相似三角形判定练习题
相似三角形判定练习题
相似三角形判定练习题### 相似三角形判定练习题一、选择题1. 下列各组三角形中,一定相似的是()A. 等腰三角形与直角三角形B. 等边三角形与等腰三角形C. 等腰直角三角形与直角三角形D. 等腰三角形与等边三角形2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 一定相似C. 不一定相似D. 以上都不对3. 三角形ABC与三角形DEF相似,若AB:DE=2:3,那么AC:DF的比值为()A. 2:3B. 3:2C. 1:1D. 无法确定二、填空题4. 若三角形ABC与三角形DEF相似,且∠A=∠D,∠B=∠E,则∠C=______。
5. 三角形ABC与三角形DEF相似,若AB=6cm,DE=9cm,则BC:EF的比值为______。
6. 如果三角形ABC与三角形DEF相似,且AB=4cm,AC=6cm,DE=6cm,那么DF的长度为______。
三、判断题7. 如果两个三角形的对应边成比例,则这两个三角形一定相似。
()8. 三角形ABC与三角形DEF相似,如果∠A=∠D,∠B=∠E,那么∠C=∠F。
()9. 三角形ABC的周长是三角形DEF的2倍,那么三角形ABC与三角形DEF相似。
()四、简答题10. 已知三角形ABC与三角形DEF相似,且AB:DE=3:4,BC:EF=2:3,求AC:DF的比值。
11. 根据相似三角形的性质,如果一个三角形的三个内角的度数分别是40°,50°,90°,那么与它相似的另一个三角形的三个内角的度数分别是多少?12. 如果三角形ABC的面积是三角形DEF的9倍,且AB=6cm,DE=4cm,求三角形ABC的面积与三角形DEF的面积的具体数值。
五、解答题13. 在三角形ABC中,已知∠A=70°,∠B=40°,求∠C的度数,并判断三角形ABC是否为直角三角形。
14. 已知三角形ABC与三角形DEF相似,且AB=5cm,BC=7cm,DE=10cm,求三角形ABC的周长。
相似三角形的判定与性质练习题(附答案)
相似三⾓形的判定与性质练习题(附答案)相似三⾓形的判定与性质练习题⼀、单选题1.如果两个相似三⾓形的相似⽐是1:2, 那么这两个相似三⾓形的⾯积⽐是( ) A.2:1B. 1:2C.1:2D.1:42.如图,点D 是△ABC 的边AB 上的⼀点,过点D 作BC 的平⾏线交AC 于点E,连接BE,过点D 作BE 的平⾏线交AC 于点F,则下列结论错误的是( )A.AD AEBD EC =B. AF DF AE BE =C. AE AF EC FE =D. DE AF BC FE= 3.下列四条线段中,不能组成⽐例线段的是() A.3,6,2,4a b c d ==== B.1,2,3,6a b c d ====C.4,6,5,10a b c d ====D.2,5,23,15a b c d ====4.如图,在ABC ?中,点D 、E 分别在边AB 、AC 上,下列条件中不能判断ABC AED ~△△ ( )A. AED B ∠=∠B. ADE C ∠=∠C.AD ACAE AB=D.AD AEAB AC=5.如图27-4-4,在四边形ABCD 中,BD 平分,90,ABC BAD BDC E ∠∠=∠=°为BC 的中点,AE 与BD 相交于点F.若4,30BC CBD =∠=°,则DF 的长为( )A.235B.233C.334D.4356.如图,在中,E是边AD的中点,EC交对⾓线BD于点F,则:EF FC等于( )A.3:2B.3:1C.1:1D.1:27.如图,点A,B,C,D的坐标分别是(1,7),(11),,(41),,(61),,以C,D,E为顶点的三⾓形与△ABC相似,则点E的坐标不可能是()A.(60),B.(63),C.(65),D.(42),8.如图,在正⽅形⽹格上,若使△ABC∽△PBD,则点P应在处( )A.P1B.P2C.P3D.P49.如图所⽰,在平⾏四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )A.1:3B.1:4C.2:3D.1:210.如图,在等边三⾓形ABC 中,D 、E 分别在AC 、AB 上,且AD ︰AC=1︰3,AE=BE,则有( )A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD11.如图所⽰,四边形ABCD 是正⽅形,E 是CD 的中点,P 是BC 边上的⼀点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P 是BC 的中点;④BP:BC=2:3.其中能推出△ABP∽△ECP 的有( )A.4个B.3个C.2个D.1个 12.如图,在ABC △中,CB CA =,90ACB ∠?=,点D 在边BC 上(与,B C 不重合),四边形ADEF 为正⽅形,过点F 作FG CA ⊥,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:AC FG =;四边形1:2FAB 四边形CBFG S :S =△③ABC ABF ∠=∠;④2AD FQ AC =,其中正确结论有()A.1个B.2个C.3个D.4个13.如图,点A 在线段BD 上.在BD 的同侧作等腰Rt ABC △和等腰Rt ADE △,CD 与BE ,AE 分别交于点,P M .对于下列结论:① BAE CAD △△;②MP MD MA ME ?=?;③22CB CP CM =?.其中正确的是( )A.①②③B.①C.①②D.②③14.如图,在平⾏四边形ABCD 中, E 为CD 上⼀点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,:4:25DEF ABF S S ??=,则:?DE EC = ( )A. 2:3B. 2:5C. 3:5D. 3?:?2 ⼆、证明题15.如图,已知,,B C E 三点在同⼀条直线上,ABC △与DCE △都是等边三⾓形.其中线段BD 交AC 于点G ,线段AE 交CD 于点F ,连接GF .求证:(1)ACE BCD ?△△;(2)AG AFGC FE=. 16.如图,在等边三⾓形ABC 中,点P 是BC 边上任意⼀点,AP 的垂直平分线分别交,AB AC 于点,M N .求证:BP CP BM CN ?=?.17.如图,D BC 已知是边上的中点,且AD AC =,DE BC ⊥,DE BA E 与相交于点,EC AD F 与相交于点.(1)求证:ABCFCD △△;(2)若5FCD S =△,10BC =,求DE 的长18.如图,已知AD 平分BAC ∠, AD 的垂直平分线EP 交BC 的延长线于点P . 求证:2.PD PB PC =?19.如图,//AB FC ,D 是AB 上⼀点,DF 交AC 于点E ,DE FE =,分别延长FD 和CB 交于点G(1)求证:ADE CFE ?△△;(2)若2GB =,4BC =,1BD =,求AB 的长.20.如图,在ABCD 中,,AM BC AN CD ⊥⊥,垂⾜分别为,M N .求证:(1)AMB AND △△;(2)AM MNAB AC=. 三、解答题21.如图,在4x3的正⽅形⽅格中,ABC △和DEC △的顶点都在边长为1的⼩正⽅形的顶点上.(1) 填空:ABC ∠= ,BC = ; (2) 判断ABC △和DEC △是否相似,并证明你的结论.22.如图,在平⾯直⾓坐标系中,已知OA=12厘⽶,OB=6厘⽶,点P 从点O 开始沿OA 边向点A 以1厘⽶/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘⽶/秒的速度移动.如果P,Q 同时出发,⽤t(秒)表⽰移动的时间(0≤t≤6),那么1.设△POQ 的⾯积为y,求y 关于t 的函数关系式;2.当t 为何值时,△POQ 与△AOB 相似.23.如图,已知矩形ABCD 的⼀条边8AD =,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.已知折痕与边BC 交于点O ,连接,,.AP OP OA(1)求证:OCP PDA △△;(2)若OCP △与PDA △的⾯积⽐为1:4,求边AB 的长.24.如图,在平⾯直⾓坐标系xOy 中,直线3y x =-+与x 轴交于点C ,与直线AD 交于点45(,)33A ,点D 的坐标为(0)1,.(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上⼀动点(不与点B 重合),当BOD △与BCE △相似时,求点E 的坐标.25.如图,在矩形ABCD 中,12AB = cm ,6BC = cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P ,Q 同时出发,⽤()t s 表⽰移动的时间(06t ≤≤),那么:(1)当t 为何值时,QAP △为等腰直⾓三⾓形?(2)对四边形QAPC 的⾯积,提出⼀个与计算结果有关的结论(3)当t 为何值时,以点Q ,A ,P 为顶点的三⾓形与ABC △相似?四、填空题26.如图,在直⾓梯形ABCD 中, 90ABC ∠=,//AD BC ,4AD =,5AB =,6BC =,点P 是AB 上⼀个动点,当PC PD +的和最⼩时, PB 的长为__________.27.如图,若AB∥CD,则△__________∽△__________,__________=__________=AOCO.28.如图,在等边三⾓形ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且90ADF BED CFE ∠=∠=∠=?,则DEF ?与ABC ?的⾯积之⽐为__________29.已知578a b c==,且329a b c -+=,则243a b c +-的值为 . 30.如图,已知在Rt ABC △中,5,3AB BC ==,在线段AB 上取⼀点D ,作DE AB ⊥交AC 于E ,将ADE △沿DE 析叠,设点A 落在线段BD 上的对应点为11,A DA 的中点为,F 若1FEA FBE △△,则AD= .31.已知:如图,在△ABC 中,点A 1,B 1,C 1分别是BC 、AC 、AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点,依此类推….若△ABC 的周长为1,则△A n B n C n 的周长为__________.32.如图,正三⾓形ABC 的边长为2,以BC 边上的⾼1AB 为边作正三⾓形11AB C ,ABC △与1ABC △公共部分的⾯积记为1S ,再以正三⾓形11AB C 的边1C 上的⾼2AB 为边作正三⾓形22AB C ,11AB C △与22AB C △公共部分的⾯积记为2S ,……,以此类推,则n S = .(⽤含n 的式⼦表⽰,n 为正整数)33.如图,在正⽅形ABCD 中,点E 是BC 边上⼀点,且 : 2:1,BE EC AE =与BD 交于点F ,则AFD △与四边形DFEC 的⾯积之⽐是 .34.如图,在△ABC 中,∠C=90°,BC=16cm,AC=12cm,点P 从点B 出发,沿BC 以2 cm /s 的速度向点C 移动,点Q 从点C 出发,以1cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts,当t=__________时,△CPQ 与△CBA 相似.35.如图,在正⽅形ABCD 中,E 是BC 的中点,F 是CD 上⼀点,且1,4CF CD =下列结论: ①30BAE ∠=°; ②;ABE ECF △△③AE EF ⊥; ④ADF ECF △△.其中正确结论是 .(填序号)36.如图27-4-9,在ABC △中,90,8m 10m,C BC AB ∠===,°点 P 从B 点出发,沿BC ⽅向以2m/s 的速度移动,点Q 从C 出发,沿CA ⽅向以1m/s 的速度移动.若P Q 、同时分别从B C 、出发,经过____________s,CPQ CBA △△~.37.如图24-4-10,ABC △的两条中线AD 和BE 相交于点G ,过点E 作//EF BC 交AD 于点F ,则FGAG=________.参考答案1.答案:C 解析:2.答案:D 解析:3.答案:C解析:A 选项,因为3:62:4=,所以,,,a b c d 四条线段成⽐例B 选项,因为232,2226==,所以,,,a b c d 四条线段成⽐例C 选项,因为4:56:10≠,所以,,,a b c d 四条线段不成⽐例D 选项,因为252325,55515==,所以,,,a b c d 四条线段成⽐例故选C 4.答案:D解析:∵DAE CAB ∠=∠,∴当AED B ∠=∠或ADE C ∠=∠时,由两⾓分别相等的两个三⾓形相似,可以得出ABC AED ~△△; 当AD ACAE AB=时,由两边成⽐例且夹⾓相等的两个三⾓形相似,可得ABC AED ~△△. 只有选项D 中条件不能判断ABC AED ~△△,故选D. 5.答案:D解析:如图,在Rt BDC △中,4,30,BC CBD =∠=°2,2 3.CD BD ∴=∴=连接,90,DE BDC ∠=°,点E 是BC 中点,12.2DE BE CE C ∴====30,30,CBD BDE DBC ∠=∴∠=∠=°°,30,BD CBC ABD DBC ∠∴∠=∠=°,//,,ABD BDE DE AB DEF BAF ∴∠=∠∴∴△△~.DF DE BF AB∴=在Rt ABD △中,230,23,3,,3DF ABD BD AD BF ∠==∴=∴=°22243,23,555DF DF BD BD ∴=∴==?=故选D.6.答案:D解析:在中, //AD BC ,∴DEF BCF ?~?,∴DE EFBC CF=. ∴点E 是边AD 的中点,∴12AE DE AD ==,∴12EF CF =. 7.答案:B解析:ABC ?中, 90,6,3,:2ABC AB BC AB BC ∠====.A 、当点E 的坐标为()6,0时, 90,2,1CDE CD DE ∠===,则::,AB BC CD DE CDE ABC =?~?,故本选项不符合题意;B 、当点E 的坐标为()6,3时, 90,2,2CDE CD DE ∠===,则::,AB BC CD DE CDE ≠?与ABC ?不相似,故本选项符合题意;C 、当点E 的坐标为()6,5时, 90,2,4CDE CD DE ∠===,则::,AB BC DE CD EDC ABC =?~?,故本选项不符合题意;D 、当点E 的坐标为()4,2时, 90,2,1ECD CD CE ∠===,则::,?AB BC CD CE DCE ABC =?~?,故本选项不符合题意; 故选:B. 8.答案:C 解析:从图中可知,要使△ABC 与△PBD相似,根据勾股定理,得BC =BD =12BC AB BD BP ===,因为AB=2,那么BP=4,故选择P 3处 . 考点:相似三⾓形点评:该题主要考查学⽣对相似三⾓形概念的理解,以及对其性质的应⽤。
4.5 相似三角形判定定理的证明(分层练习)(解析版)
第四章 图形的相似4.5 相似三角形判定定理的证明精选练习一、单选题1.(2022·全国·九年级课时练习)ABC V 和A B C ¢¢¢V 符合下列条件,其中使ABC V 与A B C ¢¢¢V 不相似的是( )A .45A A ¢Ð=Ð=°,26B Ð=°,109B ¢Ð=°B .1AB =, 1.5AC =,2BC =,12A B ¢¢=,8A C ¢¢=,16B C ¢¢=C .A B ¢Ð=Ð, 1.5AB =,1514AC =,32A B ¢¢=, 2.1B C ¢¢=D .BC a =,AC b =,AB c =,B C ¢¢=A C ¢¢=A B ¢¢=【点睛】本题主要考查了相似三角形的判定,三角形内角和定理,解题的关键在于能够熟练掌握相似三角形的判定条件.V斜边上的高,则图中相似三角形的对数有()2.(2022·全国·九年级课时练习)如图,CD是Rt ABCA.0对B.1对C.2对D.3对【答案】D【分析】直角三角形斜边上的高线分原三角形所得到的两个三角形与原三角形相似,由此即可解答.【详解】由题意得:△ADC∽△ACB;△ADC∽△CDB;△CDB∽△AC B.故选D.【点睛】本题解决的关键是熟知直角三角形斜边上的高线分原三角形所得到的了两个三角形与原三角形相似这一定理.3.(2022·全国·九年级课时练习)在△ABC和△A1B1C1中,下列四个命题(1)若AB=A1B2,AC=A1C1,∠A在∠A,则△ABC≌△A1B1C1;(2)若AB=A1B2,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个【答案】B【分析】分别利用相似三角形的判定和全等三角形的判定定理进行判断即可得到正确的选项.【详解】解:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,能用SAS定理判定△ABC≌△A1B1C1,故(1)正确;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,不能用ASS判定△ABC≌△A1B1C1,故(2)错误;(3)若∠A=∠A1,∠C=∠C1,能判定△ABC∽△A1B1C1,故(3)正确;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,能利用两组对应边的比相等且夹角相等的两三角形相似判定△ABC∽△A1B1C1,故(4)正确.正确的个数有3个;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是掌握三角形全等和相似的判定方法.4.(2021·黑龙江·肇源县第五中学八年级期中)如图,在ABC V 中,点P 在边AB 上,则在下列四个条件中:ACP B Ð=Ð①;APC ACB Ð=Ð②;2AC AP AB =×③;AB CP AP CB ×=×④,能满足APC V 与ACB V 相似的条件是( )A .①②④B .①③④C .②③④D .①②③【答案】D 【分析】根据相似三角形的判定定理,结合图中已知条件进行判断.【详解】当ACP B Ð=Ð,A A Ð=ÐQ ,所以APC V ∽ACB V ,故条件①能判定相似,符合题意;当APC ACB Ð=Ð,A A Ð=ÐQ ,所以APC V ∽ACB V ,故条件②能判定相似,符合题意;当2AC AP AB =×,即AC :AB AP =:AC ,因为A AÐ=Ð所以APC V ∽ACB V ,故条件③能判定相似,符合题意;当AB CP AP CB ×=×,即PC :BC AP =:AB ,而PAC CAB Ð=Ð,所以条件④不能判断APC V 和ACB V 相似,不符合题意;①②③能判定相似,故选:D .【点睛】本题考查相似三角形的判定,熟练掌握判定定理是解题的关键.5.下列各组图形必相似的是( )A .任意两个等腰三角形B .两边为1和2的直角三角形与两边为2和4的直角三角形C .有两边对应成比例,且有一个角对应相等的两三角形D .两边及其中一边上的中线对应成比例的两三角形【答案】D【分析】根据相似三角形的判定定理可分别判断各选项是否足以证明三角形相似,从而判断选项的正确性.【详解】A. 任意两个等腰三角形,各内角的值不确定,故无法证明三角形相似,故本选项错误;B.因为不能判定已知边2和4是直角边还是斜边,故无法判定三角形相似,故本选项错误;C. 两边对应成比例,必须夹角相等才能判定三角形相似,故本选项错误;D. 两边和一边的中线均对应成比例,即可以判定两三角形中对应成比例的边的夹角相等,即可判定三角形相似,故本选项正确.故本题选D.【点睛】本题考查相似三角形的判定定理.熟练掌握相似三角形的判定定理,能根据相似三角形的判定定理判断是否满足判定条件是解决本题的关键.6.(2022·河北唐山·九年级期末)图中四个阴影的三角形中与△ABC 相似的是( )A .B .C .D .二、填空题7.(ΔABC 与△DEF 中,65A Ð=°,42B Ð=°,65D Ð=°,73F Ð=°,3AB =,5AC =,6BC =,6DE =,10DF =,12EF =,则△DEF 与△ABC ________【答案】相似【分析】根据相似三角形的判定方法解答即可.【详解】∵65A Ð=°,42B Ð=°,∴∠C =180°-65°-42°=73°.∵65D Ð=°,73F Ð=°,∴∠A =∠D, ∠C =∠F,∴△DEF 与△ABC 相似.故答案为相似.【点睛】本题考查了相似三角形的判定方法,相似三角形的判定方法有:①对应角相等,对应边成比例的两个三角形叫做相似三角形;②平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;③两角相等的两个三角形相似;④两边对应成比例,且夹角相等的两个三角形相似判定即可;⑤三边对应成比例的两个三角形相似.8.(2021·全国·九年级专题练习)如图,已知,90ACB ADC Ð=Ð=o ,3BC =,4AC =,要使ABC ACD V V ∽,只要CD =________.9.如图所示,D ,E 分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足________条件时,有△ABC ∽△AE D .10.(2022·全国·九年级课时练习)如图,8AB =,50A Ð=゜,''4A B =,''3A C =.当AC =________,'A Ð=________时,'''ABC A B C V V ∽.三、解答题11.(2022·全国·九年级课时练习)已知:如图,在△ABC 和△A ′B ′C ′中,∠A =∠A ′,∠B =∠B ′.求证:△ABC ∽△A ′B ′C ′.【答案】证明见解析【分析】在△ABC 的边AB 上截取AD =A ′B ′,过点D 作BC 的平行线,交AC 于点E ,可证△ADE ∽△ABC ;再证△ADE ≌△A ′B ′C ′即可.【详解】证明:在△ABC 的边AB 上截取AD =A ′B ′,过点D 作BC 的平行线,交AC 于点E ,则∠ADE =∠B ,△ADE ∽△AB C .∵∠A =∠A ′,∠ADE =∠B =∠B ′,AD =A ′B ′,∴△ADE ≌△A ′B ′C ′,∴△ABC ∽△A ′B ′C ′【点睛】本题考查了相似三角形的判定定理的证明,解题关键是通过作辅助线,构建全等三角形进行证明.12.(2021·全国·九年级课时练习)已知:如图,在ABC V 和A B C ¢¢¢V 中,,AB AC A A A B A C Ð=Т=¢¢¢¢.求证:ABC A B C ¢¢¢∽△△.一、填空题1.(2018·上海第二工业大学附属龚路中学九年级阶段练习)ABC D 中,10AB =,6AC =,点D 在AC 上,且3AD =,若要在AB 上找一个点E ,使ADE D 与ABC D 相似,则AE =__.2.已知△ABC 和△DEF 中.点A 、B 、C 分别与点D 、E 、F 相对应.且∠A =70°时,∠B =34°,∠D =70°,则当∠F =_____时,△ABC ∽△DEF .【答案】76°【分析】利用两对角相等的三角形相似即可作出判断.【详解】∵△ABC 和△DEF 中.点A 、B 、C 分别与点D 、E 、F 相对应.且∠A =70°时,∠B =34°,∠D =70°,∴∠B =∠E =34°,∴∠C =∠F =76°,故答案为76°【点睛】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.3.(2022·山东烟台·八年级期末)如图,在ABCD Y 中,点E 在AB 上,CE BD ,交于点F ,若:4:3AE BE =,且2BF =,则DF =_________.4.如图,在△AB C中,点P在AB上,下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件有______________.【答案】①②③【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【详解】①、当∠ACP=∠B,∵∠A=∠A,∴△APC∽△ACB,∴①符合题意;②、当∠APC=∠ACB,∵∠A=∠A,∴△APC∽△ACB,∴②符合题意;③、当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A∴△APC∽△ACB,∴③符合题意;④、∵当AB•CP=AP•CB,即PC:BC=AP:AB,而∠PAC=∠CAB,∴不能判断△APC和△ACB相似,∴④不符合题意;故答案为①②③.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.5.如图所示,在△AB C中,AB=8cm,BC=16 cm.点P从点A出发沿AB向点B以2 cm/s的速度运动,点Q从点B出发沿BC向点C以4 cm/s的速度运动.如果点P,Q分别从点A,B同时出发,则_____________秒钟后△PBQ与△ABC相似?情况讨论,避免漏解而导致出错.二、解答题6.(2022·全国·九年级课时练习)如图,123Ð=Ð=Ð,求证:ABC D 与ADE D 相似.【答案】证明见解析【分析】两个三角形的若是有两组角相等,那么这两个三角形是相似三角形.根据题意可分别求出两组角相等,从而知道△ABC 与△ADE 相似.【详解】∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,即∠BAC =∠DAE ,又∵在△AHE 和△DH C 中,∠2=∠3,∠AHE =∠DHC∴∠C =∠E ,在△ABC 和△ADE 中∵∠E =∠C ,∠BAC =∠DAE ,∴△ABC ∽△ADE .【点睛】本题考查相似三角形的判定定理,两个三角形的两组角对应相等,那么这两个个三角形互为相似三角形.7.(2022·甘肃酒泉·九年级期末)如图,在△AB C 中,AB =8cm ,BC =16cm ,点P 从点A 开始沿边AB 向点B 以2cm/s 的速度移动,点Q 从点B 开始沿边BC 向点C 以4cm/s 的速度移动,如果点P 、Q 分别从点A 、B 同时出发,经几秒钟△PBQ 与△ABC 相似?试说明理由.8.如图已知,在△AB C中,CD⊥AB,BE⊥AC,BE交CD于点O,求证:△ABE∽△OCE.【答案】证明见解析.【分析】要证明△ABE∽△OCE,需先找对证明两三角形相似的条件,根据已知条件找出即可证明.【详解】Q CD⊥AB,BE⊥AC,\∠AEB=∠ADC=90°.又∠A=∠A,\∠ABE=∠OCE.又Q∠AEB=∠OEC,\△ABE∽△OCE.【点睛】此题重点考察学生对证明两三角形相似的理解,熟练两三角形相似的证明方法是解题的关键.。
《相似三角形的判定》练习题
第 1 页《相似三角形的判定》练习题相似三角形的判定1、定义:对应角相等,对应边成比例的三角形相似2、引理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似3、判定定理1:两角对应相等,两三角形相似4、判定定理2:两对应边成比例且夹角相等,则两三角形相似5、判定定理3:三边对应成比例,则两三角形相似6、直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似一、选择题1、下列各组图形必相似的是()A 、任意两个等腰三角形B 、两条边之比为2:3的两个直角三角形C 、两条边成比例的两个直角三角形D 、斜边和一条直角边对应成比例的两个直角三角形2、如图,CD BC OB OA AOD ,900,那么下列结论成立的是()A 、OAB ∽OCA B 、OAB ∽ODA C 、BAC ∽BDA D 、以上结论都不对3、点P 是ABC 中AB 边上一点,过点P 作直线(不与直线AB 重合)截ABC ,使得的三角形与原三角形相似,满足这样条件的直线最多有()A 、2条B 、3条C 、4条D 、5条4、在直角三角形中,两直角边分别为3、4,则这个三角形的斜边与斜边上的高的比是()A 、1225B 、125C 、45D 、355、ABC 中,D 是AB 上的一点,在AC 上取一点E ,使得以A 、D 、E 为顶点的三角形与ABC 相似,则这样的点的个数最多是()A 、0 B 、1 C 、2D 、无数6、如图,正方形ABCD 中,E 是CD 的中点,FC=BC 41,下面得出的六个结论:(1)ABF ∽AEF ;(2)ABF ∽ECF ;(3)ABF ∽ADE ;(4)AEF ∽ECF ;(5)AEF ∽ADE ;(6)ECF ∽ADE ,其中正确的个数是()A 、1个B 、3个C 、4个D 、5个。
相似三角形的判定测试题(含详细解析)
相似三角形的判定测试题(含详细解析)时间:100分钟总分:100一、选择题(本大题共10小题,共30.0分)1.如图,在中,点P在边AB上,则在下列四个条件中::;;;,能满足与相似的条件是A. B. C. D.2.下列的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与相似的是A. B. C. D.3.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形阴影部分与相似的是A. B. C. D.4.如图,在中,,,点D在AC上,且,如果要在AB上找一点E,使与相似,则AE的长为A. B. C. 3 D. 或5.如图,在正方形ABCD中,点E,F分别在BC,CD上,且,将绕点A顺时针旋转,使点E落在点处,则下列判断不正确的是A. 是等腰直角三角形B. AF垂直平分C. ∽D. 是等腰三角形6.如图,在中,点D,E分别在边AB,AC上,下列条件中不能判断∽的是A.B.C.D.7.如图,点D,E分别在的AB,AC边上,增加下列条件中的一个:,,,,,使与一定相似的有A. B. C. D.8.如图,在钝角三角形ABC中,,,动点D从A点出发到B点止,动点E从C点出发到A点止点D运动的速度为秒,点E运动的速度为秒如果两点同时运动,那么当以点A、D、E为顶点的三角形与相似时,运动的时间是A. 4或B. 3或C. 2或4D. 1或69.如图,在中,,,,将沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是A. B.C. D.10.如图,点E是矩形ABCD的边AD的中点,且于点F,则下列结论中错误的是A.B.C. 图中与相似的三角形共有4个D.二、填空题(本大题共10小题,共30.0分)11.如图,已知中,D为边AC上一点,P为边AB上一点,,,,当AP的长度为______ 时,和相似.12.如图,在中,、E分别为边AB、AC上的点,,点F为BC边上一点,添加一个条件:______,可以使得与相似只需写出一个13.在中,,,点D在边AB上,且,点E在边AC上,当______时,以A、D、E为顶点的三角形与相似.14.如图,,,,,,点p在BD上移动,当______时,和相似.15.如图,中,D、E分别是AB、AC边上一点,连接请你添加一个条件,使∽,则你添加的这一个条件可以是______写出一个即可.16.如图所示,中,E,F分别是边AB,AC上的点,且满足,则与的面积比是______ .17.已知在中,,,E是边AB上一点,且,若F是AC边上的点,且以A、E、F为顶点的三角形与相似,则AF的长为______.18.如图,在中,,,,点M在AB边上,且,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则______ .19.如图,在正方形网格上有6个三角形:,,,,,.在中,与相似的三角形的个数是______.三、计算题(本大题共4小题,共24.0分)20.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.求证:≌;求证:∽.21.如图,在中,D、E分别是AB、AC上的点,,,AD::3,的角平分线AF交DE于点G,交BC于点F.请你直接写出图中所有的相似三角形;求AG与GF的比.22.如图,已知,,垂足分别为B、D,AD与BC相交于点E,,垂足为F,试回答图中,∽______ ,∽______ ,∽______ .23.在图中,的内部任取一点O,连接AO、BO、CO,并在AO、BO、CO这三条线段的延长线上分别取点D、E、F,使,画出你认为与相似吗?为什么?你认为它们也具有位似形的特征吗?四、解答题(本大题共2小题,共16.0分)24.如图所示,,,,点P从点B出发,沿BC向点C以的速度移动,点Q从点C出发沿CA向点A以的速度移动,如果P、Q分别从B、C同时出发,过多少时,以C、P、Q为顶点的三角形恰与相似?25.如图,四边形ABCD中,AC平分,,,E为AB的中点.求证:∽;与AD有怎样的位置关系?试说明理由;若,,求的值.答案和解析【答案】1. D2. B3. B4. D5. D6. A7. A8. B9. C10. C11. 4或912. ,或13. 或14. 或12cm或2cm15.16.17. 1:918. 或19. 4或620. 321. 证明:正方形ABCD,等腰直角三角形EDF,,,,,,在和中,,≌;延长BA到M,交ED于点M,≌,,即,,,,,,∽.22. 解:∽,∽,∽;,,,又,∽,,为角平分线,∽,,.23. DAB;BCD;DCE24. 解:相似如图,,,∽,,同理,∽,它们也具有位似形的特征.25. 解:设经过y秒后,∽,此时,.,,,.∽,,设经过y秒后,∽,此时,..∽,所以,经过秒或者经过后两个三角形都相似26. 解:平分,,又,::AB,∽;,理由:∽,,又为AB的中点,,,,,;,,,,,,∽,,.【解析】1. 解:当,,所以∽;当,,所以∽;当,即AC::AC,所以∽;当,即PC::AB,而,所以不能判断和相似.故选D.根据有两组角对应相等的两个三角形相似可对进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对进行判断.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.2. 解:根据勾股定理,,,所以,夹直角的两边的比为,观各选项,只有B选项三角形符合,与所给图形的三角形相似.故选:B.可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题.此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键.3. 解:小正方形的边长为1,在中,,,,A中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故A错误;B中,一边,一边,一边,有,即三边与中的三边对应成比例,故两三角形相似故B正确;C中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故C 错误;D中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故D错误.故选:B.根据相似三角形的判定,易得出的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.本题考查了相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.4. 解:是公共角,当,即时,∽,解得:;当,即时,∽,解得:,的长为:或.故选D.由是公共角,分别从当,即时,∽与当,即时,∽,去分析求解即可求得答案.此题考查了相似三角形的判定注意分类讨论思想的应用.5. 解:将绕点A顺时针旋转,使点E落在点处,,,是等腰直角三角形,故A正确;将绕点A顺时针旋转,使点E落在点处,,四边形ABCD是正方形,,,,,,,垂直平分,故B正确;,,,,∽,故C正确;,但不一定等于,不一定是等腰三角形,故D错误;故选D.由旋转的性质得到,,于是得到是等腰直角三角形,故A正确;由旋转的性质得到,由正方形的性质得到,推出,于是得到AF垂直平分,故B正确;根据余角的性质得到,于是得到∽,故C 正确;由于,但不一定等于,于是得到不一定是等腰三角形,故D错误.本题考查了旋转的性质,正方形的性质,相似三角形的判定,等腰直角三角形的判定,线段垂直平分线的判定,正确的识别图形是解题的关键.6. 解:,当或时,∽;当即时,∽.故选:A.根据相似三角形的判定定理进行判定即可.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.7. 解:,,∽,正确;,,∽,正确;,,∽,正确;由,或不能证明与相似.故选:A.由两角相等的两个三角形相似得出正确,由两边成比例且夹角相等的两个三角形相似得出正确;即可得出结果.本题考查了相似三角形的判定定理:两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似;如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.8. 解:根据题意得:设当以点A、D、E为顶点的三角形与相似时,运动的时间是x秒,若∽,则AD::AC,即x::12,解得:;若∽,则AD::AB,即x::6,解得:;所以当以点A、D、E为顶点的三角形与相似时,运动的时间是3秒或秒.故选B.根据相似三角形的性质,由题意可知有两种相似形式,∽和∽,可求运动的时间是3秒或秒.此题考查了相似三角形的性质,解题时要注意此题有两种相似形式,别漏解;还要注意运用方程思想解题.9. 解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.根据相似三角形的判定定理对各选项进行逐一判定即可.本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.10. 解:A、,∽,,,,故A正确,不符合题意;B、过D作交AC于N,,,四边形BMDE是平行四边形,,,,于点F,,,,,故B正确,不符合题意;C、图中与相似的三角形有,,,,共有5个,故C错误.D、设,由∽,有.,故D正确,不符合题意.故选C.由,又,所以,故A正确,不符合题意;过D作交AC于N,得到四边形BMDE是平行四边形,求出,得到,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由∽,得到CD与AD的大小关系,根据正切函数可求的值,故D错误,符合题意.本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.11. 解:当∽时,,,解得:,当∽时,,,解得:,当AP的长度为4或9时,和相似.故答案为:4或9.分别根据当∽时,当∽时,求出AP的长即可.此题主要考查了相似三角形的判定与性质,利用倒推法以及分类讨论得出是解题关键.12. 解:,或.理由:,,∽,当时,∽,∽.当时,,∽.故答案为,或.结论:,或根据相似三角形的判定方法一一证明即可.本题考查相似三角形的判定和性质平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13. 解:当时,,∽,此时;当时,,∽,此时;故答案为:或.若A,D,E为顶点的三角形与相似时,则或,分情况进行讨论后即可求出AE的长度.本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法,解题的关键是分两种情况进行讨论.14. 解:由,,,设,则,若∽,则,即,变形得:,即,因式分解得:,解得:,,所以或12cm时,∽;若∽,则,即,解得:,,综上,或12cm或时,∽.故答案为:或12cm或2cm.设出,由表示出PD的长,若∽,根据相似三角形的对银边成比例可得比例式,把各边的长代入即可列出关于x的方程,求出方程的解即可得到x的值,即为PB的长.此题考查了相似三角形的判定与性质,相似三角形的性质有相似三角形的对应边成比例,对应角相等;相似三角形的判定方法有:1、两对对应角相等的两三角形相似;2、两对对应边成比例且夹角相等的两三角形相似;3、三边对应成比例的两三角形相似,本题属于条件开放型探究题,其解法:类似于分析法,假设结论成立,逐步探索其成立的条件.15. 解:当时,∽.故答案为.利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似进行添加条件.本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.16. 解:,当时,∽.故答案为.利用有两组角对应相等的两个三角形相似添加条件.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.17. 解:,,又,∽,与的面积比:9,故答案为:1:9.由已知条件易证∽,根据相似三角形的性质即可求出与的面积比.本题考查了相似三角形的判定和性质,熟悉相似三角形的性质:相似三角形的面积比是相似比的平方是解题关键.18. 解:,以A、E、F为顶点的三角形与相似,有∽和∽两种情况:如图1:当时,∽时,即,解得:;如图2:当时,∽时,即,解得:.所以或.故答案为或.根据相似三角形的相似比求AF,注意分情况考虑.本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理,分情况讨论是解决本题的关键.19. 解:如图1,当时,则∽,故,则,解得:,如图2所示:当时,又,∽,,即,解得:,故答案为:4或6.分别利用当时以及当时,得出相似三角形,再利用相似三角形的性质得出答案.此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.20. 解:,,,,,,,,,,,,,,,与不相似;,,,∽;,,,∽;,,,,,,与不相似.故答案为3.先利用勾股定理计算出,,,,,,然后利用三组对应边的比相等的两个三角形相似依次判断,,,,与是否相似.本题考查了相似三角形的判定:三组对应边的比相等的两个三角形相似也考查了勾股定理.21. 由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;由第一问的全等三角形的对应角相等,根据等量代换得到,再由对顶角相等,利用两对角相等的三角形相似即可得证.此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的判定与性质是解本题的关键.22. 可得到三组三角形相似;先利用两组对应边的比相等且夹角对应相等的两个三角形相似证明∽,则,再利用有两组角对应相等的两个三角形相似证明∽,然后利用相似比和比例的性质求的值.本题考查了相似三角形的判断:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.23. 解:,,,,,,,,∽;,,,,∽,故答案为:DAB;BCD;DCE.由AB垂直于BD,CD垂直于BD,得到一对同旁内角互补,利用同旁内角互补两直线平行得到AB与CD 平行,同理EF与AB平行,且与CD平行,根据EF与AB平行,利用两直线平行同位角相等得到两对角相等,确定出三角形DEF与三角形DAB相似;同理得到三角形BEF与三角形BCD相似;由两直线平行得到两对内错角相等,得到三角形ABE与三角形DEC相似.此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.24. 由,可得∽,再由相似得出对应边成比例,即可得出与相似,由于它们有位似中心点O,所以它们也具有位似形的特征.本题主要考查了相似三角形的判定以及位似图形的问题,应熟练掌握位似与相似之间的联系及区别.25. 设经过y秒后相似,由于没有说明对应角的关系,所以共有两种情况:∽与∽本题考查相似三角形的判定,解题的关键是分两种情况进行讨论,本题属于中等题型.26. 根据两组对应边的比相等且夹角对应相等的两个三角形相似进行求解;根据,,即可得出,进而得到;先根据,,判定∽,即可得出,进而得到.本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合.。
相似三角形性质与判定专项练习30题(有答案)
相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。
证明:=。
当GC⊥BC时,证明:∠BAC=90°。
2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。
证明:AC^2=AF•AD。
联结EF,证明:AE•DB=AD•EF。
3.在三角形ABC中,PC平分∠ACB,PB=PC。
证明:△APC∽△ACB。
若AP=2,PC=6,求AC的长。
4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。
证明:△ABF∽△EAD。
若AB=4,∠BAE=30°,求AE的长。
5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。
证明:AB•BC=AC•CD。
6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。
说明AF•BE=2S的理由。
7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。
若AE=CF,证明:AF=BE,并求∠APB的度数。
若AE=2,试求AP•AF的值。
若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。
8.在钝角三角形ABC中,AD,BE是边BC上的高。
证明。
9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。
证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。
10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。
12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。
相似三角形的判定(含答案)
学生做题前请先回答以下问题问题1:相似三角形的判定:①________________________________________;②________________________________________;③________________________________________;④_________________________________________________________.在证明两个三角形相似时,首先考虑角度信息,其次考虑对应边成比例.问题2:想一想相似三角形的判定与性质的区别是什么?问题3:如果两个图形___________,而且____________________________,那么这样的两个图形叫做位似图形,这个点叫做________;位似图形上__________________________________________________.相似三角形的判定一、单选题(共9道,每道11分)1.如图,下列条件不能判定△ADB∽△ABC的是( )A.∠ABD=∠ACBB.∠ADB=∠ABCC. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定2.如图,在△ABC中,DE∥BC,,则下列结论中正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定与性质3.如图,在平行四边形ABCD中,点E在AD边上,连接CE并延长,交BA的延长线于点F,若,CD=3,则AF的长为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定与性质4.如图,已知AD为△ABC的角平分线,DE∥AB,交AC于点E,若,则的值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的判定5.如图,在△ABC中,∠BAC=90°,D是BC中点,AE⊥AD交CB的延长线于点E,则下列结论正确的是( )A.△AED∽△ACBB.△AEB∽△ACDC.△BAE∽△ACED.△AEC∽△DAC答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定6.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是( )A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F答案:B解题思路:试题难度:三颗星知识点:位似变换7.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大为原来的2倍,得到△.若点A的坐标是(1,2),则点的坐标是( )A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)答案:C解题思路:试题难度:三颗星知识点:相似三角形的性质和判定8.如图,在△ABC中,AB=6,AC=4,P是AC的中点,过点P的直线交AB于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为( )A.3B.3或C.3或D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的性质和判定9.如图,在Rt△ABO中,∠AOB=90°,∠ABO=60°,,D为BO的中点,若E是线段AB上的一动点,连接DE,当△BDE与△AOB相似时,点E的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的性质和判定。
相似三角形的判定定理 专题练习题
相似三角形的判定定理 专题练习题1.如图,已知△ABC ,则下列四个三角形中,与△ABC 相似的是( )2.能判定△ABC ∽△A ′B ′C ′的条件是( ) A.AB A ′B ′=AC A ′C ′ B.AB AC =A ′B ′A ′C ′,且∠A =∠A ′ C.AB BC =A ′B ′A ′C ′,且∠B =∠C ′ D.AB A ′B ′=AC A ′C ′,且∠B =∠B ′ 3.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且将这个四边形分成①②③④四个三角形,若OA ∶OC =OB ∶OD ,则下列结论中一定正确的是( )A .①和②相似B .①和③相似C .①和④相似D .②和④相似 4.如图,由下列条件不能判定△ABC 与△ADE 相似的是( )A.AE AD =ACABB .∠B =∠ADE C.AE AC =DEBCD .∠C =∠AED 5.已知如图,甲、乙中各有两个三角形,其边长和角的度数已在图上标注,图乙中AB ,CD 交于O 点,对于各图中的两个三角形而言,下列说法正确的是( )A .都相似B .都不相似C .只有甲相似D .只有乙相似6.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2)7.如图,在正三角形ABC 中,D ,E 分别在AC ,AB 上,且AD AC =13,AE =BE ,则有( )A .△AED ∽△BEDB .△AED ∽△CBDC .△AED ∽△ABD D .△BAD ∽△BCD8.如图,AB 与CD 相交于点O ,OA =3,OB =5,OD =6.当OC =____时,图中的两个三角形相似.9.如图,BD 平分∠ABC ,AB =4,BC =6,当BD =____时,△ABD ∽△DBC .10.如图所示,已知零件的外径为25 mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC=OD,OC∶OA=1∶2)量得CD=10 mm,则x=________mm.11.已知P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.12.如图,已知∠ACB=∠CBD=90°,AC=b,CB=a,当BD与a,b之间满足怎样的关系时,△ACB∽△CBD.13.如图,在△ABC中,∠C=90°,D,E分别是AB,AC上的两点,AD·AB=AE·AC,试说明:ED⊥AB.14.已知Rt △ABC 中,∠C =90°,AB =5,BC =3,另一个Rt △A ′B ′C ′中,∠C ′=90°,A ′B ′=10,A ′C ′=8,那么Rt △ABC 与Rt △A ′B ′C ′相似吗?15.如图,△ABC 中,点D ,E 分别在AC ,AB 边上,且AD AB =AE AC =12,BC =6,求DE 的长.16.在矩形ABCD 中,AB =12 cm ,BC =6 cm ,点P 沿AB 边从点A 开始向点B 以2 cm/s 的速度移动,点Q 沿DA 从点D 开始向点A 以1 cm/s 的速度移动,如果P ,Q 同时出发,用t (秒)表示运动时间,那么t 为何值时,以Q ,A ,P 为顶点的三角形与△ABC 相似.。
相似三角形的判定与性质(六大类型)(题型专练)(原卷版)
专题02 相似三角形的判定与性质(六大类型)【题型1 相似三角形的概念】【题型2 三边对应成比例,两三角形相似】【题型3两边对应成比例且夹角相等,两三角形相似】【题型4 两角对应相等,两三角形相似】【题型5 相似三角形的性质】【题型6相似三角形的性质与判定综合应用】【题型1 相似三角形的概念】1.(2023春•阳信县月考)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与△ABC相似的是()A.B.C.D.2.(2022秋•道外区期末)下列三角形一定相似的是()A.两个等腰三角形B.两个等边三角形C.两个直角三角形D.有一角为70°的两个等腰三角形3.(2022秋•武城县期末)下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A.2组B.3组C.4组D.5组4.(2022秋•承德县期末)如图所示,网格中相似的两个三角形是()A.①与②B.①与③C.③与④D.②与③5.(2022秋•襄都区校级期末)下列判断中,不正确的有()A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C.斜边与一条直角边对应成比例的两个直角三角形相似D.有一个角是100°的两个等腰三角形相似【题型2 三边对应成比例,两三角形相似】6.(2022秋•常州期末)如图,△ABC∽△DEF,则DF的长是()A.B.C.2D.3 7.(2023•陇南模拟)两个相似三角形的相似比是4:9,则其面积之比是()A.2:3B.4:9C.9:4D.16:81 8.(2023•沙坪坝区校级模拟)如图,△ABO∽△CDO,若BO=6,DO=3,AB=4,则CD的长是()A.1B.2C.3D.49.(2022秋•鼓楼区期末)已知△ABC∽△DEF,若△ABC的三边分别长为6,8,10,△DEF的面积为96,则△DEF的周长为.10.(2023•惠城区校级一模)若△ABC∽△DEF,△ABC的面积为81cm2,△DEF的面积为36cm2,且AB=12cm,则DE=cm.11.(2022秋•于洪区期末)两个相似三角形的周长比是3:4,其中较小三角形的面积为18cm2,则较大三角形的面积为cm2.12.(2022秋•鸡西期末)如果两个相似三角形的周长比为1:6,那么这两个三角形的面积比为.13.(2023•长宁区一模)如果两个相似三角形的面积比是1:9,那么它们的周长比是.14.(2022秋•内乡县期末)如图,已知△ABC∽△ADE,AD=6,BD=3,DE =4,则BC=.15.(2022秋•零陵区期末)若△ABC∽△A′B′C′,且,△ABC 的面积为12cm2,则△A′B′C′的面积为cm2.【题型3两边对应成比例且夹角相等,两三角形相似】16.(2022秋•仓山区校级月考)如图,D、E分别是△ABC的边AB、AC上的点,AB=8,BD=5,AC=6,CE=2,求证:△ADE∽△ACB.17.(2021秋•武陵区期末)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.18.(2022秋•丰泽区校级期中)如图,E是△ABC的边BC上的点,已知∠BAE =∠CAD,,AB=18,AE=15.求证:△ABC∽△AED.19.(2022春•丰城市校级期末)如图,已知∠B=∠E=90°,AB=6,BF=3,CF=5,DE=15,DF=25.求证:△ABC∽△DEF.【题型4 两角对应相等,两三角形相似】20.(2022秋•蚌山区月考)已知:如图D、E分别是△ABC的边AB、AC上的点,∠A=40°,∠C=80°,∠AED=60°,求证:△ADE∽△ACB.21.(2022秋•龙胜县期中)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高.求证:△ABC∽△CBD.22.(2022•江夏区模拟)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.求证:△ABC∽△DEC.23.(2021秋•晋江市校级期末)如图,在△ABC中,点D在BC边上,点E在AC边上,且AD=AB,∠DEC=∠B.求证:△AED∽△ADC.24.(2022•南昌模拟)如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC 的平分线.求证:△ABC∽△BDC.【题型5 相似三角形的性质】25.(2020秋•思南县校级月考)判断图中的两个三角形是否相似,并说明理由.26.(大观区校级期中)如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF的顶点都在格点上,请判断△ABC和△DEF是否相似,并说明理由.【题型6相似三角形的性质与判定综合应用】27.(2022秋•历城区校级月考)如图,AB∥CD,AC与BD交于点E,且AB=4,AE=2,AC=8.(1)求CD的长;(2)求证:△ABE∽△ACB.28.(2023•殷都区一模)如图,O是直线MN上一点,∠AOB=90°,过点A 作AC⊥MN于点C,过点B作BD⊥MN于点D.(1)求证:△AOC∽△OBD;(2)若OA=5,OC=OD=3,求BD的长.29.(2023•西湖区校级二模)如图,在菱形ABCD中,点M为对角线BD上一点,连接AM并延长交BC于点E,连接CM.(1)求证:CM=AM.(2)若∠ABC=60°,∠EMC=30°,求的值.30.(2023•港南区四模)如图,在△ABC中,D在AC上,DE∥BC,DF∥AB.(1)求证:△DFC∽△AED;(2)若CD=AC,求的值.31.(2023春•鼓楼区校级期末)如图,点C是△ABD边AD上一点,且满足∠CBD=∠A.(1)证明:△BCD∽△ABD;(2)若BC:AB=3:5,AC=16,求BD的长.32.(2022秋•顺平县期末)矩形ABCD中,E为DC上的一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=4,AD=8,求CE的长.33.(2022秋•南京期末)如图,在矩形ABCD中,点E,F分别在边BC,CD 上,AE,BF交于点G.(1)若=,求证AE⊥BF;(2)若E,F分别是BC,CD的中点,则的值为.34.(2023•桐乡市校级开学)如图,已知△ABC和△AED,边AB,DE交于点F,AD平分∠BAC,AF平分∠EAD,.(1)求证:△AED∽△ABC;(2)若BD=3,BF=2,求AB的长.35.(2022秋•海陵区校级期末)如图,矩形DEFG的四个顶点分别在等腰三角形ABC的边上.已知△ABC的AB=AC=10,BC=16,记矩形DEFG的面积为S,线段BE为x.(1)求S关于x的函数表达式;(2)当S=24时,求x的值.36.(2022秋•平城区校级期末)如图,已知在△ABC中,边BC=6,高AD=3,正方形EFGH的顶点F,G在边BC上,顶点E,H分别在边AB和AC上,求这个正方形的边长.。
相似三角形练习题
相似三角形练习题一、选择题1. 在下列各组三角形中,能判定为相似三角形的是:A. 两个等边三角形B. 两个等腰直角三角形C. 两个等腰三角形D. 两个直角三角形2. 若两个三角形的两边之比分别为1:2和2:3,那么这两个三角形:A. 一定相似B. 一定不相似C. 可能相似D. 无法确定3. 在相似三角形中,下列说法正确的是:A. 对应角相等B. 对应边成比例C. 对应角互补D. 对应边相等二、填空题1. 若三角形ABC与三角形DEF相似,且AB=6cm,DE=4cm,则相似比为______。
2. 在相似三角形中,若一个三角形的周长为18cm,另一个三角形的周长为24cm,则它们的相似比为______。
3. 若三角形ABC与三角形DEF相似,且∠A=50°,则∠D的度数为______。
三、解答题1. 在三角形ABC中,AB=8cm,AC=12cm,在三角形DEF中,DE=6cm,求DF的长度(已知三角形ABC与三角形DEF相似)。
2. 已知三角形ABC与三角形DEF相似,且∠B=60°,∠E=120°,求∠C和∠F的度数。
3. 在三角形ABC中,AB=5cm,AC=7cm,∠A=45°,在三角形DEF 中,DE=10cm,∠D=45°,求DF的长度。
4. 已知三角形ABC与三角形DEF相似,且BC=9cm,EF=12cm,AB=6cm,求DE的长度。
5. 在三角形ABC中,∠A=30°,∠B=60°,在三角形DEF中,∠D=60°,∠F=30°,判断三角形ABC与三角形DEF是否相似,并说明理由。
四、应用题1. 有一块三角形土地,底边长为60米,高为40米,与另一块等面积的土地形状相似,求这块土地的底边长。
2. 在一块三角形菜地中,一边长为30米,对应的高为20米,另一块形状相似的菜地,底边长为45米,求这块菜地的面积。
相似三角形判定专项练习30题(有答案)
相似三角形判定专项练习30题(有答案)1.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么?2.如图,△BAC、△AGF为等腰直角三角形,且△BAC≌△AGF,∠BAC=∠AGF=90°.若△BAC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E.请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.3.如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=EB.求证:△AED∽△CBD.4.如图,已知∠1=∠2,且AB•ED=AD•BC,则△ABC与△ADE相似吗?是说明理由.5.已知:如图,在△ABC中,∠C=90°,点D、E分别AB、CB延长线上的点,CE=9,AD=15,连接DE.若BC=6,AC=8,求证:△ABC∽△DBE.6.如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于点F.(1)证明:△ABD∽△DCF;(2)除了△ABD∽△DCF外,请写出图中其他所有的相似三角形.7.如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,垂足为D、E.(1)证明:△ADC∽△AEB;(2)连接DE,则△AED与△ABC能相似吗?说说你的理由.8.如图,在△ABC,AC⊥BC,D是BC延长线上的一点,E是AC上的一点,连接ED,∠A=∠D.求证:△ABC∽△DEC.9.在任意△ABC中,作CD⊥AB,垂足为D,BE⊥AC,垂足为E,F为BC上的中点,连接DE,EF,DF.(1)求证:DF=EF;(2)直接写出除直角三角形以外的所有相似三角形;(3)在(2)中的相似三角形中选择一对进行证明.10.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△EAF与△EBA相似吗?说说你的理由.11.如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,交BA于点E,EC与AD相交于点F.求证:△ABC∽△FCD.12.已知:在Rt△ABC中∠C=90°,CD为AB边上的高.求证:Rt△ADC∽Rt△CDB.13.如图,D为△ABC内一点,E为△ABC外一点,且∠1=∠2,∠3=∠4,找出图中的两对相似三角形并说明理由.14.如图,∠DEC=∠DAE=∠B,试说明:(1)△DAE∽△EBA;(2)找出两个与△ABC相似的三角形(第2小题不要求写出证明过程).15.如图,锐角三角形ABC中,CD,BE分别是AB,AC边上的高,垂足为D,E.(1)证明:△ACD∽△ABE.(2)若将D,E连接起来,则△AED与△ABC能相似吗?说说你的理由.16.如图,在△ABC中,∠BAC=90°,D为BC的中点,AE⊥AD,AE交CB的延长线于点E.(1)求证:△EAB∽△ECA;(2)△ABE和△ADC是否一定相似?如果相似,加以说明;如果不相似,那么增加一个怎样的条件,△ABE和△ADC 一定相似.(1)求证:△ADE∽△ABC;(2)△ABD与△ACE相似吗?为什么?(3)图中还有哪些三角形相似?请直接写出来.18.如图,已知:△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延长AB至F,∠ECF=135°,求证:△EAC∽△CBF.19.如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.20.如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.求证:△ABE∽△ACD.21.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s 的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的22.如图,矩形ABCD中,AB=6,BC=8,动点P从B点出发沿着BC向C移动,速度为每秒2个单位,动点Q 从点C出发沿CD向D出发,速度为每秒1个单位,几秒后由C、P、Q三点组成的三角形与△ABC相似?这时线段PQ与AC的位置关系如何?请说明理由.23.已知,如图,,点B,D,F,E在同一条直线上,请找出图中的相似三角形,并说明理由.24.已知线段AC上有一动点B,分别以AB、BC为边向线段的同一侧作等边三角形△ABD和△BCE.连接AE、CD (如图),若MN分别为AE、CD的中点,(1)求证:AM=CN;(2)求∠MBN的大小;(3)若连接MN,请你尽可能多的说出图中相似三角形和全等三角形.25.如图,已知△ABC和△MBN都是等腰直角三角形,∠BAC=∠MBN=90°,BD⊥AN.请找出与△ABD相似的三角形并给出证明,直接写出∠ANC的度数.26.如图,在△ABC中,AB=6,BC=8.点D以每秒1个单位长度的速度由B向A运动,同时点E以每秒2个单位长度的速度由C向B运动,当点E停止运动时,点D也随之停止.设运动时间为t秒,当以B,D,E为顶点的三角形与△ABC相似时,求t的值.27.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,证明:△ABE∽△AEF.28.如图,在四边形ABCD中,AB⊥BC,AD⊥DC,连接BD,AC,且DE⊥AC于E,交AB于F,求证:△AFD∽△ADB.29.已知,如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B、A、D在一条直线上,连接BE、CD.(2)若M、N分别是BE和CD的中点,将△ADE绕点A按顺时针旋转,如图②所示,试证明在旋转过程中,△AMN 是等腰三角形;(3)试证明△AMN与△ABC和△ADE都相似.30.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.相似三角形判定专项练习30题参考答案:1.解:△ABE 与△DEF 相似.理由如下: ∵四边形ABCD 为正方形, ∴∠A=∠D=90°,AB=AD=CD , 设AB=AD=CD=4a , ∵E 为边AD 的中点,CF=3FD , ∴AE=DE=2a ,DF=a ,∴==2,==2,∴=,而∠A=∠D , ∴△ABE ∽△DEF . 2.解:△EAD ∽△EBA ,△DAE ∽△DCA . 对△ABE ∽△DAE 进行证明: ∵△BAC 、△AGF 为等腰直角三角形, ∴∠B=45°,∠GAF=45°, ∴∠EAD=∠EBA , 而∠AED=∠BEA , ∴△EAD ∽△EBA . 3.证明:∵△ABC 为正三角形, ∴∠A=∠C=60°,BC=AB , ∵AE=BE , ∴CB=2AE , ∵,∴CD=2AD ,∴==,而∠A=∠C , ∴△AED ∽△CBD . 4.解:△ABC ∽△ADE ,理由为: 证明:∵AB •ED=AD •BC ,∴=,∵∠1=∠2, ∴∠1+∠ABE=∠2+∠ABE ,即∠BAC=∠DAE , ∴△ABC ∽△ADE .5.证明:∵在RT △ABC 中,∠C=90°,BC=6,AC=8, ∴AB==10,∴DB=AD ﹣AB=15﹣10=5 ∴DB :AB=1:2, 又∵EB=CE ﹣BC=9﹣6=3, ∴EB :BC=1:2,又∵∠DBE=∠ABC,∴△ABC∽△DBE.6.(1)证明:∵△ABC,△ADE为等边三角形,∴∠B=∠C=∠3=60°,∴∠1+∠2=∠DFC+∠2,∴∠1=∠DFC,∴△ABD∽△DCF;(2)解:∵∠C=∠E,∠AFE=∠DFC,∴△AEF∽△DCF,∴△ABD∽△AEF,故除了△ABD∽△DCF外,图中相似三角形还有:△AEF∽△DCF,△ABD∽△AEF,△ABC∽△ADE,△ADF∽△ACD.7.(1)证明:∵如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,∴∠ADC=∠AEB=90°.又∵∠A=∠A,∴△ADC∽△AEB;(2)由(1)知,△ADC∽△AEB,则AD:AE=AC:AB.又∵∠A=∠A,∴△AED∽△ABC.8.证明:∵AC⊥BC,∴∠ACB=∠DCE=90°,又∵∠A=∠D,∴△ABC∽△DEC.9.(1)证明:∵CD⊥AB,BE⊥AC,∴∠BEC=∠BDC=90°,而F为BC上的中点,∴EF=BC,DF=BC,∴DF=EF;(2)解:△ADE∽△ACB;△PDE∽△PCB;△PDB∽△PEC;(3)△ADE∽△ACB.理由如下:证明:∵∠ADC=∠AEB=90°,而∠BAE=∠CAD,∴△ABE∽△ACD,∴=,∵∠DAE=∠CAB,∴△ADE∽△ACB.10.(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE=∠BAC,又∵BD=CE,∴△ABD≌△BCE;(2)答:相似;理由如下:∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠BAC﹣∠BAD=∠CBA﹣∠CBE,∴∠EAF=∠EBA,又∵∠AEF=∠BEA,∴△EAF∽△EBA.11.证明:∵AD=AC,∴∠ADC=∠ACD,∵D为BC中点,且DE⊥BC,∴EB=EC.∴∠B=∠DCF.∴△ABC∽△FCD.12.证明:∵CD为AB边上的高,∴∠ADC=∠CDB=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∵∠ADC=∠CDB=90°,∴Rt△ADC∽Rt△CDB.13.解:△ABD∽△CBE,△ABC∽△DBE.∵∠1=∠2,∠3=∠4,∴△ABD∽△CBE,∴∵∠1=∠2,∴∠ABC=∠DBE,∴△ABC∽△DBE14.解:(1)∵∠DEC=∠B,∴DE∥AB,∴∠DEA=∠EAB,又∵∠DAE=∠B,∴△DAE∽△EBA;(2)△CDE∽△ABC,△EAC∽△ABC.15.证明:(1)∵CD,BE分别是AB,AC边上的高,∴∠ADC=∠AEB=90°.∵∠A=∠A,∴△ACD∽△ABE.(2)∵△ACD∽△ABE,∴AD:AE=AC:AB.∵∠A=∠A,∴△AED∽△ABC.16.证明:(1)∵△ABC中,∠BAC=90°,D为BC的中点,∴BD=CD,AD=CD,∴∠C=∠DAC,又∵AE⊥AD,∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠EAB=∠C,∴△EAB∽△ECA;(2)由(1)得,∠EAB=∠CAD,∴当∠ABE=∠ADC或AB=BE或∠E=∠C或=时,△ABE和△ADC一定相似.17.解:(1)证明∵∠A=∠A,∠ADE=∠ABC,∴△ADE∽△ABC;(2)相似.证明:∵△ADE∽△ABC;∴,∵∠A=∠A,∴△ABD∽△ACE;(3)△DOE∽△COB;△EOB∽△DOC.18.证明:∵△ABC为等腰直角三角形,∠ACB=90°,∴∠CAB=∠CBA=45°,∴∠E+∠ECA=45°(三角形外角定理).又∠ECF=135°,∴∠ECA+∠BCF=∠ECF﹣∠ACB=45°,∴∠E=∠BCF;同理,∠ECA=∠F,∴△EAC∽△CBF.19.(1)证明:Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠ADE+∠EDC=∠B+∠BAD.又∵∠ADE=45°,∴45°+∠EDC=45°+∠BAD.∴∠EDC=∠BAD.∴△ABD∽△DCE.(2)解:讨论:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意.②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=2,BC=2,AE=AC﹣EC=2﹣BD=2﹣(2﹣2)=4﹣2③若AE=DE,此时∠DAE=∠ADE=45°,如下图所示易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=1.20.解:∵∠BAC=∠BDC,∠AOB=∠DOC,∴∠ABE=∠ACD又∵∠BAC=∠DAE∴∠BAC+∠EAC=∠DAE+∠EAC∴∠DAC=∠EAB∴△ABE∽△ACD.21.解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.22.解:要使两个三角形相似,由∠B=∠PCQ ∴只要或者∵AB=6,BC=8∴只要设时间为t则PC=8﹣2t,CQ=t∴t=或者t=;①当t=时,△ABC∽△PCQ,PQ⊥AC理由:△ABC∽△PCQ∴∠BAC=∠CPQ∵∠BAC+∠ECP=90°,∴∠EPC+∠ECP=90°即PQ⊥AC;②当t=,△ABC∽△QCP,AC平分PQ理由:△ABC∽△QCP∴∠BAC=∠CQP,∠ACB=∠QPC∴∠QCE=∠EQC,∠ACB=∠QPC∴PE=EQ=CE即AC平分PQ23.解:△ABC∽△ADE,△BAD∽△CAE.理由:∵,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴,∴△BAD∽△CAE,∵∠ACB=∠AED,∠AFE=∠BFC,∴△AFE∽△BFC.24.(1)证明:∵△ABD和△BCE是等边三角形,∴AB=BD,BC=BE,∠EBC=∠ABC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中∴△ABE≌△DBC(SAS)∴AE=DC,∵M、N分别为AE、CD的中点,∴AM=AE,CN=DC∴AM=CN;(2)解:∵△ABE≌△DBC,∴∠EAB=∠CDB,在△AMB和△DNB中∴△AMB≌△DNB(SAS),∴∠ABM=∠DBN,∵∠ABC=∠ABM+∠MBD=60°,∴∠DBN+∠MBD=60°,即∠MBN=60°;(3)解:图中的全等三角形有:△ABM≌△DBN,△BME≌△BCN,△ABE≌△DBC;相似三角形有:△ABD∽△BCE,△ABD∽△BMN,△BMN∽△BCE.25.解:△ABD∽△CBN,理由:∵△ABC和△MBN都是等腰直角三角形,BD⊥AN,∴∠MBD=∠NBD=∠BNM=∠ABC=45°,∴==,∵∠MBA+∠ABD=45°,∠ABD+∠CBN=45°,∴∠ABD=∠CBN,∴△ABD∽△CBN,∴∠BNC=∠ADB=90°,∵∠BNA=45°,∴∠ANC=45°.26.解:∵点D以每秒1个单位长度的速度由B向A运动,同时点E以每秒2个单位长度的速度由C向B运动,∴BD=t,BE=8﹣2t,∴△BDE∽△BAC时,=,即=,解得t=2.4(秒);当△BED∽△BAC时,=,即=,解得t=(秒).综上所述,t的值为2.4秒或秒.27.证明:∵在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,∴∠B=∠C=90°,AB:EC=BE:CF=2:1.∴△ABE∽△ECF.∴AB:EC=AE:EF,∠AEB=∠EFC.∵BE=CE,∠FEC+∠EFC=90°,∴AB:AE=BE:EF,∠AEB+∠FEC=90°.∴∠AEF=∠B=90°.∴△ABE∽△AEF.28.证明:∵∠AEF=∠ABC=90°,∠EAF=∠BAC.∴△EAF∽△BAC,=,即AE•AC=AF•AB.同理可得,△AED∽△ADC,=,即AE•AC=AD2,∴AD2=AF•AB,即=,又∵∠DAF=∠BAD,∴△AFD∽△ADB.29.证明:(1)∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD;(2)由(1)得△ABE≌△ACD,∴∠ABE=∠ACD,BE=CD.∵M,N分别是BE,CD的中点,∴BM=CN.在△ABM与△ACN中,,∴△ABM≌△ACN,∴AM=AN,∴△AMN为等腰三角形;(3)由(2)得△ABM≌△ACN,∴∠BAM=∠CAN,∴∠BAM+∠BAN=∠CAN+∠BAN,即∠MAN=∠BAC,又∵AM=AN,AB=AC,∴AM:AB=AN:AC,∴△AMN∽△ABC;∵AB=AC,AD=AE,∴AB:AD=AC:AE,又∵∠BAC=∠DAE,∴△ABC∽△ADE;∴△AMN∽△ABC∽△ADE.30.证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.。
相似三角形的判定经典练习题三套
相似三角形的判定经典练习题三套A 卷:1、已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两数的比例中项,第三个数是(只需写出一个即可).2、在△ABC 中,AB=8,AC=6,点D 在AC 上,且AD=2,若要在AB 上找一点E ,使△ADE 与原三角形相似,那么AE= 。
3、如图,在△ABC 中,点D 在AB 上,请再添一个适当的条件,使△ADC ∽△ACB ,那么可添加的条件是4、已知D 、E 分别是ΔABC 的边AB 、AC 上的点,请你添加一个条件,使ΔABC 与ΔAED 相似. (只需添加一个你认为适当的条件即可). 5、下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有等腰直角三角形都相似;④所有的直角三角形都相似.其中正确的是 (把你认为正确的说法的序号都填上). 6、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 或 时,使得由点B 、O 、C 组成的三角形与 ΔAOB 相似(至少写出两个满足条件的点的坐标).7、下列命题中正确的是 ( )①三边对应成比例的两个三角形相似②二边对应成比例且一个角对应相等的两个三角形相似 ③一个锐角对应相等的两个直角三角形相似 ④一个角对应相等的两个等腰三角形相似A 、①③B 、①④C 、①②④D 、①③④ 8、如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )A AC AE AB AD = B FB EA CF CE =C BD AD BC DE = D CB CF AB EF =9、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O ,下列条件中不能使ΔABE 和ΔACD 相似的是 ( )A. ∠B=∠CB. ∠ADC=∠AEBC. BE=CD ,AB=ACD. AD ∶AC=AE ∶AB10、在矩形ABCD 中,E 、F 分别是CD 、BC 上的点,若∠AEF=90°,则一定有 ( ) A ΔADE ∽ΔAEF B ΔECF ∽ΔAEF C ΔADE ∽ΔECF D ΔAEF ∽ΔABF11、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形 ( ) A 1对 B 2对 C 3对 D 4对12、如图,在大小为4×4的正方形网格中,是相似三角形的是( )① ② ③ ④A.①和②B.②和③C.①和③D.②和④.13、如图,在正方形网格上有6个斜三角形:①ΔABC ,②ΔBCD ,③ΔBDE ,④ΔBFG ,⑤ΔFGH ,⑥ΔEFK.其中②~⑥中,与三角形①相似的是( )(A)②③④ (B)③④⑤ (C)④⑤⑥ (D)②③⑥14、在方格纸中,每个小格的顶点叫做格点.以格点连线为边的三角形叫做格点三角形.如图,请你在4×4的方格纸中,画一个格点三角形A 1B 1C 1,使ΔA 1B 1C 1与格点三角形ABC 相似(相似比不为1). 15、如图,ΔABC 中,BC=a .(1)若AD 1=31AB ,AE 1=31AC ,则D 1E 1= ; (2)若D 1D 2=31D 1B ,E 1E 2=31E 1C ,则D 2E 2= ;(3)若D 2D 3=31D 2B ,E 2E 3=31E 2C ,则D 3E 3= ;…… (4)若D n -1D n =31D n -1B ,E n -1E n =31E n -1C ,则D n E n = . 16、如图,ΔABC 与ΔADB 中,∠ABC=∠ADB=90°,AC=5cm ,AB=4cm ,如果图中的两个直角三角形相似,求AD 的长.17、已知:如图,在正方形ABCD 中,P 是BC 上的点,且BP=3PC , Q 是CD 的中点.ΔADQ 与ΔQCP 是否相似?为什么?B 卷:1、如图,在平行四边形ABCD 中,AB=8cm ,AD=4cm ,E 为AD 的中点,在AB 上取一点F ,使△CBF ∽△CDE , 则AF= ______cm 。
相似三角形证明专题练习
相似的判定证明题1、如图所示,在⊙O 中,CD 过圆心O ,且CD ⊥AB 于D ,弦CF 交AB 于E .求证:CB 2=CF ·CE .2、如图,已知⊙O 的弦CD 垂直于直径AB ,点E 在CD 上,且EC = EB .(1)求证:△CEB ∽△CBD ;(2)求证:CB 2=CE ·CD(3)若CE = 3,CB=5 ,求DE 的长.3、(绥化)如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE=4,CD=6,(1)求证:CD 2=CE •CA (2)求:AE 的长为多少?4.已知:如图19,在Rt △ABC 中,∠ABC =90°,以AB 上的 点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D . (1)求证:BC =CD ; (2)求证:∠ADE =∠ABD ;(3)设AD =2,AE =1,求⊙O 直径的长.5.已知:如图,AB 是半圆O 的直径,CD ⊥AB 于D 点。
(1)求证:CD 2=AD •BD(2)求证:CB 2=BD •BA6、(黔东南州)如图,⊙O 是△ABC 的外接圆,圆心O 在AB 上,过点B 作⊙O 的切线交AC 的延长线于点D .(1)求证:CB 2=AC •CD(2)若AC=8,BC=6,求△BDC 的面积.7. (四川雅安)如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E .(1)求证:DE 是⊙O 的切线;(2)求证:CD 2=CE •CA8.(2016•呼和浩特)如图,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连接FB ,FC .(1)求证:∠FBC=∠FCB ;(2)求证:FB 2=FA ·FD(3)若AB 是△ABC 外接圆的直径,FA=2,AD=4,求CD 的长.•ABC DEO。
相似三角形判定典型例题
A
A. 6.3米 B. 7.5米 C. 8米 D. 6.5 米
D
30
20
B 30 C
E
1.6
F
变式:如图,建筑物DC,水塔AB的 高分别是20米和30米,它们之间 的距离为30米,小明的身高为1.6
米之O间,要的想距看离到至水少塔应,小为明( 与C建筑) 物
A. 60米 B. 56米 C. 55.2米 D. 54米
∠1+∠2+∠3=90°.
8. 在方格纸中,每个小格的顶点称为 格点,以格点的连线为边的三角形称为格 点三角形,如图所示的5×5的方格纸中,如 果想作格点ΔABC与ΔOAB相似(相似比不 能为1),则C点坐标为____________.
y
B
OA
x
y
25
B
5
25
25
O 1A
C2(4,4) C1(5,2) x
得三角形与原三角形相似,这样的直线最多
能画出多少条 A
A
D
E
D
E
B
CB
C
4. 在△ABC中,AB>AC,过AB上
一点D作直线DE (不与AB重合),
交另一边于E,使所得三角形与原三
角形相似,这样的直线最多能画出
多少条画出满足条件的图形.
A
A
A
A
D
ED
B
CB
D
E CB E
D
CB
EC
5.如图,D是△ABC的AB边上的一点,已 知AB=12,AC=15,AD=32 AB,在AC上取 一点E,使△ADE与△ABC相似,求AE的长
∴ 6 14 x
4x
∴x=5.6
经典相似三角形练习的题目(附参考答案详解)
相似三角形一.解答题〔共30小题〕1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F 在BC 上,连DF 与AB 的延长线交于点G .〔1〕求证:△CDF∽△BGF;〔2〕当点F是BC的中点时,过F作EF∥CD交AD于点E,假如AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D 在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.〔1〕求证:①BE=CD;②△AMN是等腰三角形;〔2〕在图①的根底上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出〔1〕中的两个结论是否仍然成立;〔3〕在〔2〕的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.〔1〕填空:∠ABC= _________ °,BC= _________ ;〔2〕判断△ABC与△DEC是否相似,并证明你的结论.8.如图,矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:〔1〕经过多少时间,△AMN的面积等于矩形ABCD面积的?〔2〕是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?假如存在,求t 的值;假如不存在,请说明理由.9.如图,在梯形ABCD中,假如AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.〔1〕列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;〔注意:全等看成相似的特例〕〔2〕请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E ,连接AE .〔1〕写出图中所有相等的线段,并加以证明;〔2〕图中有无相似三角形?假如有,请写出一对;假如没有,请说明理由;〔3〕求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.〔1〕求四边形AQMP的周长;〔2〕写出图中的两对相似三角形〔不需证明〕;〔3〕M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM ∽△MCP.13.如图,梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.〔1〕求梯形ABCD的面积S;〔2〕动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC 于点E.假如P、Q两点同时出发,当其中一点到达目的地时整个运动随之完毕,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?假如存在,请求出t的值;假如不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?假如存在,请求出所有符合条件的t的值;假如不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?假如存在,请求出所有符合条件的t的值;假如不存在,请说明理由.14.矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.假如P 自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N 〔不含A、B〕,使得△CDM与△MAN相似?假如能,请给出证明,假如不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q 从B 出发,沿BC 方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.假如Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如下列图,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.〔1〕如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△E;〔2〕如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除〔1〕中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t〔秒〕表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯〔P点〕距地面8米,身高1.6米的小明从距路灯的底部〔O点〕20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度〔这棵树底部可以到达,顶部不易到达〕,他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.〔1〕所需的测量工具是:_________ ;〔2〕请在如下图中画出测量示意图;〔3〕设树高AB的长度为x,请用所测数据〔用小写字母表示〕求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进展了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯〔灯罩视为球体,灯杆为圆柱体其粗细忽略不计〕的高度为200cm,影长为156cm.任务要求:〔1〕请根据甲、乙两组得到的信息计算出学校旗杆的高度;〔2〕如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.〔友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602〕25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区〔如下列图〕,亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.〔1〕假如李华距灯柱OP的水平距离OA=a,求他影子AC的长;〔2〕假如李华在两路灯之间行走,如此他前后的两个影子的长度之和〔DA+AC 〕是否是定值请说明理由;〔3〕假如李华在点A朝着影子〔如图箭头〕的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,如此不难证明S1=S2+S3.〔1〕如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;〔不必证明〕〔2〕如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;〔3〕假如分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与〔2〕一样的关系,所作三角形应满足什么条件证明你的结论;〔4〕类比〔1〕,〔2〕,〔3〕的结论,请你总结出一个更具一般意义的结论.28.:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.:如图Rt△ABC∽Rt△BDC,假如AB=3,AC=4.〔1〕求BD、CD的长;〔2〕过B作BE⊥DC于E,求BE的长.30.〔1〕,且3x+4z﹣2y=40,求x,y,z的值;〔2〕:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.一.解答题〔共30小题〕1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:此题考查的是平行线的性质与相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.〔1〕求证:△CDF∽△BGF;〔2〕当点F是BC的中点时,过F作EF∥CD交AD于点E,假如AB=6cm,EF=4cm,求CD的长.解答:〔1〕证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,〔2分〕∴△CDF∽△BGF.〔3分〕〔2〕解:由〔1〕△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,〔6分〕∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.〔8分〕3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,〔2分〕∴∠BAF=∠AED.〔4分〕∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.〔5分〕∴△ABF∽△EAD.〔6分〕点评:考查相似三角形的判定定理,关键是找准对应的角.5.:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D 在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.〔1〕求证:①BE=CD;②△AMN是等腰三角形;〔2〕在图①的根底上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出〔1〕中的两个结论是否仍然成立;〔3〕在〔2〕的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.解答:〔1〕证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中点,∴BM=.又∵AB=AC,∴△ABM≌△A.∴AM=AN,即△AMN为等腰三角形.〔2〕解:〔1〕中的两个结论仍然成立.〔3〕证明:在图②中正确画出线段PD,由〔1〕同理可证△ABM≌△A,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.分析:根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解答:解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.〔3分〕如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.〔6分〕∴△AEF∽△BEC.〔7分〕7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.〔1〕填空:∠ABC= 135°°,BC=;〔2〕判断△ABC与△DEC是否相似,并证明你的结论.解答:解:〔1〕∠ABC=135°,BC=;〔2〕相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:〔1〕经过多少时间,△AMN的面积等于矩形ABCD面积的?〔2〕是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?假如存在,求t 的值;假如不存在,请说明理由解:〔1〕设经过x秒后,△AMN的面积等于矩形ABCD面积的,如此有:〔6﹣2x〕x=×3×6,即x2﹣3x+2=0,〔2分〕解方程,得x1=1,x2=2,〔3分〕经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,△AMN的面积等于矩形ABCD面积的.〔4分〕〔2〕假设经过t秒时,以A,M,N为顶点的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,因此有或〔5分〕即①,或②〔6分〕解①,得t=;解②,得t=〔7分〕经检验,t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形与△ACD相似.〔8分〕9.如图,在梯形ABCD中,假如AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.〔1〕列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;〔注意:全等看成相似的特例〕〔2〕请你任选一组相似三角形,并给出证明.解答:解:〔1〕任选两个三角形的所有可能情况如下六种情况:①②,①③,①④,②③,②④,③④〔2分〕其中有两组〔①③,②④〕是相似的.∴选取到的二个三角形是相似三角形的概率是P=〔4分〕证明:〔2〕选择①、③证明.在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD〔8分〕选择②、④证明.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,〔6分〕∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB〔8分〕.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性一样,其中事件A出现m种结果,那么事件A的概率P〔A〕=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE ⊥BD于E,连接AE.〔1〕写出图中所有相等的线段,并加以证明;〔2〕图中有无相似三角形?假如有,请写出一对;假如没有,请说明理由;〔3〕求△BEC与△BEA的面积之比.解答:解:〔1〕AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.〔2〕图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;〔3〕作AF⊥BD的延长线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:此题主要考查了直角三角形的性质,相似三角形的判定与三角形面积的求法等,X围较广.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.〔1〕求四边形AQMP的周长;〔2〕写出图中的两对相似三角形〔不需证明〕;〔3〕M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.解答:解:〔1〕∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.〔2〕∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;〔3〕当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由〔1〕知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.12.:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM ∽△MCP.解答:证明:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.〔1〕求梯形ABCD的面积S;〔2〕动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC 于点E.假如P、Q两点同时出发,当其中一点到达目的地时整个运动随之完毕,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?假如存在,请求出t的值;假如不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?假如存在,请求出所有符合条件的t的值;假如不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?假如存在,请求出所有符合条件的t的值;假如不存在,请说明理由.解答:解:〔1〕过D作DH∥AB交BC于H点,∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是直角梯形.∴S ABCD=〔AD+BC〕AB=×〔2+8〕×8=40.〔2〕①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长平分.②第一种情况:0<t≤8假如△PAD∽△QEC如此∠ADP=∠C∴tan∠ADP=tan∠C==∴=,∴t=假如△PAD∽△CEQ如此∠APD=∠C ∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三点不能组成三角形;第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似;∴t=或t=时,△PAD与△CQE相似.③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8〔不合题意舍去〕∴t=第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.假如P 自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?解答:解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,〔1〕当∠1=∠2时,有:,即;〔2〕当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.解答:设经过秒后t秒后,△PBQ与△ABC相似,如此有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即〔10﹣2t〕:10=4t:20,解得t=2.5〔s〕〔6分〕当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=〔10﹣2t〕:20,解得t=1.所以,经过2.5s或1s时,△PBQ与△ABC相似〔10分〕.解法二:设ts后,△PBQ与△ABC相似,如此有,AP=2t,BQ=4t,BP=10﹣2t 分两种情况:〔1〕当BP与AB对应时,有=,即=〔2〕当BP与BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解答:解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:1)当Rt△ABC∽Rt△ACD时,2)有=,∴AB==3;3)当Rt△ACB∽Rt△CDA时,4)有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形相似.17.,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N 〔不含A、B〕,使得△CDM与△MAN相似?假如能,请给出证明,假如不能,请说明理由.解答:证明:分两种情况讨论:①假如△CDM∽△MAN,如此=.∵边长为a,M是AD的中点,∴AN=a.②假如△CDM∽△NAM,如此.∵边长为a,M是AD的中点,∴AN=a,即N点与B重合,不合题意.所以,能在边AB上找一点N〔不含A、B〕,使得△CDM与△MAN相似.当AN=a 时,N点的位置满足条件.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.假如Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?解答:解:设经过x秒后,两三角形相似,如此CQ=〔8﹣2x〕cm,CP=xcm,〔1分〕∵∠C=∠C=90°,∴当或时,两三角形相似.〔3分〕〔1〕当时,,∴x=;〔4分〕〔2〕当时,,∴x=.〔5分〕所以,经过秒或秒后,两三角形相似.〔6分〕点评:此题综合考查了路程问题,相似三角形的性质与一元一次方程的解法.19.如下列图,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.解答:解:〔1〕假如点A,P,D分别与点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.〔2〕假如点A,P,D分别与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.检验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A的1、、6处.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.〔1〕如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△E;〔2〕如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除〔1〕中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.解答:证明:〔1〕∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,〔4分〕而∠MBE=∠E=45°,∴△BEM∽△E.〔6分〕〔2〕与〔1〕同理△BEM∽△E,∴.〔8分〕又∵BE=EC,∴,〔10分〕如此△E与△MEN中有,又∠E=∠MEN=45°,∴△E∽△MEN.〔12分〕21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t〔秒〕表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.解答:解:以点Q、A、P为顶点的三角形与△ABC相似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30〔舍去〕.故当t=6或t=时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯〔P点〕距地面8米,身高1.6米的小明从距路灯的底部〔O点〕20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?解答:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度〔这棵树底部可以到达,顶部不易到达〕,他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.〔1〕所需的测量工具是:;〔2〕请在如下图中画出测量示意图;〔3〕设树高AB的长度为x,请用所测数据〔用小写字母表示〕求出x.解答:解:〔1〕皮尺,标杆;〔2〕测量示意图如下列图;〔3〕如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.〔7分〕24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进展了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯〔灯罩视为球体,灯杆为圆柱体,其粗细忽略不计〕的高度为200cm,影长为156cm.任务要求:〔1〕请根据甲、乙两组得到的信息计算出学校旗杆的高度;〔2〕如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.〔友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602〕解答:解:〔1〕由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC∽△DEF.∴,即,〔2分〕∴DE=1200〔cm〕.所以,学校旗杆的高度是12m.〔3分〕〔2〕解法一:与①类似得:,即,∴GN=208.〔4分〕在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602,∴NH=260.〔5分〕设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.〔6分〕如此∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴〔7分〕,又ON=OK+KN=OK+〔GN﹣GK〕=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.〔8分〕解法二:与①类似得:,即,∴GN=208.〔4分〕设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.〔5分〕如此∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,〔6分〕∴MN=r,又∵ON=OK+KN=OK+〔GN﹣GK〕=r+8.〔7分〕在Rt△OMN中,根据勾股定理得:r2+〔r〕2=〔r+8〕2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3〔不合题意,舍去〕,∴景灯灯罩的半径是12cm.〔8分〕25.〔2007•某某〕阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区〔如下列图〕,亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.解答:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m.点评:此题根本上难度不大,利用相似比即可求出窗口底边离地面的高.26.如图,李华晚上在路灯下散步.李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.〔1〕假如李华距灯柱OP的水平距离OA=a,求他影子AC的长;〔2〕假如李华在两路灯之间行走,如此他前后的两个影子的长度之和〔DA+AC〕是否是定值请说明理由;〔3〕假如李华在点A朝着影子〔如图箭头〕的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.解答:解:〔1〕由:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.〔2〕∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.同理可得:,∴=是定值.〔3〕根据题意设李华由A到A',身高为A'B',A'C'代表其影长〔如图〕.由〔1〕可知,即,∴,同理可得:,∴,由等比性质得:,当李华从A走到A'的时候,他的影子也从C移到C',因此速度与路程成正比∴,所以人影顶端在地面上移动的速度为.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,如此不难证明S1=S2+S3.〔1〕如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;〔不必证明〕〔2〕如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;〔3〕假如分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与〔2〕一样的关系,所作三角形应满足什么条件证明你的结论;〔4〕类比〔1〕,〔2〕,〔3〕的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,如此c2=a2+b2〔1〕S1=S2+S3;〔2〕S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1;〔3〕当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1 ∴S1=S2+S3;〔4〕分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,如此S1=S2+S3.28.:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.解答:解:∵△ABC∽△ADE,∴AE:AC=AD:AB.∵AE:AC=〔AB+BD〕:AB,∴AE:9=〔15+5〕:15.∴AE=12.29.:如图Rt△ABC∽Rt△BDC,假如AB=3,AC=4.〔1〕求BD、CD的长;〔2〕过B作BE⊥DC于E,求BE的长.解答:解:〔1〕Rt△ABC中,根据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;〔2〕在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.〔1〕,且3x+4z﹣2y=40,求x,y,z的值;〔2〕:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.解:〔1〕设=k,那么x=2k,y=3k,z=5k,由于3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.〔2〕设一个三角形周长为Ccm,如此另一个三角形周长为〔C+560〕cm,如此,∴C=240,C+560=800,即它们的周长分别为240cm,800cm。
相似三角形判定与性质-练习题(带答案)
【答案】 D
【解析】 ∵
,
∴
,
∴
,
∴
∵Hale Waihona Puke ,∴,即甲与乙与丙均相似.
【标注】【知识点】相似三角形的判定-两角对应相等
D. 甲与乙与丙
3
6. 给定条件能判断
A.
B.
,
C.
,
D.
和 ,
, , ,
相似的是( ). ,
,
,
,
,
,
,
,
,
,
【答案】 D
【解析】 .不相似:∵
∴
,
∴不相似;
.不相似:∵
, ,
,
,
∴ 不是边 , ∴不相似;
, 交 于 ,则
(
A.
B.
C.
D.
【答案】 A
【解析】 ∵
,
∴
,
又∵平行四边形
中,
,
,
∴
,
,
∴
.
【标注】【知识点】相似三角形的性质与判定综合
14. 要测量一棵树的高度,发现同一时刻一根 米长的竹竿在地面上的影长为 米,此刻树的影子不全 落在地上,有一部分落在了教学楼第一级的台阶水平面上,测得台阶水平面上的影长为 米,一级 台阶的垂直高度为 米,若,此时落在地面上的影长为 米,则树高( ).
∵
,
∴
.
【标注】【知识点】相似反A字型
1
3. 已知:如图,
,求证:
.
【答案】 证明见解析.
【解析】 ∵ ∴ 又∵ ∴
, ,
, .
【标注】【知识点】相似反8字型
4. 如图,在
中,点 、 分别在边 、 上,如果
相似三角形的判定测试题
《相似三角形的判定》测试题(一)填空:1.若3x-7y=0, 则y∶x=_______, =________。
2.若a=7, b=4, c=5, 则b, a, c的第四比例项d=_______。
3.若线段a=4, b=6, 则a, b的比例中项为________。
4.已知:===, 则=______,=_________。
5.已知:a∶b∶c=3∶4∶5, a+b-c=4, 则4a+2b-3c=________。
6.若=, 则 x=_______。
7.已知:ΔABC中,DE//BC交AB于D,AC于E,AB=10,AD-DB=2,BC=9,则DE=________。
8.已知:RtΔABC中,∠ACB=90°,CD⊥AB于D,AD=4,BD=2,则CD=________,AC=_________。
9.ΔABC中,∠ACB=90°,CD是高,AC=3,BC=4,则CD=_______,AD=_________,BD=_________。
10.ΔABC中,AB=AC=10,∠A=36°,BD是角平分线交AC于D,则CD=_________。
11.等边三角形的边长为a,则它的内接正方形的边长为_________。
12.ΔABC中,DE//BC,DE交AB,AC于D,E,AD∶DB=5∶4,则S梯形BCED∶SΔADE=________。
13.两个相似多边形面积比是1∶3,则周长比是_______。
14.两个相似多边形的面积比为25∶9,其中一个多边形的周长为45,则另一个多边形的周长为_________。
15.如果两个相似多边形的最长边分别为35cm和14cm,它们的周长差为60cm,那么这两个多边形的周长分别为__________。
(二)选择题:1.在ΔABC中,DE//BC交AB于D,AC于E,若四边形DECB的面积为ΔADE面积的3倍,则DE∶BC=()A、1∶3B、1∶9C、3∶1D、1∶22.如图,在ΔABC中=,=,设AD与CE的交点为P,则CP∶PE=()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成功源于努力!
相似三角形的判定(提高)
一、选择题
1. 已知△A1B1C1与△A2B2C2的相似比为4:3,△A2B2C2与△A3B3C3的相似比为4:5,则△A1B1C1与△A3B3C3的相似比为()
A. 16:15
B. 15:16
C. 3:5
D. 16:15或15:16
2.如图,P是RtΔABC的斜边BC上异于B、C的一点,过点P做直线截ΔABC,使截得的三角形与ΔABC相似,满足这样条件的直线共有().
A.1条B.2条C.3条D.4条
3. 如图,在△ABC中,M是AC边中点,E是AB上一点,且AE= AB,连结EM并延长,交BC的延长线于D,此时BC:CD为()
A. 2:1
B. 3:2
C. 3:1
D. 5:2
4. 如图,在平行四边形ABCD中,E是AD上的一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是().
A.∠AEF=∠DEC B.FA∶CD=AE∶BC C.FA∶AB=FE∶EC D.AB=DC
5.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,则图中相似三角形有().A.4对B.3对C.2对D.1对
6. 如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP 与△ECP相似的是()
A. ∠APB=∠EPC
B. ∠APE=90°
C. P是BC的中点
D. BP:BC=2:3
二、填空题
7. 如图, ∠1=∠2=∠3, 则图中与△CDE相似三角形是________和________
8. 如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有_________对.
9. 如图,是正方形ABCD的外接圆,点F是AB的中点,CF的延长线交于点E,则CF:EF 的值是________.
10. 如图,点M在BC上,点N在AM上,CM=CN, ,则①△ABM∽△ACB,
②△ANC∽△AMB,③△ANC∽△ACM,④△CMN∽△BCA中正确的有___________.
11. 如图,在平行四边形ABCD中,M,N为AB的三等分点,DM,DN分别交AC于P,Q两点,则AP:PQ:QC=_________.
12. 如图,正方形ABCD的边长为2,AE=EB,MN=1.线段MN的两端在CB,CD边上滑动,当CM=______时,△AED与以M、N、C为顶点的三角形相似.
三、解答题
13. 如图,和都是等边三角形,且B、C、D共线,BE分别和AC、AD相交于点M、G,CE和AD相交于点N.
求证:(1)CG平分.(2)∽.
14. 如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.
(1)试说明△ABD≌△BCE;
(2)△EAF与△EBA相似吗?说说你的理由.
15. 已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C 是圆O上的一点.
(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;
(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB的比例中项.当点C在圆O上运动时,求的值(结果用含m的式子表示);
(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.
【答案与解析】
一.选择题
1.【答案】A.
2.【答案】C.
【解析】分别是过点P做AB,AC,BC的垂线.
3.【答案】A.
【解析】
如图,做CN∥AB,交ED于点N,
∵M是AC边中点,△AEM≌△CNM,即CN=AE,
∵AE= AB,∴AE:BE=1:3,即CN:BE=1:3.
∵CN∥AB,∴△DCN∽△DBE,即CD:BD= CN:BE=1:3,∴CD:BC=1:2.
4.【答案】B
5.【答案】B
【解析】△ABC∽△ACD; △ABC∽△CBD; △CBD∽△ACD.
6.【答案】C .
【解析】当P是BC的中点时,△EPC为等腰直角三角形.
二. 填空题
7.【答案】△CEA、△CAB.
8.【答案】3对.
【解析】由∠CPD=∠A=∠B,得△CPF∽△CBP,△DPG∽△DAP,得∠CPB=∠CFP,则∠APG=∠BFP,得△APG∽△BFP,有3对.
9.【答案】5:1.
【解析】
如图,连接AE,则△AEF∽△CBF,
∵点F是AB的中点,正方形ABCD,∴EF:AE=BF:BC=1:2.
设EF=K,则AE=2K,AF=K,即BF=K,BC=2K,CF=5K.
∴CF:EF=5:1.
10.【答案】②.
11.【答案】5:3:12
【解析】略
12.【答案】.
三综合题
13.【解析】(1)
证明:如图,作CP⊥AD于P,CQ⊥BE于Q,
∵和都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACE=∠DCE+∠ACE
即∠BCE=∠ACD,
∴△BCE≌△ACD,
∴∠BEC=∠ADC,
∵CP⊥AD,CQ⊥BE
∴∠CQE=∠CPD=90°
在△CQE和△CPD中:
∴△CQE≌△CPD,
∴CQ=CP,
∴CG平分(到角的两边距离相等的点在这个角的角平分线上。
)(2)∵△BCE≌△ACD,
∴∠CBE=∠CAD,
又∵∠CMB=∠AMG,
∴∠BCM=∠AGM=60°,
又∵CG平分,
∴∠CGB=∠CGD=60°=∠EGP,
∴∠AGC=120°=∠CGE,
∠GCE=∠60°−∠BEC
∵∠EBC=60°-∠BEC,
∴∠GCE=∠EBC=∠CAD,
∴△ACG∽△CEG.
14.【解析】
(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE=∠BAC,又∵BD=CE,∴△ABD≌△BCE;
(2)相似;∵△ABD≌△BCE,∴∠BAD=∠CBE,
∴∠BAC-∠BAD=∠CBA-∠CBE,∴∠EAF=∠EBA,
又∵∠AEF=∠BEA,∴△EAF∽△EBA.
15.【解析】
(1)利用两边的比相等,夹角相等证相似.
由已知AP=2PB,PB=BO
可推出,
∴△CAO∽△BCO
(2)设
∵是的比例中项,
∴是的比例中项
即
∴
解得
又∵
(3)∵,,即
当时,两圆内切;当时,两圆内含;当时,两圆相交.。