第七节调压室水力计算条件的选择
调压室水力计算
调压室的水力计算1. 调压室断面计算当上游死水位,下游为最低水位,最小水位H min=188.9m,三台机满发,引水道糙率取最小值,压力管道糙率取最大值,通过水轮机的流量为57m3s⁄,则此时的引水隧洞水头损失的计算如表格1,压力钢管水头损失的计算如表格2。
引水道应选可能的最小糙率0.012,压力管道应选择可能的最大糙率0.013。
表格1引水隧洞水头损失表表格2压力钢管水头损失表F Tℎ>Lf2αgH1=Lf2αg(H0−ℎw0−3ℎwT)=45.548m2其中H0——最小水头损失,H0=188.9m;ℎw0——引水隧洞损失,ℎw0=17.802+0.296=18.098;ℎwT0——压力管道水头损失,ℎwT=3.110+2.805=5.915m;L——引水隧洞长度,12662m;g——重力加速度,g=9.81m/s2 f——引水隧洞面积,16.62m2。
α——引水道阻力系数v0=Qf=5716.619=3.43m s⁄α=ℎw0v02=18.0983.4302=1.5385为了保证大波动的稳定,一般要求调压室断面大于托马斯断面,初步分析时可取(1.0~1.1)F Tℎ,作为调压室的设计断面。
这里选取D=7.8m,则系数k为:F k=47.784k=F k/F Tℎ=1.052. 最高涌波水位计算按正常蓄水位时共用同一调压室的三台机组全部满载运行瞬时丢弃全部负荷(即流量由Q max=57减至流量Q=0)作为设计工况。
引水隧洞的糙率取尽可能的最小值(能耗少,涌波高)。
n=0.012引水道损失由表格1和表格2得:ℎw0=ℎw0程+ℎw0局=17.802+0.296=18.098mv0为时段开始时管中流速v0=Qf=3.43m s⁄;f为引水隧洞断面面积。
F为调压井断面面积,145.267m2;引水隧洞长L=12662m,g=9.81m s2⁄得引水道—调压室系统的特性系数。
λ=Lfv022gFℎw0=12662×16.62×3.4322×9.81×47.784×18.098=145.89令X0=ℎw0λ=0.124,X=zλ,则要求最高涌波水位z max,只需要求出X max=z maxλ即可。
水电站建筑物复习及思考题(1)
第一章绪论1、坝后式和河床式水电站枢纽的特点是什么?2、无压引水式和有压引水式水电站枢纽的特点是什么?其组成建筑物有哪些?第二章进水口及引水道建筑物1、水电站进水口应满足那些要求?按水流条件分为那几种类型?2、有压进水口的主要设备?有压进水口的事故闸门和检修闸门的运用要求?3、选择有压进水口高程时需要考虑哪些影响因素?4、隧洞式、坝式进水口有那些特点?5、通气孔及充水阀的作用?6、沉沙池的作用、工作原理及修建位置?7、何谓定期冲洗式沉沙池和连续冲洗式沉沙池?沉沙池一般由那几部分组成?8、水电站引水道的功用是什么?9、非自动调节渠道和自动调节渠道工作原理。
10、引水道怎样分类?11、压力前池的功用和布置原则是什么?第三章压力管道总论及明钢管1、压力水管的功用是什么?压力水管的类型有几种?各适用什么条件?2、压力水管的供水方式有哪几种?各有什么优缺点和适用条件?3、压力水管的材料性能有哪些要求?4、压力钢管的设施有哪些?如何布置?5、明钢管的布置原则有哪些?6、压力水管的引近方式、敷设方式有哪几种?各自的优缺点和适用条件是什么?7、作用在露天压力钢管上有哪些力?试分析正常运行、检修、温升、温降情况下力的组合及方向。
8、简述明钢管应力分析的方法与步骤。
已知流量和流速压力钢管的内径如何计算?管壁的厚度如何估算?9、明钢管外压失稳的原因及失稳现象是什么?简述外压失稳校核的步骤。
10、镇墩、支墩的作用是什么?各有几种类型?其优缺点是什么?11、明钢管的伸缩节、进人孔及排水孔的作用和位置?第四章地下埋管1、地下埋管的布置原则?施工工序?2、地下埋管的型式?各有何特点?3、地下压埋道的初始缝隙是怎样形成的?它对钢衬强度计算有何影响?4、地下埋管失稳的原因是什么?防止措施有哪些?第五章混凝土坝体压力管道1、混凝土坝体压力管道按其布置方式分为哪三类?2、坝内埋管的结构设计要求?3、坝内埋管设软垫层的目的及位置?第六章分岔管1、分岔管的特点、功用和要求?2、压力管道的分岔管有哪几种布置型式?按结构型式分常用的岔管有哪几种?它们的构造特点和适用条件是什么?3、三梁岔管的构成?各承担哪些力?4、明钢岔管按其所用加强方式或受力特点分为哪几类?第七章有压引水系统非恒定流的物理现象及基本方程1、什么是水锤?水锤现象是如何发生的?研究水锤的目的?2、阀门启闭时间、转速变化、水锤压力三者之间的关系?3、什么叫调节保证计算?其任务是什么?4、什么情况下产生正水锤?什么情况下产生负水锤?5、什么是水电站不稳定工况?其表现形式有哪些?6、简述简单管不计摩阻损失时,阀门突然关闭(Ts= 0)后的水锤传播过程。
调压室涌波水位计算
式中ε
= 2 λ⁄ℎ������0
= 9.134,m
=
2 3
,解得:
z������������������ = 50.44������ 所以当增加负荷时水位降到静水位下 23.74m
3.2 丢弃全负荷时产生的第二波动振幅
解之
������2 + ln(1 − ������2) = ������������������������ + ln(1 − ������������������������ )
λ
=
������������������02 2g������ℎ������0
=
2
12662 × 16.62 × 3.432 × 9.81 × 47.784 × 18.098
=
145.89
令������0
=
ℎ������0 λ
=
0.124,X
=
������������,则要求最高涌波水位������������������������ ,只需要求出������������������������
调压室的水力计算
1. 调压室断面计算
当上游死水位,下游为最低水位,最小水位������������������������=188.9m,三台机满发,引 水道糙率取最小值,压力管道糙率取最大值,通过水轮机的流量为 57������3 ⁄������,则 此时的引水隧洞水头损失的计算如表格 1,压力钢管水头损失的计算如表格 2。 引水道应选可能的最小糙率 0.012,压力管道应选择可能的最大糙率 0.013。
������������+∆������
=
������������
1 +6
调压室水力计算分解
调压室的水力计算1. 调压室断面计算当上游死水位,下游为最低水位,最小水位H min=188.9m,三台机满发,引水道糙率取最小值,压力管道糙率取最大值,通过水轮机的流量为57m3s⁄,则此时的引水隧洞水头损失的计算如表格1,压力钢管水头损失的计算如表格2。
引水道应选可能的最小糙率0.012,压力管道应选择可能的最大糙率0.013。
表格1引水隧洞水头损失表表格2压力钢管水头损失表F Tℎ>Lf2αgH1=Lf2αg(H0−ℎw0−3ℎwT)=45.548m2其中H0——最小水头损失,H0=188.9m;ℎw0——引水隧洞损失,ℎw0=17.802+0.296=18.098;ℎwT0——压力管道水头损失,ℎwT=3.110+2.805=5.915m;L——引水隧洞长度,12662m;g——重力加速度,g=9.81m/s2 f——引水隧洞面积,16.62m2。
α——引水道阻力系数v0=Qf=5716.619=3.43m s⁄α=ℎw0v02=18.0983.4302=1.5385为了保证大波动的稳定,一般要求调压室断面大于托马斯断面,初步分析时可取(1.0~1.1)F Tℎ,作为调压室的设计断面。
这里选取D=7.8m,则系数k为:F k=47.784k=F k/F Tℎ=1.052. 最高涌波水位计算按正常蓄水位时共用同一调压室的三台机组全部满载运行瞬时丢弃全部负荷(即流量由Q max=57减至流量Q=0)作为设计工况。
引水隧洞的糙率取尽可能的最小值(能耗少,涌波高)。
n=0.012引水道损失由表格1和表格2得:ℎw0=ℎw0程+ℎw0局=17.802+0.296=18.098mv0为时段开始时管中流速v0=Qf=3.43m s⁄;f为引水隧洞断面面积。
F为调压井断面面积,145.267m2;引水隧洞长L=12662m,g=9.81m s2⁄得引水道—调压室系统的特性系数。
λ=Lfv022gFℎw0=12662×16.62×3.4322×9.81×47.784×18.098=145.89令X0=ℎw0λ=0.124,X=zλ,则要求最高涌波水位z max,只需要求出X max=z maxλ即可。
水电站调压室设计规范
水电站调压室设计规范Specification for design of surge chamber of hydropowerstation中华人民共和国电力行业标准水电站调压室设计规范主编部门:电力工业部华东勘测设计研究院批准部门:中华人民共和国电力工业部中华人民共和国电力工业部关于发布《水电站调压室设计规范》电力行业标准的通知电技[1996]733号各电管局,各省、自治区、直辖市电力局,水电水利规划设计总院,各有关单位:《水电站调压室设计规范》电力行业标准,经审查通过,批准为推荐性标准,现予发布。
其编号为:DL/T5058-1996该标准自1997年5月1日起实施。
请将执行中的问题和意见告水电水利规划设计总院,并抄送部标准化领导小组办公室。
1996年10月31日目次1总则2术语、符号3调压室的设置条件及位置选择4调压室的基本布置方式、基本类型及选择5调压室的水力计算及基本尺寸的确定6抽水蓄能电站调压室的设计7调压室的结构设计、构造、观测及运行要求附录A压力水道水头损失计算公式附录B调压室的涌波计算公式附录C抽水蓄能电站水泵工况断电、导叶拒动时的调压室涌波计算方法本规范用词规定附加说明1总则1.0.1水电站调压室是压力水道系统中一项重要建筑物,为体现国家现行的技术经济政策,积极慎重地采用国内外先进技术和经验,统一调压室设计的标准、要求,特制定本规范。
1.0.2本规范适用于大、中型水利水电枢纽工程中常规水电站和抽水蓄能电站调压室设计,小型水电站的调压室设计可参照执行。
1.0.3水电站调压室设计应根据地形、地质情况、压力水道的布置、机电特性和运行条件等资料,经综合论证,做到因地制宜、经济合理、安全可靠。
1.0.4水电站调压室设计除必须遵守本规范的规定外,还应符合SDJ12—78《水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)》(试行)及补充规定、SD134—84《水工隧洞设计规范》、SDJ173—85《水力发电厂机电设计技术规范》(试行)、DL/T5057—1996《水工混凝土结构设计规范》、SDJ10—78《水工建筑物抗震设计规范》(试行)等现行的国家、行业有关标准与规定。
水电站建筑物习题及答案
⽔电站建筑物习题及答案⽔电站建筑物考试题集⼀、选择题1.计算调压室稳定断⾯时,应采⽤上游⽔库的(设计洪⽔位,正常⾼⽔位,死⽔位),引⽔隧洞的糙率取(可能最⼤糙率,可能最⼩糙率,平均糙率)。
压⼒钢管的糙率取(可能最⼤糙率,可能最⼩糙率,平均糙率)。
2.⽔电站的事故闸门可在(动⽔中启闭,静⽔中启闭,动⽔中关闭静⽔中开启)。
3.地下埋管钢衬破坏⼤都是由于______,防⽌破坏的有效措施是__________。
(1) a.内压较⼤,钢衬强度不⾜。
b.外压失稳。
(2) a.加厚钢衬。
b.加钢性环。
4. ⽔库、封闭端、阀门的反射系数分别为___、___、__;(a) 0.5 (b) -0.5 (c) +1 (d) -1 (e)对传来的⽔击波分别做______、________、________ 反射。
(a)异号等值(b) 同号等值(c) 异号减值(d)同号减值(e)根据值确定5. 调压室⽔位波动的解析法适⽤于_______调压室,(a) 圆筒式(b)阻抗式(c) 差动式(d) a和b (e) b和c在_________情况(a) 丢弃部分负荷(b) 丢弃全负荷(c) ⼀台机组投⼊运⾏(d) a和b (e) b和c6. ⽔击计算的计算机⽅法中,若上游端为⼀⽔位不变的⽔库,其边界条件为______,它与特征⽅程________联⽴求解。
A. Hp1=Hp A. Hpi=Cp-BQpi(1) B. Hp1=Hp+△HSinωt (2) B. Hpi=Cp+BQpiC. Hp1=Hs+Qp1(a1+a2Qp1)7. 阀门关闭终了开度为τc,ρτc>1时,⽔击波在阀门处为_______,?关闭终了后的⽔击变化曲线为________。
A. 同号等值反射 A. 周期性不衰减振荡B. 同号减值反射 B. 逐渐衰减振荡C. 异号等值反射 C. ⽔击消失D. 同号减值反射 D. ⽔击压强逐渐减⼩E. 不反射8. 求调压室最⾼涌浪时,上游库⽔位取________。
水电站调压室设计规范[DL T5058-1996]条文说明
>中华人民共和国电力行业标准水电站调压室设计规范条文说明目次总则调压室的设置条件及位置选择调压室的水力计算及基本尺寸的确定抽水蓄能电站调压室的设计总则为了在今后调压室的设余座调编制过程中也参照了国外的调压室规范和因此小型水电站的调压室设调压室的设置条件及位置选择调压室的设置条件置调压室说明以压力水道的水流惯性时间常数取长湖电站机组容量万达图是根据美国垦务局和田纳西流域管理局使用的与调速性能关系图按我国法定机组的加速时间常数达值达国外设置调压室的初步判据见表一般较小和流速不均匀分布修正系数表国外设置调压室条件的初步判据与各地大气压力都把水头作为代替调压室的位置选择越能减少压力管道及机组所承受的水为了水力联系密切本条为调压室的基本布置方式本条为调压室的基本类型简单式与阻抗式的区别水室式而完全用双室的实例溢流式专指调压室顶部设有溢流堰泄水的型式不包括有溢流堰的水室式与有溢流堰升差动式亦可与大室相邻分开设置阻抗孔可设在大室与升管之间气垫式我国采用混合型调压室的有及优缺点应注意各种调压室的基本特点简单式调压室结构最简单反射水击波效果最好溢流式调压室当丢弃负荷时具差动式调压室具有溢流和阻抗调压室的优点调压室内的压缩空气大大削减了水调压室的水力计算及基本尺寸的确定调压室的稳定断面面积随着电力系统容量的增大和电器装置的完善国内外均有一些电站在设计中考虑系统或调速器的作用等而采用了小于托马条件的调托马公式的形式现在常见的有以下几种式中的气体体积调压室的涌波计算水击主要对压力管道影响较大孔尺寸选择恰当时是存在的根据以往设计台增至台或由全部负荷时在调压室涌波水位计算中特别是波动周期较长的调压室在上一工况未稳定时另一工况和在设计中应根后重新开机的时间限制等合理的运行要求调压室基本尺寸的确定时压力管道末端及调压时对抑制波动幅度与表表部分阻抗式调压室阻抗孔的取值差动式调压室设计按理想差动状态设计即在设计库水位丢弃负荷时大室最高涌波水位大室最低涌波水位等于升管最初时段的下降水必要时还要抽水蓄能电站调压室的设计因抽水蓄能电站的工况复杂变化频繁和发电工况丢弃全算法列入附录表国内外部分抽水蓄能电站调压室型式及尺寸表续表调压室的结构设计混凝土衬砌厚度调压室结构采用锚杆喷混凝土支护在国内尚无先例有条件的采用锚喷支护地下建筑物具有良好的抗地震的能力已为国内外许多实践资料所证实因此在地下建筑物中多不强调抗震计算与校核的要求进行抗震并做好边坡的加固处与闸门之间的相互不利作用并提出电站运行。
第七节调压室水力计算条件的选择
第七节调压室水力计算条件的选择调压室的基本尺寸是由水力计算来确定的,水力计算主要包括以下三方面的内容:(1)研究“引水道—调压室”系统波动的稳定性,确定所要求的调压室最小断面积。
(2)计算最高涌波水位,确定调压室顶部高程。
(3)计算最低涌波水位,确定调压室底部和压力水管进口的高程。
进行水力计算之前,需先确定水力计算的条件。
调压室的水力计算条件,除去水力条件之外,还应考虑到配电及输电的条件。
在各种情况中,应从安全出发,选择可能出现的最不利的情况作为计算的条件。
现讨论如下。
1.波动的稳动性计算调压室的临界断面,应按水电站在正常运行中可能出现的最小水头计算。
上游的最低水位一般为死水位,但如电站有初期发电和战备发电的任务,这种特殊最低水位也应加以考虑。
引水系统的糙率是无法精确预侧的,只能根据一般的经验选择一个变化范围,根据不同的设计情况,选择偏于安全的数值。
计算调压室的临界断面时,引水道应选用可能的最小糙率,压力管道应选用可能的最大糙率。
流速水头、水轮机的效率和电力系统等因素的影响,一般只有在充分论证的基础上才加以考虑。
2.最高涌波水位的计算上游水库水位应取正常高水位,引水道的糙率应取可能的最小值,负荷的变化情况一般按丢弃全负荷设计。
最高洪水位丢弃全负荷或部分负荷进行校核。
如电站的机组和出线的回路数较多,而且母线分段,经过分析,电站没有丢弃全负荷的可能,也可不按丢弃全负荷计算。
对于丢弃全负荷情况,可假定由最大流量减小至空转流量;为了安全,有人认为应按丢弃至零计算。
3.最低涌波水位的计算上游水库水位应取可能的最低水位,引水道的糙率应取可能的最大糙率。
确定最不利的增荷情况比确定最不利的丢荷情况更加困难。
增加负荷对调压室的工作比丢弃负荷更危险,如计算不正确,可能使引水道和压力管道进入空气,破坏建筑物和机组正常的运行。
在技术设计阶段,增加负荷的条件应根据设计电站在系统中的工作情况,经专门研究确定,并应考虑系统将来的发展。
水电站调压室设计规范DLT5058_1996
水电站调压室设计规范Specification for design of surge chamber of hydropowerstation中华人民共和国电力行业标准水电站调压室设计规范主编部门:电力工业部华东勘测设计研究院批准部门:中华人民共和国电力工业部中华人民共和国电力工业部关于发布《水电站调压室设计规范》电力行业标准的通知电技[1996]733号各电管局,各省、自治区、直辖市电力局,水电水利规划设计总院,各有关单位:《水电站调压室设计规范》电力行业标准,经审查通过,批准为推荐性标准,现予发布。
其编号为:DL/T5058-1996该标准自1997年5月1日起实施。
请将执行中的问题和意见告水电水利规划设计总院,并抄送部标准化领导小组办公室。
1996年10月31日目次1总则2术语、符号3调压室的设置条件及位置选择4调压室的基本布置方式、基本类型及选择5调压室的水力计算及基本尺寸的确定6抽水蓄能电站调压室的设计7调压室的结构设计、构造、观测及运行要求附录A压力水道水头损失计算公式附录B调压室的涌波计算公式附录C抽水蓄能电站水泵工况断电、导叶拒动时的调压室涌波计算方法本规范用词规定附加说明1总则1.0.1水电站调压室是压力水道系统中一项重要建筑物,为体现国家现行的技术经济政策,积极慎重地采用国内外先进技术和经验,统一调压室设计的标准、要求,特制定本规范。
1.0.2本规范适用于大、中型水利水电枢纽工程中常规水电站和抽水蓄能电站调压室设计,小型水电站的调压室设计可参照执行。
1.0.3水电站调压室设计应根据地形、地质情况、压力水道的布置、机电特性和运行条件等资料,经综合论证,做到因地制宜、经济合理、安全可靠。
1.0.4水电站调压室设计除必须遵守本规范的规定外,还应符合SDJ12—78《水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)》(试行)及补充规定、SD134—84《水工隧洞设计规范》、SDJ173—85《水力发电厂机电设计技术规范》(试行)、DL/T5057—1996《水工混凝土结构设计规范》、SDJ10—78《水工建筑物抗震设计规范》(试行)等现行的国家、行业有关标准与规定。
调压室的要求及设置条件《水电站》
(6) 气垫式或半气垫式调压室 在压力隧洞上靠近厂房的位置建造一个大洞室, 室中一部分充水,另一部分充满高压空气。利用 空气的压缩或膨胀,来减小水位涨落的幅度。 适用:表层地质条件不适于 建造常规调压室的情况下深 埋于地下的引水式地下水电 站。目前我国尚未采用。
气垫式与常规调压室的比较
第四节 简单和阻抗调压室水位波动计算
LfV02 S 为“引水道-调压室”系统特性系数。 2 gFhw0
2.波动第二振幅(Z2) 丢弃负荷后,调压室中水位先升高到最高水位Zm 。 随后又降到最低幅值Z2,Z2称为第二振幅。
ln1 (1 ) xm (1 ) xm ln1 (1 ) x2 (1 ) x2
如果忽略竖井的阻抗,即η=0,则通解变为:
X 1 1 ( X 0 X ) y e X0 X0
上式中的X=Zm/S=(ZB+Δh)/S≈ZB/S。 求出y以后,以yQ0代替QB,重新计算Δh 再由 Zm=ZB+Δh 计算Zm。
1.最高水位计算(Zm)
当丢弃全部负荷以后,Q=0, 连续方程变为:
fV+FdZ/dt=0
如果考虑阻抗孔口的局部水头损失K,则动力方
程变为 Z=hw+K+(L/g)dV/dt 其中 hw=αV2=hw0(V/V0)2, K=K0(Q/Q0)2=K0(V/V0)2
1.最高水位计算(Zm) (1) 阻抗式调压室(阻抗系数为η)
位于厂房上游引水道上。适用:厂房上游有压 引水道较长,应用最广泛。
2、下游调压室(尾水调压室)
位于厂房下游尾水洞上。适用尾水隧洞较长, 需设置尾水调压室以减小水击压力,特别是防止 丢弃负荷时产生过大的负水击,尾水调压室应尽 可能靠近厂房。
水电站引水隧洞的调压室设计探讨
水电站引水隧洞的调压室设计探讨本文重点介绍了调压室的作用及设置条件、布置形式和基本结构类型,调压室水位波动的稳定问题和调压室的水力计算条件。
标签:调压室稳定问题水力计算1 调压室的功用、要求1.1 调压室的功用(1)反射水击波。
基本上避免了(或减小)压力管道传来的水击波进入压力引水道。
(2)减小水击压力(压力管道及厂房过水部分)。
缩短了压力管道的长度(3)改善机组在负荷变化时的运行条件。
1.2 调压室的基本要求根据其功用,调压室应满足以下基本要求:(1)调压室尽量靠近厂房,以缩短压力管道的长度。
(2)调压室应有自由水表面和足够的底面积,以保证水击波的充分反射;(3)调压室的工作必须是稳定的。
在负荷变化时,引水道及调压室水体的波动应该迅速衰减,达到新的稳定状态;(4)正常运行时,水流经过调压室底部造成的水头损失要小。
为此调压室底部和压力管道连接处应具有较小的断面积。
(5)结构安全可靠,施工简单方便,造价经济合理。
2 调压室的工作原理引水道—调压室系统中的水位波动现象与压力管道中产生的水击波动性质有很大的差别。
调压室的水位波动主要是由于水体的往复运动引起,其特点是振幅小、变化慢、周期长。
而管道水击过程是水击波的传播,振幅大、变化快,往往在很短时间内即消失,而前者往往长达几十秒到几百秒甚至更长。
3 调压室的类型(1)简单圆筒式调压室特点:断面尺寸形状不变,结构简单,反射水击波效果好。
但水位波动振幅较大,衰减较慢,因而调压室的容积较大;在正常运行时,引水系统与调压室连接处水力损失较大。
适用:低水头小流量的水电站。
(2)阻抗式调压室将圆筒式调压室的底部,用较小断面的短管或用较小孔口的隔板与隧洞及压力管道连接起来,这种孔口或隔板相当于局部阻力,即为阻抗式调压室。
特点:进出调压室的水流在阻抗孔口处消耗了一部分能量,可以有效地减小水位波动的振幅,加快了衰减速度,因而所需调压室的体积小于圆筒式。
正常运行时水头损失小。
水力计算及实例讲解
λ 0.03
Re 2100 65 Re 10 5
p 11 .8Q 7 10 4 dv Q 2 T 6 1.9 10 (1 ) 5 l 23Q 10 5 dv d T0
3、湍流状态(Re>3500) ⑴ 钢管(PE管计算公式同钢管):
λ 0.11(
K 68 0.25 ) d Re
二、次高压和中压燃气管道:
⑴钢管(PE管计算公式同钢管):
λ 0.11(
K 68 0.25 ) d Re
P 2 P22 dv 0.25 Q 2 T 9 K 1 1.4 10 ( 192 .2 ) L d Q d 5 T0
⑵ 铸铁管:
λ 0.102236 (
1 dv 5158 ) 0.284 d Q
1、设备负荷计算。 要根据燃气压力、温度、热值换算工况流量。需要注意 的是标准状态的定义。商业贸易中所说的标准状态一般 是“20℃、1标准大气压”,而 “0℃、1标准大气压” 的标准状态的概念是用在实验室里的,这就需要在引用 基础参数时查看当地供气公司提供的燃气参数的标注状 态。同时我们计算用的热值应是燃气低热值,而非高热 值,两者的区别就是:高热值多了燃烧产物冷凝成液态 所放出的热量,目前这部分热量在日常生活中是不能利 用的,所以在负荷计算中不能套用高热值。 故公式计算中基准参数: T0=273+20=293K, P0=101.325×103Pa, 燃气热值为低热值。
HXF2008237晋江兴宇树脂计算书10.28.doc
式中 Re—雷诺数; △P—燃气管道摩擦阻力损失(Pa); λ—燃气管道摩擦阻力系数; l—燃气管道的计算长度(m); Q—燃气管道的计算流量(m3/h); d—管道内径(mm); ρ—燃气的密度(kg/m3); T—设计中所采用的燃气温度(K); T0—标准状态的温度(K);
调压室设计及优化分析
调压室设计及优化分析调压室是一种用于调节流体压力的设备,广泛应用于燃气管道系统和水处理系统中。
本文将从调压室设计的关键要素、调压室的优化方法以及优化后的效果等方面进行详细讨论。
一、调压室设计的关键要素1. 压力调节范围:调压室的设计应满足具体项目的压力要求,能够在一定范围内对流体的压力进行调节。
2. 安全性能:调压室应设计合理的安全阀,保证在紧急情况下能够快速释放压力,避免设备损坏或事故发生。
3. 流动特性:调压室的内部结构设计应考虑流体的流动特性,避免产生剧烈的涡流和噪声,以确保流体能够平稳地通过调压室。
4. 材料选择:选择适合工作介质的材料,能够耐受高压和腐蚀,确保调压室的长期可靠运行。
5. 尺寸和布局:调压室的尺寸和布局应根据具体工程需求进行合理设计,考虑到施工和维护的便利性。
二、调压室的优化方法1. 流场仿真模拟:通过计算流体力学仿真软件,对调压室的内部流动进行模拟和分析,优化调压室的内部结构。
仿真模拟可以帮助发现流动不稳定区域,减小流体压力波动。
2. 调压室与管道系统的匹配:调压室的进口和出口管道设计应与管道系统匹配,减小流体流动的阻力和压力损失。
通过合理的管道布局和设计,减少能量损失,提高流体的调节效果。
3. 控制策略优化:优化调压室的控制策略,根据不同工况条件下的需求,合理调整工作参数,使得调压室能够更好地适应负载变化,提高压力稳定性。
4. 材料和涂层的优化选择:选择高性能的防腐蚀材料和涂层,能够提高调压室的使用寿命,并且降低维护成本。
三、优化后的效果通过调压室设计的优化和改进,可以达到以下效果:1. 流体压力稳定性提高:优化后的调压室能够更好地控制流体的压力波动,使得调节过程更加平稳。
2. 能耗降低:优化后的调压室能够减小能量损失和液压损失,降低系统的能耗。
3. 安全性增强:优化后的调压室具备更好的安全保护措施,能够在紧急情况下及时释放压力,保护设备和人员的安全。
4. 维护成本降低:优化后的调压室采用耐腐蚀材料和涂层,能够延长设备的使用寿命,减少维护成本和频次。
水电站教学大纲
《水电站》教学大纲(附: 说明书)河海大学水电系水电站教研室《水电站》教学大纲课程名称:水电站,4个学分预修课程:水力学,结构力学水利水电规划水电站电气设备教授对象:水利水电建筑工程专业本科班水电站教研室编1995. 5印一、课程内容第一章水轮机类型及组成部分水轮机主要类型(反击式、冲击式、混流式、轴流式、可逆式等)及其特点。
水轮机工作参数:水头、流量、出力、效率、力矩和转速等。
混流式水轮机主要组成部分:转轮、导水机构、蜗壳、尾水管。
轴流式水轮机主要组成部分:转轮(轮毂、叶片、泄水锥)、导水机构、蜗壳、尾水管。
水斗式水轮机主要组成部分:转轮、喷嘴、折流板。
蜗壳的功用和型式:蜗壳主要参数(包角、进口流速)选择。
蜗壳主要尺寸的确定。
尾水管的功用、类型和主要尺寸的确定。
第二章水轮机工作原理水流在转轮中的运动。
水轮机基本方程。
水轮机能量损失及效率:水力损失及水力效率,机械损失及机械效率,流量损失及流量效率。
水轮机汽蚀的物理过程及类型、翼型汽蚀的特性。
水轮机的汽蚀系数、吸出高度及安装高程。
第三章水轮机的特性及选型水轮机的相似条件:几何相似、运动相似和动力相似。
水轮机的相似定律及相似公式:单位转速、单位流量、比转速。
混流式水轮机主要综合特性曲线:等开度线、等效率线、出力限制线、等汽蚀系数线;轴流式水轮机主要综合特性曲线。
水轮机运转特性曲线、运转特性曲线的绘制、效率修正、飞逸转速。
水轮机台数和型号的确定,用图表选择水轮机主要参数的方法,水轮机选型中方案比较概念。
第四章水轮机调速设备水轮机调节的任务、水轮机调速器的基本原理、调速器的动特性和静特性、调速器的类型。
第五章水电站的典型布置及组成建筑物水电站的典型布置:坝式、河床式、引水式。
水电站的组成建筑物:挡水建筑物、泄水建筑物、水电站进水建筑物、水电站引水建筑物、水电站平水建筑物、发电、受电和配电建筑物、其它建筑物。
第六章水电站的进水建筑物水电站的进水建筑物的功用和要求。
调压室水力计算的电算法简介
调压室水力计算的电算法简介电算法与常用的解析法和图解法相比,具有计算理论严密,简化假设少,速度快,精度高,可以计算不同类型的调压室在各种工况下的涌波全过程并可与水锤、机组转速变化联合求解等许多优点。
尤其在研究某参数对调压室水位变化过程的影响时,电算法更为便利。
进行调压室水位波动计算时,以水轮机、阀门的出流方程作为边界条件,从某种已知初始状态开始,采用四阶龙格-库塔数值积分法求解调压室水流连续方程和隧洞水流动力方程。
本节仅介绍阻抗式、简单式调压室的水位波动计算,给出IBM-PC/XT机FORTRAN语言的计算程序及计算实例。
对程序稍加修改,便可用于某些布置方式较特殊的调压室波动计算。
一、调压室水位波动的基本微分方程调压室的基本方程为:.连续方程2.动力方程式中Q——隧洞中的流量;——压力管道中的流量;F——调压室的截面积;Z——调压室水位;——上游水库水位;K——调压室阻抗水头损失系数;——调压室中的流量,以进人调压室时为正;R——隧洞的沿程损失和局部损失系数;g——重力加速度;A——隧洞的截面积;L——隧洞的长度。
如已知出流变化规律,则,可以根据四阶龙格-库塔法来逐步求解式(15-53)和式(15-54)。
二、龙格-库塔法计算公式如已知t时刻的、值,则可以根据以下公式来求t十△t时刻的、之值。
三、程序框图程序框图如图15-25所示。
图15-25 计算框图四、程序中所用符号的意义NS——调压室高程—截面曲线已知点数。
ZA (I, J)——调压室高程—截面曲线。
共I行,每行二列,分别为一个高程值及相应的调压室截面积。
ZA(I,1)为高程,ZA(I,2)为面积。
HR——上游水库水位,m。
TS——水轮机导叶或阀门关闭或开启时间,s。
KI——水流流进调压室时的阻抗系赦,即为中的系数,单位为。
K0——水流流出调压室时的阻抗系数,。
Q0——起始流量,。
QE——终止流量,。
Z——起始时调压室中的水位,m。
L——从水库到调压室处的引水隧洞长度,m。
调压室水力实验
水电站课程教学实验之(二)调压室水力实验前修课程:水力学、水工建筑物、水电站。
开课对象:水利水电工程专业学生。
一、实验目的1.增强对调压室水力现象的感性认识,验证和巩固理论知识;2.初步了解进行水电站水力模型试验的方法;3.密切理论和实践的联系,培养运用所学理论知识分析实际问题的能力。
二、实验任务和要求利用调压室实验台的阻抗式调压室和差动式调压室进行下列试验:1.观察并记录上水箱在高水位(cm)时,流量由(L/s)突然减少至零(相当于水电站正常水位丢弃全部负荷)阻抗式和差动式调压室中水位波动过程及稳定所需要的时间。
2.观察并记录上水箱在低水位(cm)时,流量由零突然增至(L/s)(相当于水电站死水位增加部分负荷情况)及丢弃全部负荷第二振幅涌浪水位,阻抗式和差动式调压室水位波动过程中全部水力现象,以确定其最低涌浪水位,水位稳定所需要的时间,观察调压室内水位波动衰减过程。
3.观察并记录不同管道长度以及不同阻抗孔口面积对调压室水位波动幅值的影响。
三、实验设备及模型数据1.实验设备调压室水力模型由上水箱、管道、调压室、阀门、电磁流量计、下水箱及循环水泵几部分组成(见附图):水由循环水泵从下水箱抽到上水箱后,通过管道流经调压室,然后由管道引至电磁流量计(以测定通过管道的流量)最后流回下水箱,形成循环流动。
在回水管道上设有手动快速阀及尾水闸阀,前者用以快速改变水管流量使调压室中水位产生波动,后者用以调节流量以满足实验要求。
在差动式调压室的大井井壁及升管上设有标尺,可直接读出水位波动的最高和最低值,以及引水管道至调压室的水头损失hw,波动稳定时间可用秒表测定。
阻抗式调压室水位波动过程中的最高水位、最低水位以及上下两个水箱中的水位,都可以通过固定在相应位置的标尺,用目测方法人工记录。
差动式调压室和阻抗式调压室中的水位波动过程线和管道中的流量可由计算机数据采集系统完成,过程如下:LGY-3A型浪高仪将调压室水位的波动过程变成电压信号送到计算机数据采集系统,LDZ-4B型电磁流量计将输水管引用流量转换成电压信号送到计算机,计算机数据采集系统自动记录这些信号,并存储到硬盘中,供计算分析使用。
调压室水力计算
调压室的水力计算1. 调压室断面计算当上游死水位,下游为最低水位,最小水位=188.9m,三台机满发,引水道糙率取最小值,压力管道糙率取最大值,通过水轮机的流量为57,则此时的引水隧洞水头损失的计算如表格1,压力钢管水头损失的计算如表格2。
引水道应选可能的最小糙率0.012,压力管道应选择可能的最大糙率0.013。
表格1引水隧洞水头损失表流量(m3/s)沿程水头损失(m)局部水头损失(m)平均糙率(n=0.014)最大糙率(n=0.016)最小糙率(n=0.012)57 24.231 31.649 17.802 0.296 38 10.769 14.066 7.911 0.132 19 2.692 3.516 1.978 0.033表格2压力钢管水头损失表流量(m3/s)沿程水头损失(m)局部水头损失(m)平均糙率(n=0.012)最大糙率(n=0.013)最小糙率(n=0.011)57 2.650 3.110 2.226 2.805 38 1.497 1.757 1.257 1.962 19 0.729 0.856 0.612 0.824托马断面面积:其中——最小水头损失,;——引水隧洞损失,=17.802+0.296=18.098;——压力管道水头损失,=3.110+2.805=5.915m;L——引水隧洞长度,12662m;g——重力加速度,g=9.81m/——引水隧洞面积,。
——引水道阻力系数为了保证大波动的稳定,一般要求调压室断面大于托马斯断面,初步分析时可取(1.01.1),作为调压室的设计断面。
这里选取D=7.8m,则系数k为:47.784=1.052. 最高涌波水位计算按正常蓄水位时共用同一调压室的三台机组全部满载运行瞬时丢弃全部负荷(即流量由减至流量)作为设计工况。
引水隧洞的糙率取尽可能的最小值(能耗少,涌波高)。
n=0.012引水道损失由表格1和表格2得:为时段开始时管中流速;f为引水隧洞断面面积。
水电站调压室的水力计算与设计条件选择
况作为起始状态, 单纯计算丢弃负荷或增加负荷后 形成的涌波水位。有的资料认为电站在 先增负荷 后甩负荷 或 先甩负荷后增负荷 时调压室的振幅 会更大, 不利工况叠加形成的最高、 最低涌波水位, 以及差动式调 压室的升管与大室之间 的最大水位 差 , 较之单一工况变化 , 其水位波动会更加严重。 在调压室设计时如果按最不利工况叠加进行水 力计算 , 则调压室会很不经济, 但若不顾及电站运行 中可能出现的不利工况的叠加, 也有可能会给电站 的安全运行带来灾难性的后果。因此, 正确分析计 算调压室的各种不利涌波叠加, 合理选取设计标准, 制定严格的运行规定是十分必要的。 电站机组丢弃负荷工况是不能控制的, 但增加 负荷的工况是可以控制的。因此, 在调压室水力设 计和制订电站运行方式时, 应根据实际可行的情况, 研究拟定多台机组连续开机的最短时间间隔、 分级 增荷的幅度、 全部丢弃负荷后重新开机的时间间隔 等参数, 合 理确定调压室尺寸 , 并据此 制订运行方 式。 3 结 语
Abstract: T his paper introduces t he hydraulic calculation charact eristics of pressure adjust ment room of hydraulic pow er stat ion, and analyses t he design condition of reasonable choice of pressure adjust ment room. Key words: pressure adjust ment room; hydraulic com put ion; design condit ion; hydraulic power st at ion 目前我国修建了许多带调压室的水电站, 其中 有些电站的引水隧洞长度超过了 5 km 。随着我国 电网容量的扩大 , 同时火电站 ( 包括原子能电站 ) 的 单机容量逐步增加, 为保证供电质量, 特别是当电网 内机组或线路出现故障的时候 , 将导致系统频率下 降, 这就要求水电站的事故备用机组能迅速投入电 网运行, 对于担任调峰调频任务的水电机组, 同时还 必须要保证电力系统运行的灵活性。但对于带调压 室的水电站, 特别是引水隧洞较长时, 由于调压室本 身的特点 , 对于不适当的增、 减负荷就有可能造成调 压室水位超过允许的最高、 最低水位( 对于差动式调 压室可能使升管与大室的水位差过大) 。因此 , 在调 压室设计和电站运行中, 必须兼顾电网调度的灵活 性和调压室的自身安全性, 正确进行调压室水力设 计, 并且制定出严格的运行操作规程。 1 忽略水头损失时简单圆筒式调压室的水位变化 过程 对于简单圆筒式调压室, 其水位波动的基本方 程式
水电站 调压室
2.下游调压室的设置条件 在有压尾水道中,为了减小甩负荷时尾水管中的 真空度,避免水轮机停机时连续水流的间断,防 止水柱分离,不设尾水调压室的尾水道的临界长 度可按下式初步确定:
L w:压力尾水道的长度m; V :稳定运行时尾水管的流速m /s;
V d:尾水管入口处的流速m /s;▽:水轮机安装
5.水轮机效率的影响
假定水轮机的效率η为常数,实际上,水轮 机的效率随着水头和流量的变化而变化, 对于单独运行的水电站,当调速机保持出 力为常数时,建议按下式计算:
H——恒定情况下水轮机的净水头; △——水轮机效率变化的无因次系数: 调压室的临界断面决定于水电站在最低水头运行 之时,即相应于效率曲 线的左边, 为正 故效率的变化对波动衰 减不利。
二、对调压室的基本要求
(1) 调压室的应尽量靠近厂房,以缩短压力管道 的长度。 (2) 能较充分地反射压力管道传来的水锤波。 (3) 调压室的工作必须是稳定的。 (4) 正常运行时,水头损失要小。为此调压室底 部和压力管道连接处应具有较小的断面积,以减 小水流通过调压室底部的水头损失。 (5) 工程安全可靠,施工简单方便,造价经济合 理。
(二)大波动的稳定性
当调压室的水位波动振幅较大时,不能再近似地 认为波动是线性的。因此,托马条件不能直接应 用在大波动。非线性波动的稳定问题是一个困难 问题,目前还没有可供应用的严格的理论解 答。 研究证明,如小波动的稳定性不能保证, 则大波动必然不能衰减。为了保证大波动衰减, 调压室的断面必须大于临界断面,并有一定的安 全余量,一般乘以1.05~1.1,目前偏向于采用较 小的数字。
又有:
(10-39)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七节调压室水力计算条件的选择
调压室的基本尺寸是由水力计算来确定的,水力计算主要包括以下三方面的内容:
(1)研究“引水道—调压室”系统波动的稳定性,确定所要求的调压室最小断面积。
(2)计算最高涌波水位,确定调压室顶部高程。
(3)计算最低涌波水位,确定调压室底部和压力水管进口的高程。
进行水力计算之前,需先确定水力计算的条件。
调压室的水力计算条件,除去水力条件之外,还应考虑到配电及输电的条件。
在各种情况中,应从安全出发,选择可能出现的最不利的情况作为计算的条件。
现讨论如下。
1.波动的稳动性计算
调压室的临界断面,应按水电站在正常运行中可能出现的最小水头计算。
上游的最低水位一般为死水位,但如电站有初期发电和战备发电的任务,这种特殊最低水位也应加以考虑。
引水系统的糙率是无法精确预侧的,只能根据一般的经验选择一个变化范围,根据不同的设计情况,选择偏于安全的数值。
计算调压室的临界断面时,引水道应选用可能的最小糙率,压力管道应选用可能的最大糙率。
流速水头、水轮机的效率和电力系统等因素的影响,一般只有在充分论证的基础上才加以考虑。
2.最高涌波水位的计算
上游水库水位应取正常高水位,引水道的糙率应取可能的最小值,负荷的变化情况一般按丢弃全负荷设计。
最高洪水位丢弃全负荷或部分负荷进行校核。
如电站的机组和出线的回路数较多,而且母线分段,经过分析,电站没有丢弃全负荷的可能,也可不按丢弃全负荷计算。
对于丢弃全负荷情况,可假定由最大流量减小至空转流量;为了安全,有人认为应按丢弃至零计算。
3.最低涌波水位的计算
上游水库水位应取可能的最低水位,引水道的糙率应取可能的最大糙率。
确定最不利的增荷情况比确定最不利的丢荷情况更加困难。
增加负荷对调压室的工作比丢弃负荷更危险,如计算不正确,可能使引水道和压力管道进入空气,破坏建筑物和机组正常的运行。
在技术设计阶段,增
加负荷的条件应根据设计电站在系统中的工作情况,经专门研究确定,并应考虑系统将来的发展。
在初步设计阶段,可采用其余所有机组都已满负荷运行,而最后一台机组投人运行的情况作为设计情况,若电站机组多于3台时,最后加入的容量,应不小于电站总容量的1/3。
此外,应计算丢弃全负荷后水位波动的第二振幅,以检验其是否低于增荷时的最低涌波水位,此时,上游水位应取可能的最低水位,糙率应取可能最小值。
如果调压室波动的衰减时间相当长,这时还应补充研究电站在丢弃负荷后不久又重新带上负荷(或相反,带上负荷不久后又丢弃负荷)引起波动叠加的可能,这一点也说明调压室波动迅速衰减是很重要的。