有N个传教士和N个野人来到河边渡河

合集下载

人工智能野人和传教士问题

人工智能野人和传教士问题

传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<N,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设M为传教士的人数,C为野人的人数,用状态空间发求解此问题的过程如下:M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 Q 01f=2 P 02 f=1 Q 01f=1 Q 11f=1 P 01 f=2 P 11 (3,3,1) (3,2,0)(2,2,0) (3,1,0) (3,2,1) (3,0,0) f=3 P 02(3,1,1) f=2 Q 01(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(0,2,0) f=4 P 20(0,3,1)f=3 Q 01(0,1,1)f=5 P 02(0,2,1) f=4 Q 01 (0,0,0) f=3 Q 01(1,1,1) f=4 Q 106.2.3 用状态空间法求解传教士和食人者问题传教士和食人者问题(The Missionaries and Cannibals Problem)。

传教士与野人过河问题

传教士与野人过河问题

传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<N,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设M为传教士的人数,C为野人的人数,用状态空间发求解此问题的过程如下:M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 Q 01f=2 P 02 f=1 Q 01f=1 Q 11f=1 P 01 f=2 P 11 (3,3,1) (3,2,0)(2,2,0) (3,1,0) (3,2,1) (3,0,0) f=3 P 02(3,1,1) f=2 Q 01(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(0,2,0) f=4 P 20(0,3,1)f=3 Q 01(0,1,1)f=5 P 02(0,2,1) f=4 Q 01 (0,0,0)f=3 Q 01(1,1,1) f=4 Q 106.2.3 用状态空间法求解传教士和食人者问题例6-2 传教士和食人者问题(The Missionaries and Cannibals Problem)。

传教士(牧师)与野人问题-模拟人工智能实验_CSDN博客_传教士与野人问题

传教士(牧师)与野人问题-模拟人工智能实验_CSDN博客_传教士与野人问题

传教士(牧师)与野人问题-模拟人工智能实验_结缘缘的博客-CSDN博客_传教士与野人问题题目有n个牧师和n个野人准备渡河但只有一条能容纳c个人的小船为了防止野人侵犯牧师要求无论在何处牧师的人数不得少于野人的人数(除非牧师人数为0) 且假定野人与牧师都会划船试设计一个算法确定他们能否渡过河去若能则给出小船来回次数最少的最佳方案。

实验步骤输入牧师人数(即野人人数) n 小船一次最多载人量c。

输出若问题无解则显示Failed 否则显示Successed输出所有可行方案并标注哪一组是最佳方案。

用三元组(X1, X2, X3)表示渡河过程中的状态。

并用箭头连接相邻状态以表示迁移过程初始状态- 中间状态- 目标状态。

例当输入n 2 c 2时输出221- 200- 211- 010- 021- 000 其中X1表示起始岸上的牧师人数X2表示起始岸上的野人人数X3表示小船现在位置(1表示起始岸0表示目的岸)。

要求写出算法的设计思想和源程序并有用户界面实现人机交互控制台或者窗口都可以进行输入和输出结果如Please input n: 2 Please input c: 2 Optimal Procedure: 221- 200- 211- 010- 021- 000Successed or Failed?: Successed实现代码#include stdio.h #include iostream #include stdlib.h using namespace std;struct State { int Lsavage; int Lgodfather; int Rsavage; int Rgodfather; int boat; //boat at left 0 ; boat at right struct State *States new State[150];struct routesave { int savage; int godfather;struct routesave* routesaves new routesave[150];int godfather, savage, boatnum;void init(State m) { cout 请输入野人和牧师的人数n 以及船的最大载量c endl; int n, c; cin n c; m.Rgodfather n; m.Rsavage n; godfather n, savage n; boatnum c; m.Lgodfather m.Lsavage 0; m.boat 1;void boaloading(int i, int s, int g) { //s个野人和g个传教士if (States[i].boat 0) { routesaves[i].savage s*-1; //左边到右边是负数个野人routesaves[i].godfather g * -1; //左边到右边负数个传教士States[i 1].LsavageStates[i].Lsavage - s; States[i 1].Lgodfather States[i].Lgodfather - g; States[i 1].Rsavage States[i].Rsavage s; States[i 1].Rgodfather States[i].Rgodfather g; States[i 1].boat 1; else{ routesaves[i].savage s; //右边到左边是正数个野人routesaves[i].godfather g; //右边到左边正数个传教士States[i 1].Rsavage States[i].Rsavage-s; States[i 1].RgodfatherStates[i].Rgodfather - g; States[i 1].Lsavage States[i].Lsavage s; States[i 1].Lgodfather States[i].Lgodfather g; States[i 1].boat0;bool checkState(State m) { if (m.Rgodfather 0 m.Rgodfather m.Rsavage) return false; if (m.Lgodfather 0 m.Lgodfatherm.Lsavage) return false; else return true;void showSolution(int i) { cout 问题解决解决路径为endl; for (int c 0; c i; c ) { if (routesaves[c].savage 0) cout 第c 1 步routesaves[c].savage 个野人和routesaves[c].godfather 个传教士乘船去左边endl; else cout 第c 1 步routesaves[c].savage * -1 个野人和routesaves[c].godfather * -1 个传教士乘船去有右边endl; void nextstep(int i) { int c; if (i 150) cout 试探路径过大无法计算; exit(0); for (c 0; c i; c ) /*if the current state is same to previous,retrospect*/ if (States[c].Lsavage States[i].Lsavage States[c].Lgodfather States[i].Lgodfather States[c].Rsavage States[i].Rsavage States[c].Rgodfather States[i].Rgodfather States[c].boat States[i].boat) goto a; if (States[i].Rsavage 0 States[i].Rgodfather 0 States[i].boat 0) { showSolution(i); exit(0); if (States[i].boat 1) { //船在右边for (int s 1; s boatnum s States[i].Rsavage; s ) {//g 0 int g 0; boaloading(i, s, g); if (checkState(States[i 1])) { nextstep(i 1); for (int g 1; g boatnum g States[i].Rgodfather; g ) { //g! 0 for (int s 0; s boatnum - g s States[i].Rsavage s g; s ) { boaloading(i, s, g); if(checkState(States[i 1])) { nextstep(i 1); if (States[i].boat 0) { //船在左边for (int s 1; s boatnum s States[i].Lsavage; s ) {//g 0int g 0; boaloading(i, s, g); if (checkState(States[i 1])) { nextstep(i 1); for (int g 1; g boatnum g States[i].Lgodfather; g ) { //g! 0 for (int s 0; s boatnum - g s States[i].Lsavage s g; s ) { boaloading(i, s, g); if (checkState(States[i 1])) { nextstep(i 1);a:return;void main() { init(States[0]); nextstep(0);实验结果展示。

传教士与野人过河问题

传教士与野人过河问题

传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<N,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设M为传教士的人数,C为野人的人数,用状态空间发求解此问题的过程如下:M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 Q 01f=2 P 02 f=1 Q 01f=1 Q 11f=1 P 01 f=2 P 11 (3,3,1) (3,2,0)(2,2,0) (3,1,0) (3,2,1) (3,0,0) f=3 P 02(3,1,1) f=2 Q 01(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(0,2,0) f=4 P 20(0,3,1)f=3 Q 01(0,1,1)f=5 P 02(0,2,1) f=4 Q 01 (0,0,0)f=3 Q 01(1,1,1) f=4 Q 106.2.3 用状态空间法求解传教士和食人者问题例6-2 传教士和食人者问题(The Missionaries and Cannibals Problem)。

传教士问题

传教士问题

一.问题描述有M个传教士和N个野人来到河边准备渡河,河岸有一条船,每次至多可供k人乘渡。

任何时刻在河的两岸以及船上的野人数目总是不超过传教士的数目。

二.问题分析本问题采用A*算法求解,解答的关键与难点如下:1.评估函数的建立。

评估函数为f=h+d=M+N-2*B+d.。

M表示左岸的传教士的人数,N表示左岸野人的数目,B取值为0或1 。

1表示船在左岸,0 表示船在右岸。

d 表示节点的深度。

下面我们来证明h(n)=M+C-2B是满足A*条件的。

我们分两种情况考虑。

先考虑船在左岸的情况。

如果不考虑限制条件,也就是说,船一次可以将三人从左岸运到右岸,然后再有一个人将船送回来。

这样,船一个来回可以运过河2人,而船仍然在左岸。

而最后剩下的三个人,则可以一次将他们全部从左岸运到右岸。

所以,在不考虑限制条件的情况下,也至少需要摆渡[(M+N-3)/2]*2+1次。

其中分子上的"-3"表示剩下三个留待最后一次运过去。

除以"2"是因为一个来回可以运过去2人,需要[(M+N-3)/2]个来回,而"来回"数不能是小数,需要向上取整,这个用符号[ ]表示。

而乘以"2"是因为一个来回相当于两次摆渡,所以要乘以2。

而最后的"+1",则表示将剩下的3个运过去,需要一次摆渡。

化简有:M+N-2。

再考虑船在右岸的情况。

同样不考虑限制条件。

船在右岸,需要一个人将船运到左岸。

因此对于状态(M,N,0)来说,其所需要的最少摆渡数,相当于船在左岸时状态(M+1,N,1)或(M,N+1,1)所需要的最少摆渡数,再加上第一次将船从右岸送到左岸的一次摆渡数。

因此所需要的最少摆渡数为:(M+N+1)-2+1。

其中(M+N+1)的"+1"表示送船回到左岸的那个人,而最后边的"+1",表示送船到左岸时的一次摆渡。

传教士野人问题参考答案

传教士野人问题参考答案

传教士野人问题参考答案传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<N,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设M为传教士的人数,C为野人的人数,用状态空间发求解此问题的过程如下:M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 f=2 f=1 f=1f=1 f=2 (3,3,(3,(2,(3,(3,2,(3,0,f=3 (3,1,f=2 (1,1,f=4 (2,2,f=2 (1,1,f=4 (2,2,f=2 (0,2,f=4 (0,3,f=3 (0,1,f=5(0,2,f=4 (0,0,f=3 (1,1,f=46.2.3 用状态空间法求解传教士和食人者问题例6-2 传教士和食人者问题(The Missionaries and Cannibals Problem)。

传教士-野人问题

传教士-野人问题

传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<N,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设M为传教士的人数,C为野人的人数,用状态空间发求解此问题的过程如下:M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 Q 01f=2 P 02 f=1 Q 01f=1 Q 11f=1 P 01 f=2 P 11 (3,3,1) (3,2,0)(2,2,0) (3,1,0) (3,2,1) (3,0,0) f=3 P 02(3,1,1) f=2 Q 01(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(0,2,0) f=4 P 20(0,3,1)f=3 Q 01(0,1,1)f=5 P 02(0,2,1) f=4 Q 01 (0,0,0)f=3 Q 01(1,1,1) f=4 Q 106.2.3 用状态空间法求解传教士和食人者问题例6-2 传教士和食人者问题(The Missionaries and Cannibals Problem)。

传教士和野人问题

传教士和野人问题

传教士和野人问题(Missionaries and Cannibals)传教士和野人问题是一个经典的智力游戏问题。

在这个问题中,实际上隐含了这样一个条件:如果在河的某一岸只有野人,而没有传教士,也同样被认为是合法状态。

在具体书写某些条件时,为了简便,这一点有时并没有考虑,但我们默认这个条件是被考虑了的。

有N个传教士和N个野人来到河边准备渡河,河岸有一条船,每次至多可供k人乘渡。

问传教士为了安全起见,应如何规划摆渡方案,使得任何时刻,在河的两岸以及船上的野人数目总是不超过传教士的数目。

即求解传教士和野人从左岸全部摆渡到右岸的过程中,任何时刻满足M(传教士数)≥C (野人数)和M+C≤k的摆渡方案。

设N=3,k=2,则给定的问题可用图1.2表示,图中L和R表示左岸和右岸,B=1或0分别表示有船或无船。

约束条件是:两岸上M≥C,船上M+C≤2。

图1.2 M-C问题实例由于传教士和野人数是一个常数,所以知道了一岸的情况,另一岸的情况也就知道了。

因此为了简便起见,在描述问题时,只描述一岸--如左岸--的情况就可以了。

另外,该问题我们最关心的是在摆渡过程中,两岸状态的变化情况,因此船上的情况并不需要直接表达出来。

在一次摆渡过程中,船上究竟有几个传教士和野人,可以通过两个相连的状态简单得到。

这样表达更简练,突出了问题的重点。

(1)综合数据库:用三元组表示左岸的情况,即(,,),其中0≤,≤3,∈{0,1},其中表示在左岸的传教士人数,表示在左岸的野人数,=1表示船在左岸,=0表示船在右岸。

则此时问题描述可以简化为:(3,3,1)→(0,0,0)N=3的M-C问题,状态空间的总状态数为4×4×2=32,根据约束条件的要求,可以看出只有20个合法状态。

再进一步分析后,又发现有4个合法状态实际上是不可能达到的。

因此实际的问题空间仅由16个状态构成。

下表列出分析的结果:()(001)达不到(传教士()(000)均在右,船在左)(011)(021)(031)(101)不合法(右岸野人多)(111)(121)不合法(左岸野人多)(131)不合法(左岸野人多)(201)不合法(右岸野人多)(211)不合法(右岸野人多)(221)(231)不合法(左岸野人多)(301)达不到(311)(321)(331)(010)(020)(030)达不到(100)不合法(右岸野人多)(110)(120)不合法(左岸野人多)(130)不合法(左岸野人多)(200)不合法(右岸野人多)(210)不合法(右岸野人多)(230)不合法(右岸野人多)(300)(220)(310)(320)(330)达不到规则集可以划分为两组:一组是从左岸到右岸,称为p 操作,另一组是从右岸到左岸,称为q操作。

修道士与野人问题

修道士与野人问题

6.修道士与野人问题这是一个古典问题。

假设有n个修道士和n个野人准备渡河,但只有一条能容纳c人的小船,为了防止野人侵犯修道士,要求无论在何处,修道士的个数不得少于野人的人数(除非修道士个数为0)。

如果两种人都会划船,试设计一个算法,确定他们能否渡过河去,若能,则给出一个小船来回次数最少的最佳方案。

要求:(1)用一个三元组(x1,x2,x3)表示渡河过程中各个状态。

其中,x1表示起始岸上修道士个数,x2表示起始岸上野人个数,x3表示小船位置(0——在目的岸,1——在起始岸)。

例如(2,1,1)表示起始岸上有两个修道士,一个野人,小船在起始岸一边。

采用邻接表做为存储结构,将各种状态之间的迁移图保存下来。

(2)采用广度搜索法,得到首先搜索到的边数最少的一条通路。

(3)输出数据若问题有解(能渡过河去),则输出一个最佳方案。

用三元组表示渡河过程中的状态,并用箭头指出这些状态之间的迁移:目的状态←…中间状态←…初始状态。

若问题无解,则给出“渡河失败”的信息。

(4)求出所有的解。

1.需求分析有n个修道士和n个野人准备渡河,但只有一条能容纳c人的小船,为了防止野人侵犯修道士,要求无论在何处,修道士的个数不得少于野人的人数,否则修道士就会有危险,设计一个算法,确定他们能否渡过河去,若能,则给出一个小船来回次数最少的最佳方案。

用三元组(x1,x2,x3)来表示渡河过程中各个状态,其中,x1表示起始岸上修道士个数,x2表示起始岸上野人个数,x3表示小船位置(0——在目的岸,1——在起始岸)。

若问题有解(能渡过河去),则输出一个最佳方案。

用三元组表示渡河过程中的状态,并用箭头指出这些状态之间的迁移:目的状态←…中间状态←…初始状态,若问题无解,则给出“渡河失败”的信息。

2.设计2.1 设计思想(1)数据结构设计逻辑结构设计: 图型结构存储结构设计: 链式存储结构采用这种数据结构的好处:便于采用广度搜索法,得到首先搜索到的边数最少的一条通路,输出一个最佳方案,采用图的邻接表存储结构搜索效率较高。

有N个传教士和N个野人来到河边渡河

有N个传教士和N个野人来到河边渡河

有N个传教士和N个野人来到河边渡河, 河岸有一条船, 每次至多可供k人乘渡。

问传教士为了安全起见, 应如何规划摆渡方案, 使得任何时刻, 河两岸以及船上的野人数目总是不超过传教士的数目(否则不安全, 传教士有可能被野人吃掉)。

即求解传教士和野人从左岸全部摆渡到右岸的过程中, 任何时刻满足M(传教士数)≥C(野人数)和M+C≤k的摆渡方案。

我们此处举例, 只讨论N为3、k为2的乘渡问题, 这样传教士和野人问题的描述就具体为如下:三个传教士与三个野人来到河边, 有一条船可供一人或两人乘渡, 问题是如何用这条船渡河才能使得河的任一岸上野人的数目总不超过传教士的数目(当然, 如果某一岸上只有野人而没有传教士是允许的)?我们用一个三元组(m c b)来表示河岸上的状态, 其中m、c分别代表某一岸上传教士与野人的数目, b=1表示船在这一岸, b=0则表示船不在。

设N=3, k=2, 则给定的问题可用下图表示, 图中L和R表示左岸和右岸, B=1或0分别表示有船或无船。

约束条件是: 两岸上M≥C, 船上M+C≤2。

我们采用产生式系统来解决这一问题。

由于传教士与野人的总数目是一常数, 所以只要表示出河的某一岸上的情况就可以了, 为方便起见, 我们选择传教士与野人开始所在的岸为所要表示的岸, 并称其为左岸, 另一岸称为右岸。

但显然仅用描述左岸的三元组描述就足以表示出整个情况, 因此必须十分重视选择较好的问题表示法。

以后的讨论还可以看到高效率的问题求解过程与控制策略有关, 合适的控制策略可缩小状态空间的搜索范围, 提高求解的效率。

因而问题的初始状态是(3 3 1), 目标状态是(0 0 0)。

(1) 综合数据库: 用三元组表示, 即(ML, CL, BL), 其中0≤ML, CL≤3, BL∈{0, 1}此时问题述简化为(3, 3, 1)&reg; (0, 0, 0)N=3的M-C问题, 状态空间的总状态数为4×4×2=32, 根据约束条件的要求, 可以看出只有20个合法状态。

传教士-野人问题

传教士-野人问题

传教士-野人问题传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<n,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设m为传教士的人数,c为野人的人数,用状态空间发求解此问题的过程如下:< bdsfid="64" p=""></n,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设m为传教士的人数,c为野人的人数,用状态空间发求解此问题的过程如下:<> M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 Q 01f=2 P 02 f=1 Q 01f=1 Q 11f=1 P 01 f=2 P 11 (3,3,1)(3,2,0)(2,2,0)(3,1,0)(3,2,1)(3,0,0) f=3 P 02(3,1,1) f=2 Q 01(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(0,2,0) f=4 P 20(0,3,1)f=3 Q 01(0,1,1)f=5 P 02(0,2,1) f=4 Q 01 (0,0,0)f=3 Q 01(1,1,1) f=4 Q 106.2.3 用状态空间法求解传教士和食人者问题例6-2 传教士和食人者问题(The Missionaries and Cannibals Problem)。

python回溯法子集树模板系列——19、野人与传教士问题

python回溯法子集树模板系列——19、野人与传教士问题

python回溯法⼦集树模板系列——19、野⼈与传教⼠问题问题在河的左岸有N个传教⼠、N个野⼈和⼀条船,传教⼠们想⽤这条船把所有⼈都运过河去,但有以下条件限制:(1)修道⼠和野⼈都会划船,但船每次最多只能运M个⼈;(2)在任何岸边以及船上,野⼈数⽬都不能超过修道⼠,否则修道⼠会被野⼈吃掉。

假定野⼈会服从任何⼀种过河安排,请规划出⼀个确保修道⼠安全过河的计划。

分析百度⼀下,⽹上全是⽤左岸的传教⼠和野⼈⼈数以及船的位置这样⼀个三元组作为状态,进⾏考虑,千篇⼀律。

我换了⼀种考虑,只考虑船的状态。

船的状态:(x, y) x表⽰船上x个传教⼠,y表⽰船上y个野⼈,其中 |x|∈[0, m], |y|∈[0, m], 0<|x|+|y|<=m, x*y>=0, |x|>=|y|船从左到右时,x,y取⾮负数。

船从右到左时,x,y取⾮正数解的编码:[(x0,y0), (x1,y1), ..., (xp,yp)] 其中x0+x1+...+xp=N, y0+y1+...+yp=N解的长度不固定,但⼀定为奇数开始时左岸(N, N), 右岸(0, 0)。

最终时左岸(0, 0), 右岸(N, N)由于船的合法状态是动态的、⼆维的。

因此,使⽤⼀个函数get_states()来专门⽣成其状态空间,使得主程序更加清晰。

代码n = 3 # n个传教⼠、n个野⼈m = 2 # 船能载m⼈x = [] # ⼀个解,就是船的⼀系列状态X = [] # ⼀组解is_found = False # 全局终⽌标志# 计算船的合法状态空间(⼆维)def get_states(k): # 船准备跑第k趟global n, m, xif k%2==0: # 从左到右,只考虑原左岸⼈数s1, s2 = n - sum(s[0] for s in x), n - sum(s[1] for s in x)else: # 从右到左,只考虑原右岸⼈数(将船的历史状态累加可得)s1, s2 = sum(s[0] for s in x), sum(s[1] for s in x)for i in range(s1 + 1):for j in range(s2 + 1):if 0 < i+j <= m and (i*j == 0 or i >= j):yield [(-i,-j), (i,j)][k%2==0] # ⽣成船的合法状态# 冲突检测def conflict(k): # 船开始跑第k趟global n, m, x# 若船上载的⼈与上⼀趟⼀样(会陷⼊死循环)if k > 0 and x[-1][0] == -x[-2][0] and x[-1][1] == -x[-2][1]:return True# 任何时候,船上传教⼠⼈数少于野⼈,或者⽆⼈,或者超载(计算船的合法状态空间时已经考虑到了。

(整理)传教士野人问题参考答案

(整理)传教士野人问题参考答案

传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<N,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设M为传教士的人数,C为野人的人数,用状态空间发求解此问题的过程如下:M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 Q 01f=2 P 02 f=1 Q 01f=1 Q 11f=1 P 01 f=2 P 11 (3,3,1) (3,2,0)(2,2,0) (3,1,0) (3,2,1) (3,0,0) f=3 P 02(3,1,1) f=2 Q 01(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(0,2,0) f=4 P 20(0,3,1)f=3 Q 01(0,1,1)f=5 P 02(0,2,1) f=4 Q 01 (0,0,0)f=3 Q 01(1,1,1) f=4 Q 106.2.3 用状态空间法求解传教士和食人者问题例6-2 传教士和食人者问题(The Missionaries and Cannibals Problem)。

修道士与野人问题

修道士与野人问题

3.修道士与野人问题题目:这是一个古典问题。

假设有n个修道士和n个野人准备渡河,但只有一条能容纳c人的小船,为了防止野人侵犯修道士,要求无论在何处,修道士的个数不得少于野人的人数(除非修道士个数为0)。

如果两种人都会划船,试设计一个算法,确定他们能否渡过河去,若能,则给出一个小船来回次数最少的最佳方案。

1.需求分析题目要求:1)用一个三元组(x1,x2,x3)表示渡河过程中各个状态。

其中,x1表示起始岸上修道士个数,x2表示起始岸上野人个数,x3表示小船位置(0——在目的岸,1——在起始岸)。

2)采用广度搜索法,得到首先搜索到的边数最少的一条通路。

3)输出数据若问题有解(能渡过河去),则输出一个最佳方案。

用三元组表示渡河过程中的状态,并用箭头指出这些状态之间的迁移:初始状态→…中间状态→目的…状态4)求出所有的解。

5)程序测试:用户输入修道士与野人个数以及一条船可容纳的人数,则程序输出可行的渡河状态图并输出最优解,程序最后给出可行解的个数。

注意:1)程序的输出格式严格按照三元组的形式,给出状态变迁图2)必须采用广度搜索算法2.设计2.1设计思想1)存储结构a)定义一个结构体,用于存放各个时刻的状态typedef struct{int x1;//修道士int x2;//野蛮人int x3;//状态}DataType;b)用邻接表存储结构实现图的操作,其存储结构为:typedef struct Node{int dest; //邻接表的弧头结点序号struct Node *next;}Edge; //邻接表单链表的结点结构体typedef struct{DataType data; //结点数据元素int sorce; //邻接表的弧尾结点序号Edge *adj; //邻接边的头指针int pre; //指向此点的点的序号}AdjLHeight; //数组的数据元素类型结构体typedef struct{AdjLHeight a[10000]; //邻接表数组int numOfVerts; //结点个数int numOfEdges; //边个数}AdjLGraph; //邻接表结构体2)基本思想由题意知,数据结构选用图较为合理,题中图的结点数目较大且边的数目远小于相同结点的完全图的边数,因此采用图的邻接表存储结构效率较高根据给出的小船上的位置数量,生成小船上的安全状态,即在船上的时候修道士的人数也要比野人的数量要多(除非修道士人数为0)。

传教士与野人过河问题

传教士与野人过河问题

传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<N,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设M为传教士的人数,C为野人的人数,用状态空间发求解此问题的过程如下:M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 Q 01f=2 P 02 f=1 Q 01f=1 Q 11f=1 P 01 f=2 P 11 (3,3,1) (3,2,0)(2,2,0) (3,1,0) (3,2,1) (3,0,0) f=3 P 02(3,1,1) f=2 Q 01(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(0,2,0) f=4 P 20(0,3,1)f=3 Q 01(0,1,1)f=5 P 02(0,2,1) f=4 Q 01 (0,0,0)f=3 Q 01(1,1,1) f=4 Q 106.2.3 用状态空间法求解传教士和食人者问题例6-2 传教士和食人者问题(The Missionaries and Cannibals Problem)。

传教士野人问题参考答案

传教士野人问题参考答案

传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<N,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设M为传教士的人数,C为野人的人数,用状态空间发求解此问题的过程如下:M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 Q 01f=2 P 02 f=1 Q 01f=1 Q 11f=1 P 01 f=2 P 11 (3,3,1) (3,2,0)(2,2,0) (3,1,0) (3,2,1) (3,0,0) f=3 P 02(3,1,1) f=2 Q 01(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(0,2,0) f=4 P 20(0,3,1)f=3 Q 01(0,1,1)f=5 P 02(0,2,1) f=4 Q 01 (0,0,0)f=3 Q 01(1,1,1) f=4 Q 106.2.3 用状态空间法求解传教士和食人者问题例6-2 传教士和食人者问题(The Missionaries and Cannibals Problem)。

人工智能第三版源码-传教士_野人问题

人工智能第三版源码-传教士_野人问题

传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<N,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设M为传教士的人数,C为野人的人数,用状态空间发求解此问题的过程如下:M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10 if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01 if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11 if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20 if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02 if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10 if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01 if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11 if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02 if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 Q01 f=2 P02 f=1 Q01 f=1 Q10 f=1 P01 f=2 P11 (3,3,1) (3,2,0) (2,2,0) (3,1,0) (3,2,1) (3,0,0) f=3 P02 (3,1,1) f=2 Q01 (1,1,0) f=4 P20 (2,2,1) f=2 Q11 (1,1,0) f=4 P20 (2,2,1) f=2 Q11 (0,2,0) f=4 P20 (0,3,1) f=3 Q01 (0,1,1) f=5 P02 (0,2,1) f=4 Q01 (0,0,0) f=3 Q01 (1,1,1) f=4 Q10。

模拟十二

模拟十二

模拟十二一、传教士渡河问题:在河的左岸有N个传教士和N个野人,河边有一条小船,每次只能乘载两个人渡河,为了保证安全,任何时候野人的数目都不能超过传教士的数目。

给定N,求出所有的渡河方案。

输入:文件的输入只有一个整数N(N<=8)输出:文件的输出第一行只有一个整数N,表示N种渡河方案。

接下来是渡河方案,每个渡河方案包含三个用一个空格分隔整数M C B。

其中M为左岸传教士的数目,C为野人的数目,B为船在左岸的标志,B=1表示船在左岸,B=0表示船在右岸。

每种方案应该包含每一次的渡河过程。

两种不同方案之间用一个空行分隔。

二、输入一个字母组成的集合X(X的元素个数不超过5个),输出一个由集合X的元素组成的长度不超过N的不含有连续相同的子串的字符串个数。

输入:文件的输入只有两行,第一行为集合X中提供的字符,第二行为一个整数N。

输出:文件的输出只有一个整数,为符合问题的所有字符串个数。

三、输入数据是3个整数:K(K〈=20,)N(N〈=6),M(M〈=20)。

给定一个圆,它被分成n个扇区,请为每一个扇区选择一个整数(必须大于等于K)。

向各扇区中放入整数之后,你可以从单个扇区中选取一个整数;或从相邻的2个或多个扇区中各选一个整数,相加后形成一个新的整数,请使用这些整数以形成一个连续的整数序列:m,m+1,m+2,…,Im是预先给定的,你的任务是使整数I尽可能大。

输入:文件中只有三个用一个空格分隔的整数N,M,K。

输出:文件的第一行为你的数字序列产生的最大整数I。

以下各行列出各圆中各扇区中数字安排的所有可能的方案,这种安排必须能够产生整数序列:m,m+1,m+2,…,I。

每一种方案都是一个数字列表,它独占一行,其中第一个数字必须是本行中各数字的最小者。

传教士野人问题参考答案

传教士野人问题参考答案

传教士野人问题参考答案传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<N,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设M为传教士的人数,C为野人的人数,用状态空间发求解此问题的过程如下:M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 f=2 f=1 f=1f=1 f=2 (3,3,(3,(2,(3,(3,2,(3,0,f=3 (3,1,f=2 (1,1,f=4 (2,2,f=2 (1,1,f=4 (2,2,f=2 (0,2,f=4 (0,3,f=3 (0,1,f=5(0,2,f=4 (0,0,f=3 (1,1,f=46.2.3 用状态空间法求解传教士和食人者问题例6-2 传教士和食人者问题(The Missionaries and Cannibals Problem)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有N个传教士和N个野人来到河边渡河,河岸有一条船,每次至多可供k人乘渡。

问传教士为了安全起见,应如何规划摆渡方案,使得任何时刻,河两岸以及船上的野人数目总是不超过传教士的数目(否则不安全,传教士有可能被野人吃掉)。

即求解传教士和野人从左岸全部摆渡到右岸的过程中,任何时刻满足M(传教士数)≥C(野人数)和M+C≤k的摆渡方案。

我们此处举例,只讨论N为3、k为2的乘渡问题,这样传教士和野人问题的描述就具体为如下:
三个传教士与三个野人来到河边,有一条船可供一人或两人乘渡,问题是如何用这条船渡河才能使得河的任一岸上野人的数目总不超过传教士的数目(当然,如果某一岸上只有野人而没有传教士是允许的)?
我们用一个三元组(m c b)来表示河岸上的状态,其中m、c分别代表某一岸上传教士与野人的数目,b=1表示船在这一岸,b=0则表示船不在。

设N=3,k=2,则给定的问题可用下图表示,图中L和R表示左岸和右岸,B=1或0分别表示有船或无船。

约束条件是:两岸上M≥C,船上M+C≤2。

我们采用产生式系统来解决这一问题。

由于传教士与野人的总数目是一常数,所以只要表示出河的某一岸上的情况就可以了,为方便起见,我们选择传教士与野人开始所在的岸为所要表示的岸,并称其为左岸,另一岸称为右岸。

但显然仅用描述左岸的三元组描述就足以表示出整个情况,因此必须十分重视选择较好的问题表示法。

以后的讨论还可以看到高效率的问题求解过程与控制策略有关,合适的控制策略可缩小状态空间的搜索范围,提高求解的效率。

因而问题的初始状态是(331),目标状态是(000)。

(1)综合数据库:用三元组表示,即(ML,CL,BL),其中0≤ML,CL≤3,BL∈{0,1}
此时问题述简化为(3,3,1)&reg;(0,0,0)
N=3的M-C问题,状态空间的总状态数为4×4×2=32,根据约束条件的要求,可以看出只有20个合法状态。

再进一步分析后,又发现有4个合法状态实际上是不可能达到的。

因此实际的问题空间仅由16个状态构成。

下表列出分析的结果:
(ML,CL,BL)(ML,CL,BL)
(001)达不到(000)
(011)(010)
(021)(020)
(031)(030)达不到
(101)不合法(100)不合法
(111)(110)
(121)不合法(120)不合法
(131)不合法(130)不合法
(201)不合法(200)不合法
(211)不合法(210)不合法
(221)(220)
(231)不合法(230)不合法
(301)达不到(300)
(311)(310)
(321)(320)
(331)(330)达不到
(2)规则集合:由摆渡操作组成。

该问题主要有两种操作:pmc操作(规定为从左岸划向右岸)和qmc操作(从右岸划向左岸)。

每次摆渡操作,船上人数有五种组合,因而组成有10条规则的集合。

下面定义的规则前5条为pmc操作(从左岸划向右岸),后5条为qmc操作(从右岸划向左岸)。

if(ML,CL,BL=1)then(ML-1,CL,BL-1);(p10操作)
if(ML,CL,BL=1)then(ML,CL-1,BL-1);(p01操作)
if(ML,CL,BL=1)then(ML-1,CL-1,BL-1);(p11操作)
if(ML,CL,BL=1)then(ML-2,CL,BL-1);(p20操作)
if(ML,CL,BL=1)then(ML,CL-2,BL-1);(p02操作)
if(ML,CL,BL=0)then(ML+1,CL,BL+1);(q10操作)
if(ML,CL,BL=0)then(ML,CL+1,BL+1);(q01操作)
if(ML,CL,BL=0)then(ML+1,CL+1,BL+1);(q11操作)
if(ML,CL,BL=0)then(ML+2,CL,BL+1);(q20操作)
if(ML,CL,BL=0)then(ML,CL+2,BL+1);(q02操作)
(3)初始和目标状态:即(3,3,1)和(0,0,0)。

和八数码游戏的问题一样,建立了产生式系统描述之后,就可以通过控制策略,对状态空间进行搜索,求得一个摆渡操作序列,使其实现目标状态。

在讨论用产生式系统求解问题时,有时引入状态空间图的概念很有帮助。

状态空间图是一个有向图,其节点可表示问题的各种状态(综合数据库),节点之间的弧线代表一些操作(产生式规则),它们可把一种状态导向另一种状态。

这样建立起来的状态空间图,描述了问题所有可能出现的状态及状态和操作之间的关系,因而可以较直观地看出问题的解路径及其性质。

实际上只有问题空间规模较小的问题才可能作出状态空间图,例如N=3的M-C问题,的其状态空间图如下图所示,此时采用的控制策略为顺序选取规则。

由于每个摆渡操作都有对应的逆操作,即pmc对应qmc,所以该图也可表示成具有双向弧的形式。

从状态空间图看出解序列相当之多,但最短解序列只有4个,例如
(p11、q10、p02、q01、p20、q11、p20、q01、p02、q01、p02)、
(p11、q10、p02、q01、p02、q11、p20、q01、p02、q10、p11)、
(p02、q01、p02、q01、p20、q11、p20、q01、p02、q01、p02)、
(p02、q01、p02、q01、p20、q11、p20、q01、p02、q10、p11),
均由11次摆渡操作构成。

若给定其中任意两个状态分别作为初始和目标状态,就立即可找出对应的解序列来。

在一般情况下,求解过程就是对状态空间搜索出一条解路径的过程。

以上这个例子说明了建立产生式系统描述的过程,这也就是所谓问题的表示。

对问题表示的好坏,往往对求解过程的效率有很大影响。

一种较好的表示法会简化状态空间和规则集表示,例如八数码问题中,如用将牌移动来描述规则,则8块将牌就有32条的规则集,显然用空格走步来描述就简单得多。

又如M-C问题中,用3×2的矩阵给出左、右岸的情况来表示一种状态当然可以,但显然仅用描述左岸的三元组描述就足以表示出整个情况。

如果我们用micro-PROLOG的SIMPLE语法来进行编程以实现求解乘渡的方案,则根据你给出的询问是which(或all)还是is能给出全部摆渡方案或一个摆渡方案。

下面的程序由于M-C关系的第一个语句用了回溯控制“/”,所以实际上只能得出一个乘渡方案。

下面我们进行程序设计:
我们把满足条件的状态称为安全状态,首先要定义出安全状态,通过对问题的分析,不难得出只有满足以下条件之一的状态才是安全的(以左岸为例):
1.传教士与野人的数目相等;
2.传教士都在左岸;
3.传教士都不在左岸。

safe关系的三个句子分别定义了这三种不同的情况,其中safe的第一个变元表示传教士的数目,第二个变元表示野人的数目。

从一个状态到另一状态的转换,通过关系Rule来完成,它有两个句子,分别描述了从左岸到右岸和从右岸到左岸的状态转换。

Rule的两个变元都是三元组,第一个三元组表示当前状态,第二个三元组是得到的下一个满足条件的状态。

关系M-C通过调用Rule来求解出传教士与野人的过河方案,它有四个变元,第一个变元是当前状态,调用时用初始状态代入,第二个变元是目标状态,第三个变元是一个中间变量,它以表的形式记录到目前为止所达到的状态,调用的初始值是只含初始状态一个元素的表,第四个变元也是一个表,求解结束时,它以
逆序形式得到解的路径。

相关文档
最新文档