解题技巧专题:等腰三角形中辅助线的作法

合集下载

全等三角形经典辅助线做法汇总

全等三角形经典辅助线做法汇总

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。

也可将图对折看,对称以后关系现。

角平分线加垂线,三线合一试试看。

要证线段倍与半,延长缩短可试验。

三角形中有中线,延长中线等中线。

1. 等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中倍长中线,使延长线段与原中线长相等,构造全等三角形3. 角平分线在三种添辅助线4. 垂直平分线联结线段两端5.用“截长法”或“补短法” :遇到有二条线段长之和等于第三条线段的长,6. 图形补全法:有一个角为60 度或120 度的把该角添线后构成等边三角形7.角度数为30 、60 度的作垂线法:遇到三角形中的一个角为30 度或60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90 的特殊直角三角形,或40-60-80 的特殊直角三角形, 常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法4)(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理.(2 )可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

最新修订人教版八年级下册数学解题技巧专题练习:等腰三角形中辅助线的作法

最新修订人教版八年级下册数学解题技巧专题练习:等腰三角形中辅助线的作法

解题技巧专题:等腰三角形中辅助线的作法——形成精准思维模式,快速解题◆类型一利用“三线合一”作辅助线一、已知等腰作垂线(或中线、角平分线)1.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=2,则BC=________.2.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF.求证:DE=DF.二、构造等腰三角形3.如图,在△ABC中,BP平分∠BAC,且AP⊥BP于点P,连接CP.若△PBC的面积为2,则△ABC的面积为()A.3B.4C.5D.64.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD的延长线于点E.求证:BD=2CE.◆类型二巧用等腰直角三角形构造全等5.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上.求证:DE=DF.◆类型三等腰(边)三角形中截长补短或作平行线构造全等6.如图,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于点D.求证:BC=AB+CD.7.如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,且P A =CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.【方法8】参考答案与解析1.42.证明:连接AD .∵AB =AC ,D 是BC 的中点,∴∠EAD =∠F AD .在△AED 和△AFD 中,⎩⎪⎨⎪⎧AE =AF ,∠EAD =∠F AD ,AD =AD ,∴△AED ≌△AFD ,∴DE =DF .3.B4.证明:如图,延长BA 和CE 交于点M .∵CE ⊥BD ,∴∠BEC =∠BEM =90°.∵BD 平分∠ABC ,∴∠MBE =∠CBE .又∵BE =BE ,∴△MBE ≌△CBE ,∴EM =EC =12MC .∵△ABC 是等腰直角三角形,∴∠BAC =∠MAC =90°,BA =AC ,∴∠ABD +∠BDA =90°.∵∠BEC =90°,∴∠ACM +∠CDE =90°.∵∠BDA =∠EDC ,∴∠ABE =∠ACM .又∵AB =AC ,∴△ABD ≌△ACM (ASA),∴DB =MC ,∴BD =2CE .5.证明:连接CD .∵AC =BC ,∠C =90°,D 是AB 的中点,∴CD 平分∠ACB ,CD ⊥AB ,∴∠CDB =90°,∴∠BCD =∠ACD =45°,∠B =∠C =45°,∴∠ACD =∠B =∠BCD ,∴CD =BD .∵ED ⊥DF ,∴∠EDF =∠EDC +∠CDF =90°.又∵∠CDF +∠BDF =90°,∴∠EDC =∠FDB ,∴△ECD ≌△FBD ,∴DE =DF .6.证明:如图,在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD .又∵BD =BD ,∴△ABD ≌△EBD (SAS),∴∠BED =∠A =108°,∴∠CED =180°-∠BED =72°.又∵AB=AC ,∠A =108°,∴∠ACB =∠ABC =12×(180°-108°)=36°,∴∠CDE =180°-∠ACB -∠CED =180°-36°-72°=72°.∴∠CDE =∠DEC ,∴CD =CE ,∴BC =BE +EC =AB +CD .7.(1)证明:过点P 作PF ∥BC 交AC 于点F ,∴∠AFP =∠ACB ,∠FPD =∠Q ,∠PFD =∠QCD .∵△ABC 为等边三角形,∴∠A =∠ACB =60°,∴∠AFP =60°,∴△APF 是等边三角形,∴PF=P A =CQ ,∴△PFD ≌△QCD ,∴PD =DQ .(2)解:由(1)知△APF 是等边三角形,∵PE ⊥AC ,∴AE =EF .由(1)知△PFD ≌△QCD ,∴DF =CD ,∴DE =EF +DF =12AF +12CF =12AC .又∵AC =1,∴DE =12.。

(完整)等腰三角形时常用的辅助线作法

(完整)等腰三角形时常用的辅助线作法

有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BD⊥AC于D,求证:∠BAC = 2∠DBC⑵有底边中点时,常作底边中线例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE = DF⑶将腰延长一倍,构造直角三角形解题例:已知,如图,△ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EF⊥BC⑷常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在△ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF⑸常过一腰上的某一已知点做底的平行线例:已知,如图,△ABC中,AB =AC,F在AC上,E在BA延长线上,且AE = AF,连结DE求证:EF⊥BC⑹常将等腰三角形转化成特殊的等腰三角形---—--等边三角形例:已知,如图,△ABC中,AB = AC,∠BAC = 80o,P为形内一点,若∠PBC = 10o,∠PCB = 30o求∠PAB的度数。

有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BD⊥AC于D,求证:∠BAC = 2∠DBC证明:(方法一)作∠BAC的平分线AE,交BC于E,则∠1 = ∠2 = 12∠BAC又∵AB = AC∴AE⊥BC∴∠2+∠ACB = 90o∵BD⊥AC∴∠DBC+∠ACB = 90o∴∠2 = ∠DBC∴∠BAC = 2∠DBC(方法二)过A作AE⊥BC于E(过程略)(方法三)取BC中点E,连结AE(过程略)⑵有底边中点时,常作底边中线例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE = DF21EDC BA证明:连结AD.∵D 为BC 中点, ∴BD = CD又∵AB =AC ∴AD 平分∠BAC ∵DE ⊥AB ,DF ⊥AC ∴DE = DF⑶将腰延长一倍,构造直角三角形解题例:已知,如图,△ABC 中,AB = AC,在BA 延长线和AC 上各取一点E 、F ,使AE = AF , 求证:EF ⊥BC证明:延长BE 到N ,使AN = AB ,连结CN ,则AB = AN = AC∴∠B = ∠ACB, ∠ACN = ∠ANC ∵∠B +∠ACB +∠ACN +∠ANC = 180o∴2∠BCA +2∠ACN = 180o ∴∠BCA +∠ACN = 90o 即∠BCN = 90o ∴NC ⊥BC ∵AE = AF ∴∠AEF = ∠AFE又∵∠BAC = ∠AEF +∠AFE ∠BAC = ∠ACN +∠ANC ∴∠BAC =2∠AEF = 2∠ANC ∴∠AEF = ∠ANCF E DCBAN FE CBA∴EF ∥NC ∴EF ⊥BC⑷常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在△ABC 中,AB = AC,D 在AB 上,E 在AC 延长线上,且BD = CE ,连结DE 交BC 于F 求证:DF = EF证明:(证法一)过D 作DN ∥AE ,交BC 于N ,则∠DNB = ∠ACB,∠NDE = ∠E ,∵AB = AC, ∴∠B = ∠ACB ∴∠B =∠DNB ∴BD = DN 又∵BD = CE ∴DN = EC在△DNF 和△ECF 中 ∠1 = ∠2 ∠NDF =∠E DN = EC ∴△DNF ≌△ECF ∴DF = EF(证法二)过E 作EM ∥AB 交BC 延长线于M ,则∠EMB =∠B(过程略)⑸常过一腰上的某一已知点做底的平行线21NFED C BA21MFED CBA例:已知,如图,△ABC 中,AB =AC ,E 在AC 上,D 在BA 延长线上,且AD = AE ,连结DE求证:DE ⊥BC证明:(证法一)过点E 作EF ∥BC 交AB 于F ,则∠AFE =∠B ∠AEF =∠C ∵AB = AC ∴∠B =∠C ∴∠AFE =∠AEF ∵AD = AE∴∠AED =∠ADE又∵∠AFE +∠AEF +∠AED +∠ADE = 180o ∴2∠AEF +2∠AED = 90o 即∠FED = 90o∴DE ⊥FE 又∵EF ∥BC ∴DE ⊥BC(证法二)过点D 作DN ∥BC 交CA 的延长线于N,(过程略) (证法三)过点A 作AM ∥BC 交DE 于M ,(过程略)⑹常将等腰三角形转化成特殊的等腰三角形————--等边三角形例:已知,如图,△ABC 中,AB = AC,∠BAC = 80o ,P为形内一点,若∠PBC = 10o ∠PCB = 30o 求∠PAB 的度数. 解法一:以AB 为一边作等边三角形,连结CE则∠BAE =∠ABE = 60oN M FE D CBA PECBAAE = AB = BE∵AB = AC∴AE = AC ∠ABC =∠ACB ∴∠AEC =∠ACE∵∠EAC =∠BAC-∠BAE= 80o-60o = 20o∴∠ACE = 12(180o-∠EAC)= 80o∵∠ACB= 12(180o-∠BAC)= 50o∴∠BCE =∠ACE-∠ACB= 80o-50o = 30o∵∠PCB = 30o∴∠PCB = ∠BCE∵∠ABC =∠ACB = 50o, ∠ABE = 60o∴∠EBC =∠ABE-∠ABC = 60o-50o =10o ∵∠PBC = 10o∴∠PBC = ∠EBC在△PBC和△EBC中∠PBC = ∠EBCBC = BC∠PCB = ∠BCE∴△PBC≌△EBC∴BP = BE∵AB = BE∴AB = BP∴∠BAP =∠BPA∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o∴∠PAB = 12(180o-∠ABP)= 70o解法二:以AC为一边作等边三角形,证法同一。

中考专题之与三角形有关的辅助线

中考专题之与三角形有关的辅助线

第一节等腰三角形常用的辅助线例1、文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”“求证”如图,她们对各自所作的辅助线描述如下:文文:“过点A作BC的中垂线AD,垂足为D”;彬彬:“作△ABC的角平分线AD”;数学老师看了两位同学的辅助线作法后,说:“彬彬的做法是正确的,而文文的做法需要订正;”1请你简要说明文文的辅助线作法错在哪里;2根据彬彬的辅助线作法,完成证明过程;例2、如图,已知AD∥BC,AB=AD+BC,E为DC的中点;求证:∠ABE=∠CBE;例3、已知:如图,在正方形ABCD中,E为AB的中点,在CD延长线上取一点F,使FE=FC,EF交AD于P;求证:AE=2DF;连接CE,取CE中点HFHE全等于FHC,FH垂直于CE角BEC=角ECFCE/EB=CF/CH=根号5CF=根号5CH=根号5CE/2=根号5根号5BE/2=BE5/2=AB5/4DF=CF-CD=AB/4=AB/21/2=AE1/2例4、已知:如图,在△ABC中,AB=AC,D点在AB上,E在AC延长线上,且BD=CE,连结DE交BC于点F;求证:DF=EF;DF=EF证明如下:过点D作平行于BC的直线交AC于点G因为AB=AC;DG//BC所以BD=CG又BD=CE,故CG=CE又因为CF//DG所以CF是三角形DEG的中位线所以F是DE的中点所以DF=EF综合演练:1、如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD、CD上的两个动点,且满足AE+CF=2;1求证:△BDE≌△BCF;2判断△BEF的形状,并说明理由;3设△BEF的面积为S,求S的取值范围;1AE+CF=2=CD=DF+CF∴AE=DFAB=BD∠A=∠BDF=60°∴△BDE全等于△BCF2由1得BE=BF且∠EBF=∠EBD+∠DBF=∠EBD+∠ABE=∠ABD=60°∴△BEF是等边三角形33√3/4<=S<=√3第二节直角三角形常用的辅助线例1、如图,在△ABC中,∠ACB=90°,AC=BC,AD是∠BAC的平分线,求证:AC+CD=AB;综合演练:Rt 斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处;则∠A等于1、如图,CD是ABCA、25°B、30°C、45°D、60°2、如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP;1在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;2将△EFP沿直线l向左平移到图2所示的位置时,EP交AC于点Q,连结AP、BQ;猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;3将△EFP沿直线l向左平移到图3所示的位置时,EP的延长线交AC的延长线于点Q,连结AP、BQ;你认为图2中所猜想的BQ与AP的数量关系和位置关系还成立吗若成立,给出证明;若不成立,请说明理由;3、如图,在锐角△ABC中,BE、CF是高,在BE、CF或其延长线上分别截取CP=AB,BQ=AC,分别过P、Q作PM第三节全等三角形的辅助线例1、已知:如图,在△ABC中,AD为BC边上的中线,E为AC边上一点,BE与AD交于F,若AE=EF;求证:AC=BF;例2、1已知:如图1在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC;求证:∠BAD+∠C=180°;2已知:如图2在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D;求证:∠BAD=∠DAC+∠C;例3、已知:如图,在△ABC中,AB=AC,∠BAC=80°,P为△ABC内一点,若∠PBC=10°,∠PCB=30°,求∠PAB 的度数;例4、已知:如图,BD是四边形ABCD的∠ABC的平分线,∠A+∠BCD=180°;求证:AD=DC;例5、已知:如图,在△ABC中,DE∥GF∥BC,且AD=GB;求证:AE=CF;例6、已知:如图,P为∠AOB平分线OP上一点,PC⊥OA于C,∠OAP+∠OBP=180°;求证:AO+BO=2OC; 例7、如图,在△ABC中,∠B=60°,AD、CE是△ABC的角平分线,且交于点O;求证:AC=AE+CD;综合演练:1、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB、AC边于M、N两点,连结MN;探究:线段BM、MN、NC之间的关系,并加以证明;说明:1如果你经历反复探究,没有找到解决问题上的方法,请你把探究过程中的某种思路写出来要求至少写3步;2在你经历说明1的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明;①AN=NC如图②;②DM∥AC如图③;附加题:若点M、N分别是射线AB、AC上的点,其他条件不变,再探索线段BM、MN、NC之间的关系,在图④中画出图形,丙说明理由;① ② ③ ④2、如图,两个全等的含30°,60°的三角形ADE 和ABC,E 、A 、C 在一条直线上,连结BD,取BD 的中点M,连结ME 、MC,试判断△EMC 的形状,并说明理由;3、如图①,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片如图②,量得他们的斜边长为10cm ,较小锐角为30°,再将这两张三角形纸片摆成如图③所示的形状,但点B 、C 、F 、D 在同一直线上,且点C 与点F 重合;在图③至图⑥中统一用F 表示;小明在对这两张三角形纸进行如下操作时遇到了三个问题,请你帮助解决;1将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;2将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,F A 1交DE 于点G,请你求出线段FG 的长度; 3将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 交DE 于点H,请证明:AH=DH;① ② ③ ④ ⑤ ⑥4、已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB=OC;1如图1,若点O 在边BC 上,求证:AB=AC ;2如图2,若点O 在△ABC 的内部,求证:AB=AC ;3若点O 在△ABC 的外部,AB=AC 成立吗 请画图表示;1 25、请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A,B,E 在同一条直线上,P 是线段DF 的中点,连结PG ,PC;若∠ABC=∠BEF=60°,探究PG 与PC 的位置关系及PC PG 的值; 小聪同学的思路是:延长GP 交DC 于点H,构造全等三角形,经过推理使问题得到解决;请你参考小聪同学的思路,探究并解决下列问题:1写出上面问题中线段PG 与PC 的位置关系及PCPG 的值; 2将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变如图2;你在1中得到的两个结论是否发生变化 写出你的猜想并加以证明;3若图1中∠ABC=∠BEF=)900(2 <<αα,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题的其他条件不变,请你直接写出PCPG 的值;用含α的式子表示1 2第四节相似三角形中常用的辅助线例1、如图,△ABC中,点D、E在BC上,且BD=DE=EC,又AB上的中线CF分别交AD、AE于G、H, 求FG:GH:HC;例2、如图,□ABCD中,点E在AB上,AE=2BE;点F是BC的中点,连结EF交对角线BD于点G;求:BG:BD的值;例3、已知:如图,过△ABC的顶点C任作一条直线,与边AB及中线AD分别交于点F和E;求证:AE:ED=2AF:FB;例4、如图,△ABC中,AB=8,AC=6,点D在AB上,且AD=2;试在边AC上找一点E,使△ADE与原三角形△ABC 相似,求AE的长;例5、如图,△ABC 中,∠C=90°,AB=5,AC=4,点D 在AB 的延长线上,且BD=AB,动点P 在线段BC 上移动,作直线DP 交AC 于点E;设BP=x ,AE=y ;1求y 关于x 的函数解析式及定义域;2当PB 为何值时,直线DP 恰将△ABC 的面积平分例6、如图,在△ABC 中,AB=AC=5,BC=6,矩形DEFG 的顶点D 在AB 上,E 、F 在BC 上,G 在AC 上;1设BE=x ,y S DEFG 四边形,求y 与x 之间的函数关系式和自变量x 的取值范围;2连结EG,当x 取何值时,EG ∥AB 求此时矩形DEFG 的面积;例7、如图,在直角梯形ABCD 中,AD ∥BC,∠A=90°,BC=8,AB=12,AD=a ;试问:能否在边AB 上找到点P,使得△ADP 与△BCP 相似 并说明a 的取值对点P 的个数是否有影响,请加以说明;例8、如图,在△ABC 内有一点O,连结AO 、BO 、CO 并分别延长后与BC 、CA 、AB 相交于点D 、E 、F;求证:1=++CFOF BE OE AD OD ;综合演练:1、已知:如图,在△ABC 中,D 为AB 边上一点,∠A=36°,AC=BC,AD AB AC ⋅=2;1试说明:△ADC 和△BDC 都是等腰三角形;2若AB=1,求AC 的值;3试构造一个等腰梯形,该梯形连同它的两条对角线,得到了8个三角形,要求构造出的图形中有尽可能多的等腰三角形;标明各角的度数2、如图所示,一段街道的两边缘所在的直线分别为AB 、PQ,并且AB ∥PQ;建筑物的一端DE 所在的直线MN ⊥AB 于点M,交PQ 于点N;小亮从胜利街的A 处,沿着AB 方向前进,小明一直站在点P 的位置等候小亮; 1请你在图纸中画出小亮恰好看见小明时的视线,以及此时小亮所在位置用点C 标出2已知MN=20m ,MD=8m ,PN=24m ,求1中的点C 到胜利街口的距离CM;3、已知:如图1,在ABC Rt ∆中,∠C=90°,AC=4cm ,BC=3cm ,点P 由B 出发沿BA 向点A 匀速运动,速度为1cm ∕s ;点Q 由A 出发沿CA 方向向点C 匀速运动,速度为2cm ∕s ;连结PQ;若设运动的时间为)20)((<<t s t ,解答下列问题:1当t 为何值时,PQ ∥BC2说明理由;4如图2,连结PC,并把△PQC 沿QC 翻折,得到四边形C PQP ',那么是否存在某一时刻t ,使四边形C PQP '为菱形 若存在,求出此时菱形的边长;若不存在,说明理由;1 24、如图,四边形ABCD 为一梯形纸片,AB ∥CD,AD=BC,翻折纸片ABCD,使点A 与点C 重合,折痕为EF,已知CE ⊥AB;1求证:EF ∥BD;2若AB=7,CD=3;求线段EF 的长;5、如图,在ABC Rt 中,∠A=90°,AB=6,AC=8,D 、E 分别是边AB 、AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q,过点Q 作QR ∥BA 交AC 于R,当点Q 与点C 重合时,点P 停止运动;设BQ=x ,QR=y ; 1求点D 到BC 的距离DH 的长;2求y 关于x 的函数关系式不要求写出自变量的取值范围;3是否存在点P,使△PQR 为等腰三角形 若存在,请求出所有满足要求的x 的值;若不存在,请说明理由;。

全等三角形经典题型辅助线问题

全等三角形经典题型辅助线问题

全等三角形问题中常见的辅助线的作法(含答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

DCB A常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形. 3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

初二数学-三角形问题中常见的辅助线作法总结讲课稿

初二数学-三角形问题中常见的辅助线作法总结讲课稿

初二数学-三角形问题中常见的辅助线作法总结三角形问题中常见的辅助线的作法【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

专题 等腰三角形中常用的辅助线作法(原卷版)

专题 等腰三角形中常用的辅助线作法(原卷版)

(苏科版)八年级上册数学《第2章轴对称图形》专题等腰三角形中常用的辅助线作法解题技巧提炼当遇到等腰三角形时,常利用“三线合一”的性质,若已知图中无此线,可将其构造出来以辅助解决问题,通常是作底边上的高,再证底边上的中线或顶角的平分线.【例题1】(2022秋•秦淮区月考)如图所示,在五边形ABCDE中,AB=AE,∠B=∠E,BC=DE,F是CD的中点,连接AF.求证:AF⊥CD.【变式1-1】如图,△ABC中,CA=CB,D在AC的延长线上,E在BC上,且CD=CE,求证:DE⊥AB.【变式1-2】(2022秋•新洲区期中)如图.△ABC中,CA=CB.D是AB的中点.∠CED=∠CFD=90°,CE=CF,求证:∠ADF=∠BDE.【变式1-3】已知:如图,△ABC中,AB=AC,CE⊥AE于E,CE=12BC,E在△ABC外,求证:∠ACE=∠B.【变式1-4】(2022秋•晋江市期中)如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.【变式1-5】(2022秋•大足区期末)如图所示,△ABC中,AC=BC,点D是AB上一点,DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若∠ADE=160°,求∠DEF的度数;(2)若点D是AB的中点,求证:∠BDE=12∠ACB.【变式1-6】(2022秋•南乐县月考)如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,且BE=4.(1)求∠D的度数;(2)若BC=5,求ED的长.【变式1-7】如图,AB∥CD,∠1=∠2,AD=AB+CD.(1)求证:BE=CE;(2)求证:AE⊥DE;(3)求证:AE平分∠DAB.【例题2】如图,在△ABC 中,AB =AC ,EF 交AB 于点E ,交BC 与点D .交AC 的延长线于点F ,且BE =CF .求证:DE =DF .【变式2-1】如图,△ABC 是等边三角形,D 为AC 延长线上一点,E 是BC 延长线上一点,CE =AD ,求证:DB =DE.【变式2-2】如图,BD平分∠ABC交AC于D,点E为CD上一点,且AD=DE,EF∥BC交BD于F.求证:AB=EF.【变式2-3】如图,在△ABC中,AB=AC,在AB上取一点E,在AC的延长线上取一点F,使BE=CF,EF交BC于点G.(1)试说明EG=FG;(2)试说明AB+AC>2EG.【变式2-4】如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E 作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.【变式2-5】如图所示,等边三角形ABC的边长是6,点P在边AB上,点Q在BC的延长线上,且AP=CQ,设PQ与AC相交于点D.(1)当∠DQC=30°时,求AP的长.(2)作PE⊥AC于E,试探究DE、AE、CD三条线段之间的数量关系,并证明你的结论.【变式2-6】已知,△ABC为等边三角形,点D为AC上的一个动点,点E为BC延长线上一点,且BD=DE.(1)如图1,若点D在边AC上,猜想线段AD与CE之间的关系,并说明理由;(2)如图2,若点D在AC的延长线上,(1)中的结论是否成立,请说明理由.【变式2-7】如图,AD为△ABC的平分线,E为BC的中点,EF∥AD交BA的延长线于F,交AC于G.(1)求证:AF=AG;(2)求证:BF=CG;(3)求AB AC CG的值.【例题3】如图,△ABC 中,CA =CB ,∠ACB =108°,BD 平分∠ABC 交AC 于D ,求证:AB =AD +BC .【变式3-1】如图,△ABC 中,AB =AC ,∠A =100°,CD 平分∠ACB 交AB 于D ,E 为BC 上一点,BE =DE .求证:BC =CD +AD.解题技巧提炼对于线段和差问题,利用“截长补短法”的思想,添加辅助线,可构造等腰三角形来实现边角之间的转化.【变式3-2】如图,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延长线于点M.求证:AM=12(AB+AC).【变式3-3】如图(1),线段AD∥BC,连接AB、CD,取CD中点E,连接AE,AE平分∠BAD.(1)线段AB与AD、BC之间存在怎样的等量关系?请说明理由.(2)如果点C在AB的左侧,其他条件不变,如图(2)所示,那么(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请写出新的结论,并说明理由.【变式3-4】(2022秋•崇川区校级月考)如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.【变式3-5】在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?答: .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.【例题4】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E 是BC 的中点,点A 在DE 上,且∠BAE =∠CDE .求证:AB =CD .分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB =CD ,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE 到点F ,使EF =DE ,连接BF ;②如图2,分别过点B 、C 作BF ⊥DE ,CG ⊥DE ,垂足分别为点F ,G .(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.【变式4-2】如图,在△ABC 中,点D 是BC 的中点,点E 是AD 上一点,BE =AC .若∠C =70°,∠DAC =50°,求∠EBD的度数.解题技巧提炼当题目中已知某线段的中点时,通过倍长中点处的线段构造全等三角形,从而将题目中的相等的角或边集中到新的三角形中构成等腰三角形.【变式4-3】(2022秋•文峰区月考)如图,已知△ABC中,AD是中线,AE是△ABD的中线,BA=BD,∠BAD =∠BDA,求证:AC=2AE.【变式4-4】阅读并完成以下填空:如图1,已知:AD为△ABC的中线,求证AB+AC>2AD.证明:延长AD至E使得DE=AD.连接EC,则AE=2AD.∵AD为△ABC的中线,∴BD=CD.在△ABD和△CED中,BD=CD, , .∴△ABD≌△CED.∴AB=EC.在△ACE中,根据三角形的三边关系有AC+EC AE.而AB=EC,AE=2AD,∴AB+AC>2AD.这种添加辅助线的方法,我们称为“倍长中线法”.请利用这种方法解决下列问题:问题1:如图2,在△ABC中,AC=5,AB=13,D为BC的中点,DA⊥AC.求△ABC的面积.问题2:如图3,在△ABC中,AD是三角形的中线.点F在中线AD上,且BF=AC,连接并延长BF 交AC于点E.求证AE=EF.【变式4-5】(2023春•汉寿县期中)已知:△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,AB=BC,AD=DE,按图1放置,使点E在AB上,取CE的中点F,连接DF,BF.(1)观察发现:图1中DF,BF的数量关系是 ,位置关系是 ;(2)探究证明:将图1中的△ADE绕点A顺时针转动45°,再连接CE,取CE的中点F(如图2),问(1)中的结论是否仍然成立?请证明你的结论;(3)拓展延伸:将图1中的△ADE绕点A顺时针转动任意角度(转动角度在0°到90°之间),再连接CE的中点F(如图3),问(1)中的结论是否仍然成立?请证明你的结论.【例题5】如图,在△ABC中,∠BAC=2∠B,CD平分∠ACB交AB于D,求证:AC+AD=BC.【变式5-1】在△ABC中,AD是BC边上的高,CD=AB+BD.求证:∠B=2∠C.【变式5-2】如图,在△ABC中∠ABC=2∠C,若AD⊥BC于D,BD=4,CD=16,求AB的长.【变式5-3】(2022•南京模拟)小明在完成一道几何证明问题时,往往会思考看是否会有不同的证明方法.例如:在如图1所示的△ABC中,∠ACB=90°,点D在AB上,且BD=BC,求证:∠ABC=2∠ACD.他发现,除了方法1直接用角度计算的方法外,还可以用下面两种方法:方法2:如图2,作BE⊥CD,垂足为点E.方法3:如图3,作CF⊥AB,垂足为点F.根据阅读材料,请你从三种方法中任选一种方法,证明∠ABC=2∠ACD,并写出其证明过程.。

6.解题技巧专题:等腰三角形中辅助线的作法

6.解题技巧专题:等腰三角形中辅助线的作法

解题技巧专题:等腰三角形中辅助线的作法◆类型一 利用“三线合一”作辅助线一、已知等腰作垂线(或中线、角平分线)1.如图,在△ABC 中,AB =AC ,AE ⊥BE 于点E ,且BE =12BC ,若∠EAB =20°,则∠BAC =__________.2.如图,在△ABC 中,AB =AC ,D 为BC 边的中点,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F . (1)求证:DE =DF ;(2)若∠A =90°,图中与DE 相等的有哪些线段(不说明理由)?3.如图,△ABC 中,AC =2AB ,AD 平分∠BAC 交BC 于D ,E 是AD 上一点,且EA =EC ,求证:EB ⊥AB .二、构造等腰三角形4.如图,△ABC 的面积为1cm 2,AP 垂直∠ABC 的平分线BP 于P ,则△PBC 的面积为 ( )5.如图,已知△ABC 是等腰直角三角形,∠A =90°, BD 平分∠ABC 交AC 于点D ,CE ⊥BD .求证:BD =2CE .◆类型二 巧用等腰直角三角形构造全等6.如图,在△ABC 中,AC =BC ,∠C =90°,D 是AB 的中点, DE ⊥DF ,点E ,F 分别在AC ,BC 上,求证:DE =DF .◆类型三 等腰(边)三角形中截长补短或作平行线构造全等 7.如图,已知AB =AC ,∠A =108°,BD 平分∠ABC 交AC 于D , 求证:BC =AB +CD .8.如图,过等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,且P A =CQ ,连PQ 交AC 边于D .(1)求证:PD =DQ ;(2)若△ABC 的边长为1,求DE 的长.参考答案与解析1.40°2.(1)证明:如图,连接AD.∵AB=AC,D是BC的中点,∴∠EAD=∠F AD.又∵DE⊥AB,DF⊥AC,∴DE=DF.(2)解:若∠BAC=90°,图中与DE相等的有线段DF,AE,AF,BE,CF.3.证明:如图,作EF⊥AC于F.∵EA=EC,∴AF=FC=12AC.∵AC=2AB,∴AF=AB.∵AD平分∠BAC,∴∠BAD=∠CAD.又∵AE=AE,∴△ABE≌△AFE(SAS),∴∠ABE=∠AFE=90°.∴EB⊥AB.4.B5.证明:如图,延长BA和CE交于点M.∵CE⊥BD,∴∠BEC=∠BEM=90°.∵BD平分∠ABC,∴∠MBE=∠CBE.又∵BE=BE,∴△BME≌△BCE(ASA),∴EM=EC=12MC.∵△ABC是等腰直角三角形,∴∠BAC=∠MAC=90°,BA=AC,∴∠ABD+∠BDA=90°.∵∠BEC=90°,∴∠ACM+∠CDE=90°.∵∠BDA=∠EDC,∴∠ABE=∠ACM.又∵AB =AC,∴△ABD≌△ACM(ASA),∴DB=MC,∴BD=2CE.6.证明:如图,连接CD.∵AC=BC,D是AB的中点,∴CD平分∠ACB,CD⊥AB,∴∠CDB=90°.∵∠ACB=90°,∴∠BCD=∠ACD=45°,∴∠B=180°-∠CDB-∠BCD=45°,∴∠ACD=∠B=∠BCD,∴CD=BD.∵ED⊥DF,∴∠EDF=∠EDC+∠CDF=90°.又∵∠CDF+∠BDF=90°,∴∠EDC=∠BDF,∴△ECD≌△FBD(ASA),∴DE=DF.7.证明:如图,在线段BC上截取BE=BA,连接DE.∵BD平分∠ABC,∴∠ABD=∠EBD.又∵BD=BD,∴△ABD≌△EBD(SAS),∴∠BED=∠A=108°,∴∠DEC=180°-∠DEB=72°.又∵AB=AC,∠A=108°,∴∠ACB=∠ABC=12×(180°-108°)=36°,∴∠CDE=∠DEB-∠ACB=180°-36°=72°,∴∠CDE=∠DEC,∴CD=CE,∴BC=BE+EC=AB+CD.8.(1)证明:如图,过P作PF∥BC交AC于点F,∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD=∠QCD.∵△ABC 为等边三角形,∴∠A=∠ACB=60°,∠AFP=60°,∴△APF是等边三角形,∴AP=PF.∵AP=CQ,∴PF=CQ,∴△PFD≌△QCD(ASA),∴PD=DQ.(2)解:∵△APF是等边三角形,PE⊥AC,∴AE=EF.∵△PFD≌△QCD,∴CD=DF,∴DE=EF+DF=12AC.又∵AC=1,∴DE=1 2.。

八年级数学下册2.解题技巧专题:等腰三角形中辅助线的作法 (2)(附答案)

八年级数学下册2.解题技巧专题:等腰三角形中辅助线的作法 (2)(附答案)

解题技巧专题:等腰三角形中辅助线的作法——形成精准思维模式,快速解题◆类型一利用“三线合一”作辅助线一、已知等腰作垂线(或中线、角平分线)1.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=2,则BC =________.2.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE =AF.求证:DE=DF.3.如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于点D,E是AD上一点,且EA =EC,连接EB.求证:EB⊥AB.二、构造等腰三角形4.如图,在△ABC中,BP平分∠BAC,且AP⊥BP于点P,连接CP.若△PBC的面积为2,则△ABC的面积为( )A.3 B.4 C.5 D.65.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD的延长线于点E.求证:BD=2CE.◆类型二巧用等腰直角三角形构造全等6.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上.求证:DE=DF.◆类型三等腰(边)三角形中截长补短或作平行线构造全等7.如图,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于点D.求证:BC =AB+CD.8.如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.【方法8】参考答案与解析1.42.证明:连接AD.∵AB=AC ,D 是BC 的中点,∴∠EAD=∠FAD.在△AED 和△AFD 中,⎩⎨⎧AE =AF ,∠EAD=∠FAD,AD =AD ,∴△AED≌△AFD,∴DE=DF.3.证明:过点E 作EF⊥AC 于点F.∵EA=EC ,∴AF=FC =12AC.∵AC=2AB ,∴AF=AB.∵AD 平分∠BAC,∴∠BAE=∠FAE.又∵AE=AE ,∴△ABE≌△AFE(SAS),∴∠ABE=∠AFE=90°,∴EB⊥AB.4.B5.证明:如图,延长BA 和CE 交于点M.∵CE⊥BD,∴∠BEC=∠BEM=90°.∵BD 平分∠ABC,∴∠MBE =∠CBE.又∵BE=BE ,∴△MBE≌△CBE,∴EM=EC =12MC.∵△ABC 是等腰直角三角形,∴∠BAC=∠MAC=90°,BA =AC ,∴∠ABD+∠BDA=90°.∵∠BEC=90°,∴∠ACM+∠CDE=90°.∵∠BDA=∠E DC ,∴∠ABE=∠ACM.又∵AB=AC ,∴△ABD≌△ACM(ASA),∴DB=MC ,∴BD=2CE.6.证明:连接CD.∵AC=BC ,∠C=90°,D 是AB 的中点,∴CD 平分∠ACB,CD⊥AB,∴∠CDB=90°,∴∠BCD=∠ACD=45°,∠B=∠C=45°,∴∠ACD=∠B=∠BCD,∴CD =BD.∵ED⊥DF,∴∠EDF=∠EDC+∠CDF=90°.又∵∠CDF+∠BDF=90°,∴∠EDC=∠FDB,∴△ECD≌△FBD,∴DE=DF.7.证明:如图,在线段BC 上截取BE =BA ,连接DE.∵BD 平分∠ABC,∴∠ABD=∠EBD.又∵BD=BD ,∴△ABD≌△EBD(SAS),∴∠BED=∠A=108°,∴∠CED=180°-∠BED=72°.又∵AB=AC ,∠A=108°,∴∠ACB=∠ABC=12×(180°-108°)=36°,∴∠CDE =180°-∠ACB-∠CED=180°-36°-72°=72°.∴∠CDE=∠DEC,∴CD=CE ,∴BC=BE+EC=AB+CD.8.(1)证明:过点P作PF∥BC交AC于点F,∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD =∠QCD.∵△ABC为等边三角形,∴∠A=∠ACB=60°,∴∠AFP=60°,∴△APF是等边三角形,∴PF=PA=CQ,∴△PFD≌△QCD,∴PD=DQ.(2)解:由(1)知△APF是等边三角形,∵PE⊥AC,∴AE=EF.由(1)知△PFD≌△QCD,∴DF=CD,∴DE=EF+DF=12AF+12CF=12AC.又∵AC=1,∴DE=12.。

三角形常见辅助线的作法

三角形常见辅助线的作法

三角形中作辅助线的常用方法举例常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N ,在△AMN 中,AM +AN > MD +DE +NE;(1)在△BDM 中,MB +MD >BD ; (2)在△CEN 中,CN +NE >CE ; (3)由(1)+(2)+(3)得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE∴AB +AC >BD +DE +EC(法二:)如图1-2, 延长BD 交 AC 于F ,延长CE 交BF 于G ,在△ABF 和△GFC 和△GDE 中有:AB +AF > BD +DG +GF (三角形两边之和大于第三边)(1)GF +FC >GE +CE (同上) (2)DG +GE >DE (同上) (3)AB C D E N M 11-图A B C D EF G 21-图由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。

全等三角形经典题型辅助线问题

全等三角形经典题型辅助线问题

全等三角形经典题型辅助线问题(总31页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除全等三角形问题中常见的辅助线的作法(含答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

DC B AA1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

等腰三角形七种常见辅助线作法(方法梳理与题型分类讲解)(人教版)(学生版) 25学年八年级数学上册

等腰三角形七种常见辅助线作法(方法梳理与题型分类讲解)(人教版)(学生版) 25学年八年级数学上册

专题13.14等腰三角形七种常见辅助线作法(方法梳理与题型分类讲解)第一部分【模型归纳与题型目录】题型目录【题型1】作等腰三角形底边上高线求值或证明 (1)【题型2】遇到中点作中线求值或证明 (2)【题型3】过一腰上的某一已知点做另一腰的平行线 (3)【题型4】过一腰上的某一已知点做底边的平行线 (4)【题型5】倍长中线构造等腰三角形 (5)【题型6】截长补短构造等腰三角形 (6)【题型7】延长相交构造或证明等腰三角形 (7)第二部分【题型展示与方法点拨】【题型1】作等腰三角形底边上高线求值或证明【例1】(2024·浙江·模拟预测)如图,ABC V 是等腰三角形,AB AC =.设BAC α∠=.(1)如图1,点D 在线段AB 上,若45ACD BAC ∠+∠=︒,求DCB ∠的度数(用含α的代数式表示).(2)如图2,已知AB AC BD ==.若180∠+∠=︒ABD BAC ,过点B 作BH AD ⊥于点H ,求证:12BH BC =.【变式1】(24-25八年级上·全国·课后作业)如图,在ABC V 中,2AC AB =,AD 平分BAC ∠交BC 于点D ,E 是AD 上一点,且EA EC =.求证:EB AB ⊥.【变式2】(22-23八年级上·江苏泰州·阶段练习)在ABC V 中,AB AC =,过点C 作射线CB ',使ACB ACB '∠=∠(点B '与点B 在直线AC 的异侧)点D 是射线CB '上一动点(不与点C 重合),点E 在线段BC 上,且90DAE ACD ∠+∠=︒.(1)如图1,当点E 与点C 重合时,AD 与CB '的位置关系是,若BC a =,则CD 的长为;(用含a 的式子表示)(2)如图2,当点E 与点C 不重合时,连接DE ,①若30DAE ∠=︒,求BAC ∠的度数;②用等式表示BAC ∠与DAE ∠直间的数量关系,并证明.【题型2】遇到中点作中线求值或证明【例3】(23-24七年级下·四川成都·阶段练习)在Rt ABC △中,AB AC =,45DEF ∠=︒且DEF ∠的顶点E 在边BC 上移动,在移动过程中,边DE ,EF 分别与AB ,AC 交于点M ,N ,(1)当BE CN =且M 与A 重合时,求证:ABE ECN△≌△(2)当E 为BC 中点时,连接MN ,求证:NC AM MN=+【变式1】(23-24八年级上·广东汕头·期中)如图,ABC V 中,AB AC =,D 是BC 的中点,E 、F 分别是AB 、AC 上的点,且AE AF =,求证:DE DF =.【变式2】(24-25八年级上·全国·课后作业)如图,在ABC 中,B C ∠∠=,过BC 的中点D 作DE AB ⊥,DF AC ⊥,垂足分别为点E ,F .(1)求证:DE DF =;(2)若40BDE ∠=︒,求BAC ∠的度数.【题型3】过一腰上的某一已知点做另一腰的平行线【例3】(23-24八年级上·福建泉州·阶段练习)如图,ABC V 是等边三角形,D 是AC 的中点,点F 在AB 上,点E 在直线BC 上,120EDF ∠=︒(1)当点E 与C 重合时,判断ADF △的形状,并说明理由?(2)当点E 在BC 的延长线上时,求证:DE DF =.【变式1】(2024八年级上·全国·专题练习)如图,在等边ABC V 中,点D 、E 分别在BC 和AC 边上,以DE 为边作等边DEF ,连接CF .若1BD =,3AE =.则CF 的长是.【变式2】(22-23八年级下·广西南宁·开学考试)如图,等边三角形ABC 中,D 为AC 上一点,E 为AB 延长线上一点,DE AC ⊥交BC 于点F ,且DF EF =.若12AB =,则BF 的长为.【题型4】过一腰上的某一已知点做底边的平行线【例4】(23-24八年级上·湖南怀化·期末)如图,在等边ABC V 中,点M 为AB 上任意一点,延长BC 至点N ,使AM CN =,连接MN 交AC 于点P .(1)求证:MP NP =;(2)作MH AC ⊥于点H ,设AB a =,请用含a 的式子表示PH 的长度.【变式1】(23-24七年级下·陕西榆林·阶段练习)阅读下面的题目及分析过程,并按要求进行证明.如图,已知E 是BC 的中点,点A 在DE 上,且BAE CDE ∠=∠.求证:AB CD =.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE 到点F ,使EF DE =,连接BF ;②如图2,过点B 作BF DE ⊥,交DE 的延长线于点F ,过点C 作CG DE ⊥,垂足为G .(2)请你在图3中添加不同于(1)中的辅助线,并对原题进行证明.【变式2】(21-22八年级上·湖北武汉·期中)如图,在等边三角形ABC 中,点D 在AC 上,延长BC 至点E ,使CE AD DF BC =⊥,于点F .(1)如图①,若点D 是AC 的中点,求证:BF EF =;(2)如图②,若点D 是AC 上任意一点,BF EF =是否仍然成立?请证明你的结论;(3)如图③,若点D 是AC 延长线上的任意一点,其他条件不变,(2)中的结论是否仍然成立?画图并写出你的结论,不必证明.【题型5】倍长中线构造等腰三角形【例5】(22-23八年级上·湖北武汉·期中)如图,在ABC V 中,D 是BC 的中点,E 是AD 上一点,BE AC =,BE 的延长线交AC 于点F ,若60ACB ∠=︒,44DAC ∠=︒,则求FBC ∠的度数为.【变式1】(23-24七年级下·黑龙江哈尔滨·阶段练习)如图在四边形ABCD 中,E 是DC 的中点,连接AE ,AE 平分DAB ∠,90D C ∠=∠=︒,32AD BC ==,则线段AB 的长为.【变式2】(24-25八年级上·陕西西安·开学考试)小明同学在学习完全等三角形后,发现可以通过添加辅助线构造全等三角形来解决问题.(1)如图(1),AD 是ABC V 的中线,且AB AC >,延长AD 至点E ,使ED AD =,连接BE ,可证得ADC EDB V V ≌,其中判定两个三角形全等的依据为________.(2)如图(2),在ABC V 中,点E 在BC 上,且DE DC =,过E 作EF AB ∥,且EF AC =.求证:AD 平分BAC ∠.【题型6】截长补短构造等腰三角形【例6】(23-24八年级上·广东深圳·期末)如图,在ABC V 中,40ABC ∠=︒,30ACB ∠=︒,三角形内有一点P ,连接AP ,BP ,CP ,若BP 平分ABC ∠,13BCP ACB ∠=∠,则PAC ∠=.【变式1】(23-24八年级上·江苏南京·期末)如图,在ABC V 中,AB AC =,BD 平分ABC ∠交AC 于点D ,点E 在BA 的延长线上,DB DE =,若62BC AE ==,,则线段AD 的长为.【变式2】(2024·陕西西安·三模)如图,ACB △是等边三角形,D 为ACB △外一点,且60ADB ∠=︒,连接CD ,若6,4BD CD ==,则AD 的长为.【题型7】延长相交构造或证明等腰三角形【例7】(23-24八年级上·福建泉州·阶段练习)如图,在ABC V 中,6BC =,EF BC ∥,动点P 在射线EF 上,BP 交CE 于D ,CBP ∠的平分线交CE 于Q .则当12CQ CE =时,EP BP +=.【变式1】(23-24八年级下·黑龙江哈尔滨·开学考试)如图,D 为ABC 外一点,BD AD ⊥,B 平分ABC 的一个外角,若2180C BAD ∠+∠=︒,5AB =,3BC =,则B 的长为.【变式2】(23-24九年级下·山东临沂·期中)如图,AB CD ∥,60BCD ∠=︒,点E 为AD 的中点,若2AB =,6,BC =,8CD =,则BE 的长为.。

(完整版)初二数学辅助线常用做法及例题(含答案)

(完整版)初二数学辅助线常用做法及例题(含答案)

DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

2020年八年级数学下册解法技巧:特殊三角形常见辅助线作法(北师大含解析)

2020年八年级数学下册解法技巧:特殊三角形常见辅助线作法(北师大含解析)

八下数学思维解法技巧培优小专题专题1 特殊三角形常见辅助线作法题型一利用等腰三角形的“三线合一”作辅助线【典例1】(2019•湖里区校级期中)如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.【点拨】作EF⊥AC于F,再根据等腰三角形的性质可得AF=12AC,再证明△ABE≌△AFE可得∠ABE =∠AFE=90°.【解析】证明:作EF⊥AC于F,∵EA=EC,∴AF=FC=12AC,∵AC=2AB,∴AF=AB,∵AD平分∠BAC交BC于D,∴∠BAD=∠CAD,在△BAE和△F AE中{AB=AF∠BAD=∠CAD AE=AE,∴△ABE≌△AFE(SAS),∴∠ABE=∠AFE=90°.∴EB⊥AB.【典例2】(2019•武隆县校级期中)如图,在△ABC中,∠B=2∠C,且AD⊥BC于D.求证:CD=AB+BD.【点拨】在DC上取DE=BD,然后根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AB =AE,根据等边对等角的性质可得∠B=∠AEB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠C=∠CAE,再根据等角对等边的性质求出AE=CE,然后即可得证.【解析】证明:如图,在DC上取DE=BD,∵AD⊥BC,∴AB=AE,∴∠B=∠AEB,在△ACE中,∠AEB=∠C+∠CAE,又∵∠B=2∠C,∴2∠C=∠C+∠CAE,∴∠C=∠CAE,∴AE=CE,∴CD=CE+DE=AB+BD.题型二巧用特殊角构造含30°的直角三角形【典例3】(2019•官渡区期末)如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC =120°,求CD的长.【点拨】先延长AD、BC交于E,根据已知证出△EDC是等边三角形,设CD=CE=DE=x,根据AD=4,BC=1和30度角所对的直角边等于斜边的一半,求出x的值即可.【解析】解:延长AD、BC交于E,∵∠A=30°,∠B=90°,∴∠E=60°,∵∠ADC=120°,∴∠EDC=60°,∴△EDC是等边三角形,设CD=CE=DE=x,∵AD=4,BC=1,∴2(1+x)=x+4,解得;x=2,∴CD=2.【典例4】(2019•彭泽县期中)如图所示,在△ABC中,已知AB=AC,∠BAC=120°,AD⊥AC,DC=8,求△ABC的面积.【点拨】由题意先求得∠B=∠C=30°,再由AD⊥AC,求得∠ADC=60°,则∠BAD=30°,然后得出AD=BD,得到BC=12,过A作AE⊥BC于E,求得AE=√33BE=2√3,根据三角形的面积公式即可得到结论.【解析】解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD⊥AC,DC=8,∴AD=12CD=4,∠ADC=60°,∴∠B=∠BAD=30°,∴AD=BD=4∴BC=12,过A作AE⊥BC于E,∴BE=12BC=6,∴AE=√33BE=2√3,∴△ABC的面积=12BC•AE=12×12×2√3=12√3.题型三作平行线构造等腰三角形【典例5】(2019•垦利区期末)已知,△ABC为等边三角形,点D为AC上的一个动点,点E为BC延长线上一点,且BD=DE.(1)如图1,若点D在边AC上,猜想线段AD与CE之间的关系,并说明理由;(2)如图2,若点D在AC的延长线上,(1)中的结论是否成立,请说明理由.【点拨】(1)求出∠E=∠CDE,推出CD=CE,根据等腰三角形性质求出AD=DC,即可得出答案;解:(1)AD=CE,理由:过D作DF∥AB交BC于E,(2)(1)中的结论仍成立,如图3,过点D作DP∥BC,交AB的延长线于点P,证明△BPD≌△DCE,得到PD=CE,即可得到AD=CE.【解析】解:(1)AD=CE,证明:如图1,过点D作DP∥BC,交AB于点P,∵△ABC是等边三角形,∴△APD也是等边三角形,∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠PDC=60°,∵DB=DE,∴∠DBC=∠DEC,∵DP∥BC,∴∠PDB=∠CBD,∴∠PDB=∠DEC,又∠BPD=∠A+∠ADP=120°,∠DCE=∠A+∠ABC=120°,即∠BPD=∠DCE,在△BPD和△DCE中,∠PDB=∠DEC,∠BPD=∠DCE,DB=DE,∴△BPD≌△DCE,∴PD=CE,∴AD=CE;(2)如图3,过点D作DP∥BC,交AB的延长线于点P,∵△ABC是等边三角形,∴△APD也是等边三角形,∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠PDC=60°,∵DB=DE,∴∠DBC=∠DEC,∵DP∥BC,∴∠PDB=∠CBD,∴∠PDB=∠DEC,在△BPD 和△DCE 中,{∠PDB =∠DEC∠P =∠DCE =60°DB =DE,∴△BPD ≌△DCE ,∴PD =CE ,∴AD =CE .题型四 截长补短构造等腰三角形【典例6】(2019•西城区校级期中)已知:如图,在△ABC 中,AB =AC ,D 是△ABC 外一点,且∠ABD=60°,∠ACD =60°,求证:BD +DC =AB .【点拨】延长BD 到F ,使BF =BA ,连接AF ,CF ,得出等边三角形ABF ,推出AF =AB =AC =BF ,∠AFB =60°,推出∠ACF =∠AFC ,得出∠DFC =∠DCF ,推出DC =DF 即可.【解析】证明:延长BD 到F ,使BF =BA ,连接AF ,CF ,∵∠ABD =60度,。

三角形中做辅助线的技巧及典型例题

三角形中做辅助线的技巧及典型例题

三角形中做辅助线的技巧口诀:三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

一、由角平分线想到的辅助线 口诀:图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线 (一)、截取构全等如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。

例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。

例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,D A =DB ,求证DC ⊥AC例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD图1-2DBC分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。

用到的是截取法来证明的,在长的线段上截取短的线段,来证明。

试试看可否把短的延长来证明呢?练习1. 已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB+BD=AC2. 已知:在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB=2AC ,求证:AE=2CE 3. 已知:在△ABC 中,AB>AC,AD 为∠BAC 的平分线,M 为AD 上任一点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师版八年级数学下册
解题技巧专题:等腰三角形中辅助线的作法
——形成精准思维模式,快速解题
◆类型一利用“三线合一”作辅助线
一、已知等腰作垂线(或中线、角平分线)
1.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=1,则BC 的长为________.
2.如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于点D,E是AD上一点,且EA=EC,连接EB,求证:EB⊥AB.
二、构造等腰三角形
3.如图,在△ABC中,BP平分∠BAC,且AP⊥BP于点P,连接CP.若△PBC的面积为2,则△ABC的面积为()
A.3
B.4
C.5
D.6
4.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD的延长线于点E.求证:BD=2CE.
◆类型二巧用等腰直角三角形构造全等
5.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上.求证:DE=DF.
◆类型三等腰(边)三角形中截长补短或作平行线构造全等
6.(2017·郑州校级月考)如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q 为BC延长线上一点,且P A=CQ,连接PQ交AC于点D.若△ABC的边长为6,则DE的长为【方法8】()
A.2
B.3
C.4
D.不能确定
7.如图,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于点D.求证:BC =AB+CD.
参考答案与解析
1.2
2.证明:过点E 作EF ⊥AC 于点F .∵EA =EC ,∴AF =FC =12
AC .∵AC =2AB ,∴AF =AB .∵AD 平分∠BAC ,∴∠BAE =∠F AE .又∵AE =AE ,∴△ABE ≌△AFE (SAS),∴∠ABE =∠AFE =90°,∴EB ⊥AB .
3.B
4.证明:延长BA 和CE 交于点M .∵CE ⊥BD ,∴∠BEC =∠BEM =90°.∵BD 平分∠ABC ,
∴∠MBE =∠CBE .又∵BE =BE ,∴△MBE ≌△CBE ,∴EM =EC =12
MC .∵△ABC 是等腰直角三角形,∴∠BAC =∠MAC =90°,BA =AC ,∴∠ABD +∠BDA =90°.∵∠BEC =90°,∴∠ACM +∠CDE =90°.∵∠BDA =∠EDC ,∴∠ABE =∠ACM .又∵AB =AC ,∴△ABD ≌△ACM (ASA),∴DB =MC ,∴BD =2CE .
5.证明:连接CD .∵AC =BC ,∠C =90°,D 是AB 的中点,∴CD 平分∠ACB ,CD ⊥AB ,∴∠CDB =90°,∴∠BCD =∠ACD =45°,∠B =∠C =45°,∴∠ACD =∠B =∠BCD ,∴CD =BD .∵ED ⊥DF ,∴∠EDF =∠EDC +∠CDF =90°.又∵∠CDF +∠BDF =90°,∴∠EDC =∠FDB ,∴△ECD ≌△FBD ,∴DE =DF .
6.B 解析:过点P 作PF ∥BC 交AC 于点F ,∴∠AFP =∠ACB ,∠FPD =∠Q ,∠PFD =∠QCD .∵△ABC 为等边三角形,∴∠A =∠ACB =60°,∴∠AFP =60°,∴△APF 是等边三角形.∴P A =PF .又∵P A =CQ ,∴PF =QC ,∴△PFD ≌△QCD ,∴DF =CD .∵PE ⊥AC ,
∴AE =EF ,∴DE =EF +DF =12AF +12CF =12
AC .又∵AC =6,∴DE =3. 7.证明:在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD .又∵BD =BD ,∴△ABD ≌△EBD (SAS),∴∠BED =∠A =108°,∴∠CED =180°-∠BED
=72°.又∵AB =AC ,∠A =108°,∴∠ACB =∠ABC =12
×(180°-108°)=36°,∴∠CDE =180°-∠ACB -∠CED =180°-36°-72°=72°.∴∠CDE =∠DEC ,∴CD =CE ,∴BC =BE +EC =AB +CD .。

相关文档
最新文档