(x)g'(x)c.[]'=(g(x)≠0)(3)复合函数的导数(理)设y=f(u),u=φ(x),则y'x=y'u u'x或记作f '[φ(x)]=f '(u)φ'(x).特别地,[f (ax +b )] '=a f' (ax+b).4.定积分的运算性质(理)(1)b a ⎰kf (x )d x=k b a ⎰f (x )d x (k 为常数)(2) b a ⎰[f (x )±g (x )]d x=b a ⎰f (x )d x±b a ⎰g (x )d x (3)b a ⎰f (x )d x=-a b ⎰f (x )d x(4)c a ⎰f (x )d x=b a ⎰f (x )d x+cb ⎰f (x )d x (a<b<c )三、三角函数1. 同角关系:(1)平方关系:sin 2α+cos 2α=1.(2)商的关系:=tan α(α≠+k π,k ∈Z ). 2. 诱导公式:奇变偶不变,符号看象限。
高三重点知识点口诀
高三重点知识点口诀一、数学1. 二次函数口诀:顶点公式求自变量,y轴对称走一个倒。
开口向上a正号,向下则正变成负。
2. 数列知识点:首何值可用通项求,末何等于首加上组。
公差为固定差,首项和公差求。
3. 圆的公式口诀:圆心套观点,方程不再恐。
半径直接r,圆心化中常。
圆心距离求,弧长由角通。
弦长全靠定值,通用求切线。
4. 概率公式口诀:事件概率求容斥,条件概率转全概。
乘法放心用相乘,和事件加起来。
独立等价于加和,概率算得到。
二、物理1. 运动学口诀:初速加末速,除以二就是等。
路程等于速度乘,时间常乘在身边。
加速时间缩一倍,路程是原来的四倍。
自由落体往上取,加速度取十。
2. 电路知识点:并联电阻分,倒数加加。
串联电阻求,直接相加。
3. 光学易混淆:反射镜分虚实,凸镜物和像同方向。
凹镜物与像反,焦点看曲率。
4. 动能定律口诀:物体的动能请用半mv平方。
流速公式大导就,液体密度常加乘。
机械能守恒教导,损失等于劳动得。
三、化学1. 酸碱反应口诀:酸加碱,盐和水;氧化还原,电子转。
2. 元素周期表:期见封新鲜,近似保持共价;希求氧和氮,硒硫班要放弃。
3. 合成反应口诀:氧亏别添氧,氢亏赶快加,盐分明记号,尤其要涨记真。
4. 动力学口诀:起速和末速同朝向,功与热看方向。
端看平衡,大也小也平衡。
四、英语1. 时态口诀:一般现在时,现在的事情。
一般过去时,过去的事情。
一般将来时,未来的事情。
现在完成时,先过后现在。
过去进行时,两个过去事情。
将来进行时,要未来进行。
2. 名词复数规则:普通的加‘s’,以o结尾加‘es’。
以y结尾变‘y’为‘i’,复数不变加‘s’。
特殊单词见的少,没有规定按常用。
3. 冠词使用口诀:特指用定冠词,前边有只用不定。
泛指不用冠词,具体加定冠词。
用数词的一定要,非复数不用冠。
4. 宾语从句口诀:特殊用法不丢弃,陈述可连引语。
一般疑问句脱引,此时动词提升。
特殊疑问提前放,语序默认陈述。
以上口诀总结了高三阶段数学、物理、化学和英语的重点知识点,希望对你的学习有所帮助。
成人高考数学万能公式
成人高考数学万能公式一、函数部分。
1. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)(两点(x_1,y_1),(x_2,y_2)在直线上)。
- 当b = 0时,y=kx是正比例函数。
2. 二次函数y=ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 对称轴方程x =-(b)/(2a)。
- 二次函数的求根公式x=frac{-b±√(b^2)-4ac}{2a}(当y = 0时,求方程ax^2+bx + c = 0的根)。
3. 反比例函数y=(k)/(x)(k≠0)- k = xy(x≠0,y≠0),即图象上任意一点的横纵坐标之积等于k。
二、三角函数部分。
1. 同角三角函数的基本关系。
- sin^2α+cos^2α = 1。
- tanα=(sinα)/(cosα)。
2. 两角和与差的三角函数公式。
- sin(A± B)=sin Acos B±cos Asin B。
- cos(A± B)=cos Acos Bmpsin Asin B。
- tan(A± B)=(tan A±tan B)/(1mptan Atan B)。
3. 二倍角公式。
- sin2α = 2sinαcosα。
- cos2α=cos^2α-sin^2α = 2cos^2α - 1=1 - 2sin^2α。
- tan2α=(2tanα)/(1-tan^2)α。
三、数列部分。
1. 等差数列。
- 通项公式a_n=a_1+(n - 1)d,其中a_1为首项,d为公差。
- 前n项和公式S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。
2. 等比数列。
- 通项公式a_n=a_1q^n - 1,其中a_1为首项,q为公比(q≠1)。
- 前n项和公式S_n=frac{a_1(1 - q^n)}{1 - q}。
高中数学各知识点公式定理记忆的口诀
高中数学各知识点公式定理记忆的口诀一、三角函数口诀1. 正弦函数(sin)•角分离原则,短边对斜边;•万有离心率,正弦值相等。
2. 余弦函数(cos)•角分离原则,长边对斜边;•单位圆上右边集,余弦值相等。
3. 正切函数(tan)•角相并原则,短边对长边;•弧度制好好记,切线值很特殊。
4. 余切函数(cot)•角相并原则,长边对短边;•弧度制不可忽,余切值最驰名。
二、平面几何口诀1. 直角三角形•勾股定理,斜边平方等于两腰平方和;•斜边夸腰秀,腰夸斜边薄。
2. 三角形中位线•三位一体,合力使须知;•三位相等时,心中纳须满。
3. 三角形中心•重心离散,重集于一点;•垂心成直角,位于最尖处;•内心心独特,切离连接点;•外接圆集中,交于三点。
4. 计算面积•一斜两底求三角,半底乘上高;•相乘除以二,恰是三角面。
三、函数口诀1. 一次函数•斜率线与图一般,k为常数表示;•横截距表示线性,x为零点定值。
2. 二次函数•抛物线开口,大声呈现;•正负开口说,a为定义数;•零点表情,一二定理。
3. 指数函数•底小指大,结果更大;•底大指小,结果更小;•零次幂表达,答案为一。
4. 对数函数•底数不等于一,结果纳负数;•底数大于一,结果增大;•底数在零一之间,结果减小。
四、概率与统计口诀1. 排列•排列之秘,A(n, k);•n个不同数,取k个全排列。
2. 组合•组合之密,C(n, k);•n个不同数,取k个无序排列。
3. 随机事件•如实,把事实说清楚;•可和,求并把分情况。
4. 条件概率•乘法做,定义是元素;•全概率,分类找相同。
5. 期望•期待其,乘以概率求;•如此则,累加其结果。
五、导数与积分口诀1. 基本函数的导数•幂函数求导,幂降一,系数要乘;•对数函数求导,除原函数乘导。
2. 基本函数的积分•幂函数积分,幂升一,系数要乘;•对数函数积分,原函数除导。
3. 牛顿-莱布尼茨公式•定积分谁握,不论上界下界;•上去下回,为积分加上负号。
高考数学必备公式、结论、方法汇总
(3)巧用“1”的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=sin2θ 1+tan12θ =tanπ; 4
2.值域:
④ 转换范围法 :针对由已知区间求未知区间的表达
①二次函数求值域用:配方法;
②分式函数求值域,若分子与分母同次用:分离常数法,若分子与分母不同次用:上下同除法.
③二次根式函数求值域用:换元法.当然还有单调性法和导数法。
3.大小比较
(1)指数幂比较大小
①同底幂比较,构造指数函数,用单调性比较;
②换底推广:logab=log1ba, logab·logbc·logcd=logad.
3.二次函数公式
①一般式顶点式:y=ax2+bx+c=a
x+ b 2a
2+4ac-b2.
4a
②顶点是
- b ,4ac-b2 2a 4a
,对称轴是:x=-
b
.
2a
③方程 ax2+bx+c=0(a≠0)求根公式:x=-b± b2-4ac 2a 二、必备结论
(3)伸缩变换
①y=f(x)=y=f(ax)
②y=f(x) 0<a>― a<1,1―,纵―纵坐坐―标标―伸缩长―短为―为原原―来来―的的―aa倍―倍,―,横横―坐坐―标标不→不变变y=af(x)
三、必备方法
1.解析式:
① 待定系数法 :针对已知函数类型;
② 换元法或配凑法 :针对复合函数;
③ 方程组法 :针对 f(x)与 f(1)或 f(-x)形成的表达式 x
(3)周期公式:①y=Asin(ωx+φ)(或 y=Acos(ωx+φ))的最小正周期 T=2π ②y=|Asin(ωx+φ)|的周期 T= π .
|ω|
高考数学公式大全(最全面_最详细)
高考数学公式大全(最全面,最详细)抛物线:y = ax *+ bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T 推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tan A^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))an9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*t anA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sin A^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))0A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+ 210*tanA^6-45*tanA^8+tanA^10)²万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)³2正方形的周长=边长³4长方形的面积=长³宽正方形的面积=边长³边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底³高梯形的面积=(上底+下底)³高÷2直径=半径³2 半径=直径÷2圆的周长=圆周率³直径=圆周率³半径³2圆的面积=圆周率³半径³半径长方体的表面积=(长³宽+长³高+宽³高)³2长方体的体积 =长³宽³高正方体的表面积=棱长³棱长³6正方体的体积=棱长³棱长³棱长圆柱的侧面积=底面圆的周长³高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积³高圆锥的体积=底面积³高÷3长方体(正方体、圆柱体)的体积=底面积³高平面图形名称符号周长C和面积S正方形 a—边长 C=4aS=a2长方形 a和b-边长 C=2(a+b)S=ab三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)³180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a³b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l³h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
数学公式顺口溜高中
数学公式顺口溜高中
一元二次方程求根法,负b加减根号b平方,除以二a可得解。
三角函数正弦余弦,正切余切,割和余割,联立解三角形。
数列通项公式,递推公式灵活用,求和公式记牢牢,一看就知道。
排列组合基础知,阶乘乘积慢慢推,重复排列有公式,求组合靠计算。
函数图像画得好,一阶导数速求导,二阶导数画凸凹,极值定理又出手。
立体几何分三维,体积表面都要会,平行面距离求,交线交角别忘记。
微积分求极限,定义法或夹逼,导数求斜率,一定要掌握好。
以上是数学公式,记住顺口溜,高中考试轻松通过,数学学习快速进步。
- 1 -。
55个绝密数学公式(万能心算口诀)
55个绝密数学公式(万能心算口诀)下面是向学霸进军为高中的学生们整理的2022高中数学必背之50个公式,50种快速做题方法,以供参考。
1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x 1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x k),则T=2k;(2)若f(x)=m/(x k)(m不为0),则T=2k;(3)若f(x)=f(x k) f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a x)=f(b-x)恒成立,对称轴为x=(ab)/2(2)函数y=f(a x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a x) f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n m)=S(m) q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an 1=pan q(n 1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1) x,这是一阶特征根方程的运用。
高考数学口诀整理精选三篇
高考数学口诀整理精选三篇人生一征途耳,其长百年,我已走过十之七八回首前尘,历历在目,崎岖多于平坦,忽深谷,忽洪涛,幸赖桥梁以渡。
桥何名欤曰奋斗。
以下是本文库为您推荐高考数学口诀整理精选三篇。
高考数学口诀1特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y 轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀"左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了"。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。
高考复习必读:数学公式口诀大全-最新教学文档
2019高考复习必读:数学公式口诀大全根据多年的实践,总结规律繁化简;概括知识难变易,高中数学巧记忆。
言简意赅易上口,结合课本胜一筹。
始生之物形必丑,抛砖引得白玉出。
一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X 是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。
?nbsp;变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;。
高考数学万能公式口诀大全
高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
高考数学知识点公式大全
cos( 3π /2+ α)= sin α tan( 3π /2+ α)=- cot α cot( 3π /2+α)=- tan α sin(3π /2-α)=- cos α cos( 3π /2- α)=- sin α tan( 3π /2- α)= cot α cot( 3π /2-α)= tan α (以上 k∈Z) 注意:在做题时,将 a 看成锐角来做会比较好做。 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于 π /2*k ±∈αZ(k)的三角函数值, ① 当 k 是偶数时,得到 α的同名函数值,即函数名不改变; ② 当 k 是奇数时,得到 α相应的余函数值,即 sin → cos;cos → sin;tan → cot,cot → tan. (奇变偶不变) 然后在前面加上把 α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2 -πα=)sin(4 ·π- α/2,)k=4 为偶数,所以取 sin α。 当 α是锐角时, 2π- α∈ (270 °, 360°),sin(2 -πα)<0,符号为 “- ”。 所以 sin(2 -πα=)- sin α
sin(α+β)= sin α cos+βcos α sin β sin(α-β)= sin α cos-βcos α sin β cos( α+ β)= cos α cos-βsin α sin β cos( α- β)= cos α cos+βsin α sin β tan( α+ β)= (tan α +tan/β()1-tan α tan β) tan( α- β)= (tan α-tan β/)(1+ tan α· tan β) 二倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2 α=2sin α cos α cos2 α=cos^2( α-)sin^2( α=)2cos^2( α-)1=1-2sin^2( α) tan2 α=2tan α /[-1 tan^2( α )] 半角公式 半角的正弦、余弦和正切公式(降幂扩角公式) sin^2( α /=2)(1- cos α/)2 cos^2( α /=2) (1+cos α/)2 tan^2( α /=2) (1-cos α/)(1+ cos α) 另也有 tan( α /2)=-(1 cos α )/sin α =sin α /(1+cos α) 万能公式 万能公式 sin α =2tan( α /2)/[1+tan^2( α /2)] cos α =[-1tan^2( α /2)]/[1+tan^2( α /2)] tan α =2tan( α /2-)t/a[1n^2( α /2)]
高考数学万能公式口诀大全
高考数学万能公式口诀大全高考数学,一直是众多学子心中的难题。
要在高考数学中取得优异成绩,掌握各种公式和口诀是必不可少的。
下面就为大家整理一份高考数学万能公式口诀大全,希望能对大家有所帮助。
一、函数部分1、函数性质口诀函数奇偶看对称,奇函数关于原点,偶函数关于 y 轴;单调递增与递减,导数正负来判断;周期函数看规律,最小正周期要牢记。
2、反函数口诀反函数,要互换,原函数的定义域,是反函数的值域;原函数的值域,是反函数的定义域,两者关系要理清。
3、幂函数口诀幂指函数最常见,性质众多要分辨;指数大于零,图象过原点,在第一象限内,函数为增函;指数小于零,图象不过点,在第一象限内,函数为减函。
4、指数函数口诀指数函数底数分,大于一为增函数,小于一为减函数;底数若是大于零,图象经过一、二象限,且在 y 轴右侧;底数若是小于零,图象经过二、三象限,且在 y 轴左侧。
5、对数函数口诀对数函数真数大,底数大于一为增,底数小于一为减;对数函数真数小,底数大于一为减,底数小于一为增。
二、三角函数部分1、诱导公式口诀奇变偶不变,符号看象限。
解释:对于形如kπ/2 ± α 的角,当 k 为奇数时,函数名要改变(正弦变余弦,余弦变正弦);当 k 为偶数时,函数名不变。
然后根据角所在的象限确定符号。
2、两角和与差公式口诀正余同余正,余余反正正;和差化积与积化和差,同名相乘用余弦,异名相乘用正弦。
解释:正弦和余弦的两角和与差公式中,“正余同余正”指的是正弦加正弦、余弦加余弦都用余弦公式,“余余反正正”指的是余弦减余弦、正弦减正弦都用正弦公式。
3、倍角公式口诀二倍角公式很重要,正弦余弦要记牢;正弦二倍角,一减余弦二倍半;余弦二倍角,余弦平方减正弦平方。
4、辅助角公式口诀辅助角公式要记清,提出根号二化同形;正余弦前面系数平,和为一才能行。
解释:对于形如 asinx + bcosx 的式子,可以化为√(a²+ b²)sin(x+φ) 的形式,其中φ 的值由tanφ = b/a 确定。
高考数学万能公式口诀大全
高考数学万能公式口诀大全文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高考必备数学公式大全
高考必备数学公式大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_UA={xx∈ U且x∉ A}(U为全集)2. 集合元素个数公式。
- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数。
1. 函数的定义域。
- 分式函数y = (f(x))/(g(x)),定义域为g(x)≠0的x的取值范围。
- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),定义域为f(x)≥slant0的x的取值范围。
2. 函数的单调性。
- 设x_1,x_2∈[a,b]且x_1,对于函数y = f(x)- 若f(x_1),则y = f(x)在[a,b]上是增函数,f^′(x)≥slant0(可导函数时)。
- 若f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,f^′(x)≤slant0(可导函数时)。
3. 函数的奇偶性。
- 对于函数y = f(x),定义域关于原点对称。
- 若f(-x)=f(x),则y = f(x)是偶函数,其图象关于y轴对称。
- 若f(-x)= - f(x),则y = f(x)是奇函数,其图象关于原点对称。
4. 一次函数y=kx + b(k≠0)- 斜率k=frac{y_2-y_1}{x_2-x_1},截距为b。
5. 二次函数y = ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)。
- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数开口向下,在x =-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
6. 指数函数y = a^x(a>0,a≠1)- 性质:当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。
高考数学知识点复习口诀
高考数学知识点复习口诀数学在高考中占据着重要的一席之地,很多学生都希望通过复习提前掌握数学知识点,提高自己的成绩。
然而,数学知识点繁多,掌握起来并不容易。
为了帮助学生们更好地应对高考数学,我整理了以下的复习口诀,希望能够提供一些帮助。
一、代数运算口诀1.乘方顺口溜:底不变,指数相加充满。
2.开平方口诀:增幅、编码、首先、二次。
3.整数提取位:正运减,负运加。
二、解方程口诀1.二次方程因式分解,开方运算待解。
2.一元一次代数方程,等号平移保正和负。
3.二元一次方程运算规律,先除无平方,再加减。
三、函数与图像口诀1.一次函数起始点,常数项即纵截距。
2.二次函数顶点法,开口向上准负开口。
3.对数函数图像说,底数大于一向上增。
四、平面几何口诀1.圆的周长面积求,公式二πR(C)。
2.直角三角形知,斜边平方法分布。
3.相似三角形求,已知比例求长度。
五、空间几何口诀1.三角形面积求,底乘高除以二。
2.棱锥体积求,底面积乘高除以三。
3.圆锥体体积,三分之一底面积乘高。
六、概率统计口诀1.事件之和平凡极,极限秒杀频率推。
2.期望是平均数,用公式提前就可以。
3.统计重要工具,等差求和都有用。
七、导数与微分口诀1.微分求导明,力学加、物理减。
2.函数乘,假装加;函数除,假装减。
3.复合函数微分急,链条法则做小秘。
以上是一些常见数学知识点的复习口诀,可以帮助学生们在复习高考数学时更快地掌握知识要点。
但是,牢记口诀并不等于理解数学,只有通过大量的练习和实际应用,才能够真正理解和掌握数学知识。
另外,考试时也要注意审题,理清思路,严谨计算,防止粗心错误。
高考数学考试重视思维能力和解题技巧,所以在复习期间,要将重点放在理解思考、灵活运用知识点的能力上。
最后,希望所有参加高考的学生能够以积极的心态面对考试,相信自己的能力,发挥出最好的水平。
无论成绩如何,只要尽了最大的努力,就已经足够了。
祝愿每一位学生都能取得理想的成绩!。
数学知识点顺口溜总结高三
数学知识点顺口溜总结高三高三时期是学习压力最大的阶段,无论是对于理科还是文科学生来说,数学都是必修科目,也是很多学生头疼的科目之一。
为了提高学习效率,总结数学知识点是非常重要的。
下面是我为大家准备的一些数学知识点的顺口溜,希望对高三的同学们有所帮助。
一、函数篇1、一次函数:y=kx+bk代表斜率,b为切线交y轴2、二次函数:y=ax²+bx+c顶点公式:(-b/2a,f(-b/2a))3、反比例函数:y=k/x曲线必过第一、三象限二、几何篇1、相似三角形边比例相等,角度相等才成立2、正多边形内角和为180°3、圆的性质弧等于半径对应圆心角三、三角篇1、正弦定理a/sinA=b/sinB=c/sinC2、余弦定理a²=b²+c²-2bc*cosA3、旋转公式sin(a±b)=sinacosb±cosasinb四、概率篇1、乘法原理共有n个阶段,每个阶段分别有n₁、n₂、...、nₙ种情况,则总情况数为n₁×n₂×...×nₙ2、加法原理共有两个阶段,第一个阶段有n₁种情况,第二个阶段有n₂种情况,则总情况数为n₁+n₂3、排列组合排列:Aₙ¹=n!组合:Cₙᵢ=n!/[i!(n-i)!]五、统计篇1、均值总和除以个数,就能得出2、方差各个数值减均值后平方的平均数3、标准差方差的开方就是标准差六、微积分篇1、导数的定义f'(x) = lim(h→0)(f(x+h)-f(x))/h2、导数的运算法则Cf(x) -> Cf'(x)f(x)+g(x) -> f'(x)+g'(x)f(x)g(x) -> f'(x)g(x)+f(x)g'(x)f(g(x)) -> f'(g(x))g'(x)3、积分的定义∫[a,b]f(x)dx = lim(n→∞)[(b-a)/n][f(x₁)+f(x₂)+...+f(xₙ)]七、数列篇1、等差数列项与项之间差值相等2、等比数列项与项之间比值相等3、斐波那契数列前两项为1,后面每一项都是前两项之和这些顺口溜是我整理的一些重要的数学知识点,通过顺口溜的形式希望能够加深大家对这些知识点的记忆。
高考数学必背公式整理(衡水中学高中数学组)
高考数学必背公式整理一、平面几何公式1. 直线方程- 一般式:Ax + By + C = 0- 斜截式:y = kx + b- 截距式:x/a + y/b = 1- 两点式:(y-y₁)/(x-x₁) = (y₂-y₁)/(x₂-x₁)2. 圆的方程- 标准方程:(x-a)² + (y-b)² = r²- 一般方程:x² + y² + Dx + Ey + F = 0 - 中心半径方程:(x-h)² + (y-k)² = r²3. 直角三角形- 勾股定理:a² + b² = c²- 正弦定理:a/sinA = b/sinB = c/sinC - 余弦定理:c² = a² + b² - 2abcosC- 正切定理:tanA = b/a4. 圆锥曲线- 椭圆:x²/a² + y²/b² = 1- 双曲线:x²/a² - y²/b² = 1- 抛物线:y² = 2px二、空间几何公式1. 空间中的直线- 参数方程:x = x₁ + at, y = y₁ + bt, z = z₁ + ct - 对称式:(x-x₁)/l = (y-y₁)/m = (z-z₁)/n2. 空间中的平面- 一般方程:Ax + By + Cz + D = 0- 点法式:A(x-x₁) + B(y-y₁) + C(z-z₁) = 0- 三点式:[ABCD] = 03. 空间中的球面- 标准方程:(x-a)² + (y-b)² + (z-c)² = r²- 一般方程:x² + y² + z² + Dx + Ey + Fz + G = 0 - 中心半径方程:(x-h)² + (y-k)² + (z-l)² = r²4. 空间向量- 点积:a·b = |a| |b| cosθ- 叉积:a×b = |a| |b| sinθn- 混合积:[a,b,c] = a·(b×c)三、解析几何公式1. 直线和平面- 平面方程:Ax + By + Cz + D = 0- 直线方程:(x-x₁)/l = (y-y₁)/m = (z-z₁)/n- 点到直线距离:d = |Ax₀ + By₀ + Cz₀ + D|/√(A² + B² + C²) - 点到平面距离:d = |Ax₀ + By₀ + Cz₀ + D|/√(A² + B² + C²)2. 点、向量和运算- 点积:a·b = |a| |b| cosθ- 叉积:a×b = |a| |b| sinθn3. 曲线和曲面- 曲线斜率:y‘ = f'(x) = dy/dx- 曲面切面:z = f(x, y)- 曲线弧长:L = ∫√(1 + (dy/dx)²)dx四、数列与级数公式1. 数列- 等差数列通项公式:aₙ = a₁ + (n-1)d- 等比数列通项公式:aₙ = a₁qⁿ⁻¹- 通项公式求和:Sₙ = (a₁+aₙ)n/22. 级数- 等差级数求和:Sₙ = n(a₁+aₙ)/2- 等比级数求和:Sₙ = a₁(1-qⁿ)/(1-q)3. 数学归纳法- 数学归纳法证明- 数学归纳法应用五、概率统计公式1. 概率- 事件概率:P(A) = n(A)/n(Ω)- 加法公式:P(A∪B) = P(A) + P(B) - 条件概率:P(A|B) = P(A∩B)/P(B)2. 统计- 样本均值:μ = Σxᵢ/n- 样本方差:σ²= Σ(xᵢ-μ)²/n- 标准差:σ = √σ²3. 随机变量- 期望:E(X) = ΣxᵢP(X=xᵢ)- 方差:Var(X) = E(X²) - [E(X)]²- 协方差:Cov(X,Y) = E((X-E(X))(Y-E(Y)))六、函数与导数公式1. 基本函数- 幂函数:f(x) = xⁿ- 指数函数:f(x) = aⁿ- 对数函数:f(x) = logₐx- 三角函数:f(x) = sinx, cosx, tanx2. 函数性质- 奇函数和偶函数- 单调性和极值- 函数图像和性态3. 导数与微分- 导数定义:f'(x) = lim(h→0)(f(x+h)-f(x))/h - 函数求导:(xⁿ)’ = nxⁿ⁻¹- 链式法则:(f(g(x)))’ = f’(g(x))·g’(x)- 微分运算:dy = f’(x)dx七、积分公式1. 不定积分- 基本积分公式 - 定积分计算 - 变限积分求导2. 定积分- 定积分性质 - 定积分应用 - 变限积分求导3. 微分方程- 微分方程定解 - 微分方程解法 - 微分方程应用八、高等代数公式1. 行列式- 二阶行列式 - 三阶行列式 - 克拉默法则2. 矩阵运算- 矩阵相加- 矩阵相乘- 矩阵转置3. 线性方程组- 高斯消元法- 矩阵法解方程组- 克拉默法则以上是高考数学必背公式的整理,希望同学们能够认真学习并灵活运用这些公式,提高数学应用能力,取得优异的成绩。
2023年高考数学考试技巧记忆口诀
2023年高考数学考试技巧记忆口诀一、基础知识记忆:1. 二次函数求顶点:x = -b / (2a),y = c - b^2 / (4a)。
2. 三角函数正弦公式:a / sinA = b / sinB = c / sinC。
3. 平行四边形面积:S = 底边长度 ×高。
4. 相似三角形定理:对应边成比例,对应角相等。
5. 圆的面积公式:S = πr^2,周长公式:C = 2πr。
二、解题方法记忆:1. 代入法:将已知条件代入方程进行求解。
2. 分类讨论法:根据不同的情况进行分类讨论,找到解决问题的方法。
3. 逆向推理法:从答案往已知条件反推,找到解题思路。
4. 图形法:将问题转化为几何图形,通过观察图形来解答问题。
5. 等价变形法:根据已知条件,将问题进行等价变形,从而简化解题过程。
三、答题技巧记忆:1. 面积题技巧:根据已知条件,选用适当的面积公式计算。
2. 几何图形分类:熟记各种几何图形的性质和特征,根据题目信息进行分类解答。
3. 快速计算技巧:掌握快速计算加减乘除的技巧,提高解题速度。
4. 注意单位转换:在题目中出现单位转换时,注意将相应的值进行转换。
5. 多角度思考:对于复杂问题,多角度思考,换位思考,寻找多种解题思路。
四、备考建议记忆:1. 制定复计划:合理安排每天的复时间,错题集、题册是必备的复材料。
2. 分段复:将数学知识进行分段复,有助于深化记忆。
3. 真题训练:多做真题,熟悉考试形式和题型,提高应试能力。
4. 积极解疑答疑:遇到困难及时向老师、同学请教,解决问题。
5. 自信心培养:相信自己的能力,保持积极心态,充满自信地面对考试。
以上是2023年高考数学考试技巧记忆口诀,希望对你的备考有所帮助!加油!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学万能公式口诀大全标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图建模构造法。
四、《数列》等差等比两数列,通项公式N项和。
两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。
数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。
归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。
还有数学归纳法,证明步骤程序化:首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。
五、《复数》虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。
虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。
几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。
利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。
四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
六、《排列、组合、二项式定理》加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。
排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。
两条性质两公式,函数赋值变换式。
七、《立体几何》点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
八、《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
图形直观数入微,数学本是数形学。
1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)5.半角公式 sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )asin(a)+bcos(a)=a2+b2sin(a+c) 其中 tan(c)=ba asin(a)+bcos(a)=a2+b2cos(a-c) 其中 tan(c)=ab 1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2一生受用的数学公式坐标几何一对垂直相交于平面的轴线,可以让平面上的任意一点用一组实数来表示。
轴线的交点是(0, 0),称为原点。
水平与垂直方向的位置,分别用x与y代表。
一条直线可以用方程式y=mx+c来表示,m是直线的斜率(gradient)。
这条直线与y轴相交于 (0,c),与x轴则相交于(–c/m, 0)。
垂直线的方程式则是x=k,x为定值。
通过(x0, y0)这一点,且斜率为n的直线是y–y0=n(x–x0)一条直线若垂直于斜率为n的直线,则其斜率为–1/n。
通过(x1, y1)与(x2, y2)两点的直线是y=(y2–y1/x2–x1)(x–x2)+y2 x1≠x2若两直线的斜率分别为m与n,则它们的夹角θ满足于tanθ=m–n/1+mn半径为r、圆心在(a, b)的圆,以(x–a) 2+(y–b) 2=r2表示。
三维空间里的坐标与二维空间类似,只是多加一个z轴而已,例如半径为r、中心位置在(a, b, c)的球,以(x–a) 2+(y–b) 2+(z–c) 2=r2表示。
三维空间平面的一般式为ax+by+cz=d。
三角学边长为a、b、c的直角三角形,其中一个夹角为θ。
它的六个三角函数分别为:正弦(sine)、余弦(cosine)、正切(tangent)、余割(cosecant)、正割(secant)和余切(cotangent)。
sinθ=b/c cosθ=a/c tanθ=b/acscθ=c/b secθ=c/a cotθ=a/b若圆的半径是1,则其正弦与余弦分别为直角三角形的高与底。
a=cosθb=sinθ依照勾股定理,我们知道a2+b2=c2。
因此对于圆上的任何角度θ,我们都可得出下列的全等式:cos2θ+sin2θ=1三角恒等式根据前几页所述的定义,可得到下列恒等式(identity):tanθ=sinθ/cosθ,cotθ=cosθ/sinθsecθ=1/cosθ,cscθ=1/sinθ分别用cos 2θ与sin 2θ来除cos 2θ+sin 2θ=1,可得:sec 2θ–tan 2θ=1 及csc 2θ–cot 2θ=1对于负角度,六个三角函数分别为:sin(–θ)=–sinθ csc(–θ)=–cscθcos(–θ)=cosθsec(–θ)=secθtan(–θ)=–tanθ cot(–θ)=–cotθ当两角度相加时,运用和角公式:sin(α+β)=sinαcosβ+cosαsinβcos(α+β)=cosαcosβ–sinαsinβtan(α+β)=tanα+tanβ/1–tanαtanβ若遇到两倍角或三倍角,运用倍角公式:sin2α=2sinαcosαsin3α=3sinαcos2α–sin3αcos2α=cos 2α–sin 2αcos3α=cos 3α–3sin 2αcosα tan 2α=2tanα/1–tan 2αtan3α=3tanα–tan 3α/1–3tan 2α二维图形下面是一些二维图形的周长与面积公式。
圆:半径= r 直径d=2r圆周长=2πr =πd面积=πr2(π=3.1415926…….) 椭圆:面积=πaba与b分别代表短轴与长轴的一半。
矩形:面积= ab周长= 2a+2b平行四边形(parallelogram):面积= bh =ab sinα周长= 2a+2b梯形:面积= 1/2h (a+b)周长= a+b+h (secα+secβ)正n边形:面积=1/2nb2 cot (180°/n)周长= nb四边形(i):面积=1/2ab sinα四边形(ii):面积= 1/2 (h1+h2) b+ah1+ch2三维图形以下是三维立体的体积与表面积(包含底部)公式。