超声波焊接常见缺陷及处理办法
超声波故障维修和问题诊断介绍汇总
超声波焊接机故障与分析;一:不良动作之对策:状况原因对策按下熔接按钮,焊头随即下降碰到加工物未发振即上升。
①下降冲程未到熔接位置。
②极限开关不良。
①转升降手轮使熔接位置视窗线对正在升降筒熔接位置。
②调整其动作位置或换修。
操作中过负载灯亮。
①焊头松动。
②调波不当。
③焊头破裂。
①锁紧焊头。
②重新调整声波。
③换修。
按下熔接按钮焊头随之下降,但熔接后不上升。
①气压不够。
②控制电路不良.调整空气压力。
②换修时控板。
③电源指示灯不亮,发振箱风扇转弱,不能发振或焊接强度转弱。
电源电压不足。
②电路短路保险丝熔断。
③电源插座接触不良。
改换较稳定之电源。
②换保险丝。
③换修。
空气压力、电源、焊头均正常但无法操作。
紧急上升按钮接触不良。
②控制电路不良。
①检查或换修。
②②换修。
焊头上升或下降冲击太大①缓冲调整不合适。
②缓冲调整锁死。
③下降速度设定太高。
①重新调整缓冲。
②检查并做调整。
③调整下降速度调整钮。
熔接过熔①过熔后工作物之外型尺寸不一。
②工作物外表损伤太多。
①调整最低点微调螺丝。
③换装合适振幅之焊头。
④熔接时间太长欲缩短。
打开电源总开关,保险丝即熔断。
①发振箱本体故障。
①换修。
十二:熔接状况处理:现象原因解决办法熔接过度输入工作的能量过多1.降低使用压力2.减少熔接时间3.降低振幅段数4.减缓焊头之下降速度熔接不足输入工作的能量太少1.增加使用压力2.加长熔接时间3.增加振幅段数4.使用较大功率之机型5.冶具消耗能量、更换冶具。
熔接不均工件扭曲变形1.检视工件尺寸是否差异。
2.检视操作条件是否造成工作物变形。
3.调整缓冲速度或压力。
焊头、底座、工件之接触面不平贴1.守能点重新设计,使高度均一。
2.调整水平螺丝。
3.检视造作条件是否确实。
4.检视工件尺寸之形状尺寸。
侧面弯曲工件加肋骨。
修改冶具,避免工件向外弯曲。
底座支撑不确实1.在必要处,改善支撑点。
2.底座重新设计。
3.换成硬质底座。
4.若大面积之电木板发生倾斜则需补强。
超声波金属焊接问题解决方法
超声波金属焊接问题解决方法
超声波金属焊接由于在焊接过程中,既无电流在被焊体中流过,也无诸如电焊模式的电弧产生,也不顾虑在热传导与电阻率等问题。
因此对于不同厚度的有色金属箔、片、带材等式都能有效地进行理想焊接,尤其是对最难焊接的铝及其合金材质的焊接质量,更能突出其无可比拟的优越性能。
超声波金属焊接常见问题类型:
1、超声波发生器无输出;
2、接头焊接不牢;
3、焊缝焊接不连续。
超声波金属焊接故障原因:
1、振幅调整和功率输出不匹配:焊接机的机械振幅由超声波发生器和焊接机系统产生,并在整个焊接过程中始终保持恒定,有些用途要求系统振幅一定要准确地与焊接情况匹配。
2、焊接功率与振幅、焊接压力的选择:在焊接过程中,超声波系统可以使焊接机在负荷和焊接压力不足时,保持恒定的机械振幅。
但由于焊接机振幅和超声波发重型器的高频电流成正比,因此焊接机的电压也随着负荷和功率的增加而增大。
3、动态过载保护动作:焊接机的动态过载保护电嘴笨中以保护超声波发生器和焊接机以信过载而受损坏,当需要的功率超过正常功
率或系统频率不完全匹配时,过载保护电路断开,并一次性记录下来,剩余的能量被送回电网,故障消除后,系统将在正常工作条件下继续工作。
4、过热保护动作:超声波发生器内装有一个热控制器,如果电源温度超过其安全工作温度,发生器内的电源开关断开,直到电源温度下降到安全工作温度,发生器方能断续工作。
更多详情。
超声波焊接常见缺陷及处理办法
超声波焊接常见缺陷及处理办法超声波焊接常见缺陷及处理办法一、强度无法达到欲求标准。
当然我们必须了解超音波熔接作业的强度绝不可能达到一体成型的强度,只能说接近于一体成型的强度,而其熔接强度的要求标准必须仰赖于多项的配合,这些配合是什么呢?※塑料材质:ABS与ABS相互相熔接的结果肯定比ABS与PC相互熔接的强度来的强,因为两种不同的材质其熔点也不会相同,当然熔接的强度也不可能相同,虽然我们探讨ABS与PC这两种材质可否相互熔接?我们的答案是绝对可以熔接,但是否熔接后的强度就是我们所要的?那就不一定了!而从另一方面思考假使ABS与耐隆、PP、PE相熔的情形又如何呢?如果超音波HORN瞬间发出150度的热能,虽然ABS材质己经熔化,但是耐隆、PVC、PP、PE只是软化而已。
我们继续加温到270度以上,此时耐隆、PVC、PP、PE已经可达于超音波熔接温度,但ABS材质已解析为另外分子结构了!由以上论述即可归纳出三点结论:1.相同熔点的塑料材质熔接强度愈强。
1.降低压力。
2.减少延迟时间(提早发振))。
3.减少熔接时间。
4.引用介质覆盖(如PE袋)。
5.模治具表面处理(硬化或镀铬)。
6.机台段数降低或减少上模扩大比。
7.易震裂或断之产品,治具宜制成缓冲,如软性树脂或覆盖软木塞等(此项指不影响熔接强度)。
8.易断裂产品于直角处加R角。
三、制品产生扭曲变形。
发生这种变形我们规纳其原因有三:1.本体与欲熔接物或盖因角度或弧度无法相互吻合.2.产品肉厚薄(2m/m以内)且长度超出60m/m 以上.3.产品因射出成型压力等条件导致变形扭曲.所以当我们的产品经超音波作业而发生变形时,从表面看来好像是超音波熔接的原因,然而这只是一种结果,塑料产品未熔接前的任何因素,熔接后就形成何种结果。
如果没有针对主因去探讨,那将耗费很多时间在处理不对症下药的问题上,而且在超音波间接传导熔接作业中(非直熔),6kg以下的压力是无法改变塑料的轫性与惯性。
超声波焊不牢的原因 -回复
超声波焊不牢的原因-回复标题:超声波焊不牢的原因及其解决策略一、引言超声波焊接作为一种先进的连接技术,广泛应用于各种材料的焊接过程中。
然而,在实际操作中,有时会出现超声波焊接不牢固的问题,这不仅影响产品的质量和性能,也可能增加生产成本和时间。
因此,深入理解超声波焊接不牢的原因并寻找有效的解决策略显得尤为重要。
二、超声波焊接原理在探讨超声波焊接不牢的原因之前,我们首先需要理解超声波焊接的基本原理。
超声波焊接是利用高频振动(通常在20kHz-40kHz)的超声波能量,通过换能器将电能转化为机械振动,再通过焊头传递到待焊接的工件上。
在压力和振动的作用下,工件的接触面产生摩擦热,使得材料局部熔化或塑性变形,从而实现焊接。
三、超声波焊接不牢的原因1. 材料因素:不同的材料对超声波的吸收和传递能力不同,一些材料如聚丙烯、聚乙烯等对超声波的吸收较差,可能导致焊接效果不佳。
此外,材料的厚度、硬度、杂质含量等因素也会影响焊接效果。
2. 设备因素:超声波焊接设备的功率、频率、振幅等参数设置不当,或者设备本身存在故障,都可能导致焊接不牢固。
例如,功率过低可能导致焊接能量不足,而功率过高则可能导致材料过热甚至烧焦。
3. 工艺因素:焊接工艺参数如压力、时间、振幅等的设置不合理,或者焊接过程中工件的位置、角度、对齐度等控制不准确,都可能影响焊接效果。
4. 环境因素:环境温度、湿度、气压等的变化可能影响材料的物理性质和超声波的传播效果,从而影响焊接效果。
四、解决超声波焊接不牢的策略1. 选择合适的材料:根据焊接材料的特性和要求,选择对超声波吸收和传递能力较好的材料,或者采用适当的表面处理方法提高材料的焊接性能。
2. 调整设备参数:根据焊接材料和工件的具体情况,合理设置超声波焊接设备的功率、频率、振幅等参数,确保焊接能量适中。
3. 优化焊接工艺:根据焊接工件的形状、尺寸、材质等因素,调整焊接工艺参数如压力、时间、振幅等,确保焊接过程稳定、准确。
焊缝内部缺陷的超声波探伤和射线探伤剖析
二.超声波探伤
➢ 直探头及斜探头示意图
Company Logo
二.超声波探伤
Company Logo
2.超声波探伤仪选择
❖ 探伤仪针对不同的检测对象、目的、方法、 速度等需要,其设计制造也不尽相同。按信 号的显示方式不同,可分为A、B、C型三种 探伤仪,即人们通常所说的A超、B超、C超。
二.超声波探伤
未熔合——坡口未熔合在底片上呈直线状的黑色条纹,位置偏离焊缝中心, 靠近坡口边缘一边的密度较大且直;层间未熔合在底片上呈黑色条纹, 但不很长,有时与非金属夹渣相似。
Company Logo
三.射线探伤
3.射线探伤的质量评定 按《钢熔化焊对接接头射线照相和质量分级》
(GB3323)的规定进行。根据缺陷性质和数量、 射线探伤焊缝质量分为四个等级: ①Ⅰ级焊缝内应无裂纹、未焊透、未熔合和条状夹渣; ②Ⅱ级焊缝应无裂纹、未熔合、未焊透; ③Ⅲ级焊缝内应无裂纹、未熔合及双面焊和加垫板的单
一.焊件内常见缺陷
Company Logo
❖4.未熔合:焊接时在焊缝金属与母材之间
或焊道金属和焊道金属之间未完全熔化结合 的部分,其主要类型是按其所在部位可分为坡 口未熔合(侧壁未熔合),层间未熔合(焊 道之间未熔合)和单面焊根部未熔合三种
一.焊件内常见缺陷
Company Logo
❖5.裂纹:主要是在熔焊冷却时因热力盈 利和相变应力而产生的,也有在校正或 疲劳过程中产生的。是危险性最大的一 种缺陷。
面焊中的未焊透; ④Ⅳ级焊缝是缺陷超过Ⅲ级的。
参考文献
Company Logo
➢ 大连理工大学,李孟喜主编.无损检测.机械工业出版 社,2001
二.超声波探伤
➢ 直探头探测钢材缺陷
超声波焊接工艺问题及解决
超声波焊接工艺问题及解决
超声波焊接是一种高效、无污染、无需补充材料、无烟尘的焊接方法,广泛应用于汽车、电子、塑料等行业。
然而,在使用超声波焊接时,也会出现一些问题,下面我们就来看看这些问题及其解决方法。
1. 焊点质量不稳定的问题
造成焊点质量不稳定的原因有很多,比如工件表面有油污、污渍、氧化物等,超声波振动系统不稳定,焊接时间不足等。
解决方法是要保证工件表面清洁,定期清洗设备;检查超声波振动系统是否正常,及时维护;控制好焊接时间,确保焊点的稳定性。
2. 焊接强度低的问题
焊接强度低的原因可能是焊接温度不足、压力不够、超声波振动系统不稳定等。
解决方法是增加焊接时间和温度,加大焊接压力,检查并维护超声波振动系统。
3. 焊接出现气泡的问题
焊接时出现气泡可能是由于工件表面不干净、焊接时间不足、焊接压力不够等原因造成的。
解决方法是保证工件表面清洁,焊接时间要足够长,加大焊接压力,确保焊接时工件表面无气泡。
4. 焊接出现裂纹的问题
焊接时出现裂纹可能是由于焊接温度过高、焊接时间过长、焊接压力过大等原因造成的。
解决方法是控制好焊接的温度、时间和压力,避免造成工件变形或者损坏。
总之,超声波焊接的技术越来越成熟,但是在使用过程中还是需
要注意一些常见问题,及时进行维护和处理,确保焊接质量和效率。
塑料的超声波焊接技术缺陷及预防
塑料的超声波焊接技术缺陷及预防目前常用的各种零件焊接方式1.超声波焊接2,振动焊接3,旋转焊接4,热板焊接5.感应焊接6,接触电阻焊接7,热气焊接8,挤出焊接超声波焊接和旋转焊接是我们实际中在塑胶产品上应用的最多,最广泛的。
接下来只就针对这两种焊接工艺做讲述。
其它的焊接工艺,有兴趣的朋友可以自已找资料学习研究和是私下找我商讨也行。
首先,我们一定要真正弄清焊接的原理,只有这样,才能设计出好的焊接结构,才能在这种结构上成为真正的工程师,不然你的所谓经验和资料,都将成为你的绊脚石。
一,焊接的原理:几乎所有的焊接,都是将两焊接零件的焊接端面分子产生运动,使它们相互扩散,相互缠结。
达到相互连接的目的。
如我们的超声波焊接就是利用焊头的高频振动,使两焊接零件高频磨擦,将机械能转化为热能,热能将两焊接面的分子溶解,恢复其活性,然后在外作用力的辅助下,分子相互缠结来达到焊接目的,而我们通常用的502胶水,或是其它粘接剂,胶水本是一种高腐蚀的液体,它将焊接面的分子膨涨,恢复其活性,然后在外作用力的辅助下,分子相互缠结来达到焊接目的。
其实不难明白。
焊接就是一个让分子相互缠结的过程。
二,超声焊接剖析:2.1:超声波焊接设备,相信各位都有见过,还是再来哆嗦一下。
如图:由上图我们不难明白,超声焊的焊接原理:1,输入低频电 --->◊---◊2.通过电源箱变频,转换成高频电输出>3.通过变压器装置将高电频信号转换成机械振动。
原理就和电铃一样,都是电磁场的高频切换来实现,这个就是我们所谓的超声了。
--->◊---◊4.通过振幅变压器整合振幅>---◊5.输出能量,将焊头引至高频振动>---◊6.焊头将塑胶零件高频摩擦,产生热能。
使塑胶熔化。
>7.风压装置同时下压运动.将两零件融合在一起,然后冷却,达到粘结目的。
接下来着重讲下超声装备各部件的基本参数:通过电源箱变频后,其输出频率通常在20~50kHZ之间,(20kHZ最常用)其振幅通常在15~60um.也有时候会将其频率调成15Khz.这种声频率适合用来超声较大制件或是较软的材料,如大型的PP材料外壳等。
钢结构焊缝超声波探伤检测存在的问题与管控措施分析
钢结构焊缝超声波探伤检测存在的问题与管控措施分析摘要:随着钢结构建筑工艺的广泛应用,使用超声波检测技术控制施工质量相对增加。
本文概述了超声波检测技术的原理、分类、应用特点,剖析了钢结构焊缝类型、缺陷类型,以及超声波检测中存在的问题。
并以此为基础,提出了几点较有针对性的管控措施。
关键词:钢结构焊缝;超声波检测;问题;管控措施超声波探伤检测也称超声波无损检测,基本原理是将超声波发射到不同介质后形成反射信息。
主要分为发生中的缺陷检测、发生后的缺陷检测,后一种检测又分为表面缺陷、内部缺陷检测。
应用特点集中在对焊缝位置、类型、数量、性质、大小等具体特征的确定方面。
下面对其应用展开具体讨论。
1、钢结构焊缝及缺陷类型分析钢结构连接方式中以焊接连接为主,通常情况下为了保障焊接质量,要求焊接工作人员控制好熔池温度与焊接电流、焊条、焊丝直径、焊接角度、电弧燃烧时间,并严格执行焊接工艺要求。
钢结构焊缝缺陷包括表面缺陷类型与内部缺陷类型。
不同缺陷形成的原因存在较大差异,例如,热裂纹主要由钢材与焊材中存在的硫、磷造成,而冷裂纹由焊接时的温度下降时的延迟所致。
再如,钢材厚度较大、杂质较多时,硫含量偏大,此时焊接时受到垂直方向的作用力影响会造成层状撕裂缺陷。
除此之外,焊材与焊接工艺参数选择不当或坡口母材料清洁不足时,容易引起毛孔、珠粒、孔隙度大等缺陷。
其中,表面缺陷主要包括毛孔、焊接珠粒、表面燃烧等,内部缺陷主要表现为焊接裂缝、焊接孔隙度、焊接泄漏、焊渣夹杂物等。
2、钢结构焊缝超声波探伤检测存在的问题2.1技术方案研发设计水平低目前,在钢结构焊缝无损检测中,超声波探伤检测效果较好,应用相对地普遍。
尤其从2018年开始实施“互联网+”改革后,钢结构焊接施工中进一步强化了对该技术的应用,通过数据采集、传输、存储、抽取、分析、利用等完整的数据化管理方式,扩增了该技术的应用效果。
但是,在全球同行业竞争条件下,我国在该技术的应用中普遍存在技术方案研发设计水平较低的问题。
超声波探伤第8讲
§5.4焊缝探伤一、焊接加工及常见缺陷锅炉、压力容器主要是采用焊接加工成形的。
焊缝内部质量主要利用射线和超声波来检测。
但对于焊缝中的裂纹、未焊透等危险性缺陷,超声波探伤比射线更容易发现。
为了有效地检出焊缝中的缺陷,探伤人员除了具备超声波探伤的测试技术外,还应对焊接过程、焊接接头和坡口形式以及焊缝中常见缺陷有所了解。
1.焊接加工(1)焊接过程常用的焊接方法有手工电孤焊、埋孤自动焊、气体保护焊和电渣焊等。
焊接过程实际上是一个冶炼和铸造过程,首先利用电能或其他形式的能产生高温使金属溶化,形成熔池,烧融金属在熔池中经过冶金反应后冷却,将两母材牢固地结合在一起。
为了防止空气中的氧、氮进入熔融金属,在焊接过程中通常有一定的保护措施。
手工电弧焊是利用焊条外层药皮高温时分解产生的中性或还原性气体作保护层。
埋弧焊和电渣焊是利用液体焊接剂作保护层,气体保护焊是利用氧气或二氧化碳等保护气体作保护层。
(2)接头形式焊接接头形式主要有对接、角接、搭接和T型接头等几种。
如图5.35所示。
在锅炉压力容器中,最常见的是对接,其次是角接和T型接头,搭接比较少见。
(3)坡口形式根据板厚、焊接方法、接头形式和要求不同可采用不同的坡口形式.常见的对接和角接接头的坡口形式如图5.37所示,2.焊缝中常见缺陷焊缝中常见缺陷有气孔、夹渣、未焊透、未熔合和裂纹等。
如图5.38所示.(1)气孔气孔是在焊接过程中焊接熔池高温时吸收了过量的气体或冶金反应产生的气体,在冷却凝固之前来不及逸出而残留在焊缝金属内所形成的空穴。
产生气孔的主要原因是焊条或焊剂在焊前未烘干、焊件表面污物清理不净等。
气孔大多垒球形或椭圆形.气孔分为单个气孔、链状气孔和密集气孔。
(2)未焊透未焊透是指焊接接头根部母材未完全熔透的现象。
产生未焊透的主要原因是焊接电气流过小,运条速度太快或焊接规范不当(如坡口角度过小、根部间隙过小或钝边过大等)。
未焊透分为根部未焊透、中间未焊透和层间未焊透等。
超声波焊接工艺问题及解决
超声波焊接工艺问题及解决超声波焊接是一种先进的无损焊接方法,它具有高效、高质、环保等多种优点,广泛应用于电子、汽车、医疗等行业。
但是在实际应用过程中,我们也会遇到一些超声波焊接工艺问题,如焊接缺陷、焊接接头强度不够等等,今天我们就来详细讲解一下超声波焊接工艺问题及解决。
一、焊接缺陷问题超声波焊接过程中,容易出现一些焊接缺陷,如金属材料熔化不足、烧孔、裂纹等。
造成这些问题的原因可能是设备不良、操作不当、材料不符合要求等,下面我们分别来看一下这些原因。
1、设备不良一些超声波焊接设备的品质可能会影响到焊接的质量,如果不慎购买了不符合要求的设备,很可能会出现焊接缺陷问题。
因此,我们在购买设备的时候,应该选择有信誉和声誉的厂商和品牌,以保证设备的质量和性能。
2、操作不当超声波焊接操作需要专业的技术指导和技能培训,对焊接设备的使用方法、工艺参数等细节要求都十分严格。
如果操作不当,不仅会造成焊接缺陷,还会对设备造成损坏。
因此,在工艺操作前,要首先了解相关的操作指导,有必要进行实际的操作演练。
3、材料不符合要求焊接材料的质量也是影响焊接质量的一个重要因素,如果选择的材料不符合要求,很可能会出现焊接缺陷。
因此,在进行焊接材料的选择时,一定要根据具体的焊接需求,仔细选择材料,并且要注意材料的特性、合适的材料厚度和保证材料质量,并做好材料的预处理。
二、焊接接头强度不够问题超声波焊接在实际应用过程中,会遇到一些焊接接头强度不够的问题,这可能会影响到焊接质量。
造成这个问题的原因可能是工艺参数选择不当、操作不够熟练等,下面我们来分析一下。
1、工艺参数选择不当超声波焊接工艺参数的选择很关键,如果选择不当,很可能会造成焊接接头强度不够的问题。
因此,在进行超声波焊接之前,我们要根据焊接材料的特性、材料的厚度和焊接位置等因素,仔细选择合适的工艺参数,以保证焊接接头的强度。
2、操作不够熟练超声波焊接除了需要选择合适的工艺参数外,对操作者的技术要求非常高。
焊接探伤缺陷原因分析
焊接探伤缺陷原因分析摘要:焊接因其工艺的特殊性,需要无损检测其内部质量。
超声波无损检测技术是目前国内外应用最广泛,使用频率最高且发展较快的一种无损检测技术。
不同的缺陷其回波信号的形状特点各有不同,本文针对超声波横波探伤所发现的常见缺陷的进行分析,以便更好的对探伤缺陷进行定性,并提出纠正措施。
关键词:探伤缺陷;原因分析引言在超声无损检测过程中,发现较多的焊接缺陷主要有气孔、夹渣、未融合未焊透等。
1 ⽓孔探伤表现单个⽓孔回波⽓度低,波形为单缝,较稳定。
从各个⽓向探测,反射波⽓体相同,但稍⽓动超声波探伤仪探头就消失,密集⽓孔会出现⽓簇反射波,波⽓随⽓孔⽓⽓⽓不同,当探头作定点转动时,会出现此起彼落的现象。
产⽓这类缺陷的原因主要是焊材未按规定温度烘⽓,焊条药⽓变质脱落、焊芯锈蚀,焊丝清理不⽓净,⽓⽓焊时电流过⽓,电弧过长,埋弧焊时电压过⽓或⽓络电压波动太⽓,⽓体保护焊时保护⽓体纯度低等。
如果焊缝中存在着⽓孔,既破坏了焊缝⽓属的致密性,⽓使得焊缝有效截⽓积减少,降低了机械性能,特别是存链状⽓孔时,对弯曲和冲击韧性会有⽓较明显降低。
防⽓这类缺陷防⽓的措施有:不使⽓药⽓开裂、剥落、变质及焊芯锈蚀的焊条,⽓锈的焊丝必须除锈后才能使⽓。
所⽓焊接材料应按规定温度烘⽓,坡⽓及其两侧清理⽓净,并要选⽓合适的焊接电流、电弧电压和焊接速度等。
2 夹渣探伤表现点状夹渣回波信号与点状⽓孔相似,条状夹渣回波信号多呈锯齿状波幅不⽓,超声波探伤波形多呈树枝状,主峰边上有⽓峰,探头平移波幅有变动,从各个⽓向探测时反射波幅不相同。
这类缺陷产⽓的原因有:焊接电流过⽓,速度过快,熔渣来不及浮起,被焊边缘和各层焊缝清理不⽓净,其本⽓属和焊接材料化学成分不当,含硫、磷较多等。
防⽓措施有:正确选⽓焊接电流,焊接件的坡⽓⽓度不要太⽓,焊前必须把坡⽓清理⽓净,多层焊时必须层层清理焊渣,并合理选择运条⽓度焊接速度等。
3 未焊透探伤表现反射率⽓,波幅也较⽓,超声波探伤仪探头平移时,波形较稳定,在焊缝两侧探伤时均能得到⽓致相同的反射波幅。
焊接技术中常见的缺陷、检验及其解决措施分析
焊接技术中常见的缺陷、检验及其解决措施分析摘要:焊接技术是指在高温或者高压的条件下,利用焊接材料将两块及两块以上的母体材料连接成一个完整的材料的操作技术。
在很多工业生产中,和金属电子相关的制作当中,都需要用到焊接技术。
焊接技术就是在元器件的连接处进行焊接,因此对于焊接人员的技术要求非常重要。
然而在实际工业生产中的焊接常常会遇到各种各样的问题。
基于此,本篇文章对焊接技术中常见的缺陷、检验及其解决措施进行研究,以供参考。
关键词:焊接技术;常见的缺陷;检验;解决措施引言金属材料在焊接的过程中可能会因为焊接环境的不同或者是焊接技术不同而出现不同的缺陷问题。
针对于各式各样的问题自然而然也需要相关的技术操作人员认认真真的思考问题的解决办法。
然而一部分比较特殊的金属材料则需要更为特殊的焊接技术以及焊接缺陷处理方法。
也会有一部分金属材料因为焊接缺陷问题而无法投入使用。
毕竟金属材料焊接的问题也会严重影响到金属材料焊接的质量。
1焊接技术常见的缺陷1.1裂纹裂纹缺陷对于焊接结构的力学性能有重要的影响,尤其是结构在疲劳载荷的作用下,很容易发生裂纹扩展和断裂。
裂纹缺陷的形成原因主要是焊接区域金属的结合力发生突变,在焊接材料和基体材料的交界位置出现新的界面。
焊接裂纹缺陷的类型非常多,裂纹缺陷包括横向裂纹、发散状裂纹等,此外,按照裂纹出现的温度也可以将裂纹分为高温裂纹和常温裂纹,其中,高温裂纹是焊接过程中就产生的裂纹缺陷,产生的原因是基体材料在焊接高温下出现晶体的形状突变,高温裂纹的分布方向通常沿焊缝的长度方向;常温裂纹是指焊接的材料凝固过程产生的裂纹,这种裂纹缺陷产生的原因是焊接材料凝固过程产生温度差和应力差,常温裂纹沿焊缝的长度和宽度方向均可能出现,由于焊接裂纹的危险性非常高,一旦出现裂纹就必须将该区域的材料进行彻底清除,然后重新调整焊接工艺进行二次补焊。
焊接裂纹出现的另一个原因是焊接区域存在杂质,在焊接过程中这些杂质的融化和凝固时间与焊接不同,导致应力分布不均匀。
塑胶件超声波焊接常见缺陷及处理
塑胶件超声波焊接常见缺陷及处理塑胶件超声波焊接是一种常见的塑胶加工技术,它使用超声波振动将两个塑胶件表面加热并压合在一起。
然而,由于焊接过程中的各种因素,常常会出现一些焊接缺陷。
本文将介绍一些常见的塑胶件超声波焊接缺陷,并讨论它们的处理方法。
1. 出现漏焊漏焊是指塑胶件焊接过程中出现的焊缝不完全封闭,造成塑胶件连接不牢固的问题。
产生漏焊的原因有很多,可能是焊接参数设置不合理,例如超声波功率、焊接时间和焊接压力等;也可能是塑胶材料的选择不当,例如塑胶材料的熔点过高或过低都会影响焊缝的形成。
处理漏焊的方法一般是调整焊接参数、更换合适的塑胶材料或采取其他补救措施,例如使用热熔胶进行补焊。
2. 出现气泡气泡是指塑胶件焊接过程中,在焊缝中形成的气体囊泡。
气泡的形成可能是由于塑胶材料中的水分、气体或其他杂质没有完全排除导致的。
处理气泡的方法通常包括增加超声波震动时间,更换低含水量的塑胶材料或进行预干燥处理,以消除杂质。
3. 出现焊缝不均匀焊缝不均匀是指塑胶件焊接过程中焊缝的宽度、深度或形状不一致。
这可能是由于超声波振动均匀性差、焊具设计不合理或超声波能量传递不均匀等原因导致的。
处理焊缝不均匀的方法可以是调整焊接机的参数、优化焊具设计或采用其他工艺改进方法。
4. 出现熔崩熔崩是指塑胶件焊接过程中塑胶材料出现熔化破裂或溢出的现象。
这可能是由于焊接参数设置不当,例如超声波功率过高或焊接时间过长导致的。
处理熔崩的方法一般是调整焊接参数,降低超声波功率或缩短焊接时间,以避免过热导致塑胶材料熔化破裂。
5. 出现焊接接头强度不足焊接接头强度不足是指塑胶件焊接完毕后,焊缝的强度不够,容易出现开裂或断裂的现象。
减少焊接接头强度不足的方法包括增加焊接压力、增加超声波能量传递效率或更换更适合的焊接表面。
总之,塑胶件超声波焊接在实际应用中常常会出现一些焊接缺陷,这些缺陷可能是由于焊接参数、塑胶材料选择不当,甚至是焊接设备或工艺的设计问题所致。
使用超声波焊接时容易出现的问题及解决办法
解析:
超音波作业的条件是指机台的输出功率(段数)、压力(动态压 力与静态压力)熔接时间、 硬化时间、延迟时间等诸元的设定。 我们依超音波导熔线为例来说明。在我们实施超音波熔接 时,如 果压力太大,气缸下降缓冲太快,易把超音波导熔线压平,虽然 看似产品已经密合, 但因导熔线,已经受挤压而下陷,失去了导 熔效果,形成塑料面与面的强迫熔接,而非三角形 点的导引熔接,所以产生假象的熔接。
超音波振动熔接,并非单纯直线纵向振动(挠曲与横向振动不在此讨论), 而是形成交叉式纵向下降振动,而上模超音波输出端能量亦是有一定的强弱分 布点,气压、电压、机台虽决定功率输出能量的稳定性,但能量分布点亦呈现 比例性增减,如果发现超音波熔接时制品总是单点烫伤,即表示上模该点输出 能量与产品该点形成应力对应,此时若改变超音波振动面的接触点,将可改善 热能集束产生的烫伤。 《解决方法》
所以这时采取的对策就是气压源采取独立方式;要求在 0.02m/m 以下之产品在超音波机台加 装稳压设备;调整出力段数、增加功率,但一般状况超音波作业时功率输出最好能掌握在 2~4 段之间,如一定要在 5~6 段作业,则生产作业时间必须尽量缩短,以避免零件、振动子的损 耗。增加能量扩大器(Horn上模)的扩大。但扩大程 度如果超出4:1,将对Horn本身、音 波、电流有极大的影响
使用超声波焊接时容易出现的问题及解决办法
超音波模治具架设不准确、受力不平均
解析:
在一般认为超音波作业时,产品与模具表面只要接触准确就可以得到应该的熔接效果,其实 这只是表面的看法,超音波既然是摩擦振,就会产生音波传导的现象,我们如果单只观察硬件 (模治具)的稳合程度,而忽略了整合型态的超音波作业方式,必定会产生舍本逐末或误 判的 后果,所以在此必须先强调超音波熔接的作业方式是传导音波,使成振动摩擦转为热能而熔接。 这时候超音波模治具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百 分之百承受相同的压力。另一方面上模(Horn)输出的能量,每一点都有其误差值,并非整个 面发 出的能量都相同。就这整体而言,势必产生产品熔接线熔接程度 的差异。所以也就必须 作修正,如何修正,那就是靠超音波熔接 机本身的水平螺丝,或是贴较薄的胶带或铝箔来克服 了。
塑胶件超声波焊接常见缺陷及处理
《塑胶件超声波焊接常见缺陷及处理》1. 引言在工业生产中,塑胶件的焊接是一项非常重要的工艺。
而超声波焊接作为一种常见的塑胶件焊接方法,具有高效、可靠的特点,被广泛应用于汽车、电子、医疗器械等领域。
然而,随着焊接技术的发展,常常会出现一些焊接缺陷,影响产品质量和工艺稳定性。
本文将深入探讨塑胶件超声波焊接常见的缺陷及其处理方法,以帮助读者更全面地理解超声波焊接工艺。
2. 塑胶件超声波焊接常见缺陷及处理2.1 比例不合适- 超声波焊接中,适当的振幅和压力是非常重要的。
如果振幅和压力的比例不合适,会导致焊接强度不足,甚至出现焊接不牢固的情况。
处理方法包括调整振幅和压力的比例,确保其合适性,以保证焊接质量。
2.2 温度控制不当- 超声波焊接需要在一定的温度范围内进行,过高或过低的温度都会对焊接质量造成影响。
处理方法包括加强对温度的监控和控制,确保焊接过程中温度处于适宜的范围内。
2.3 塑胶材料选择不当- 不同类型的塑胶材料适用于不同的超声波焊接工艺,选择不当会导致焊接质量不佳。
处理方法包括根据具体情况选择合适的塑胶材料,并进行充分的测试和验证。
2.4 超声波焊接头磨损- 超声波焊接头的磨损会导致焊接质量下降,甚至出现焊接缺陷。
处理方法包括定期检查和更换焊接头,确保其保持良好状态。
2.5 焊接环境不佳- 焊接环境的清洁程度和湿度都会对焊接质量产生影响。
处理方法包括优化焊接环境、保持清洁和控制湿度,以确保焊接质量稳定。
3. 总结与展望本文针对塑胶件超声波焊接常见的缺陷及处理方法进行了全面的分析和探讨。
通过对比实际生产中的案例和相关研究,我们对于超声波焊接工艺有了更深入的理解,并总结出了一些处理方法。
未来,随着技术的不断发展,我们相信会有更多的创新方法出现,为塑胶件超声波焊接带来更好的解决方案。
4. 个人观点与理解作为一名从事塑胶件超声波焊接多年的从业者,对于焊接技术的重要性有着深刻的理解。
只有不断总结经验、改进工艺,我们才能有效地避免焊接缺陷,提高产品质量和生产效率。
塑胶件超声波焊接常见缺陷及处理
塑胶件超声波焊接常见缺陷及处理
塑胶件超声波焊接常见的缺陷有以下几种:
1. 脱胶:焊接过程中,塑胶件与焊接界面的粘结力不足,导致焊接区域脱胶。
处理方法可以通过增加焊接压力、增加超声波能量、调整焊接时间等方式来提高焊接界面的粘结强度。
2. 焊接接头不牢固:焊接接头未能完全融合,导致焊接接头的强度不足。
处理方法可以通过增加超声波能量、提高焊接压力、延长焊接时间等方式来保证焊接接头的牢固性。
3. 渗漏:在焊接过程中,焊接区域的塑胶材料未能完全密合,导致焊接接头的密封性不足,从而造成渗漏。
处理方法可以通过增加焊接压力、调整焊接时间、增加超声波能量等方式来提高焊接接头的密封性。
4. 焊接面变形:焊接时,塑胶件受到过大的焊接压力或温度,导致焊接面发生变形。
处理方法可以通过控制焊接压力、控制焊接温度、采用合适的焊接夹具等方式来减少焊接面变形的发生。
5. 焊瘤:焊接过程中,由于焊接参数不合适或塑胶材料有缺陷,导致焊瘤的产生。
处理方法可以通过调整焊接参数、更换合适的塑胶材料等方式来减少焊瘤的产生。
需要注意的是,在处理这些常见的缺陷时,需要根据具体情况选择合适的处理方法,以确保焊接质量和性能的达到要求。
超声波焊不牢的原因 -回复
超声波焊不牢的原因-回复超声波焊接是一种常见的焊接技术,用于将材料或零部件进行固定连接。
然而,有时焊接结果可能不牢固,导致焊接部位易断裂或脱离。
本文将逐步分析超声波焊接不牢的原因,并探讨可能的解决方案。
1. 超声波焊接简介超声波焊接是一种固态焊接方法,利用超声波振动产生的剪切作用,将焊接界面的两个材料粘接在一起。
焊接头的振动产生热量,使材料软化并形成结合。
通常,焊接头由一个金属插头组成,可定义焊接区域,以便精确的焊接连接。
2. 超声波焊接不牢的原因2.1 材料选择和厚度超声波焊接适用于焊接不同类型的材料,如金属、塑料和复合材料。
然而,材料的选择和厚度对焊接牢固性起着至关重要的作用。
如果材料选择不当或厚度不匹配,焊接接头的强度可能会受到影响,从而导致焊点松动或断裂。
2.2 温度控制超声波焊接的一项重要参数是振动头的温度控制。
如果温度过高或过低,都会对焊接结果产生负面影响。
过高的温度可能导致材料的熔化或变形,从而减弱焊接点的强度。
过低的温度则可能导致焊接不充分,无法实现牢固的连接。
2.3 焊接头设计焊接头的设计和形状也对焊接结果起着重要作用。
焊接头应能提供均匀的振动,并紧密贴合于焊接材料。
如果焊接头设计不当,可能导致焊接不均匀或接触不良,从而影响焊点的强度。
2.4 工艺参数超声波焊接涉及许多工艺参数,如振动频率、振幅、焊接时间和焊接压力。
这些参数的选择与材料的特性以及焊接要求密切相关。
如果参数不正确选择或调整不当,焊接结果可能不牢固。
例如,过高或过低的焊接压力都可能对焊接材料施加过大或过小的力,从而影响焊接点的强度。
3. 解决超声波焊接不牢的方法3.1 优化材料选择和厚度正确选择焊接材料以及控制焊接材料的厚度,以确保焊接结果的牢固性。
深入了解材料的特性,并调整焊接参数以适应不同的材料组合。
3.2 优化温度控制确保焊接头的温度在合适的范围内,并及时检测温度变化。
通过调整参数控制和检测系统来优化温度控制,确保焊接过程中的温度与材料要求相匹配。
超声焊接工艺漏焊原因
超声焊接工艺漏焊原因全文共四篇示例,供读者参考第一篇示例:超声焊接是一种常见的金属连接工艺,它通过利用超声波的高频振动特性将金属材料加热至熔点,从而实现金属的连接。
在实际的超声焊接过程中,往往会出现焊接工艺漏焊的问题,这种情况会导致焊接质量下降,甚至影响工件的使用性能。
深入了解超声焊接工艺漏焊的原因是非常重要的。
一、超声焊接工艺漏焊的原因可归纳为以下几点:1.材料表面和凸缘不干净、氧化严重。
在超声焊接过程中,材料表面的污染或氧化会降低金属的导热性,影响超声振动能量的传递,从而导致漏焊现象的发生。
2.超声焊接工艺参数设置不合理。
包括振动幅度、振动频率、焊接压力等参数的设置不正确,会导致焊接过程中金属表面无法充分熔化,造成漏焊。
3.夹具设计不合理。
夹具的设计不合理会导致焊接部位的振动传递不畅,影响超声振动能量的传递,从而引起漏焊现象。
4.金属材料的选择不当。
不同的金属材料具有不同的导热性和熔点,选择不当的金属材料会使超声焊接过程中出现焊接不良的情况。
5.操作人员技术不过关。
超声焊接是一项精密的工艺,操作人员需要经过专业的培训和实践,才能熟练掌握焊接技术,避免漏焊现象的发生。
二、针对超声焊接工艺漏焊的原因,我们可以采取以下方法来预防和解决漏焊问题:1.保持材料表面清洁。
在焊接过程中,定期清洗金属材料的表面和凸缘,避免杂质和氧化物的影响,确保焊接质量。
2.合理设置焊接参数。
根据金属材料的性质和焊接要求,合理设置超声焊接的参数,确保金属表面充分熔化,避免漏焊。
超声焊接工艺漏焊是一个需要引起重视的问题,通过加强对漏焊原因的分析和预防措施的采取,可以有效地避免漏焊现象的发生,提高超声焊接的工件质量和使用性能。
希望通过以上内容的介绍,能够帮助大家更好地了解超声焊接工艺漏焊的原因和预防方法。
第二篇示例:需要了解超声焊接工艺的基本原理。
超声焊接是利用超声波在焊接界面产生的高频振动,通过介质传导到焊接部位,使其产生热量而实现焊接的工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波焊接常见缺陷及处理办法
一、强度无法达到欲求标准。
当然我们必须了解超音波熔接作业的强度绝不可能达到一体成型的强度,只能说接近于一体成型的强度,而其熔接强度的要求标准必须仰赖于多项的配合,这些配合是什么呢
※塑料材质:ABS与ABS相互相熔接的结果肯定比ABS 与PC相互熔接的强度来的强,因为两种不同的材质其熔点也不会相同,当然熔接的强度也不可能相同,虽然我们探讨ABS与PC这两种材质可否相互熔接我们的答案是绝对可以熔接,但是否熔接后的强度就是我们所要的那就不一定了!而从另一方面思考假使ABS 与耐隆、PP PE相熔的情形又如何呢如果超音波HORN 瞬间发出150度的热能,虽然ABS材质己经熔化,但是耐隆、PVC PR PE只是软化而已。
我们继续加温到270度以上,此时耐隆、PVC PP PE已经可达于超音波熔接温度,但ABS材质已解析为另外分子结构了!由以上论述即可归纳出三点结论:
1.相同熔点的塑料材质熔接强度愈强。
2.塑料材质熔点差距愈大,熔接强度愈小。
3.塑料材质的密度愈高(硬质)会比密度愈低(韧性高)
的熔接强度高。
二、制品表面产生伤痕或裂痕。
在超音波熔接作业中,产品表面产生伤痕、结合处断裂或有裂痕是常见的。
因为在超音波作业中会产生两种情形:1. 高热能直接接触塑料产品表面2. 振动传导。
所以超音波发振作用于塑料产品时,产品表面就容易发生烫伤,而1m/m以内肉厚较薄之塑料柱或孔,也极易产生破裂现象,这是超音波作业先决现象是无可避免的。
而在另一方面,有因超音波输出能量的不足(分机台与HORN t模),在振动摩擦能量转换为热能时需要用长时间来熔接,以累积热能来弥补输出功率的不足。
此种熔接方式,不是在瞬间达到的振动摩擦热能,而需靠熔接时间来累积热能,期使塑料产品之熔点到达成为熔接效果,如此将造成热能停留在产品表面过久,而所累积的温度与压力也将造成产品的烫伤、震断或破裂。
是以此时必须考虑功率输出(段数)、熔接时间、动态压力等配合因素,来克服此种作业缺失。
解决方法:
1. 降低压力。
2. 减少延迟时间(提早发振))
3. 减少熔接时间。
4. 引用介质覆盖(如PE袋)。
5. 模治具表面处理(硬化或镀铬)
6. 机台段数降低或减少上模扩大比。
7. 易震裂或断之产品,治具宜制成缓冲,如软性树脂或覆盖软木塞等(此项指不影响熔接强度)。
8. 易断裂产品于直角处加R角。
三、制品产生扭曲变形。
发生这种变形我们规纳其原因有三:
1. 本体与欲熔接物或盖因角度或弧度无法相互吻合.
2. 产品肉厚薄(2m/m以内)且长度超出60m/m以上.
3. 产品因射出成型压力等条件导致变形扭曲. 所以当我们的产品经超音波作业而发生变形时,从表面看来好像是超音波熔接的原因,然而这只是一种结果,塑料产品未熔接前的任何因素,熔接后就形成何种结果。
如果没有针对主因去探讨,那将耗费很多时间在处理不对症下药的问题上,而且在超音波间接传导熔接作业中(非直熔),6kg 以下的压力是无法改变塑料的轫性与惯性。
所以不要尝试用强大的压力,去改变熔接前的变形(熔接机最高压力为6kg),包含用模治具的强迫挤压。
或许我们也会陷入一个盲点,那就
是从表面探讨变形原因,即未熔接前肉眼看不出,但
是经完成超音波熔接后,就很明显的发现变形。
其原
因乃产品在熔接前,会因导熔线的存在,而较难发现
产品本身各种角度、弧度与余料的累积误差,而在完成超音波熔接后,却显现成肉眼可看到的变形。
解决方法:
1. 降低压力(压力最好在2kg 以下)。
2. 减少超音波熔接时间(降低强度标准)。
3. 增加硬化时间(至少秒以上)。
4. 分析超音波上下模是否可局部调整(非必要时)。
5. 分析产品变形主因,予以改善。
四、制品内部零件破坏※超音波熔接后发生产品破坏原因如下:
1. 超音波熔接机功率输出太强.
2. 超音波能量扩大器能量输出太强.
3. 底模治具受力点悬空,受超音波传导振动而破坏
4. 塑料制品高、细成底部直角,而未设缓冲疏导能量的R 角.
5. 不正确的超音波加工条件.
解决方法:
1. 提早超音波发振时间(避免接触发振)。
2. 降低压力、减少超音波熔接时间(降低强度标准)
3. 减少机台功率段数或小功率机台。
4. 降低超音波模具扩大比。
5. 底模受力处垫缓冲橡胶。
6. 底模与制品避免悬空或间隙。
(上模)掏孔后重测频率。
8. 上模掏孔后贴上富弹性材料。
五、产品产生溢料或毛边
※超音波熔接后产品发生溢料或毛边原因如下:
1. 超音波功率太强.
2. 超音波熔接时间太长.
3. 空气压力(动态)太大.
4. 上模下压力(静态)太大.
5. 上模(HORN能量扩大比率太大.
6. 塑料制品导熔线太外侧或太高或粗. 上述六项为造成超音波熔接作业后产品发生溢料毛边的原因,然而其中最关键性的是在第六项超音波的导熔线开设,一般在超音波熔接作业中,空气压力大约在2~4kg范围,根据经验值最佳的超音波导熔线,是
在底部〜m K高度〜m如:此型△,尖角约呈60° 超出这个数值将导至超音波熔接时间、压力、机台或上模功率的升高,如此就形成上述1~6项造成溢料与毛边的原因。
解决方法:
1. 降低压力、减少超音波熔接时间(降低强度标准)
2. 减少机台功率段数或小功率机台。
3. 降低超音波模具扩大比。
4. 使用超音波机台微调定位固定。
5. 修改超音波导熔线。
六、产品熔接后尺寸无法控制于公差内
※在超音波熔接作业中,产品无法控制于公差范围有其下述原因:
1. 机台稳定性(能量转换未增设安全系数).
2. 塑料产品变形量超出超音波自然熔合范围.
3. 治具定位或承受力不稳定.
4. 超音波上模能量扩大输出不配合.
5. 熔接加工条件未增设安全系数.
解决方法:
1. 增加熔接安全系数(依序由熔接时间、压力、功率)
2. 启用微调固定螺丝(应可控制到m)。
3. 检查超音波上模输出能量是否足够(不足时增加段
数)。
4. 检查治具定位与产品承受力是否稳合。
5. 修改超音波导熔线。
超声波塑料焊接水、气密导熔线(焊线)设计我们欲求产品达到水、气密的功能时,定位与超声波导熔线是成败的重要关键,所以在产品设计时的考虑,如:定位、材质、肉厚,与超声波导熔线的对应比例有绝对的关系。
在一般水、气密的要求,导熔线高度应在〜m之范围(视产品肉厚而定),如低于m 以下,要达到水气密的功能,除非定位设定要非常标准,而且肉厚有5 m/m 以上,否则效果不佳。
一般要求水气密的产品其定位与超音波导熔线的方式如下:斜切式:适合水密性及大型产品之熔接,接触面角度=45°, x=w/2, d=〜为佳。
阶梯尖式:适合水密性及防止外凸或龟裂之方法,接触面的角度=45 ° , x=w/2, d=〜为佳。
峰谷尖式:适合水密性且高强度熔接,d=〜内侧接触面之高度h依形状大小而有变化,但h约在1〜2mr左右。
产品实施超声波作业无法达到水、气密,除了超声波导熔线、治具定位、产品本身定位等因素外,超声波设定的条件也是一项主因。
我们在此更深入探讨引响水气密的另一原因(熔接条件),在我们实施超音波熔接作业时,求效率求快是最基本目标,但往往也忽略了其求效率的要领,正常有两种现象出现:
一、下降速度、缓冲太快:此一形成的速度,使动态压力加上重力加速度将把超声波导熔线压扁,使导熔线无法发挥导熔的作用,形成假相熔接。
二、熔接时间过长:塑料产品因接收过长时间的热能, 不仅
使塑料材质熔化,更进而造成塑料组织焦化现象, 产生砂孔,水或气即由此砂孔渗透而出。
这是一般生产技术者最不易发现之处。