水击与调压室计算与演示
水电站的水击及调节保证计算
第四章水电站的水击及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水击简化计算、复杂管路的水击解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。
第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。
(2) 在有压引水管道中发生“水击”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水击”。
导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。
(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。
二、调节保证计算的任务(一) 水击的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。
(二) 调节保证计算水击和机组转速变化的计算,一般称为调节保证计算。
1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。
(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。
(4) 研究减小水击压强及机组转速变化的措施。
2.调节保证计算的目的正确合理地解决导叶启闭时间、水击压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水击压力和转速上升值均在经济合理的允许范围内。
第二节水击现象及其传播速度1、一、水击现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水击。
调压室水力计算
调压室的水力计算1. 调压室断面计算当上游死水位,下游为最低水位,最小水位=188.9m,三台机满发,引水道糙率取最小值,压力管道糙率取最大值,通过水轮机的流量为57,则此时的引水隧洞水头损失的计算如表格1,压力钢管水头损失的计算如表格2。
引水道应选可能的最小糙率0.012,压力管道应选择可能的最大糙率0.013。
表格1引水隧洞水头损失表流量(m3/s)沿程水头损失(m)局部水头损失(m)平均糙率(n=0.014)最大糙率(n=0.016)最小糙率(n=0.012)57 24.231 31.649 17.802 0.296 38 10.769 14.066 7.911 0.132 19 2.692 3.516 1.978 0.033表格2压力钢管水头损失表流量(m3/s)沿程水头损失(m)局部水头损失(m)平均糙率(n=0.012)最大糙率(n=0.013)最小糙率(n=0.011)57 2.650 3.110 2.226 2.805 38 1.497 1.757 1.257 1.962 19 0.729 0.856 0.612 0.824托马断面面积:其中——最小水头损失,;——引水隧洞损失,=17.802+0.296=18.098;——压力管道水头损失,=3.110+2.805=5.915m;L——引水隧洞长度,12662m;g——重力加速度,g=9.81m/——引水隧洞面积,。
——引水道阻力系数为了保证大波动的稳定,一般要求调压室断面大于托马斯断面,初步分析时可取(1.01.1),作为调压室的设计断面。
这里选取D=7.8m,则系数k为:47.784=1.052. 最高涌波水位计算按正常蓄水位时共用同一调压室的三台机组全部满载运行瞬时丢弃全部负荷(即流量由减至流量)作为设计工况。
引水隧洞的糙率取尽可能的最小值(能耗少,涌波高)。
n=0.012引水道损失由表格1和表格2得:为时段开始时管中流速;f为引水隧洞断面面积。
水击现象演示
水击现象演示12自循环水击综合实验仪如下图所示:1、恒压供水箱;2、水击扬水机出水管;3、气压表;4、扬水机截止阀;5、压力室;6、调压筒;7、水泵;8、水泵吸水管;9、供水管;10、调压筒截止阀;11、水击发生阀;12、逆止阀;13、水击室;14、集水箱;15、底座。
水泵7能把集水箱14中的水送入恒压供水箱1中,水箱1设有溢流板和回水管,能使水箱中的水位保持恒定。
工作水流自水箱1经供水管9和水击室13,再通过水击发生阀11的阀孔流出,回到集水箱14。
实验时,先全关阀10和4,触发起动阀11。
当水流通过阀11时,水的冲击力使阀11向上运动而瞬时关闭截止水流,因而在供水管9的末端首先产生最大的水击升压,并使水击室13同时达到这一水击压强。
水击升压以水击波的形式迅速沿着压力管道向上游传播,到达进口以后,由进口反射回来一个减压波,使管9末端和水击室13内发生负的水击压强。
通过阀11和12的操作过程观察到水击波的来回传播变化现象,即阀11关闭,产生水击升压,使逆止阀12克服压力室5的压力而瞬时开启,水也随即注入压力室内,并可看到气压表3随着产生压力搏动。
然后,在进口传来的负水击作用下,水击室13的压强低于压力室5,使逆止阀12关闭,同时水击阀11在负水击和阀体自重的共同作用下,向下运动而自动开启。
这一动作既观察到水击波的传播变化现象,又能使本实验仪保持往复的自动工作状态,即阀11开启,水自阀孔流出,又回到这一动作的初始状态,这样周而复始,阀11不断地启闭,水击现象也就不断地重复发生。
通过逆止阀12、压力室5和气压表3组成水击压强的定量观察装置,随水击的每次升降压,通过逆止阀12都向压力室5注入一定的水流,而压力室5是密闭的,这样就可从与压力室5相连的气压表3上测量压力室5空腔中的压强,如是逆止阀12不开启时的压强就是产生的最大水击压强值。
水击的利用是由图中1、9、11、12、13、5、4、2等组成的水击扬水机来演示的。
水电站的水击与调节保证计算(1)
⽔电站的⽔击与调节保证计算(1)⽔电站的⽔击与调节保证计算第⼀节概述⼀、⽔电站的不稳定⼯况机组在稳定运⾏时,⽔轮机的出⼒与负荷相互平衡,这时机组转速不变,⽔电站有压引⽔系统(压⼒隧洞、压⼒管道、蜗壳及尾⽔管)中⽔流处于恒定流状态。
在实际运⾏过程中,电⼒系统的负荷有时会发⽣突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了⽔轮机与发电机负荷之间的平衡,机组转速就会发⽣变化。
此时⽔电站的⾃动调速器迅速调节导叶开度,改变⽔轮机的引⽤流量,使⽔轮机的出⼒与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。
由于负荷的变化⽽引起导⽔叶开度、⽔轮机流量、⽔电站⽔头、机组转速的变化,称为⽔电站的不稳定⼯况。
其主要表现为:(1) 引起机组转速的较⼤变化由于发电机负荷的变化是瞬时发⽣的,⽽导叶的启闭需要⼀定时间,⽔轮机出⼒不能及时地发⽣相应变化,因⽽破坏了⽔轮机出⼒和发电机负荷之间的平衡,导致了机组转速的变化。
丢弃负荷时,⽔轮机在导叶关闭过程中产⽣的剩余能量将转化为机组转动部分的动能,从⽽使机组转速升⾼。
反之增加负荷时机组转速降低。
(2) 在有压引⽔管道中发⽣“⽔击”现象当⽔轮机流量发⽣变化时,管道中的流量和流速也要发⽣急剧变化,由于⽔流惯性的影响,流速的突然变化使压⼒⽔管、蜗壳及尾⽔管中的压⼒随之变化,即产⽣⽔击。
导叶关闭时,在压⼒管道和蜗壳中将引起压⼒上升,尾⽔管中则造成压⼒下降。
反之导叶开启时,在压⼒管道和蜗壳内引起压⼒下降,⽽在尾⽔管中引起压⼒上升。
(3) 在⽆压引⽔系统(渠道、压⼒前池)中产⽣⽔位波动现象。
⽆压引⽔系统中产⽣的⽔位波动计算在第⼋章已介绍。
⼆、调节保证计算的任务⽔击压⼒和机组转速变化的计算,⼀般称为调节保证计算。
调节保证计算的任务及⽬的是:(1) 计算有压引⽔系统的最⼤和最⼩内⽔压⼒。
最⼤内⽔压⼒作为设计或校核压⼒管道、蜗壳和⽔轮机强度的依据之⼀;最⼩内⽔压⼒作为压⼒管道线路布置、防⽌压⼒管道中产⽣负压和校核尾⽔管内真空度的依据。
水击实验
(四水击实验一、实验目的要求:1、了解水击原理及水击产生的原因;2、了解水击清除的方法,水击的利用;二、实验装置:本实验仪器由恒压水箱、供水管、调压筒、水击室、压力室、气压表、扬水机出水管、水击发生阀、逆止阀、水泵、可控硅无级调速器、水泵过热保护器及集水箱等组成。
其装置如下图所示。
图1 水击装置图图中:1、恒压水箱2、扬水机出水管供水管3、气压表4、扬水机截止阀5、压力室6、调压筒7、水泵8、水泵吸水管9、供水管10、调压截止阀11、水击发生阀12、逆止阀13、水击室14、集水箱15、底座三、实验方法:1、打开供水开关;2、启动水击发生阀:启动阀11必须先向下推开,并使过水系统中的空气全部排出(打开调压筒截止阀可排出空气)。
然后松手,阀11就会自动地往复上下运动,时开时闭而发生水击。
3、测量水击压强:测量时,应全关闭阀10和4,且应关紧不漏水。
4、水击扬水实验:应全开阀4,全关阀10。
5、调压筒实验:应全关阀4,全开阀10。
6、流量调节:可通过调控可控硅无级调速器旋钮,改变流量大小。
7、其它注意事项:若供水管、压力室或阀10下部调压筒中的滞留空气未排净,或水质不洁等而导致逆止阀漏水,或集水箱水位偏低,都有可能使水击压强达不到额定值。
此时应按前述过程重新操作,或更换水质增加集水箱水量.四、实验原理:1、水击的产生和传播:水泵能把集水箱14中的水送入恒压供水箱1中,水箱1设有溢流板和回水管,能使水箱中的水位保持恒定。
工作水流自水箱1经供水管9和水击室13再通过水击发生阀11的阀孔流出,回到集水箱14。
实验时,先全关阀10和4,触发起动阀11。
当水流通过阀11时,水的冲击力使阀11上移关闭而快速截止水流,因而在供水管9的末端首先产生最大的水击升压。
并事水击室13同时承受到这一水击压强。
水击升压以水击波的形式迅速沿着压力管道向上游传播,到达进口以后,由进口反射回来一个减压波,使管9末端和水击室13内发生负的水击压强。
05-水电站的水锤与调节保证计算PPT课件
注:水锤波在管中传播一个来回的时间tr=2L/a,称之为 “相”,两个相为一个周期2tr=T。
8
.
三、水锤波的传播速度
水锤波传播速度的大小与管壁材料、厚度、管 径、管道的支撑方式以及水体的弹性模量有关。
由阀门向水库传播,水库为异号 等值反射。(惯性) ❖ L/a~2L/a: 降压波 由水库向阀门传播,阀门为同号 等值反射。(压差) ❖ 2L/a~3L/a: 降压波 阀门→水库。 (惯性) ❖ 3L/a~4L/a: 升压波 ❖ 水库→阀门。(压差)
a
逆行波
a
顺行波
a
逆行波
a
顺行波
Hg
Hg
6
.
水锤特性
.
上述基本方程的通解: ΔH=H-Hg=F(t-x/a)+f(t+x/a) Hg 初始静水头 ΔV=V-V0=-g/a[F(t-x/a)-f(t+x/a)] V0 初始流速
注:F 和f 为两个波函数,其量纲(单位)与水头H相同, 故可视为压力波。 ❖ F(t-x/a)为逆水流方向移动的压力波,称为逆行波; ❖ f(t+x/a)为顺水流方向移动的压力波,称为顺行波。 ❖ 任何断面任何时刻的水锤压力值等于两个方向相反的压 力波之和;而流速差值为两个压力波之差再乘以-g/a。
❖ 研究减小水锤压强及机组转速变化的措施。
11
.
第三节 水锤基本方程和边界条件
一、基本方程
《水力学》中已经介绍。忽略小项,不计摩阻项,得到:
V g H
H a2 V
t
x t g x
水击现象演示
水击现象演示.史浴JI淫U上木k的;创"痞门片:二13%執HI岸対•灯昭E泳1、恒压供水箱;2、水击扬水机出水管;3、气压表;4、扬水机截止阀;压力室;6调压筒;7、水泵;8、水泵吸水管;9、供水管;10、调压筒截止阀;11、水击发生阀;12、逆止阀;13、水击室;14、集水箱;15、底座。
水泵7能把集水箱14中的水送入恒压供水箱1中,水箱1设有溢流板和回水管,能使水箱中的水位保持恒定。
工作水流自水箱1经供水管9和水击室13,再通过水击发生阀11的阀孔流出,回到集水箱14。
5、自循环水击综合实验仪如下图所示:实验时,先全关阀10 和4,触发起动阀11。
当水流通过阀11 时,水的冲击力使阀11 向上运动而瞬时关闭截止水流,因而在供水管9 的末端首先产生最大的水击升压,并使水击室13 同时达到这一水击压强。
水击升压以水击波的形式迅速沿着压力管道向上游传播,到达进口以后,由进口反射回来一个减压波,使管9 末端和水击室13 内发生负的水击压强。
通过阀11和12的操作过程观察到水击波的来回传播变化现象,即阀11关闭,产生水击升压,使逆止阀12克服压力室 5 的压力而瞬时开启,水也随即注入压力室内,并可看到气压表 3 随着产生压力搏动。
然后,在进口传来的负水击作用下,水击室13 的压强低于压力室5,使逆止阀12关闭,同时水击阀11 在负水击和阀体自重的共同作用下,向下运动而自动开启。
这一动作既观察到水击波的传播变化现象,又能使本实验仪保持往复的自动工作状态,即阀11开启,水自阀孔流出,又回到这一动作的初始状态,这样周而复始,阀11 不断地启闭,水击现象也就不断地重复发生。
通过逆止阀12、压力室 5 和气压表 3 组成水击压强的定量观察装置,随水击的每次升降压,通过逆止阀12 都向压力室 5 注入一定的水流,而压力室 5 是密闭的,这样就可从与压力室 5 相连的气压表 3 上测量压力室 5 空腔中的压强,如是逆止阀12 不开启时的压强就是产生的最大水击压强值。
计算水击的方法简化公式法、图解法、电算法等.在进行水击计算资料
水电站 HYDROPOWER ENGINEERING
五、复杂管水击近似公式
串联管水击近似公式
用简化公式计算 水击波速采用加权平均值 流速采用加权平均值
分岔管水击近似计算
假想所有机组合并为一台大机组,以假想管与主管组成串 联管进行计算
直接用支管与主管组成串联管
水电站 HYDROPOWER ENGINEERING
水电站 HYDROPOWER ENGINEERING
间接水击的计算
关闭情形 第一相水击计算简化公式(式9-17与式9-17‘) 极限水击计算简化公式(式9-23与式9-23‘)
开启情形 第一相水击计算简化公式(式9-19与式9-19‘) 极限水击计算简化公式(式9-24与式9-24‘)
间接水击类型的判别
根据图9-6。
水电站 HYDROPOWER ENGINEERING
水击计算简化公式应用的条件:简单管、水管末端为 水斗式水轮机(喷嘴-ρΔτ<1。
若管末为反击式水轮机,需将简化公式计算值修正。 混流式机组近似为1.2倍,轴流式机组近似为1.4倍。
六、水击图解法
基本原理
横坐标为流速相对值,纵坐标为水击压强相对值 逆向方程与顺向方程表达的两条直线 管内部断面B求解 水管进口断面D求解 水管末端断面A求解
求解实例
某水电站静水头120m,压力水管长400m,最大流速4.5m/s, 水击波速1000m/s,净调速时间2.4s,管末为水斗式水轮机, 直线关闭规律,求丢弃全负荷时管进口D断面、管中B断面 以及管末A断面的水击压强。
5、水击图解法的基本原理是什么?图解法的步骤如 何?它和解析法相比有何优缺点?
水电站 HYDROPOWER ENGINEERING
清华水力学实验11水击
清华大学水利水电工程系水力学实验室水 力 学流体力学课程教学实验指示书 管道水击现象演示实验原理简介z 水击现象是一种典型的有压管道非恒定流问题,在水击现象中,由于压强变化急剧,必须考虑流体的压缩性及管道的弹性。
水击现象可大致作如下描述:有压管道流动的流量突变→流速突变→由于流动的惯性,造成压强大幅波动→流体的压缩性和管道的弹性使波动在管道中以有限的速度传播。
z 以阀门突然关闭为例,将有一个增压、增密度、增管道断面积、减流速的过程从阀门向上游传播,压强、流速、密度、管道断面积的间断面在管道中运动,这就是水击波。
一. 水击波的压强增值z 在已知水击波传播速度c 的条件下,压强增量Δp 与流速大小增量Δ的关系为 v ΔΔp c =−v ρ.二. 水击波的传播速度z 水击波传播速度为 )d d 1d d 1(1p A A p c +=ρρρ. 式中 K p 1d d 1=ρρ,K 为液体的体积弹性系数,p A A d d 1 反映管壁的弹性,对于直径为 D 的圆管, δE D p A A =d d 1,其中E 为管壁材料的弹性系数,δ为管壁厚度。
于是 δρδρE DKK E D K c +=+=1/)1(1.若忽略管壁的弹性,即认为 ∞=E ,则 c Kp0==ρρd d ,为声波速度(水中约为1435 m/s )。
所以δE DKc c +=10. 水电站引水管的 100≈δD ,. c ≈1000m/s 三. 水击现象的分析z 为了更清晰地说明水击波传播、反射、叠加的发展过程,考察上游水库与阀门间的长度为L 的直圆管(BA )中因阀门A 突然完全关闭发生的水击现象,认为弹性力与惯性力起主要作用,忽略水头损失和流速水头。
在理解了水击波在A 处的正反射和B 处的负反射之后,可以列出 ,c L t/0<<c L t c L /2/<<,c L t c L /3/2<<,c L t c L /4/3<< 四个阶段水击现象的物理特性。
水击压力的计算和防护
或 其中 E 为管壁材料的弹性模数,且由材料力学可知,对直径为 d,壁厚为δ的圆管
代回前面的式子,可得:
再将上式代入(1)式,最后可得:
上式即为水击波的传播速度 a 的计算公式,且式中
,这是声
音在该种流体中的传播速度。由此可见,水击波的传播速度比声速要小。而管材的刚性
a(ρΔA+ΔρA)=ρV0A
由上式可得:
将式Δp=ρV0A 代入上式(这里假定阀门在一瞬间全部关闭),消去 V0,可得
式中
反映了流体的压缩性,
反映了管壁的弹性。若考虑阀门为部份关
闭,经推导 a 的计算式与上式完全一样,故上式也适用于阀门部份关闭的情况。且由第
一章内容可知,
其中 KP 为流体的体积弹性系数。 而对直径为 d 截面积为 A 的管道,当流体中压强增加了Δp 后,设管径增量为Δd, 则相应的面积增量为:
管道水击现象 水击又称为水锤,在管道中液体的运动状态突然改变的情况下发生(例如阀门的突 然关闭或突然开启,水泵的突然启动或停止,水轮机或液压油缸突然变化负载等)。由 于流速突然发生迅速变化,结果由于流体惯性,必然引起管内压强的剧烈波动,即压强 的突然上升与突然下降,并在整个管长范围内传播。压强突变使管壁产生振动,并伴有 似锤之声,故将这种现象称为管内水击现象,或水锤现象。当阀门迅速关闭时,管内流 速急剧下降,压强迅速上升,称为正水击。正水击可能使管道爆裂。而当阀门迅速开启 时,管内流速急剧上升,压强迅速下降,称为负水击。负水击可使管道产生真空和汽蚀, 使管道变形。以下仅讨论正水击。 水击现象所引起的压强上升,轻微时,只表现为噪音与振动,严重时,压强变化甚 至可超过管内原有正常压强的几十倍甚至上百倍。以致超过了管壁材料的允许应力,造 成管道和管件的变形,甚至破裂。所以,了解水击现象的发生、发展和消失过程,对避 免削弱水击所产生的危害是十分必要的。 一、水击产生的过程 如下图所示,有一长为 L 的管道,其进口(即管道的 B 端)与一大容器相连,管道 的末端有一阀门。假定在定常流动的条件下,管中的流速和压强分别为 V0,p0。为简单 起见,在下面的讨论中忽略流体的粘性损失以及流速水头,即认定在定常流动的条件下, 管中的测压管水头线是一条与大容器水平面同高的水平线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水击与调压室计算与演示
1、调压室简介
为了减小水锤压力,常在有压引水隧洞(或水管)与压力管道衔接处建造调压室,如图1所示。
调压室利用扩大的断面和自由水面反射水锤波,将有压引水系统分成两段:上游段为有压引水隧洞,调压室使隧洞基本避免了水锤压力的影响;下游段为压力管道,由于长度缩短可,从而降低了压力管道中的水锤值,改善了机组的运行条件。
图1 水电站调压室
调压室的功用有以下几点:
(1)、反射水锤波。
基本上避免(或减小)压力管带中的水锤波进入有压引水道。
(2)、缩短压力管道的长度。
从而减小压力管道及厂房过流部分中的水锤压力。
(3)、改善机组在负荷变化时的运行条件及系统供电质量。
调压室的工作原理是:增大的水面反射水锤波,引水道中水体动能和势能相互转换。
2、水击与调压室计算程序演示
2.1 甩负荷工况
当水电站丢弃全部负荷时,水轮机的流量由Q0变为零,压力管道中发生水锤现象。
此时,上游调压室水位先上升,下游调压室水位先下降。
引(尾)水道中水流在惯性作用下继续流动,从而引起调压室水位上升(下降),当水位达到极值后,由于调压室和水库的水位差作用,水流开始倒流。
如此往复流动,实现动能
和势能的转换,并在阻力消耗下衰减。
用程序演示:起始开度设置为0.8,终了开度为0。
计算过程如下(原始数据见图2,计算结果见图3。
)
图2 甩负荷工况参数输入
图3 甩负荷工况计算结果和过程线
2.2 增负荷工况
当水电站增加负荷时,水轮机引用流量加大,压力管道中也出现水锤现象。
此时,上游调压室水位先下降,下游调压室水位先上升。
机组首先开始增大引用流量,水流流出(入)上游(下游)调压室,调压室水位变化,当调压室和水库的水位差达到极值后,水位差的作用使水流开始倒流。
如此往复流动,实现动能和势能的转换,并在阻力作用下快速衰减。
用程序演示:设置起始开度为0.9,终了开度为0。
计算过程如下(原始数据见图4,计算结果见图5。
)
图4 增负荷工况参数输入。