汽车系统构造英文版Lesson14SuspensionSystem

合集下载

汽车构造英语

汽车构造英语

The Complexities of Automobile Construction The automobile, a product of technological innovation and engineering genius, has transformed our world. Its history, rich with pivotal moments and influential innovators, began in the late 19th century and has since become a ubiquitous fixture of modern life. This article delves into the intricacies of automobile construction, highlighting key components, systems, and recent technological advancements.Essential Components of an AutomobileAn automobile is composed of numerous parts, each serving a specific function. The engine, often considered the heart of the car, generates power. The chassis supports the body and houses the mechanical components. The seats, along with the interior, provide a comfortable environment for occupants.Engine Systems: The Heart of the MatterEngines are classified as internal combustion (IC) or external combustion (EC). IC engines, such as gasoline and diesel engines, are more common in modern automobiles. They operate by mixing fuel with air, igniting the mixture, and harnessing the resulting expansion to create power. Diesel engines are more efficient but emit more noise and pollution. Gasoline engines, on the other hand, offer smoother operation but are less fuel-efficient.Chassis Systems: The Backbone of the VehicleThe chassis supports the car's structure and contains critical systems like the suspension and braking. The suspension system absorbs road shocks, improving ride quality and tire contact with the road. The braking system converts kinetic energy into heat,slowing or stopping the car. Both systems are carefully designed to offer a balance between performance and comfort.Seating and Interior: Comfort and ErgonomicsSeats are designed to offer support and comfort, often with the help of ergonomic principles. Materials like leather, vinyl, and fabric are chosen for durability, comfort, and aesthetics. The interior, which includes dashboards, door panels, and carpeting, is equally important in creating a pleasant driving environment.Emerging Technologies in Automotive ConstructionRecent technological advancements have revolutionized the automotive industry. Autonomous vehicles, enabled by advances in sensor technology, artificial intelligence, and computer vision, promise safer, more efficient driving. Electric and hybrid vehicles, driven by batteries and alternative fuels, are becoming increasingly popular due to their environmental benefits.Environmental Considerations in Automotive DesignConsumers are increasingly concerned with the environmental impact of their purchases. Automobile manufacturers are responding with more fuel-efficient vehicles and eco-friendly materials. Consumers can further contribute by selecting vehicles with low emissions and recycling old cars.ConclusionUnderstanding the intricacies of automobile construction is essential for appreciating the engineering feats that underlie our modern way of life. It also informs responsible consumer choices, vital for sustainable development. As technology continues to evolve, the future of the automobile promises to be even more exciting and innovative.。

汽车英语悬架系统(suspension system)

汽车英语悬架系统(suspension system)
the road (质量小,车轮的附着性好)
The characteristics of nonindependent suspension
• Simple structure(结构简单) • Low cost(成本低) • Simple fabrication process(制作工艺简单)
The type of suspension
• Independent suspension(独立悬架) • non-independent suspension(非独立悬架)
The characteristics of independent on
• Comfortable(舒适性好) • Reasonable structure(结构紧凑) • Beneficial for shift/turning (有利于转向) • Light weight, wheels’ firm contact with
Graphic Suspension
(横向推力杆) Coil spring (线圈弹簧) Sock absorber(减震器H)orizontal thrust rod
(横向稳定器) Horizontal stabilizer
Cross member(横梁) Vertical thrust rod (纵向推力杆)
Suspension system components
• Shock absorber • Coil spring • Lower control arm • Cross member • Trailing arm • Stub axle • Steering knuckle
(减震器) (线圈弹簧) (下控制臂)
Unit 5
Suspension System

汽车构造英文版版

汽车构造英文版版

汽车构造英文版-免费下载版CHAPTER 1 AUTOMOTIVE BASICS? Principal ComponentsToday's average car contains more than 15,000 separate, individual parts that must work together. These parts can grouped into four major categories: engine, body, chassis and electrical equipment.? EngineThe engine acts as the power unit. The internal combustion engine is most common: this obtains its power by burning a liquid fuel inside the engine cylinder. There are two types of engine :gasoline(also called a spark-ignition engine) and diesel(also called a compression-ignition engine).Both engines are called heat engines; the burning fuel generates heat which causes the gas inside the cylinder to increase its pressure and supply power to rotate a shaft connected to the transmission.? BodyAn automobile body is a sheet metal shell with windows, doors, a hood, and a trunk deck built into it. It provides a protective covering for the engine, passengers, and cargo. The body is designed to keep passengers safe and comfortable. The body styling provides an attractive, colorful, modern appearance for the vehicle.? ChassisThe chassis is an assembly of those systems that are the major operating part of a vehicle. The chassis includes the transmission, suspension, steering, and brake systems.Transmission systems ― conveys the drive to the wheels. The main components are clutch, gearbox, driveshaft, final drive, and differential.Suspension― absorbs the road shocks.Steering― controls the direction of the movement.Brak e― slows down the vehicle.? Electrical ? EquipmentThe electrical system supplies electricity for the ignition, horn, lights, heater, and starter. The electricity level is maintained by a charging circuit. This circuit consists of the battery, alternator (or generator). The battery stores electricity. The alternator changes the engine's mechanical energy into electrical energy and recharges the battery. New WordsPrincipal component ? 主要部件category ? 种类,类型body ? 车身chassis ? 底盘layout ? 布置power unit ? 动力装置internal combustion engine ? 内燃机cylinder ? 汽缸gasoline ? 汽油spark ? 火花ignition ? 点燃,点火diesel ? 柴油机compression ? 压缩shaft ? 轴transmission ? 传动系sheet metal ? 金属板shell ? 外壳hood ? (发动机)罩trunk deck ? 行李舱盖cargo ? 货物styling ? 样式assembly ? 总成,装配suspension ? 悬挂,悬置shock ? 冲击steering ? 转向,操纵brake ? 刹车,制动器clutch ? 离合器gearbox ? 变速器driveshaft ? 传动轴final drive ? 主减速器,后桥differential ? 差速器slow down ? (使)慢下来,减速horn ? 喇叭starter ? 起动机charge ? 充电alternator ? 交流发电机Review Questions1.List the main parts of an automobile2.What are the common types of a vehicle according to body styling3.Which systems does a chassis include and what are the main functions of the chassis4.Why are suspension systems used on vehiclesCHAPTER2 INTERNAL COMBUSTION ENGINEprinciple of operation2.1.1 Engine and powerEngine is used to produce power. The chemical energy in fuel is converted to heat by the burning of the fuel at a controlled rate. This process is called combustion. If engine combustion occurs with the power chamber. ,the engine is called internal combustion engine. If combustion takes place outside the cylinder, the engine is called an external combustion engine.Engine used in automobiles are internal combustion heat engines. Heat energy released in the combustion chamber raises the temperature of the combustion gases with the chamber. The increase in gas temperature causes the pressure of the gases to increase. The pressure developed within the combustion chamber is applied to the head of a piston to produce a usable mechanical force, which is then converted into useful mechanical power.2.1.2 Engine TermsLinking the piston by a connecting rod to a crankshaft causes the gas to rotate the shaft through half a turn. The power stroke “uses up” the gas , so means must be provided to expel the burnt gas and recharge the cylinder with a fresh petrol-air mixture :this control of gas movement is the duty of the valves ;an inlet valve allows the new mixture to enter at the right time and an exhaust valve lets out the burnt gas after the gas has done its job. Engine terms are :TDC(Top Dead Center):the position of the crank and piston when the piston is farther away from the crankshaft.BDC(Bottom Dead Center):the position of the crank and piston when the piston is nearest to the crankshaft.Stroke : the distance between BDC and TDC; stroke is controlled by the crankshaft.Bore : the internal diameter of the cylinder.Swept volume : the volume between TDC and BDC.Engine capacity : this is the swept volume of all the cylinder . a four-stroke having a capacity of two liters(2000cm) has a cylinder swept volume of 50cm.Clearance volume: the volume of the space above the piston when it is at TDC.Compression ratio = (swept vol + clearance vol)\(clearance vol)Two-stroke : a power stroke every revolution of the crank.Four-stroke : a power stroke every other revolution of the crank..2.1.3 The Four-strokeSpark-ignition Engine CycleThe spark-ignition engine is aninternal-combustion engine with externallysupplied in ignition , which converts theenergy contained in the fuel to kineticenergy.The cycle of operations is spread over four piston strokes. To complete the full cycle it takes two revolutions of the crankshaft.The operating strokes are :This stroke introduces a mixture of atomized gasoline and air into the cylinder. The stroke starts when the piston moves downward from a position near the top of the cylinder. As the piston moves downward, a vacuum, or low-pressure area, is created.During the intake stroke, one of the ports is opened by moving the inlet valve. The exhaust valve remains tightly closed.Compression strokeAs the piston moves upward to compress the fuel mixture trapped in the cylinder, the valves are closed tightly. This compression action heats the air/fuel mixture slightly and confines it within a small area called the combustion chamber.Power strokeJust before the piston reaches the top of its compression stroke, an electrical spark is introduced from a spark plug screwed into the cylinder head.The spark ignites the compressed, heated mixture of fuel and air in the combustion chamber to cause rapid burning. The burning fuel produces intense heat that causes rapid expansion of the gases compressed within the cylinder. This pressure forces the piston downward. The downward stroke turns the crankshaft with great force.Exhaust strokeJust before the bottom of the power stroke, the exhaust valve opens. This allows the piston, as it moves upward, to push the hot, burned gases out through the open exhaust valve.Then, just before the piston reaches its highest point, the exhaust valve closes and the inlet valve opens. As the piston reaches the highest point in the cylinder, known as TDC, it starts back down again. Thus, one cycle ends and another begins immediately.2.1.4 Engine Overall MechanicsThe engine has hundreds of other parts . The major parts of engine are engine block , engine heads, pistons, connecting rods, crankshaft and valves. The other parts are joined to make systems. These systems are the fuel system, intake system, ignition system, cooling system, lubrication system and exhaust system. Each of these systems has a definite function. These systems will discussed in detail later.NEW WORDPiston 活塞Connecting rod 连杆Crankshaft 曲轴Power stoke 活塞行程Expel 排出Valve 气阀inlet(intake) valve 进气阀exhaust valve 排气阀term 术语TDC 上止点BDC 下止点Bore 缸径swept volume 有效容积engine capacity 发动机排量clearance volume 余隙容积,燃烧室容积compression ratio 压缩比revolution 旋转,转数every other 每隔一个cycle 循环spread over 分布,遍及intake stroke 进气行程compression stroke 压缩行程knock 敲缸,敲打exhaust stroke 排气行程engine block 发动机缸体lubrication 润滑Engine Block and Cylinder Head2.2.1 ? Engine BlockThe engine block is the basic frame of the engine. All other engine parts either fit inside it or fasten to it. It holds the cylinders, water jackets, and oil galleries. The engine block also holds the crankshaft, which fastens to the bottom of the block. The camshaft also fits inside the block, except on overhead-cam engines (OHC). In most cars, this block is made of gray iron, or an alloy (mixture) of gray iron and other metals, such as nickel or chromium. Engine blocks are castings.Some engine blocks, especially those in smaller cars, are made of cast aluminum. This metal is much lighter than iron. However, iron wears better than aluminum. Therefore, the cylinders in most aluminum engines are lined with iron or steel sleeves. These sleeves are called cylinder sleeves. Some engine blocks are made entirely of aluminum.? Cylinder HeadThe cylinder head fastens to the top of the block, just as a roof fits over a house. The underside forms the combustion chamber with the top of the piston. The most common cylinder head types are the hemi, wedge, and semi-hemi. All three of these terms refer to the shape of the engine's combustion chamber. The cylinder head carries the valves, valve springs and the rockers on the rocker shaft, this part of the valve gear being worked by the push-rods. Sometimes the camshaft is fitted directly into the cylinder head and operates on the valves without rockers. This is called an overhead camshaft arrangement. Like the cylinder block, the head is made from either cast iron or aluminum alloy.? GasketThe cylinder head is attached to the block with high-tensile steel studs. The joint between the block and the head must be gas-tight so that none of the burning mixture can escape. This is achieved by using cylinder head gasket. This is a sandwich gasket, . a sheet of asbestos between two sheets of copper, both these materials being able to withstand the high temperature and pressures within the engine.? Oil Pan or SumpThe oil pan is usually formed of pressed steel. The oil pan and the lower part of the cylinder block together are called the crankcase; they enclose, or encase, the crankshaft. The oil pump in the lubricating system draws oil from the oil pan and sends it to all working parts in the engine. The oil drains off and runs down into the pan. Thus, there is constant circulation of oil between the pan and the working parts of the engine.New Wordsengine block ? 缸体cylinder head ? 气缸盖fasten ? 使固定water jacket ? 水套oil gallery ? 油道camshaft ? 凸轮轴overhead-cam(OHC) ? 顶置凸轮gray iron ? 灰铸铁alloy ? 合金nickel ? 镍chromium ? 铬casting ? 铸件head cover ? 汽缸盖罩intake manifold ? 进气总管distributor ? 分电器oil pan ? 油底壳aluminum ? 铝be lined with ? 镶有cylinder sleeve ? 气缸套hemi ? 半球形wedge ? 楔型,楔入semi-hemi ? 准半球形rocker ? 摇臂push-rod ? 推杆gasket ? 衬垫high-tensile ? 高强度的stud ? 螺栓gas-tight ? 密封的asbestos ? 石棉crankcase ? 曲轴箱,曲柄箱encase ? 封闭,把…包起来drain off ? 排出,流出Review Question1.What do TDC, BDC, stroke, compression ratio and engine capacity stand for2.How do you calculate swept volume and compression ratio3.What controls the length of the stroke4.List the main parts of the engine overall mechanics5.What are the main function of the engine blockPiston Connecting Rod and Crankshaft2.3.1 Piston AssemblyThe piston is an important part of a four-stroke cycle engine. Most pistons are made from cast aluminum. The piston , through the connecting rod, transfers to the crankshaft the force create by the burning fuel mixture. This force turns the crankshaft .Thin, circular , steel bands fit into grooves around the piston to seal the bottom of the combustion chamber. These bands are called piston rings. The grooves into which they fit are called ring grooves. A piston pin fits into a round hole in the piston . The piston pin joins the piston to the connecting rod . The thick part of the piston that holds the piston is the pin boss.The piston itself , its rings and the piston pin are together called the piston assembly.2.3.2.PistonTo withstand the heat of the combustion chamber, the piston must be strong. It also must be light, since it travels at high speeds as it moves up and down inside the cylinder. The piston is hollow. It is thick at the top where it take the brunt of the heat and the expansion force. It is thin at the bottom, where there is less heat. The top part of the piston is the head , or crown . The thin part is the skirt The sections between the ring grooves are called ring lands.The piston crown may be flat , concave ,dome or recessed . In diesel engine , the combustion chamber may be formed totally or in part in the piston crown , depending on the method of injection . So they use pistons with different shapes.2.3.3Piston RingsAs shows , piston rings fit into ring grooves near the of the piston. In simplest terms, piston rings are thin, circular pieces of metal that fit into grooves in the tops of the pistons.In modern engines ,each piston has three rings. (Piston in older engines sometimes had four rings, or even five.) The ring’s outside surface presses against the cylinder walls. Rings provide the needed seal between the piston and the cylinder walls. That is, only the rings contact the cylinder walls. The top two rings are to keep the gases in the cylinder and are called compression rings. The lower one prevents the oil splashed onto the cylinder bore from entering the combustion chamber , and is called an oil ring. Chrome-face cast-iron compression rings are commonly used in automobile engines. The chrome face provide a very smooth , wear-resistant surface.During the power stoke , combustion pressure on the combustion rings is very high. It causes them to untwist . Some of the high-pressure gas gets in back of the rings. This force the ring face into full contact with the cylinder wall. The combustion pressure also holds the bottom of the ring tightly against the bottom of the ring groove. Therefore , high combustion pressure causes a tighter seal between the ring face and the cylinder wall.2.3.4 Piston PinThe piston pin holds together the piston and the connecting rod . This pin fits into the piston pin holes and into a hole in the top end of the connecting rod. The top end of is much smaller than the end that fits on the crankshaft . This small end fits inside the bottom of the piston . The piston pin fits through one side of the piston , through the small end of the rod , and then through the other side of the piston . It holds the rod firmly in place in the center of the piston. Pins are made of high-strengh steel and have a hollow center . Many pins are chrome-plated to help them wear better.2.3.3 Connecting rodThe connecting rod is made of forgedhigh-strength steel . It transmits and motion from the piston to the crankpin on the crankshaft . The connecting rod little end is connected to the piston pin . A bush made from a soft metal , such as bronze , is used for this joint . The lower end of the connecting rod fits the crankshaft journal . This is called the big end . For this big-end bearing , steel-backed lead or tin shell bearing are used . These are the same as those used for the main bearings . The split of the big end is sometimes at an angle , so that it is small enough to be withdrawn through the cylinder bore . The connecting rod is made from forged alloy steel .2.3.5 CrankshaftThe crankshaft , in conjunction with the connecting rod , coverts thereciprocating motion of the piston to the rotary motion needed to drive thevehicle . It is usually made from carbon steel which is alloyed with asmall proportion of nickel .The main bearing journals fit into the cylinderblock and the big end journals align with the connecting rods .At the rearend of the crankshaft is attached the flywheel , and at the front end are thedriving whells for the timing gears , fan , cooling water and alternator .The throw of the crankshaft , the distance between the mainjournal and the big end centers , controls the length of the stroke . Thestroke is double the throw , and the stroke-length is the distance that thepiston travels from TDC to BDC and vice versa .2.3.6 FlywheelThe flywheel is the made from carbon steel . It fit s onto the rear of the crankshaft . As well as keeping the engine rotating between power strokes it also carries the clutch , which transmits the drive to the transmission , and has the starter ring gear around its circumference . There is only one working stroke in four so a flywheel is needed to drive the crankshaft during the time that the engine is performing the non-power strokes .New WordsComprise 由。

汽车结构中英文详解

汽车结构中英文详解
It includes water pump, radiator, cooling fan, thermostat, water jacket and other ancillary devices.它包括水泵、散热器、冷却风扇、节温器、水套以及其他附 属装置。
1.2.7 lubrication system润滑系统
发动机作为动力设备,常见的类 型是内燃机,其原理是通过发动机 缸内的液体燃料燃烧而产生能量。 发动机可分为两类:汽油机和柴油机
1.1The basic performance principle of four-stroke gasoline engine 四冲程汽油机基本工作原理
1.Intake stroke 吸气行程 pression stroke 压缩行程 3.Working stroke 做功行程 4.Exhaust stroke 排气行程
2.2 Steering system 转向系统
The direction motion of vehicle is controlled by a steering system. A basic steering system has 3 main parts: steering control mechanism, steering gear ,steering linkage mechanism which connecting wheels and steering gear.
To ensure the normal operation of the engine, the surfaces of relative motion parts of the engine must be lubricated.
为保证发动机的正常工作,必须对发动机

Suspension-汽车构造

Suspension-汽车构造

Review 3: List the main types of Suspension Springs
Coil Spring Torsion Bar Rubber Spring
Leaf Spring
(laminated spring)
Air Spring Hydropneumatic Spring
coil spring 螺旋弹簧
中心螺栓 Center bolt
弹簧夹 Rebound clap 卷 耳 Spring ear
Leaf springs are made of long, flat pieces of metal clamped together to form a spring. The spring not only acts as a spring but also locates the axle. To overcome weakness at the mid-point of the main leaf, either the leaf is made thicker at the center or a series of leaves is used. Each leaf is shorter than the one directly above it.
tie rod
stabilizer bar shock absorber
coil spring
trailing control
Review 1: What’s the function of Suspension system?
Review 1: What’s the function of Suspension system? Flexibly connect the wheels to the body Deliver the power and moment from the road to the body

汽车构造英文版-免费下载版

汽车构造英文版-免费下载版

汽车构造英文版-免费下载版CHAPTER 1 AUTOMOTIVE BASICS1.1 Principal ComponentsToday's average car contains more than 15,000 separate, individual parts that must work together. These parts can grouped into four major categories: engine, body, chassis and electrical equipment.1.2 EngineThe engine acts as the power unit. The internal combustion engine is most common: this obtains its power by burning a liquid fuel inside the engine cylinder. There are two types of engine :gasoline(also called a spark-ignition engine) and diesel(also called a compression-ignition engine).Both engines are called heat engines; the burning fuel generates heat which causes the gas inside the cylinder to increase its pressure and supply power to rotate a shaft connected to the transmission.1.3 BodyAn automobile body is a sheet metal shell with windows, doors, a hood, and a trunk deck built into it. It provides a protective covering for the engine, passengers, and cargo. The body is designed to keep passengers safe and comfortable. The body styling provides an attractive, colorful, modern appearance for the vehicle.1.4 ChassisThe chassis is an assembly of those systems that are the major operating part of a vehicle. The chassis includes the transmission, suspension, steering, and brake systems.Transmission systems ― conveys the drive to the wheels. The main components are clutch, gearbox, driveshaft, final drive, and differential.Suspension― absorbs the road shocks.Steering― controls the direction of the movement.Br ake― slows down the vehicle.1.5 Electrical EquipmentThe electrical system supplies electricity for the ignition, horn, lights, heater, and starter. The electricity level is maintained by a charging circuit. This circuit consists of the battery, alternator (or generator). The battery stores electricity. The alternator changes the engine's mechanical energy into electrical energy and recharges the battery.New WordsPrincipal component 主要部件category 种类,类型body 车身chassis 底盘layout 布置power unit 动力装置internal combustion engine 内燃机cylinder 汽缸gasoline 汽油spark 火花ignition 点燃,点火diesel 柴油机compression 压缩shaft 轴transmission 传动系sheet metal 金属板shell 外壳hood (发动机)罩trunk deck 行李舱盖cargo 货物styling 样式assembly 总成,装配suspension 悬挂,悬置shock 冲击steering 转向,操纵brake 刹车,制动器clutch 离合器gearbox 变速器driveshaft 传动轴final drive 主减速器,后桥differential 差速器slow down (使)慢下来,减速horn 喇叭starter 起动机charge 充电alternator 交流发电机Review Questions1.List the main parts of an automobile?2.What are the common types of a vehicle according to body styling?3.Which systems does a chassis include and what are the main functions of the chassis?4.Why are suspension systems used on vehicles?CHAPTER2 INTERNAL COMBUSTION ENGINE2.1 principle of operation2.1.1 Engine and powerEngine is used to produce power. The chemical energy in fuel is converted to heat by the burning of the fuel at a controlled rate. This process is called combustion. If engine combustion occurs with the power chamber. ,the engine is called internal combustion engine. If combustion takes place outside the cylinder, the engine is called an external combustion engine.Engine used in automobiles are internal combustion heat engines. Heat energy released in the combustion chamber raises the temperature of the combustion gases with the chamber. The increase in gas temperature causes the pressure of the gases to increase. The pressure developed within the combustion chamber is applied to the head of a piston to produce a usable mechanicalforce, which is then converted into useful mechanical power.2.1.2 Engine TermsLinking the piston by a connecting rod to a crankshaft causes the gas to rotate the shaft through half a turn. The power stroke “uses up” the gas , so means must be provided to expel the burnt gas and recharge the cylinder with a fresh petrol-air mixture :this control of gas movement is the duty of the valves ;an inlet valve allows the new mixture to enter at the right time and an exhaust valve lets out the burnt gas after the gas has done its job. Engine terms are :TDC(Top Dead Center):the position of the crank and piston when the piston is farther away from the crankshaft.BDC(Bottom Dead Center):the position of the crank and piston when the piston is nearest to the crankshaft.Stroke : the distance between BDC and TDC; stroke is controlled by the crankshaft.Bore : the internal diameter of the cylinder.Swept volume : the volume between TDC and BDC.Engine capacity : this is the swept volume of all the cylinder e.g. a four-stroke having a capacity of two liters(2000cm) has a cylinder swept volume of 50cm.Clearance volume: the volume of the space above the piston when it is at TDC. Compression ratio = (swept vol + clearance vol)\(clearance vol)Two-stroke : a power stroke every revolution of the crank.Four-stroke : a power stroke every other revolution of the crank..2.1.3 The Four-stroke Spark-ignition Engine CycleThe spark-ignition engine is an internal-combustion engine with externally supplied in ignition , which converts the energy contained in the fuel to kinetic energy.The cycle of operations is spread over four piston strokes. To complete the full cycle it takes two revolutions of the crankshaft.The operating strokes are :This stroke introduces a mixture of atomized gasoline and air into the cylinder. The stroke starts when the piston moves downward from a position near the top of the cylinder. As the piston moves downward, a vacuum, or low-pressure area, is created.During the intake stroke, one of the ports is opened by moving the inlet valve. The exhaust valve remains tightly closed.Compression strokeAs the piston moves upward to compress the fuel mixture trapped in the cylinder, the valves are closed tightly. This compression action heats the air/fuel mixture slightly and confines it within a small area called the combustion chamber.Power strokeJust before the piston reaches the top of its compression stroke, an electrical spark is introduced from a spark plug screwed into the cylinder head.The spark ignites the compressed, heated mixture of fuel and air in the combustion chamber to cause rapid burning. The burning fuel produces intense heat that causes rapid expansion of the gases compressed within the cylinder. This pressure forces the piston downward. The downward stroke turns the crankshaft with great force.Exhaust strokeJust before the bottom of the power stroke, the exhaust valve opens. This allows the piston, as it moves upward, to push the hot, burned gases out through the open exhaust valve. Then, just before the piston reaches its highest point, the exhaust valve closes and the inlet valve opens. As the piston reaches the highest point in the cylinder, known as TDC, it starts back down again. Thus, one cycle ends and another begins immediately.2.1.4 Engine Overall MechanicsThe engine has hundreds of other parts . The major parts of engine are engine block , engine heads, pistons, connecting rods, crankshaft and valves. The other parts are joined to make systems. These systems are the fuel system, intake system, ignition system, cooling system, lubrication system and exhaust system. Each of these systems has a definite function. These systems will discussed in detail later.NEW WORDPiston 活塞Connecting rod 连杆Crankshaft 曲轴Power stoke 活塞行程Expel 排出Valve 气阀inlet(intake) valve 进气阀exhaust valve 排气阀term 术语TDC 上止点BDC 下止点Bore 缸径swept volume 有效容积engine capacity 发动机排量clearance volume 余隙容积,燃烧室容积compression ratio 压缩比revolution 旋转,转数every other 每隔一个cycle 循环spread over 分布,遍及intake stroke 进气行程compression stroke 压缩行程knock 敲缸,敲打exhaust stroke 排气行程engine block 发动机缸体lubrication 润滑2.2 Engine Block and Cylinder Head2.2.1 Engine BlockThe engine block is the basic frame of the engine. All other engine parts either fit inside it or fasten to it. It holds the cylinders, water jackets, and oil galleries. The engine block also holds the crankshaft, which fastens to the bottom of the block. The camshaft also fits inside the block, except on overhead-cam engines (OHC). In most cars, this block is made of gray iron, or an alloy (mixture) of gray iron and other metals, such as nickel or chromium. Engine blocks are castings.Some engine blocks, especially those in smaller cars, are made of cast aluminum. This metal is much lighter than iron. However, iron wears better than aluminum. Therefore, the cylinders in most aluminum engines are lined with iron or steel sleeves. These sleeves are called cylinder sleeves. Some engine blocks are made entirely of aluminum.2.2.2 Cylinder HeadThe cylinder head fastens to the top of the block, just as a roof fits over a house. The underside forms the combustion chamber with the top of the piston. The most common cylinder head types are the hemi, wedge, and semi-hemi. All three of these terms refer to the shape of the engine's combustion chamber. The cylinder head carries the valves, valve springs and the rockers on the rocker shaft, this part of the valve gear being worked by the push-rods. Sometimes the camshaft is fitted directly into the cylinder head and operates on the valves without rockers. This is called an overhead camshaft arrangement. Like the cylinder block, the head is made from either cast iron or aluminum alloy.2.2.3 GasketThe cylinder head is attached to the block with high-tensile steel studs. The joint between the block and the head must be gas-tight so that none of the burning mixture can escape. This is achieved by using cylinder head gasket. This is a sandwich gasket, i.e. a sheet of asbestos between two sheets of copper, both these materials being able to withstand the high temperature and pressures within the engine.2.2.4 Oil Pan or SumpThe oil pan is usually formed of pressed steel. The oil pan and the lower part of the cylinder block together are called the crankcase; they enclose, or encase, the crankshaft. The oil pump in the lubricating system draws oil from the oil pan and sends it to all working parts in the engine. The oil drains off and runs down into the pan. Thus, there is constant circulation of oil between the pan and the working parts of the engine.New Wordsengine block 缸体cylinder head 气缸盖fasten 使固定water jacket 水套oil gallery 油道camshaft 凸轮轴overhead-cam(OHC) 顶置凸轮gray iron 灰铸铁alloy 合金nickel 镍chromium 铬casting 铸件head cover 汽缸盖罩intake manifold 进气总管distributor 分电器oil pan 油底壳aluminum 铝be lined with 镶有cylinder sleeve 气缸套hemi 半球形wedge 楔型,楔入semi-hemi 准半球形rocker 摇臂push-rod 推杆gasket 衬垫high-tensile 高强度的stud 螺栓gas-tight 密封的asbestos 石棉crankcase 曲轴箱,曲柄箱encase 封闭,把…包起来drain off 排出,流出Review Question1.What do TDC, BDC, stroke, compression ratio and engine capacity stand for?2.How do you calculate swept volume and compression ratio?3.What controls the length of the stroke?4.List the main parts of the engine overall mechanics?5.What are the main function of the engine block?2.3 Piston Connecting Rod and Crankshaft2.3.1 Piston AssemblyThe piston is an important part of a four-stroke cycle engine. Most pistons are made from cast aluminum. The piston , through the connecting rod, transfers to the crankshaft the force create by the burning fuel mixture. This force turns the crankshaft .Thin, circular , steel bands fit into grooves around the piston to seal the bottom of the combustion chamber. These bands are called piston rings. The grooves into which they fit are called ring grooves. A piston pin fits into a round hole in the piston . The piston pin joins the piston to the connecting rod . The thick part of the piston that holds the piston is the pin boss.The piston itself , its rings and the piston pin are together called the piston assembly.2.3.2.PistonTo withstand the heat of the combustion chamber, the piston must be strong. It also must be light, since it travels at high speeds as it moves up and down inside the cylinder. The piston is hollow. It is thick at the top where it take the brunt of the heat and the expansion force. It is thin at the bottom, where there is less heat. The top part of the piston is the head , or crown . The thin part is the skirt The sections between the ring grooves are called ring lands.The piston crown may be flat , concave ,dome or recessed . In diesel engine , the combustion chamber may be formed totally or in part in the piston crown , depending on the method of injection . So they use pistons with different shapes.2.3.3Piston RingsAs Fig.2-9 shows , piston rings fit into ring grooves near the of the piston. In simplest terms, piston rings are thin, circular pieces of metal that fit into grooves in the tops of the pistons.In modern engines ,each piston has three rings. (Piston in older engines sometimes had four rings, or even five.) The ring‟s outside surface presses against the cylinder walls. Rings provide the needed seal between the piston and the cylinder walls. That is, only the rings contact the cylinder walls. The top two rings are to keep the gases in the cylinder and are called compression rings. The lower one prevents the oil splashed onto the cylinder bore from entering the combustion chamber , and is called an oil ring. Chrome-face cast-iron compression rings are commonly used in automobile engines. The chrome face provide a very smooth , wear-resistant surface.During the power stoke , combustion pressure on the combustion rings is very high. It causes them to untwist . Some of the high-pressure gas gets in back of the rings. This force the ring face into full contact with the cylinder wall. The combustion pressure also holds the bottom of the ring tightly against the bottom of the ring groove. Therefore , high combustion pressure causes a tighter seal between the ring face and the cylinder wall.2.3.4 Piston PinThe piston pin holds together the piston and the connecting rod . This pin fits into the piston pin holes and into a hole in the top end of the connecting rod. The top end of is much smaller than the end that fits on the crankshaft . This small end fitsinside the bottom of the piston . The piston pinfits through one side of the piston , through thesmall end of the rod , and then through the otherside of the piston . It holds the rod firmly in place inthe center of the piston. Pins are made ofhigh-strengh steel and have a hollow center . Manypins are chrome-plated to help them wear better.2.3.3 Connecting rodThe connecting rod is made of forgedhigh-strength steel . It transmits and motion from the piston to the crankpin on the crankshaft . The connecting rod little end is connected to the piston pin . A bush made from a soft metal , such as bronze , is used for this joint . The lower end of the connecting rod fits the crankshaft journal . This is called the big end . For this big-end bearing , steel-backed lead or tin shell bearing are used . These are the same as those used for the main bearings . The split of the big end is sometimes at an angle , so that it is small enough to be withdrawn through the cylinder bore . The connecting rod is made from forged alloy steel .2.3.5 CrankshaftThe crankshaft , in conjunction with the connecting rod , coverts the reciprocating motion of the piston to the rotary motion needed to drive the vehicle . It is usually made from carbon steel which is alloyed with a small proportion of nickel .The main bearing journals fit into the cylinder block and the big end journals align with the connecting rods .At the rear end of the crankshaft is attached the flywheel , and at the front end are the driving whells for the timing gears , fan , cooling water and alternator .The throw of the crankshaft , the distance between the main journal and the big end centers , controls the length of the stroke . The stroke is double the throw , and the stroke-length is the distance that the piston travels from TDC to BDC and vice versa .2.3.6 FlywheelThe flywheel is the made from carbon steel . It fit s onto the rear of the crankshaft . As well as keeping the engine rotating between power strokes it also carries the clutch , which transmits the drive to the transmission , and has the starter ring gear around its circumference . There is only one working stroke in four so a flywheel is needed to drive the crankshaft during the time that the engine is performing the non-power strokes .New Words Comprise 由。

Automobile Suspension System by Jelly

Automobile Suspension System by Jelly

CONVENTIONAL SUSPENSION SYSTEM
Two wheels are mounted on either side of the rigid axle When one wheel encounters the bump, both the wheel do not execute parallel up and down motion So it gives rise to gyroscopic effect and wheel wobble Rear driving wheels mounted on live axle suspended by laminated leaf springs and shock absorbers

AIR SUSPENSION
Comprises of compressor , suppling air to air tank Pressure maintained – 5.6 to 7 kg/sq.m Air bags – on each wheel As load applied , air bags compressed actuating the levelling valve . Air from the tank fills the compressrd air bag & hence raise the level of the frame. Air from air bag gets released as load on chassis decreases .




Type of double-A arm suspension although the lower arm in these systems can sometimes be replaced with a single solid arm (as in my picture). The spring/shock combo is moved from between the arms to above the upper arm. This transfers the load-bearing capability of the suspension almost entirely to the upper arm and the spring mounts. The lower arm in this instance becomes a control arm.

汽车系统构造英文版-Lesson14SuspensionSystem31页PPT

汽车系统构造英文版-Lesson14SuspensionSystem31页PPT

• The secondary leaves are placed underneath the main leaf, and the assembly is held together near the ends by alignment clips and, in the center, by two U-bolts and a plate. The U-bolt and plate assembly also fastens the differential and rear axle housing to, and aligns it with, the spring. Thin interliners are installed between the spring leaves to eliminate noise and to enable the leaves to move freely against each other.
• Whenever power is transmitted to the rear wheels of a vehicle equipped with a Hotchkiss drive system, the wheels attempt to force the differential and rear axle housing to turn in the direction opposite from wheel rotation. Leaf springs control this torque and prevent damage to the drive line and rear suspension system.
• Spring-loaded valves open to permit quicker flow of the fluid if fluid pressure rises high enough, as it may when rapid wheel movements take place. Most automotive vehicles use gas-filled shock absorbers in which the air space above the fluid is filled with a pressurized gas such as nitrogen. The gas pressure on the fluid reduces the creation of air bubbles and foaming.

汽车系统构造(英文版)-Lesson-14-Suspension-System汇总ppt课件

汽车系统构造(英文版)-Lesson-14-Suspension-System汇总ppt课件
Lesson 14 Suspension System
1
• Suspension is the term giveock absorbers and linkages
that connects a vehicle to its wheels.
10
• Rear Suspension Systems • Semi-elliptical leaf springs or coil springs
are used in the rear suspension systems of all automobiles built in the United States. A leaf spring may consist of a single leaf of flat spring steel, or it may have a series of leaves. A multileaf spring includes a main leaf and three, four, or five secondary leaves that are progressively shorter and have progressively smaller radii.
fluid reduces the
creation of air
bubbles and foaming.
7
• Most automotive vehicles have independent front suspension, usually using coil springs as part of either a short-arm long-arm or a MacPherson-strut suspension system. A MacPherson-strut suspension (see illustration) combines a coil spring and shock absorber into a strut assembly that requires only a beam-type lower control arm.

英文汽车结构作文

英文汽车结构作文

英文汽车结构作文英文:As a car enthusiast, I have always been fascinated by the structure of automobiles. The design and engineering that goes into creating a car is truly remarkable. There are several components that make up a car's structure, including the chassis, body, suspension, and drivetrain.The chassis is the foundation of the car's structure and provides support for all the other components. It is typically made of steel or aluminum and is designed to be strong and rigid. The body of the car is attached to the chassis and is responsible for providing protection for the passengers and cargo. It is typically made of lightweight materials such as aluminum or carbon fiber.The suspension system is responsible for providing a smooth ride and ensuring that the car stays stable while driving. It is made up of several components, including theshocks, struts, and springs. The drivetrain is responsible for transferring power from the engine to the wheels. It is made up of several components, including the transmission, driveshaft, and differential.Overall, the structure of a car is a complex andintricate system that requires careful engineering and design. It is truly amazing to see how all of these components work together to create a functional andefficient vehicle.中文:作为一个汽车爱好者,我一直被汽车的结构所吸引。

汽车构造 英文版

汽车构造 英文版

CHAPTER 1 AUTOMOTIVE BASICS1.1 Principal ComponentsToday's average car contains more than 15,000 separate, individual parts that must work together. These parts can grouped into four major categories: engine, body, chassis and electrical equipment.1.2 EngineThe engine acts as the power unit. The internal combustion engine is most common: this obtains its power by burning a liquid fuel inside the engine cylinder. There are two types of engine :gasoline(also called a spark-ignition engine) and diesel(also called a compression-ignition engine).Both engines are called heat engines; the burning fuelgenerates heat which causes the gas inside the cylinder to increase its pressure and supply power to rotate a shaft connected to the transmission.1.3 BodyAn automobile body is a sheet metal shell with windows, doors, a hood, and a trunk deck built into it. It provides a protective covering for the engine, passengers, and cargo. The body is designed to keep passengers safe and comfortable. The body styling provides an attractive, colorful, modern appearance for the vehicle.1.4 ChassisThe chassis is an assembly of those systems that are the major operating part of a vehicle. The chassis includes the transmission, suspension, steering, and brake systems.Transmission systems ― conveys the drive to the wheels. The main components are clutch, gearbox, driveshaft, final drive, and differential.Suspension― absorbs the road shocks.Steering― controls the direction of the movement.Brake― slows down the vehicle.1.5 Electrical EquipmentThe electrical system supplies electricity for the ignition, horn, lights, heater, and starter. The electricity level is maintained by a charging circuit. This circuit consists of the battery, alternator (or generator). The battery stores electricity. The alternator changes the engine's mechanical energy into electrical energy and recharges the battery.New WordsPrincipal component 主要部件category 种类,类型body 车身chassis 底盘layout 布置power unit 动力装置internal combustion engine 内燃机cylinder 汽缸gasoline 汽油spark 火花ignition 点燃,点火diesel 柴油机compression 压缩shaft 轴transmission 传动系sheet metal 金属板shell 外壳hood (发动机)罩trunk deck 行李舱盖cargo 货物styling 样式assembly 总成,装配suspension 悬挂,悬置shock 冲击steering 转向,操纵brake 刹车,制动器clutch 离合器gearbox 变速器driveshaft 传动轴final drive 主减速器,后桥differential 差速器slow down (使)慢下来,减速horn 喇叭starter 起动机charge 充电alternator 交流发电机Review Questions1.List the main parts of an automobile?2.What are the common types of a vehicle according to body styling?3.Which systems does a chassis include and what are the main functions of the chassis?4.Why are suspension systems used on vehicles?CHAPTER2 INTERNAL COMBUSTION ENGINE2.1 principle of operation2.1.1 Engine and powerEngine is used to produce power. The chemical energy in fuel is converted to heat by the burning of the fuel at a controlled rate. This process is called combustion. If engine combustion occurs with the power chamber. ,the engine is called internal combustion engine. If combustion takes place outside the cylinder, the engine is called an external combustion engine.Engine used in automobiles are internal combustion heat engines. Heat energy released in the combustion chamber raises the temperature of the combustion gases with the chamber. The increase in gas temperature causes the pressure of the gases to increase. The pressure developed within the combustion chamber is applied to the head of a piston to produce a usable mechanical force, which is then converted into useful mechanical power.2.1.2 Engine TermsLinking the piston by a connecting rod to a crankshaft causes the gas to rotate the shaft through half a turn. The power stroke “uses up” the gas , so means must be provided to expel the burnt gasand recharge the cylinder with a fresh petrol-air mixture :this control of gas movement is the duty of the valves ;an inlet valve allows the new mixture to enter at the right time and an exhaust valve lets out the burnt gas after the gas has done its job. Engine terms are :TDC(Top Dead Center):the position of the crank and piston when the piston is farther away from the crankshaft.BDC(Bottom Dead Center):the position of the crank and piston when the piston is nearest to the crankshaft.Stroke : the distance between BDC and TDC; stroke is controlled by the crankshaft.Bore : the internal diameter of the cylinder.Swept volume : the volume between TDC and BDC.Engine capacity : this is the swept volume of all the cylinder e.g. a four-stroke having a capacity of two liters(2000cm) has a cylinder swept volume of 50cm.Clearance volume: the volume of the space above the piston when it is at TDC.Compression ratio = (swept vol + clearance vol)\(clearance vol)Two-stroke : a power stroke every revolution of the crank.Four-stroke : a power stroke every other revolution of the crank..2.1.3 The Four-stroke Spark-ignition Engine CycleThe spark-ignition engine is an internal-combustion engine with externally supplied in ignition , which converts the energy contained in the fuel to kinetic energy.The cycle of operations is spread over four piston strokes. To complete the full cycle it takes two revolutions of the crankshaft.The operating strokes are :This stroke introduces a mixture of atomized gasoline and air into the cylinder. The stroke starts when the piston moves downward from a position near the top of the cylinder. As the piston moves downward, a vacuum, or low-pressure area, is created.During the intake stroke, one of the ports is opened by moving the inlet valve. The exhaust valve remains tightly closed.Compression strokeAs the piston moves upward to compress the fuel mixture trapped in the cylinder, the valves are closed tightly. This compression action heats the air/fuel mixture slightly and confines it within a small area called the combustion chamber.Power strokeJust before the piston reaches the top of its compression stroke, an electrical spark is introduced from a spark plug screwed into the cylinder head.The spark ignites the compressed, heated mixture of fuel and air in the combustion chamber to cause rapid burning. The burning fuel produces intense heat that causes rapid expansion of the gases compressed within the cylinder. This pressure forces the piston downward. The downward stroke turns the crankshaft with great force.Exhaust strokeJust before the bottom of the power stroke, the exhaust valve opens. This allows the piston, as it moves upward, to push the hot, burned gases out through the open exhaust valve. Then, just before the piston reaches its highest point, the exhaust valve closes and the inlet valve opens. As the piston reaches the highest point in the cylinder, known as TDC, it starts back down again. Thus, one cycle ends and another begins immediately.2.1.4 Engine Overall MechanicsThe engine has hundreds of other parts . The major parts of engine are engine block , engine heads, pistons, connecting rods, crankshaft and valves. The other parts are joined to make systems. These systems are the fuel system, intake system, ignition system, cooling system, lubrication system and exhaust system. Each of these systems has a definite function. These systems will discussed in detail later.NEW WORDPiston 活塞Connecting rod 连杆Crankshaft 曲轴Power stoke 活塞行程Expel 排出Valve 气阀inlet(intake) valve 进气阀exhaust valve 排气阀term 术语TDC 上止点BDC 下止点Bore 缸径swept volume 有效容积engine capacity 发动机排量clearance volume 余隙容积,燃烧室容积compression ratio 压缩比revolution 旋转,转数every other 每隔一个cycle 循环spread over 分布,遍及intake stroke 进气行程compression stroke 压缩行程knock 敲缸,敲打exhaust stroke 排气行程engine block 发动机缸体lubrication 润滑2.2 Engine Block and Cylinder Head2.2.1 Engine BlockThe engine block is the basic frame of the engine. All other engine parts either fit inside it or fasten to it. It holds the cylinders, water jackets, and oil galleries. The engine block also holds the crankshaft, which fastens to the bottom of the block. The camshaft also fits inside the block, except on overhead-cam engines (OHC). In most cars, this block is made of gray iron, or an alloy (mixture) of gray iron and other metals, such as nickel or chromium. Engine blocks are castings.Some engine blocks, especially those in smaller cars, are made of cast aluminum. This metal is much lighter than iron. However, iron wears better than aluminum. Therefore, the cylinders in most aluminum engines are lined with iron or steel sleeves. These sleeves are called cylinder sleeves. Some engine blocks are made entirely of aluminum.2.2.2 Cylinder HeadThe cylinder head fastens to the top of the block, just as a roof fits over a house. The underside forms the combustion chamber with the top of the piston. The most common cylinder head types are the hemi, wedge, and semi-hemi. All three of these terms refer to the shape of the engine's combustion chamber. The cylinder head carries the valves, valve springs and the rockers on the rocker shaft, this part of the valve gear being worked by the push-rods. Sometimes the camshaft is fitted directly into the cylinder head and operates on the valves without rockers. This is called an overhead camshaft arrangement. Like the cylinder block, the head is made from either cast iron or aluminum alloy.2.2.3 GasketThe cylinder head is attached to the block with high-tensile steel studs. The joint between the block and the head must be gas-tight so that none of the burning mixture can escape. This is achieved by using cylinder head gasket. This is a sandwich gasket, i.e. a sheet of asbestos between two sheets of copper, both these materials being able to withstand the high temperature and pressures within the engine.2.2.4 Oil Pan or SumpThe oil pan is usually formed of pressed steel. The oil pan and the lower part of the cylinder block together are called the crankcase; they enclose, or encase, the crankshaft. The oil pump in the lubricating system draws oil from the oil pan and sends it to all working parts in the engine. The oil drains off and runs down into the pan. Thus, there is constant circulation of oil between the pan and the working parts of the engine.New Wordsengine block 缸体cylinder head 气缸盖fasten 使固定water jacket 水套oil gallery 油道camshaft 凸轮轴overhead-cam(OHC) 顶置凸轮gray iron 灰铸铁alloy 合金nickel 镍chromium 铬casting 铸件head cover 汽缸盖罩intake manifold 进气总管distributor 分电器oil pan 油底壳aluminum 铝be lined with 镶有cylinder sleeve 气缸套hemi 半球形wedge 楔型,楔入semi-hemi 准半球形rocker 摇臂push-rod 推杆gasket 衬垫high-tensile 高强度的stud 螺栓gas-tight 密封的asbestos 石棉crankcase 曲轴箱,曲柄箱encase 封闭,把…包起来drain off 排出,流出Review Question1.What do TDC, BDC, stroke, compression ratio and engine capacity stand for?2.How do you calculate swept volume and compression ratio?3.What controls the length of the stroke?4.List the main parts of the engine overall mechanics?5.What are the main function of the engine block?2.3 Piston Connecting Rod and Crankshaft2.3.1 Piston AssemblyThe piston is an important part of a four-stroke cycle engine. Most pistons are made from cast aluminum. The piston , through the connecting rod, transfers to the crankshaft the force create by the burning fuel mixture. This force turns the crankshaft .Thin, circular , steel bands fit into grooves around the piston to seal the bottom of the combustion chamber. These bands are called piston rings. The grooves into which they fit are called ring grooves. A piston pin fits into a round hole in the piston . The piston pin joins the piston to the connecting rod . The thick part of the piston that holds the piston is the pin boss.The piston itself , its rings and the piston pin are together called the piston assembly.2.3.2.PistonTo withstand the heat of the combustion chamber, the piston must be strong. It also must be light, since it travels at high speeds as it moves up and down inside the cylinder. The piston is hollow. It is thick at the top where it take the brunt of the heat and the expansion force. It is thin at the bottom, where there is less heat. The top part of the piston is the head , or crown . The thin part is the skirt The sections between the ring grooves are called ring lands.The piston crown may be flat , concave ,dome or recessed . In diesel engine , the combustion chamber may be formed totally or in part in the piston crown , depending on the method of injection . So they use pistons with different shapes.2.3.3Piston RingsAs Fig.2-9 shows , piston rings fit into ring grooves near the of the piston. Insimplest terms, piston rings are thin, circular pieces of metal that fit into grooves in the tops of the pistons.In modern engines ,each piston has three rings. (Piston in older enginessometimes had four rings, or even five.) The ring’s outside surface presses against thecylinder walls. Rings provide the needed seal between the piston and the cylinderwalls. That is, only the rings contact the cylinder walls. The top two rings are to keepthe gases in the cylinder and are called compression rings. The lower one prevents theoil splashed onto the cylinder bore from entering the combustion chamber , and iscalled an oil ring. Chrome-face cast-iron compression rings are commonly used inautomobile engines. The chrome face provide a very smooth , wear-resistant surface.During the power stoke , combustion pressure on the combustion rings is veryhigh. It causes them to untwist . Some of the high-pressure gas gets in back of therings. This force the ring face into full contact with the cylinder wall. The combustionpressure also holds the bottom of the ring tightly against the bottom of the ring groove.Therefore , high combustion pressure causes a tighter seal between the ring face andthe cylinder wall.2.3.4 Piston PinThe piston pin holds together the piston and the connecting rod . This pin fitsinto the piston pin holes and into a hole in the top end of the connecting rod. The topend of is much smaller than the end that fits on the crankshaft . This small end fitsinside the bottom of the piston . The piston pinfits through one side of the piston , through thesmall end of the rod , and then through the otherside of the piston . It holds the rod firmly in place inthe center of the piston. Pins are made ofhigh-strengh steel and have a hollow center . Manypins are chrome-plated to help them wear better.2.3.3 Connecting rodThe connecting rod is made of forgedhigh-strength steel . It transmits and motion from the piston to the crankpin on the crankshaft . The connecting rod little end is connected to the piston pin . A bush made from a soft metal , such as bronze , is used for this joint . The lower end of the connecting rod fits the crankshaft journal . This is called the big end . For this big-end bearing , steel-backed lead or tin shell bearing are used . These are the same as those used for the main bearings . The split of the big end is sometimes at an angle , so that it is small enough to be withdrawn through the cylinder bore . The connecting rod is made from forged alloy steel .2.3.5 CrankshaftThe crankshaft , in conjunction with the connecting rod , coverts the reciprocating motion of the piston to the rotary motion needed to drive the vehicle . It is usually made from carbon steel which is alloyed with a small proportion of nickel .The main bearing journals fit into the cylinder block and the big end journals align with the connecting rods .At the rear end of the crankshaft is attached the flywheel , and at the front end are the driving whells for the timing gears , fan , cooling water and alternator .The throw of the crankshaft , the distance between the main journal and the big end centers , controls the length of the stroke . The stroke is double the throw , and the stroke-length is the distance that the piston travels from TDC to BDC and vice versa .2.3.6 FlywheelThe flywheel is the made from carbon steel . It fit s onto the rear of the crankshaft . As well as keeping the engine rotating between power strokes it also carries the clutch , which transmits the drive to the transmission , and has the starter ring gear around its circumference . There is only one working stroke in four so a flywheel is needed to drive the crankshaft during the time that the engine is performing the non-power strokes .New Words Comprise 由。

车子构造介绍英文作文

车子构造介绍英文作文

车子构造介绍英文作文The car is made up of various components, including the engine, transmission, suspension, and brakes. These parts work together to make the car move and stop.The engine is the heart of the car, providing power to the wheels. It is made up of many different parts,including the pistons, crankshaft, and camshaft.The transmission is responsible for transferring power from the engine to the wheels. It allows the car to change gears and control its speed.The suspension system helps the car to maintainstability and control while driving. It consists of springs, shock absorbers, and other components that absorb bumps and keep the car riding smoothly.The brakes are essential for stopping the car. Theywork by applying friction to the wheels, causing them toslow down and eventually come to a stop.The body of the car is made up of various materials, including steel, aluminum, and plastic. It provides protection for the passengers and houses all of the car's components.The interior of the car includes the seats, dashboard, and controls. It is designed for comfort and convenience, with features such as air conditioning, audio systems, and navigation.The wheels and tires are what allow the car to move. They are made of rubber and provide traction on the road, allowing the car to grip the surface and move forward.。

2020年(汽车行业)汽车构造(英文版)

2020年(汽车行业)汽车构造(英文版)

(汽车行业)汽车构造(英文版)CHAPTER 1 AUTOMOTIVE BASICS1.1 Principal ComponentsToday's average car contains more than 15,000 separate, individual parts that must work together. These parts can grouped into four major categories: engine, body, chassis and electrical equipment.1.2 EngineThe engine acts as the power unit. The internal combustion engine is most common: this obtains its power by burning a liquid fuel inside the engine cylinder. There are two types of engine :gasoline(also called a spark-ignition engine) and diesel(also called a compression-ignition engine).Both engines are called heat engines; the burning fuel generates heat which causes the gas inside the cylinder to increase its pressure and supply power to rotate a shaft connected to the transmission.1.3 BodyAn automobile body is a sheet metal shell with windows, doors, a hood, and a trunk deck built into it. It provides a protective covering for the engine, passengers, and cargo. The body is designed to keep passengers safe and comfortable. The body styling provides an attractive, colorful, modern appearance for the vehicle.1.4 ChassisThe chassis is an assembly of those systems that are the major operating part of a vehicle. The chassis includes the transmission, suspension, steering, and brake systems.Transmission systems ― conveys the drive to the wheels. The main components are clutch, gearbox, driveshaft, final drive, and differential.Suspension― absorbs the road shocks.Steering― controls the direction of th e movement.Brake― slows down the vehicle.1.5 Electrical EquipmentThe electrical system supplies electricity for the ignition, horn, lights, heater, and starter. The electricity level is maintained by a charging circuit. This circuit consists of the battery, alternator (or generator). The battery stores electricity. The alternator changes the engine's mechanical energy into electrical energy and recharges the battery.New WordsPrincipal component 主要部件category 种类,类型body 车身chassis 底盘layout 布置power unit 动力装置internal combustion engine 内燃机cylinder 汽缸gasoline 汽油spark 火ignition 点燃,点火diesel 柴油机compression 压缩shaft 轴transmission 传动系sheet metal 金属板shell 外壳hood (发动机)罩trunk deck 行李舱盖cargo 货物styling 样式assembly 总成,装配suspension 悬挂,悬置shock 冲击steering 转向,操纵brake 刹车,制动器clutch 离合器gearbox 变速器driveshaft 传动轴final drive 主减速器,后桥differential 差速器slow down (使)慢下来,减速horn 喇叭starter 起动机charge 充电alternator 交流发电机Review Questions1.List the main parts of an automobile?2.What are the common types of a vehicle according to body styling?3.Which systems does a chassis include and what are the main functions of the chassis?4.Why are suspension systems used on vehicles?CHAPTER2 INTERNAL COMBUSTION ENGINE2.1 principle of operation2.1.1 Engine and powerEngine is used to produce power. The chemical energy in fuel is converted to heat by the burning of the fuel at a controlled rate. This process is called combustion. If engine combustion occurs with the power chamber. ,the engine is called internal combustion engine. If combustion takes place outside the cylinder, the engine is called an external combustion engine.Engine used in automobiles are internal combustion heat engines. Heat energyreleased in the combustion chamber raises the temperature of the combustion gases with the chamber. The increase in gas temperature causes the pressure of the gases to increase. The pressure developed within the combustion chamber is applied to the head of a piston to produce a usable mechanical force, which is then converted into useful mechanical power.2.1.2 Engine TermsLinking the piston by a connecting rod to a crankshaft causes the gas to rotate the shaft through half a turn. The power stroke “uses up” the gas , so means must be provided to expel the burnt gas and recharge the cylinder with a fresh petrol-air mixture :this control of gas movement is the duty of the valves ;an inlet valve allows the new mixture to enter at the right time and an exhaust valve lets out the burnt gas after the gas has done its job. Engine terms are :TDC(Top Dead Center):the position of the crank and piston when the piston is farther away from the crankshaft.BDC(Bottom Dead Center):the position of the crank and piston when the piston is nearest to the crankshaft.Stroke : the distance between BDC and TDC; stroke is controlled by the crankshaft. Bore : the internal diameter of the cylinder.Swept volume : the volume between TDC and BDC.Engine capacity : this is the swept volume of all the cylinder e.g. a four-stroke having a capacity of two liters(2000cm) has a cylinder swept volume of 50cm.Clearance volume: the volume of the space above the piston when it is at TDC. Compression ratio = (swept vol + clearance vol)\(clearance vol)Two-stroke : a power stroke every revolution of the crank.Four-stroke : a power stroke every other revolution of the crank..2.1.3 The Four-stroke Spark-ignition Engine CycleThe spark-ignition engine is an internal-combustion engine with externally supplied in ignition, which converts the energy contained in the fuel to kinetic energy.The cycle of operations is spread over four piston strokes. To complete the full cycle it takes two revolutions of the crankshaft.The operating strokes are :This stroke introduces a mixture of atomized gasoline and air into the cylinder. The stroke starts when the piston moves downward from a position near the top of the cylinder. As the piston moves downward, a vacuum, or low-pressure area, is created. During the intake stroke, one of the ports is opened by moving the inlet valve. The exhaust valve remains tightly closed.Compression strokeAs the piston moves upward to compress the fuel mixture trapped in the cylinder, the valves are closed tightly. This compression action heats the air/fuel mixture slightly and confines it within a small area called the combustion chamber.Power strokeJust before the piston reaches the top of its compression stroke, an electrical spark is introduced from a spark plug screwed into the cylinder head.The spark ignites the compressed, heated mixture of fuel and air in the combustion chamber to cause rapid burning. The burning fuel produces intense heat that causes rapid expansion of the gases compressed within the cylinder. This pressure forces the piston downward. The downward stroke turns the crankshaft with great force.Exhaust strokeJust before the bottom of the power stroke, the exhaust valve opens. This allows the piston, as it moves upward, to push the hot, burned gases out through the open exhaust valve.Then, just before the piston reaches its highest point, the exhaust valve closes and the inlet valve opens. As the piston reaches the highest point in the cylinder, known as TDC, it starts back down again. Thus, one cycle ends and another begins immediately.2.1.4 Engine Overall MechanicsThe engine has hundreds of other parts . The major parts of engine are engine block , engine heads, pistons, connecting rods, crankshaft and valves. The other parts are joined to make systems. These systems are the fuel system, intake system, ignition system, cooling system, lubrication system and exhaust system. Each of these systems has a definite function. These systems will discussed in detail later.NEW WORDPiston 活塞Connecting rod 连杆Crankshaft 曲轴Power stoke 活塞行程Expel 排出Valve 气阀inlet(intake) valve 进气阀exhaust valve 排气阀term 术语TDC 上止点BDC 下止点Bore 缸径swept volume 有效容积engine capacity 发动机排量clearance volume 余隙容积,燃烧室容积compression ratio 压缩比revolution 旋转,转数every other 每隔一个cycle 循环spread over 分布,遍及intake stroke 进气行程compression stroke 压缩行程knock 敲缸,敲打exhaust stroke 排气行程engine block 发动机缸体lubrication 润滑2.2 Engine Block and Cylinder Head2.2.1 Engine BlockThe engine block is the basic frame of the engine. All other engine parts either fit inside it or fasten to it. It holds the cylinders, water jackets, and oil galleries. The engine block also holds the crankshaft, which fastens to the bottom of the block. The camshaft also fits inside the block, except on overhead-cam engines (OHC). In most cars, this block is made of gray iron, or an alloy (mixture) of gray iron and other metals, such as nickel or chromium. Engine blocks are castings.Some engine blocks, especially those in smaller cars, are made of cast aluminum. This metal is much lighter than iron. However, iron wears better than aluminum. Therefore, the cylinders in most aluminum engines are lined with iron or steel sleeves. These sleevesare called cylinder sleeves. Some engine blocks are made entirely of aluminum.2.2.2 Cylinder HeadThe cylinder head fastens to the top of the block, just as a roof fits over a house. The underside forms the combustion chamber with the top of the piston. The most common cylinder head types are the hemi, wedge, and semi-hemi. All three of these terms refer to the shape of the engine's combustion chamber. The cylinder head carries the valves, valve springs and the rockers on the rocker shaft, this part of the valve gear being worked by the push-rods. Sometimes the camshaft is fitted directly into the cylinder head and operates on the valves without rockers. This is called an overhead camshaft arrangement. Like the cylinder block, the head is made from either cast iron or aluminum alloy.2.2.3 GasketThe cylinder head is attached to the block with high-tensile steel studs. The joint between the block and the head must be gas-tight so that none of the burning mixture can escape. This is achieved by using cylinder head gasket. This is a sandwich gasket, i.e.a sheet of asbestos between two sheets of copper, both these materials being able to withstand the high temperature and pressures within the engine.2.2.4 Oil Pan or SumpThe oil pan is usually formed of pressed steel. The oil pan and the lower part of the cylinder block together are called the crankcase; they enclose, or encase, the crankshaft. The oil pump in the lubricating system draws oil from the oil pan and sends it to allworking parts in the engine. The oil drains off and runs down into the pan. Thus, there is constant circulation of oil between the pan and the working parts of the engine.New Wordsengine block 缸体cylinder head 气缸盖fasten 使固定water jacket 水套oil gallery 油道camshaft 凸轮轴overhead-cam(OHC) 顶置凸轮gray iron 灰铸铁alloy 合金nickel 镍chromium 铬casting 铸件head cover 汽缸盖罩intake manifold 进气总管distributor 分电器oil pan 油底壳aluminum 铝be lined with 镶有cylinder sleeve 气缸套hemi 半球形wedge 楔型,楔入semi-hemi 准半球形rocker 摇臂push-rod 推杆gasket 衬垫high-tensile 高强度的stud 螺栓gas-tight 密封的asbestos 石棉crankcase 曲轴箱,曲柄箱encase 封闭,把…包起来drain off 排出,流出Review Question1.What do TDC, BDC, stroke, compression ratio and engine capacity stand for?2.How do you calculate swept volume and compression ratio?3.What controls the length of the stroke?4.List the main parts of the engine overall mechanics?5.What are the main function of the engine block?2.3 Piston Connecting Rod and Crankshaft2.3.1 Piston AssemblyThe piston is an important part of a four-stroke cycle engine. Most pistons are made from cast aluminum. The piston , through the connecting rod, transfers to the crankshaft the force create by the burning fuel mixture. This force turns the crankshaft .Thin, circular , steel bands fit into grooves around the piston to seal the bottom of the combustion chamber. These bands are called piston rings. The grooves into which they fit are called ring grooves. A piston pin fits into a round hole in the piston . The piston pin joins the piston to the connecting rod . The thick part of the piston that holds the piston is the pin boss.The piston itself , its rings and the piston pin are together called the piston assembly.2.3.2.PistonTo withstand the heat of the combustion chamber, the piston must be strong. It also must be light, since it travels at high speeds as it moves up and down inside the cylinder. The piston is hollow. It is thick at the top where it take the brunt of the heat and the expansion force. It is thin at the bottom, where there is less heat. The top part of the piston is the head , or crown . The thin part is the skirt The sections between the ring grooves are called ring lands.The piston crown may be flat , concave ,dome or recessed . In diesel engine , the combustion chamber may be formed totally or in part in the piston crown , depending on the method of injection . So they use pistons with different shapes.2.3.3Piston RingsAs Fig.2-9 shows , piston rings fit into ring grooves near the of the piston. In simplest terms, piston rings are thin, circular pieces of metal that fit into grooves in the tops of the pistons.In modern engines ,each piston has three rings. (Piston in older engines sometimes had four rings, or even five.) The ring’s outside surface presses against the cylinder walls. Rings provide the needed seal between the piston and the cylinder walls. That is, only the rings contact the cylinder walls. The top two rings are to keep the gases in the cylinder and are called compression rings. The lower one prevents the oil splashed onto the cylinder bore from entering the combustion chamber , and is called an oil ring. Chrome-face cast-iron compression rings are commonly used in automobile engines. The chrome face provide a very smooth , wear-resistant surface.During the power stoke , combustion pressure on the combustion rings is very high. It causes them to untwist . Some of the high-pressure gas gets in back of the rings. This force the ring face into full contact with the cylinder wall. The combustion pressure also holds the bottom of the ring tightly against the bottom of the ring groove. Therefore , high combustion pressure causes a tighter seal between the ring face and the cylinder wall.2.3.4 Piston PinThe piston pin holds together the piston and the connecting rod . This pin fits into the piston pin holes and into a hole in the top end of the connecting rod. The top end of is much smaller than the end that fits on the crankshaft . This small end fits inside the bottom of the piston . The piston pin fits through one side of the piston , through the small end of the rod , and then through the other side of the piston . It holds the rod firmly in place in the center of the piston. Pins are made of high-strengh steel and have a hollow center . Many pins are chrome-plated to help them wear better.2.3.3 Connecting rodThe connecting rod is made of forgedhigh-strength steel . It transmits and motion from the piston to the crankpin on the crankshaft . The connecting rod little end is connected to the piston pin . A bush made from a soft metal , such as bronze , is used for this joint . The lower end of the connecting rod fits the crankshaft journal . This is called the big end . For this big-end bearing , steel-backed lead or tin shell bearing are used . These are the same as those used for the main bearings . The split of the big end is sometimes at an angle , so that it is small enough to be withdrawn through the cylinder bore . The connecting rod is made from forged alloy steel .2.3.5 CrankshaftThe crankshaft , in conjunction with the connecting rod , coverts the reciprocating motion of the piston to the rotary motion needed to drive the vehicle . It is usually made from carbon steel which is alloyed with a small proportion of nickel .The main bearingjournals fit into the cylinder block and the big end journals align with the connecting rods .At the rear end of the crankshaft is attached the flywheel , and at the front end are the driving whells for the timing gears , fan , cooling water and alternator .The throw of the crankshaft , the distance between the main journal and the big end centers , controls the length of the stroke . The stroke is double the throw , and the stroke-length is the distance that the piston travels from TDC to BDC and vice versa .2.3.6 FlywheelThe flywheel is the made from carbon steel . It fit s onto the rear of the crankshaft . As well as keeping the engine rotating between power strokes it also carries the clutch , which transmits the drive to the transmission , and has the starter ring gear around its circumference . There is only one working stroke in four so a flywheel is needed to drive the crankshaft during the time that the engine is performing the non-power strokes .New WordsComprise 由。

汽车构造(英文版)

汽车构造(英文版)

CHAPTER 1AUTOMOTIVE BASICS1.1Principal ComponentsToday's average car contains more than 15,000 separate, individual parts that mustwork together. These parts can grouped into four major categories: engine,body, chassis and electrical equipment.1.2EngineThe engine acts as the power unit. The internal combustion engine is most common:this obtains its power by burning a liquid fuel inside the engine cylinder. There are twotypes of engine :gasoline(also called a spark-ignition engine) and diesel(also called acompression-ignition engine).Both engines are called heat engines;the burning fuel generates heat which causes the gas inside the cylinder to increase its pressure andsupply power to rotate a shaft connected to the transmission.1.3BodyAn automobile body is a sheet metal shell with windows, doors, a hood, and a trunkdeck built into it. It provides a protective covering for the engine, passengers, and cargo.The body is designed to keep passengers safe and comfortable.The body styling provides an attractive, colorful, modern appearance for the vehicle.1.4ChassisThe chassis is an assembly of those systems that are the major operating part of avehicle. The chassis includes the transmission,suspension,steering, and brake systems.Transmission systems― conveys the drive to the wheels. The main components are clutch, gearbox, driveshaft, final drive, and differential.Suspension― absorbs the road shocks.Steering― controls the direction of the movement.Brake ― slows down the vehicle.1.5Electrical EquipmentThe electrical system supplies electricity for the ignition, horn, lights, heater,and starter. The electricity level is maintained by a charging circuit. This circuit consists ofthe battery, alternator (or generator). The battery stores electricity. The alternator changes the engine's mechanical energy into electrical energy and recharges the battery.New WordsPrincipal component主要零件category种类,种类body车身chassis底盘layout部署power unit动力装置internal combustion engine燃机cylinder汽缸gasoline汽油spark火ignition点燃,点火diesel柴油机compression压缩shaft轴transmission传动系sheet metal金属板shell外壳hood(发动机)罩trunk deck行舱盖cargo货物styling款式assembly总成,装置suspension悬挂,悬置shock冲击steering转向,操控brake刹车,制动器clutch离合器gearbox变速器driveshaft传动轴final drive主减速器,后桥differential差速器slow down(使)慢下来,减速horn喇叭starter起动机charge充电alternator沟通发电机Review Questions1.List the main parts of an automobile?2.What are the common types of a vehicle according to body styling?3.Which systems does a chassis include and what are the main functions of the chassis?4.Why are suspension systems used on vehicles?CHAPTER2 INTERNAL COMBUSTION ENGINE2.1 principle of operation2.1.1 Engine and powerEngine is used to produce power. The chemical energy in fuel is converted to heat bythe burning of the fuel at a controlled rate. This process is called combustion. If enginecombustion occurs with the power chamber. ,the engine is called internal combustionengine. If combustion takes place outside the cylinder, the engine is called an externalcombustion engine.Engine used in automobiles are internal combustion heat engines. Heat energy released in the combustion chamber raises the temperature of the combustion gaseswith the chamber. The increase in gas temperature causes the pressure of the gases toincrease. The pressure developed within the combustion chamber is applied to the head of a piston to produce a usable mechanical force, which is then converted intouseful mechanical power.2.1.2 Engine TermsLinking the piston by a connecting rod to a crankshaft causes the gas to rotate theshaft through half a turn. The power stroke “ uses up ” the gas , so means must be provided to expel the burnt gas and recharge the cylinder with a fresh petrol-air mixture :this control of gas movement is the duty of the valves ;an inlet valve allows thenew mixture to enter at the right time and an exhaust valve lets out the burnt gas afterthe gas has done its job. Engine terms are :TDC(Top Dead Center):the position of the crank and piston when the piston is fartheraway from the crankshaft.BDC(Bottom Dead Center):the position of the crank and piston when the piston isnearest to the crankshaft.Stroke : the distance between BDC and TDC; stroke is controlled by the crankshaft.Bore : the internal diameter of the cylinder.Swept volume : the volume between TDC and BDC.Engine capacity : this is the swept volume of all the cylinder e.g. a four-stroke havinga capacity of two liters(2000cm) has a cylinder swept volume of 50cm.Clearance volume: the volume of the space above the piston when it is at TDC.Compression ratio = (swept vol + clearance vol)\(clearance vol)Two-stroke : a power stroke every revolution of the crank.Four-stroke : a power stroke every other revolution of the crank..2.1.3 The Four-stroke Spark-ignition Engine CycleThe spark-ignition engine is an internal-combustion engine with externally suppliedin ignition, which converts the energy contained in the fuel to kinetic energy.The cycle of operations is spread over four piston strokes. To complete the full cycleit takes two revolutions of the crankshaft.The operating strokes are:This stroke introduces a mixture of atomized gasoline and air into the cylinder. Thestroke starts when the piston moves downward from a position near the top of the cylinder. As the piston moves downward, a vacuum, or low-pressure area, is created.During the intake stroke, one of the ports is opened by moving the inlet valve. Theexhaust valve remains tightly closed.Compression strokeAs the piston moves upward to compress the fuel mixture trapped in the cylinder, thevalves are closed tightly. This compression action heats the air/fuel mixture slightlyand confines it within a small area called the combustion chamber.Power strokeJust before the piston reaches the top of its compression stroke, an electrical spark isintroduced from a spark plug screwed into the cylinder head.The spark ignites the compressed, heated mixture of fuel and air in the combustionchamber to cause rapid burning. The burning fuel produces intense heat that causesrapid expansion of the gases compressed within the cylinder. This pressure forces thepiston downward. The downward stroke turns the crankshaft with great force.Exhaust strokeJust before the bottom of the power stroke, the exhaust valve opens. This allows thepiston, as it moves upward, to push the hot, burned gases out through the open exhaust valve.Then, just before the piston reaches its highest point, the exhaust valve closes and theinlet valve opens. As the piston reaches the highest point in the cylinder, known asTDC, it starts back down again. Thus, one cycle ends and another begins immediately.Engine Overall MechanicsThe engine has hundreds of other parts . The major parts of engine are engine block ,engine heads, pistons, connecting rods, crankshaft and valves. The other parts are joined to make systems. These systems are the fuel system, intake system, ignitionsystem, cooling system, lubrication system and exhaust system. Each of these systemshas a definite function. These systems will discussed in detail later.NEW WORDPiston活塞Connecting rod连杆Crankshaft曲轴Power stoke活塞行程Expel排出Valve气阀inlet(intake) valve进气阀exhaust valve排气阀term术语TDC上止点BDC下止点Bore缸径swept volume有效容积engine capacity发动机排量clearance volume余隙容积 ,焚烧室容积compression ratio压缩比revolution旋转,转数every other每隔一个cycle循环spread over散布 ,遍布intake stroke进气行程compression stroke压缩行程knock敲缸,敲打exhaust stroke排气行程engine block发动机缸体lubrication润滑2.2 Engine Block and Cylinder HeadEngine BlockThe engine block is the basic frame of the engine. All other engine parts either fit insideit or fasten to it. It holds the cylinders, water jackets, and oil galleries. The engine blockalso holds the crankshaft, which fastens to the bottom of the block. The camshaft alsofits inside the block, except on overhead-cam engines (OHC). In most cars, this block ismade of gray iron, or an alloy (mixture) of gray iron and other metals, such as nickel orchromium. Engine blocks are castings.Some engine blocks, especially those in smaller cars, are made of cast aluminum. Thismetal is much lighter than iron. However, iron wears better than aluminum. Therefore,the cylinders in most aluminum engines are lined with iron or steel sleeves.These sleeves are called cylinder sleeves. Some engine blocks are made entirely of aluminum.Cylinder HeadThe cylinder head fastens to the top of the block, just as a roof fits over a house. Theunderside forms the combustion chamber with the top of the piston. The most commoncylinder head types are the hemi, wedge, and semi-hemi. All three of these terms referto the shape of the engine's combustion chamber. The cylinder head carries the valves,valve springs and the rockers on the rocker shaft, this part of the valve gear being worked by the push-rods. Sometimes the camshaft is fitted directly into the cylinderhead and operates on the valves without rockers. This is called an overhead camshaft arrangement.Like the cylinder block, the head is made from either cast iron or aluminum alloy.GasketThe cylinder head is attached to the block with high-tensile steel studs. The joint between the block and the head must be gas-tight so that none of the burning mixturecan escape. This is achieved by using cylinder head gasket. This is a sandwich gasket,i.e. a sheet of asbestos between two sheets of copper, both these materials being able towithstand the high temperature and pressures within the engine.Oil Pan or SumpThe oil pan is usually formed of pressed steel. The oil pan and the lower part of thecylinder block together are called the crankcase;they enclose, or encase,the crankshaft.The oil pump in the lubricating system draws oil from the oil pan and sends it to all working parts in the engine. The oil drains off and runs down into the pan.Thus, there is constant circulation of oil between the pan and the working parts of theengine.New Wordsengine block缸体cylinder head气缸盖fasten使固定water jacket水套oil gallery油道camshaft凸overhead-cam(OHC)置凸gray iron灰alloy合金nickel chromium casting件head cover汽缸盖罩intake manifold气管distributor分器oil pan油底壳aluminum be lined with有cylinder sleeve气缸套hemi半球形wedge楔型,楔入semi-hemi准半球形rocker臂push-rod推杆gasket high-tensile高度的stud螺栓gas-tight密封的asbestos石棉crankcase曲箱,曲柄箱encase封,把⋯包起来drain off排出,流出Review Question1.What do TDC, BDC, stroke, compression ratio and engine capacity stand for?2.How do you calculate swept volume and compression ratio?3.What controls the length of the stroke?4.List the main parts of the engine overall mechanics?5.What are the main function of the engine block?2.3Piston Connecting Rod and CrankshaftPiston AssemblyThe piston is an important part of a four-stroke cycle engine. Most pistons are madefrom cast aluminum.The piston , through the connecting rod, transfers to the crankshaft the force create by the burning fuel mixture.This force turns the crankshaft .Thin, circular , steel bands fit into grooves around the piston to seal thebottom of the combustion chamber. These bands are called piston rings. The groovesinto which they fit are called ring grooves. A piston pin fits into a round hole in thepiston . The piston pin joins the piston to the connecting rod . The thick part of thepiston that holds the piston is the pin boss.The piston itself , its rings and the piston pin are together called the piston assembly.To withstand the heat of the combustion chamber, the piston must be strong. Italso must be light, since it travels at high speeds as it moves up and down inside thecylinder. The piston is hollow. It is thick at the top where it take the brunt of the heatand the expansion force. It is thin at the bottom, where there is less heat. The top partof the piston is the head , or crown . The thin part is the skirt The sections between thering grooves are called ring lands.The piston crown may be flat , concave ,dome or recessed . In diesel engine , thecombustion chamber may be formed totally or in part in the piston crown , dependingon the method of injection . So they use pistons with different shapes.2.3.3Piston RingsAs Fig.2-9 shows , piston rings fit into ring grooves near the of the piston.In simplest terms, piston rings are thin, circular pieces of metal that fit into grooves inthe tops of the pistons.In modern engines ,each piston has three rings. (Piston in older engines sometimeshad four rings, or even five.) The ring’ s outside surface presses against the cylinder walls. Rings provide the needed seal between the piston and the cylinder walls. That is,only the rings contact the cylinder walls. The top two rings are to keep the gases in thecylinder and are called compression rings. The lower one prevents the oil splashed ontothe cylinder bore from entering the combustion chamber , and is called an oil ring.Chrome-face cast-iron compression rings are commonly used in automobile engines.The chrome face provide a very smooth , wear-resistant surface.During the power stoke , combustion pressure on the combustion rings is very high. It causes them to untwist . Some of the high-pressure gas gets in back of the rings.This force the ring face into full contact with the cylinder wall. The combustion pressure also holds the bottom of the ring tightly against the bottom of the ring groove.Therefore , high combustion pressure causes a tighter seal between the ring face andthe cylinder wall.2.3.4 Piston PinThe piston pin holds together the piston and the connecting rod . This pin fits intothe piston pin holes and into a hole in the top end of the connecting rod. The top end ofis much smaller than the end that fits on the crankshaft . This small end fits insidethe bottom of the piston . The piston pin fits through one side of the piston , throughthe small end of the rod , and then through the other side of the piston . It holds the rodfirmly in place in the center of the piston. Pins are made of high-strengh steel and havea hollow center . Many pins are chrome-plated to help them wear better.2.3.3 Connecting rodThe connecting rod is made of forgedhigh-strength steel . It transmits and motion from the piston to the crankpin on thecrankshaft . The connecting rod little end is connected to the piston pin . A bush madefrom a soft metal , such as bronze , is used for this joint . The lower end of the connecting rod fits the crankshaft journal . This is called the big end . For this big-endbearing , steel-backed lead or tin shell bearing are used . These are the same as thoseused for the main bearings . The split of the big end is sometimes at an angle , so thatit is small enough to be withdrawn through the cylinder bore . The connecting rod ismade from forged alloy steel .CrankshaftThe crankshaft , in conjunction with the connecting rod , coverts the reciprocatingmotion of the piston to the rotary motion needed to drive the vehicle . It is usually madefrom carbon steel which is alloyed with a small proportion of nickel .The main bearingjournals fit into the cylinder block and the big end journals align with the connectingrods .At the rear end of the crankshaft is attached the flywheel , and at the front endare the driving whells for the timing gears , fan , cooling water and alternator .The throw of the crankshaft , the distance between the main journal and the bigend centers , controls the length of the stroke . The stroke is double the throw , and thestroke-length is the distance that the piston travels from TDC to BDC and vice versa .2.3.6 FlywheelThe flywheel is the made from carbon steel . It fit s onto the rear of the crankshaft .As well as keeping the engine rotating between power strokes it also carries the clutch ,which transmits the drive to the transmission , and has the starter ring gear around its circumference . There is only one working stroke in four so a flywheel is needed to drivethe crankshaft during the time that the engine is performing the non-power strokes .New WordsComprise由。

汽车构造(英文版)

汽车构造(英文版)

汽车构造(英文版)body 车身chassis 底盘layout 布置power unit 动力装置internal combustion engine 内燃机cylinder 汽缸gasoline 汽油spark 火ignition 点燃,点火diesel 柴油机compression 压缩shaft 轴transmission 传动系sheet metal 金属板shell 外壳hood 〔发动机〕罩trunk deck 行李舱盖cargo 物资styling 样式assembly 总成,装配suspension 悬挂,悬置shock 冲击steering 转向,操纵brake 刹车,制动器clutch 离合器gearbox 变速器driveshaft 传动轴final drive 主减速器,后桥differential 差速器slow down 〔使〕慢下来,减速horn 喇叭starter 起动机charge 充电alternator 交流发电机Review Questions1. List the main parts of an automobile?2. What are the common types of a vehicle according to body styling?3. Which systems does a chassis include and what are the main functions of the chassis?4. Why are suspension systems used on vehicles?CHAPTER2 INTERNAL COMBUSTION ENGINE2.1 principle of operation2.1.1 Engine and powerEngine is used to produce power. The chemical energy in fuel is converted to heat by the burning of the fuel at a controlled rate. This process is called combustion. If engine combustion occurs with the power chamber. ,the engine is called internal combustion engine. If combustion takes place outside the cylinder, the engine is called an external combustion engine.Engine used in automobiles are internal combustion heat engines. Heat energy released in the combustion chamber raises the temperature of the combustion gases with the chamber. The increase in gas temperature causes the pressure of the gases to increase. The pressure developed within the combustion chamber is applied to the head of a piston to produce a usable mechanical force, which is then converted into useful mechanical power.2.1.2 Engine TermsLinking the piston by a connecting rod to a crankshaft causes the gas to rotate the shaft through half a turn. The power stroke 〝uses up〞the gas , so means must be provided to expel the burnt gas and recharge the cylinder with a fresh petrol-air mixture :this control of gas movement is the duty of the valves ;an inlet valve allows the new mixture to enter at the right time and an exhaust valve lets out the burnt gas after the gas has done its job. Engine terms are :TDC(Top Dead Center):the position of the crank and piston when the piston is farther away from the crankshaft.BDC(Bottom Dead Center):the position of the crank and piston when the piston is nearest to the crankshaft.Stroke : the distance between BDC and TDC; stroke is controlled by the crankshaft.Bore : the internal diameter of the cylinder.Swept volume : the volume between TDC and BDC.Engine capacity : this is the swept volume of all the cylinder e.g. a four-stroke having a capacity of two liters(2000cm) has a cylinder swept volume of 50cm.Clearance volume: the volume of the space above the piston when it is at TDC. Compression ratio = (swept vol + clearance vol)\(clearance vol)Two-stroke : a power stroke every revolution of the crank.Four-stroke : a power stroke every other revolution of the crank..2.1.3 The Four-stroke Spark-ignition Engine CycleThe spark-ignition engine is an internal-combustion engine with externally supplied in ignition, which converts the energy contained in the fuel to kinetic energy.The cycle of operations is spread over four piston strokes. To complete the full cycle it takes two revolutions of the crankshaft.The operating strokes are :This stroke introduces a mixture of atomized gasoline and air into the cylinder. The stroke starts when the piston moves downward from a position near the top of the cylinder. As the piston moves downward, a vacuum, or low-pressure area, is created.During the intake stroke, one of the ports is opened by moving the inlet valve. The exhaust valve remains tightly closed.Compression strokeAs the piston moves upward to compress the fuel mixture trapped in the cylinder, the valves are closed tightly. This compression action heats the air/fuel mixture slightly and confines it within a small area called the combustion chamber.Power strokeJust before the piston reaches the top of its compression stroke, an electrical spark is introduced from a spark plug screwed into the cylinder head.The spark ignites the compressed, heated mixture of fuel and air in the combustion chamber to cause rapid burning. The burning fuel produces intense heat that causes rapid expansion of the gases compressed within the cylinder. This pressure forces the piston downward. The downward stroke turns the crankshaft with great force.Exhaust strokeJust before the bottom of the power stroke, the exhaust valve opens. This allows the piston, as it moves upward, to push the hot, burned gases out through the open exhaust valve.Then, just before the piston reaches its highest point, the exhaust valve closes and the inlet valve opens. As the piston reaches the highest point in the cylinder, known as TDC, it starts back down again. Thus, one cycle ends and another begins immediately.2.1.4 Engine Overall MechanicsThe engine has hundreds of other parts . The major parts of engine are engine block , engine heads, pistons, connecting rods, crankshaft and valves. The other parts are joined to make systems. These systems are the fuel system, intake system, ignition system, cooling system, lubrication system and exhaust system. Each of these systems has a definite function. These systems will discussed in detail later.NEW WORDPiston 活塞Connecting rod 连杆Crankshaft 曲轴Power stoke 活塞行程Expel 排出Valve 气阀inlet(intake) valve 进气阀exhaust valve 排气阀term 术语TDC 上止点BDC 下止点Bore 缸径swept volume 有效容积engine capacity 发动机排量clearance volume 余隙容积,燃烧室容积compression ratio 压缩比revolution 旋转,转数every other 每隔一个cycle 循环spread over 分布,遍及intake stroke 进气行程compression stroke 压缩行程knock 敲缸,敲打exhaust stroke 排气行程engine block 发动机缸体lubrication 润滑2.2 Engine Block and Cylinder Head2.2.1 Engine BlockThe engine block is the basic frame of the engine. All other engine parts either fit inside it or fasten to it. It holds the cylinders, water jackets, and oil galleries. The engine block also holds the crankshaft, which fastens to the bottom of the block. The camshaft also fits inside the block, except on overhead-cam engines (OHC). In most cars, this block is made of gray iron, or an alloy (mixture) of gray iron and other metals, such as nickel or chromium. Engine blocks are castings.Some engine blocks, especially those in smaller cars, are made of cast aluminum. This metal is much lighter than iron. However, iron wears better than aluminum. Therefore, the cylinders in most aluminum engines are lined with iron or steel sleeves. These sleeves are called cylinder sleeves. Some engine blocks are made entirely of aluminum.2.2.2 Cylinder HeadThe cylinder head fastens to the top of the block, just as a roof fits over a house. The underside forms the combustion chamber with the top of the piston. The most common cylinder head types are the hemi, wedge, and semi-hemi. All three of these terms refer to the shape of the engine's combustion chamber. The cylinder head carries the valves, valve springs and the rockers on the rocker shaft, this part of the valve gear being worked by the push-rods. Sometimes the camshaft is fitted directly into the cylinder head and operates on the valves without rockers. This is called an overhead camshaft arrangement. Like the cylinder block, the head is made from either cast iron or aluminum alloy.2.2.3 GasketThe cylinder head is attached to the block with high-tensile steel studs. The joint between theblock and the head must be gas-tight so that none of the burning mixture can escape. This is achieved by using cylinder head gasket. This is a sandwich gasket, i.e. a sheet of asbestos between two sheets of copper, both these materials being able to withstand the high temperature and pressures within the engine.2.2.4 Oil Pan or SumpThe oil pan is usually formed of pressed steel. The oil pan and the lower part of the cylinder block together are called the crankcase; they enclose, or encase, the crankshaft. The oil pump in the lubricating system draws oil from the oil pan and sends it to all working parts in the engine. The oil drains off and runs down into the pan. Thus, there is constant circulation of oil between the pan and the working parts of the engine.New Wordsengine block 缸体cylinder head 气缸盖fasten 使固定water jacket 水套oil gallery 油道camshaft 凸轮轴overhead-cam(OHC) 顶置凸轮gray iron 灰铸铁alloy 合金nickel 镍chromium 铬casting 铸件head cover 汽缸盖罩intake manifold 进气总管distributor 分电器oil pan 油底壳aluminum 铝be lined with 镶有cylinder sleeve 气缸套hemi 半球形wedge 楔型,楔入semi-hemi 准半球形rocker 摇臂push-rod 推杆gasket 衬垫high-tensile 高强度的stud 螺栓gas-tight 密封的asbestos 石棉crankcase 曲轴箱,曲柄箱encase 封闭,把…包起来drain off 排出,流出Review Question1. What do TDC, BDC, stroke, compression ratio and engine capacity stand for?2. How do you calculate swept volume and compression ratio?3. What controls the length of the stroke?4. List the main parts of the engine overall mechanics?5. What are the main function of the engine block?2.3 Piston Connecting Rod and Crankshaft2.3.1 Piston AssemblyThe piston is an important part of a four-stroke cycle engine. Most pistons are made from cast aluminum. The piston , through the connecting rod, transfers to the crankshaft the force create by the burning fuel mixture. This force turns the crankshaft .Thin, circular , steel bands fit into grooves around the piston to seal the bottom of the combustion chamber. These bands are called piston rings. The grooves into which they fit are called ring grooves. A piston pin fits into a round hole in the piston . The piston pin joins the piston to the connecting rod . The thick part of the piston that holds the piston is the pin boss.The piston itself , its rings and the piston pin are together called the piston assembly.2.3.2.PistonTo withstand the heat of the combustion chamber, the piston must be strong. It also must be light, since it travels at high speeds as it moves up and down inside the cylinder. The piston is hollow. It is thick at the top where it take the brunt of the heat and the expansion force. It is thin at the bottom, where there is less heat. The top part of the piston is the head , or crown .The thin part is the skirt The sections between the ring grooves are called ring lands.The piston crown may be flat , concave ,dome or recessed . In diesel engine , the combustion chamber may be formed totally or in part in the piston crown , depending on the method of injection . So they use pistons with different shapes.2.3.3Piston RingsAs Fig.2-9 shows , piston rings fit into ring grooves near the of the piston. In simplest terms, piston rings are thin, circular pieces of metal that fit into grooves in the tops of the pistons.In modern engines ,each piston has three rings. (Piston in older engines sometimes had four rings, or even fiv e.) The ring’s outside surface presses against the cylinder walls. Rings provide the needed seal between the piston and the cylinder walls. That is, only the rings contact the cylinder walls. The top two rings are to keep the gases in the cylinder and are called compression rings. The lower one prevents the oil splashed onto the cylinder bore from entering the combustion chamber , and is called an oil ring. Chrome-face cast-iron compression rings are commonly used in automobile engines. The chrome face provide a very smooth , wear-resistant surface.During the power stoke , combustion pressure on the combustion rings is very high. It causes them to untwist . Some of the high-pressure gas gets in back of the rings. This force the ring face into full contact with the cylinder wall. The combustion pressure also holds the bottom of the ring tightly against the bottom of the ring groove. Therefore , high combustion pressure causes a tighter seal between the ring face and the cylinder wall.2.3.4 Piston PinThe piston pin holds together the piston and the connecting rod . This pin fits into the piston pin holes and into a hole in the top end of the connecting rod. The top end of is much smaller than the end that fits on the crankshaft . This small end fits inside the bottom of the piston . The piston pin fits through one side of the piston , through the small end of the rod , and then through the other side of the piston . It holds the rod firmly in place in the center of the piston. Pins are made of high-strengh steel and have a hollow center . Many pins are chrome-plated to help them wear better.2.3.3 Connecting rodThe connecting rod is made of forgedhigh-strength steel . It transmits and motion from the piston to the crankpin on the crankshaft . The connecting rod little end is connected to the piston pin . A bush made from a soft metal , such as bronze , is used for this joint . The lower end of the connecting rod fits the crankshaft journal . This is called the big end . For this big-end bearing , steel-backed lead or tin shell bearing are used . These are the same as those used for the main bearings . The split of the big end is sometimes at an angle , so that it is small enough to be withdrawn through the cylinder bore . The connecting rod is made from forged alloy steel .2.3.5 CrankshaftThe crankshaft , in conjunction with the connecting rod , coverts the reciprocating motion ofthe piston to the rotary motion needed to drive the vehicle . It is usually made from carbon steel which is alloyed with a small proportion of nickel .The main bearing journals fit into the cylinder block and the big end journals align with the connecting rods .At the rear end of the crankshaft is attached the flywheel , and at the front end are the driving whells for the timing gears , fan , cooling water and alternator .The throw of the crankshaft , the distance between the main journal and the big end centers , controls the length of the stroke . The stroke is double the throw , and the stroke-length is the distance that the piston travels from TDC to BDC and vice versa .2.3.6 FlywheelThe flywheel is the made from carbon steel . It fit s onto the rear of the crankshaft . As well as keeping the engine rotating between power strokes it also carries the clutch , which transmits the drive to the transmission , and has the starter ring gear around its circumference . There is only one working stroke in four so a flywheel is needed to drive the crankshaft during the time that the engine is performing the non-power strokes .New WordsComprise 由。

英文版汽车构造介绍

英文版汽车构造介绍

CHAPTER 1 AUTOMOTIVE BASICS1.1 Principal ComponentsToday's average car contains more than 15,000 separate, individual parts that must work together. These parts can grouped into four major categories: engine, body, chassis and electrical equipment.1.2 EngineThe engine acts as the power unit. The internal combustion engine is most common: this obtains its power by burning a liquid fuel inside the engine cylinder. There are two types of engine :gasoline(also called a spark-ignition engine) and diesel(also called a compression-ignition engine).Both engines are called heat engines; the burning fuel generates heat which causes the gas inside the cylinder to increase its pressure and supply power to rotate a shaft connected to the transmission.1.3 BodyAn automobile body is a sheet metal shell with windows, doors, a hood, and a trunk deck built into it. It provides a protective covering for the engine, passengers, and cargo. The body is designed to keep passengers safe and comfortable. The body styling provides an attractive, colorful, modern appearance for the vehicle.1.4 ChassisThe chassis is an assembly of those systems that are the major operating part of a vehicle. The chassis includes the transmission, suspension, steering, and brake systems.Transmission systems ― conveys the drive to the wheels. The main components are clutch, gearbox, driveshaft, final drive, and differential.Suspension― absorbs the road shocks.Steering― controls the direction of the movement.Brake― slows down the vehi cle.1.5 Electrical EquipmentThe electrical system supplies electricity for the ignition, horn, lights, heater, and starter. The electricity level is maintained by a charging circuit. This circuit consists of the battery, alternator (or generator). The battery stores electricity. The alternator changes the engine's mechanical energy into electrical energy and recharges the battery. New W ordsPrincipal component 主要部件category 种类,类型body 车身chassis 底盘layout 布置power unit 动力装置internal combustion engine 内燃机cylinder 汽缸gasoline 汽油spark 火花ignition 点燃,点火diesel 柴油机compression 压缩shaft 轴transmission 传动系sheet metal 金属板shell 外壳hood (发动机)罩trunk deck 行李舱盖cargo 货物styling 样式assembly 总成,装配suspension 悬挂,悬置shock 冲击steering 转向,操纵brake 刹车,制动器clutch 离合器gearbox 变速器driveshaft 传动轴final drive 主减速器,后桥differential 差速器slow down (使)慢下来,减速horn 喇叭starter 起动机charge 充电alternator 交流发电机Review Questions1.List the main parts of an automobile?2.What are the common types of a vehicle according to body styling?3.Which systems does a chassis include and what are the main functions of the chassis?4.Why are suspension systems used on vehicles?CHAPTER2 INTERNAL COMBUSTION ENGINE2.1 principle of operation2.1.1 Engine and powerEngine is used to produce power. The chemical energy in fuel is converted to heat by the burning of the fuel at a controlled rate. This process is called combustion. If engine combustion occurs with the power chamber. ,the engine is called internal combustion engine. If combustion takes place outside the cylinder, the engine is called an external combustion engine.Engine used in automobiles are internal combustion heat engines. Heat energy released in the combustion chamber raises the temperature of the combustion gases with the chamber. The increase in gas temperature causes the pressure of the gases to increase. The pressure developed within the combustion chamber is applied to the head of a piston to produce a usable mechanical force, which is then converted into useful mechanical power.2.1.2 Engine TermsLinking the piston by a connecting rod to a crankshaft causes the gas to rotate the shaft through half a turn. The power stroke “uses up” the gas , so means must be provided to expel the burnt gas and recharge the cylinder with a fresh petrol-air mixture :this control of gas movement is the duty of the valves ;an inlet valve allows the new mixture to enter at the right time and an exhaust valve lets out the burnt gas after the gas has done its job. Engine terms are :TDC(Top Dead Center):the position of the crank and piston when the piston is farther awayfrom the crankshaft.BDC(Bottom Dead Center):the position of the crank and piston when the piston is nearest to the crankshaft.Stroke : the distance between BDC and TDC; stroke is controlled by the crankshaft.Bore : the internal diameter of the cylinder.Swept volume : the volume between TDC and BDC.Engine capacity : this is the swept volume of all the cylinder e.g. a four-stroke having a capacity of two liters(2000cm) has a cylinder swept volume of 50cm.Clearance volume: the volume of the space above the piston when it is at TDC. Compression ratio = (swept vol + clearance vol)\(clearance vol)Two-stroke : a power stroke every revolution of the crank.Four-stroke : a power stroke every other revolution of the crank..2.1.3 The Four-stroke Spark-ignition Engine CycleThe spark-ignition engine is an internal-combustion engine with externally supplied in ignition , which converts the energy contained in the fuel to kinetic energy.The cycle of operations is spread over four piston strokes. To complete the full cycle it takes two revolutions of the crankshaft.The operating strokes are :This stroke introduces a mixture of atomized gasoline and air into the cylinder. The stroke starts when the piston moves downward from a position near the top of the cylinder. As the piston moves downward, a vacuum,orlow-pressure area, is created.During the intake stroke, one of the ports is opened by moving the inlet valve. The exhaust valve remains tightly closed.Compression strokeAs the piston moves upward to compress the fuel mixture trapped in the cylinder, the valves are closed tightly. This compression action heats the air/fuel mixture slightly and confines it within a small area called the combustion chamber.Power strokeJust before the piston reaches the top of its compression stroke, an electrical spark is introduced from a spark plug screwed into the cylinder head.The spark ignites the compressed, heated mixture of fuel and air in the combustion chamber to cause rap id burning. The burning fuel produces intense heat that causes rapid expansion of the gases compressed within the cylinder. This pressure forces the piston downward. The downward stroke turns the crankshaft with great force.Exhaust strokeJust before the bottom of the power stroke, the exhaust valve opens. This allows the piston, as it moves upward, to push the hot, burned gases out through the open exhaust valve.Then, just before the piston reaches its highest point, the exhaust valve closes and the in let valve opens. As the piston reaches the highest point in the cylinder, known as TDC, it starts back down again. Thus, one cycle ends and another begins immediately.2.1.4 Engine Overall MechanicsThe engine has hundreds of other parts . The major parts of engine are engine block , engine heads, pistons, connecting rods, crankshaft and valves. The other parts are joined to make systems. These systems are the fuel system, intake system, ignition system, cooling system, lubrication system and exhaust system. Each of these systems has a definite function. These systems will discussed in detail later.NEW WORDPiston 活塞Connecting rod 连杆Crankshaft 曲轴Power stoke 活塞行程Expel 排出V alve 气阀inlet(intake) valve 进气阀exhaust valve 排气阀term 术语TDC 上止点BDC 下止点Bore 缸径swept volume 有效容积engine capacity 发动机排量clearance volume 余隙容积,燃烧室容积compression ratio 压缩比revolution 旋转,转数every other 每隔一个cycle 循环spread over 分布,遍及intake stroke 进气行程compression stroke 压缩行程knock 敲缸,敲打exhaust stroke 排气行程engine block 发动机缸体lubrication 润滑2.2 Engine Block and Cylinder Head2.2.1 Engine BlockThe engine block is the basic frame of the engine. All other engine parts either fit inside it or fasten to it. It holds the cylinders, water jackets, and oil galleries. The engine block also holds the crankshaft, which fastens to the bottom of the block. The camshaft also fits inside the block, except on overhead-cam engines (OHC). In most cars, this block is made of gray iron, or an alloy (mixture) of gray iron and other metals, such as nickel or chromium. Engine blocks are castings.Some engine blocks, especially those in smaller cars, are made of cast aluminum. This metal is much lighter than iron. However, iron wears better than aluminum. Therefore, the cylinders in most aluminum engines are lined with iron or steel sleeves. These sleeves are called cylinder sleeves. Some engine blocks are made entirely of aluminum.2.2.2 Cylinder HeadThe cylinder head fastens to the top of the block, just as a roof fits over a house. The underside forms the combustion chamber with the top of the piston. The most common cylinder head types are the hemi, wedge, and semi-hemi. All three of these terms refer to the shape of the engine's combustion chamber. The cylinder head carries the valves, valve springs and the rockers on the rocker shaft, this part of the valve gear being worked by the push-rods. Sometimes the camshaft is fitted directly into the cylinder head and operates on the valves withoutrockers. This is called an overhead camshaft arrangement. Like the cylinder block, the head is made from either cast iron or aluminum alloy.2.2.3 GasketThe cylinder head is attached to the block with high-tensile steel studs. The joint between the block and the head must be gas-tight so that none of the burning mixture can escape. This is achieved by using cylinder head gasket. This is a sandwich gasket, i.e. a sheet of asbestos between two sheets of copper, both these materials being able to withstand the high temperature and pressures within the engine.2.2.4 Oil Pan or SumpThe oil pan is usually formed of pressed steel. The oil pan and the lower part of the cylinder block together are called the crankcase; they enclose, or encase, the crankshaft. The oil pump in the lubricating system draws oil from the oil pan and sends it to all working parts in the engine. The oil drains off and runs down into the pan. Thus, there is constant circulation of oil between the pan and the working parts of the engine.New W ordsengine block 缸体cylinder head 气缸盖fasten 使固定water jacket 水套oil gallery 油道camshaft 凸轮轴overhead-cam(OHC) 顶置凸轮gray iron 灰铸铁alloy 合金nickel 镍chromium 铬casting 铸件head cover 汽缸盖罩intake manifold 进气总管distributor 分电器oil pan 油底壳aluminum 铝be lined with 镶有cylinder sleeve 气缸套hemi 半球形wedge 楔型,楔入semi-hemi 准半球形rocker 摇臂push-rod 推杆gasket 衬垫high-tensile 高强度的stud 螺栓gas-tight 密封的asbestos 石棉crankcase 曲轴箱,曲柄箱encase 封闭,把…包起来drain off 排出,流出Review Question1.What do TDC, BDC, stroke, compression ratio and engine capacity stand for?2.How do you calculate swept volume and compression ratio?3.What controls the length of the stroke?4.List the main parts of the engine overall mechanics?5.What are the main function of the engine block?2.3 Piston Connecting Rod and Crankshaft2.3.1 Piston AssemblyThe piston is an important part of a four-stroke cycle engine. Most pistons are made from cast aluminum. The piston , through the connecting rod, transfers to the crankshaft the force create by the burning fuel mixture. This force turns the crankshaft .Thin, circular , steel bands fit into grooves around the piston to seal the bottom of the combustion chamber. These bands are called piston rings. The grooves into which they fit are called ring grooves. A piston pin fits into a round hole in the piston . The piston pin joins the piston to the connecting rod . The thick part of the piston that holds the piston is the pin boss.The piston itself , its rings and the piston pin are together called the piston assembly.2.3.2.PistonTo withstand the heat of the combustion chamber, the piston must be strong. It also must be light, since it travels at high speeds as it moves up and down inside the cylinder. The piston is hollow. It is thick at the top where it take the brunt of the heat and the expansion force. It is thin at the bottom, where there is less heat. The top part of the piston is the head , or crown . The thin part is the skirt The sections between the ring grooves are called ring lands.The piston crown may be flat , concave ,dome or recessed . In diesel engine , the combustion chamber may be formed totally or in part in the piston crown , depending on the method of injection . So they use pistons with different shapes.2.3.3Piston RingsAs Fig.2-9 shows , piston rings fit into ring grooves near the of the piston. In simplest terms, piston rings are thin, circular pieces of metal that fit into grooves in the tops of the pistons.In modern engines ,each piston has three rings. (Piston in older engines sometimes had four rings, or even five.) The ring‟s outside surface presses against the cylinder walls. Rings provide the needed seal between the piston and the cylinder walls. That is, only the rings contact the cylinder walls. The top two rings are to keep the gases in the cylinder and are called compression rings. The lower one prevents the oil splashed onto the cylinder bore from entering the combustion chamber , and is called an oil ring. Chrome-face cast-iron compression rings are commonly used in automobile engines. The chrome face provide a very smooth , wear-resistant surface.During the power stoke , combustion pressure on the combustion rings is very high. It causes them to untwist . Some of the high-pressure gas gets in back of the rings. This force the ring face into full contact with the cylinder wall. The combustion pressure also holds the bottom of the ring tightly against the bottom of the ring groove. Therefore , high combustion pressure causes a tighter seal between the ring face and the cylinder wall.2.3.4 Piston PinThe piston pin holds together the piston and the connecting rod . This pin fits into the piston pin holes and into a hole in the top end of the connecting rod. The top end of is much smaller than the end that fits on the crankshaft . This small end fits inside the bottom of the piston . The piston pin fits through one side of the piston , through the small end of the rod , and then through the other side of the piston . It holds the rod firmly in place in the center of the piston. Pins are made of high-strengh steel and have a hollow center . Many pins are chrome-plated to help them wear better.2.3.3 Connecting rodThe connecting rod is made of forgedhigh-strength steel . It transmits and motion from the piston to the crankpin on the crankshaft . The connecting rod little end is connected to the piston pin . A bush made from a soft metal , such as bronze , is used for this joint . The lower end of the connecting rod fits the crankshaft journal . This is called the big end . For this big-end bearing , steel-backed lead or tin shell bearing are used . These are the same as those used for the main bearings . The split of the big end is sometimes at an angle , so that it is small enough to be withdrawn through the cylinder bore . The connecting rod ismade from forged alloy steel .2.3.5 CrankshaftThe crankshaft , in conjunction with the connecting rod , coverts the reciprocating motion of the piston to the rotary motion needed to drive the vehicle . It is usually made from carbon steel which is alloyed with a small proportion of nickel .The main bearing journals fit into the cylinder block and the big end journals align with the connecting rods .At the rear end of the crankshaft is attached the flywheel , and at the front end are the driving whells for the timing gears , fan , cooling water and alternator .The throw of the crankshaft , the distance between the main journal and the big end centers , controls the length of the stroke . The stroke is double the throw , and the stroke-length is the distance that the piston travels from TDC to BDC and vice versa .2.3.6 FlywheelThe flywheel is the made from carbon steel . It fit s onto the rear of the crankshaft . As well as keeping the engine rotating between power strokes it also carries the clutch , which transmits the drive to the transmission , and has the starter ring gear around its circumference . There is only one working stroke in four so a flywheel is needed to drive the crankshaft during the time that the engine is performing the non-power strokes .New W ordsComprise 由。

汽车构造英语词汇(CarsconstructEnglishvocabulary)

汽车构造英语词汇(CarsconstructEnglishvocabulary)

汽车构造英语词汇(Cars construct English vocabulary)Auto automobileThe tractor tractorRailway locomotive locomotiveTram tramTrolley bus trolleyMilitary vehicle for military vehiclesSteam engineGas engine gas engineGasoline engine gasoline engineNational economyGross Domestic Production of Gross Domestic product Completely Knock DownSemi - Knock DownReform and opening up reform and openingThe technology introduces the technical importLocalization of localizationPillar estate pillar estateSaloon carPassenger bus, coach,Van truck, lorryRoad vehicle for road vehiclesOff-road vehicleEngine engineThe body's engine bodyCrank rod mechanism crank-connecting rod mechanism Valve timing mechanismThe supply system is fuel supply systemCooling system cooling systemLubricating system of lubricating systemIgnition system ignition systemStarting system of starting systemChassis chassisDrive power trainThe clutch of the clutch Transmission gear boxPropeller shaft propeller shaft Drive axle drive axleRunning gearChassis frameSuspension suspensionFront axle front axleBridge shell axle housing,The wheel wheelTurn to the steering system Steering wheel steering wheel Turn the steering gear into gearSteering gear steering linkagePower plant power assisting deviceThe braking system is based on the systemControl device control devicePower supply deviceTransmission device transfer deviceBrake brakeThe car bodyFront end panels of the front end panelBody shell body shellThe door feelThe Windows windowAuxiliary device auxiliary devicePacking case to their platformThe front rear wheel drive (FR) front engine rear drive Front engine front drive (FF) front engine front driveRear engine rear drive (RR) rear engine rear drive Engine rear wheel drive (MR) midship engine rear drive All-wheel drive (nWD) all wheel driveThe driving force tractive forceResistance to holdRolling resistance rolling resistanceAir resistance, dragGradient resistance gradient resistanceAdhesion to adhesionAdhesive adhesion forceCoefficient of adhesionChapter I engine working principleTwo stroke engine two stroke engineFour stroke engine four stroke engineWater cooled engine water cooled engineAir cooled engineUpper dead pointLower dead pointStroke strokeCylinder diameter boreWorking volume working volume Displacement swept volume, displacement The intake stroke is a stroke Compression stroke compression stroke Compression ratio compression ratio Work stroke for work strokeKnock, knock, knockExhaust strokeThe diagram of the diagramCylinder block cylinderCylinder cover cylinder headOil sump oil sumpPlunger pistonConnecting rod connecting rod The crankshaft crankshaftThe flywheel flywheelIntake valve for intake valve Vent valveLifter tappetPutting a push rodThe rocker rockerThe camshaft camshaftTiming gearFuel tank fuel tankFuel pump fuel pumpGasoline filter gasoline filterCarburetor carburetorAir cleaner air cleanerIntake manifoldThe exhaust pipe is manifoldSpark plugIgnition coil ignition coilBreaker breakerBattery storage batteryGenerator generatorThe water pump water pumpThe radiator radiatorFan fanDrain valve drain valveWater jacket water jacketDistributive pipe of water diversion pipe Oil pump for oil pumpSet filter suction filterPressure limiting valve relief valveOil passage of lubricantsOil filter oil filterOil cooler oil coolerStarting point motorEffective power effective powerEffective torque effective torqueSpecific fuel consumption for fuel consumptionEngine speed characteristic engine speed characteristic Throttle open throttle percentagePartial characteristic partial characteristicOuter characteristic outer characteristicChapter ii the crank link mechanismCylinder liner cylinder sleeve, cylinder linerEngine bearing engine mountingPiston top piston topPiston head piston headPiston skirt piston skirtSlot slot.Piston ring piston ringGas ring compression will ringOil ring oil ringRing groove groovePiston pin piston pinMain bearing main bearingMain bearing capThe main axis is the main shell Connecting rod bearing big end bearing The connecting rod covers big end cap Cranking clawBelt pulley wheelBalance counter weightFiring order is firing orderTorsional vibration damper torsional vibration damper Chapter iii gas distribution mechanismOHV Over Head ValveOverhead Camshaft (OHC) Over Head CamshaftSingle overhead Camshaft (SOHC) Single Over Head Camshaft Dual overhead Camshaft (DOHC) Dual Over Head Camshaft Multi-valve engine multi-valve engineValve clearance on valve clearanceTiming phase of air distributionValve stem valve stemValve seat valve seatValve guide valve guideValve spring valve springChapter iv supply of gasoline engine Combustible mixture with gas combustionSilencer silencer, mufflerGasoline gasoline, petrolFractionation distilEvaporative evaporating propertyCombustion heat valueAnti-knock property(RON) Research Octane NumberExcess air coefficient coefficient of excess air Theoretical mixture of theoretical mixingThin mixture of thin mixtureThick mixture of thick mixtureMain supply system of main oil supply systemIdle system idle systemThickening system for thickening systemAccelerate system acceleration systemFloat floatFloat chamber float chamberNeedle valve needle valveOrifice metering jetThe choke chokeFilter filter cartridgeSediment cup sediment cupPump membrane pump diaphragmOil bath type oil bath typeAsbestos pad a * * estos padPreheating pre - heatingGasoline direct injection of gasoline direct injection Electric control electronic controlMulti-point injection of muti-point injectionSingle point injectionCircuit control circuit controlDistributor signalAirflow signalCooling water temperature signal water temperature signal Chapter v supply of diesel engineTransfer pump transfer pumpFuel injection pump for fuel injection pumpHigh pressure pipeline high pressure fuel pipeIgnition ignition propertyViscosity viscosityThe solidifying point condensing pointPrepare the pri - combustion periodRapid combustion periodSlow combustion periodCombustion chamber combustion chamberUnited chamber of combustion chamberBall chamber ball chamberTurbulence chamberPre-combustion chamber pri-combustion chamber Fuel injector injectorPrecise couple precise couplePlunger plungerDelivery valve for oil outlet valveThe governor calledTwo-speed governor two speed governorFull speed governorFixed speed governor fixed speed governor Integrated governor combined governor Pneumatic governor called pneumaticCalled mechanical centrifugal governor mechanical centrifugal Complex governor complex governorAdvanced Angle adjustment device advancerFlying piece of flyweightCoupling couplingPrimary filter for coarse filterFine filter secondary filterTurbocharger turbochargerIntermediate coolerChapter vii cooling systemThermostat thermostatAnti-freezing liquid anti-freezing liquidCompensation for bucket compensationV - belt V beltShutter shutterBig circulation big circulationSmall circulation small circulationFins finsChapter 8 lubrication systemGrease lubricantPressure lubricates pressureSplash lubrication splashGrease greaseOil pressure sensor of oil pressure sensor Oil seal oil sealBypass valve bypass valveOil cooler, oil coolerDip stickOil filler with engine oilCrankcase ventilation crankcase ventilation Chapter ix ignition systemOne winding primary windingSecondary winding secondary windingHeat sensitive resistance heat sensitive resistanceIgnition advance advanceDistributor of distributorMoving contact is moving contactFixed contact fixed contactDistributor of the torch distributor armCapacitor condenserIgnition advance device ignition advancerThe centrifugal ignition advance device centrifugal ignition advancerVacuum ignition advancerOctane number rectifierCentral electrode centralSide electrode side electrodeCeramic insulator ceramic insulatorJumping gap spark gapSemiconductor ignition system semi - conductor ignition system Transistor transistorDiode diodeTriode triodeNon - contact ignition systemHall effect Hall effectPositive plate anodeNegative plate cathodeDiaphragm separatorThe electrolyte electrolyteBattery cell battery cellTerminal terminalCable to cableThe silicon rectification alternator silicon rectified A.C.motorRotor rotorThe stator statorBrush brushFan blade fan bladeVoltage regulator voltage regulatorChapter x starting systemStart cranking by handElectric heater plugSerial wound dc motorStarter ring starter ringElectro-magnetic control mechanism electro - magnetic control Chapter 11 new enginesTriangle piston triangular pistonRotary engine for rotor engineRotation, rotary motion, rotationThe revolution orbit motionTrack the trajectoryPinion gearRing gear ring gearThe reciprocating parts are reciprocal partsDynamic balanceGas turbine engine gas turbine engineChapter xii automobile transmission systemMechanical transmission is mechanical transmissionHydraulic mechanical transmission is hydro-mechanical transmissionStatic fluid transmission is static - hydraulic transmission Electrical transmission of power type transmission Automatic transmission by automatic transmissionSlow down the reductionVariable speed ratio variable ratioA variable speed definite ratioVariable speed indefinite infinite ratioVariable Transmission with Variable Transmission (CVT) General layoutLateral engine positioning of the engineTransfer case, transfer boxChapter 13 clutchJoin soft smooth engagementSeparate and thorough separationOverload overloadFriction surface friction surfaceFriction liner friction linerThe hub hubActive part driving partDriven part driven partSpline splinePressure plate pressure plateClutch cover cover plateSeparate leverage release leverSeparate sleeve release sleeveSeparate bearing release bearingMaster cylinder master cylinderWorking cylinder working cylinder Separate * release forkClearance adjustment clearance adjustment Skid slipPedal pedalPedal free stroke pedal free stroke Working travel pedal pedal working stroke Rivet, riveted rivetDual disc clutch dual disc clutchCentral spring clutchDiaphragm spring clutchNonlinear non - linearChapter 14 transmission and transferInput shaft (first axis) input shaft, drive shaft Output shaft (second axis) output shaft, main shaft Shaft counter shaftReverse shaft reverse gear shaftConstant mesh constant meshLow gearHigh gearTop gear at the topNeutral neutral gearThe first gearThe second gearThe third gearReverse gear reverse gear Direct gearOverdrive overdrivePower take - offShift the shiftSliding sleeve is meshed Synchronizer a synchronizer Synchro cone synchro cone Shift lever shift lever Lever handle...Ball jointShift the shift forkSince the self - lock lock Interlock system - the lock Transaxle transaxleWe're going to stop low gearChapter xv hydraulic mechanical transmission Hydraulic coupling hydraulic couplingPump impeller impellerThe turbine turbineLeaf bladeTorque converter torque converterIdler pulley statorPlanetary gear systemSun gearPlanet pinionPlanet carrier planet carrierRing gear ring gearChapter 16 transmission shaftUniversal joint, U - jointCardan type U - joint* child yoke, the forkSpider, center crossRoller bearing needle bearingGrease nipple (grease nipple) for fitting, nipple Constant angular velocityDual Cardan type u-jointBall * universal joint, Weiss type U - jointBall cage type universal joint Rzeppa type u-joint Inner race housingOuter race shell of spherical shellKeep the cage, the cage retainer, ball cage Flexible u-joint of flexible universal joint Seamless steel tube seamless steel tubeChapter 17 drive axleThe main reducer final driveActive (small) gear drive pinionFrom moving (large) gear ring gearBevel gear for bevel gearHypoid gear, hypoid gearSingle reduction single reductionDouble reduction double reductionThrough the main reducer, penetrable final driveDouble-speed main reducer double gear (speed) final drive Wheel reducer wheel reductionDifferential differentialHalf shaft gear differential side gearDifferential lock differential lockInter-axle differential lockTorson differential torque。

汽车系统构造(英文版)-Lesson14SuspensionSystem.ppt

汽车系统构造(英文版)-Lesson14SuspensionSystem.ppt
Lesson 14 Suspension System
• Suspension is the term given to the system of springs, shock absorbers and linkages that connects a vehicle to its wheels. Suspension systems serve a dual purpose – contributing to the car's roadholding/handling and braking for good active safety and driving pleasure, and keeping vehicle occupants comfortable and reasonably well isolated from road noise, bumps, and vibrations,etc.
• Whenever power is transmitted to the rear wheels of a vehicle equipped with a Hotchkiss drive system, the wheels attempt to force the differential and rear axle housing to turn in the direction opposite from wheel rotation. Leaf springs control this torque and prevent damage to the drive line and rear suspension system.
• Rear Suspension Systems • Semi-elliptical leaf springs or coil springs are used in the rear suspension systems of all automobiles built in the United States. A leaf spring may consist of a single leaf of flat spring steel, or it may have a series of leaves. A multileaf spring includes a main leaf and three, four, or five secondary leaves that are progressively shorter and have progressively smaller radii.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Front-wheel-drive car with MacPherson-strut front suspension and strut-type independent rear suspension. (Saturn Corp.)
• A telescoping hydraulic damper, known as a shock absorber, is mounted separately or in the strut at each wheel to restrain spring movement and prevent prolonged spring oscillations. The shock absorber contains a piston that moves in a cylinder as the wheel moves up and down with respect to the vehicle body or frame. As the piston moves, it forces a fluid through an orifice, imposing a restraint on the spring.
• Spring-loaded valves open to permit quicker flow of the fluid if fluid pressure rises high enough, as it may when rapid wheel movements take place. Most automotive vehicles use gas-filled shock absorbers in which the air space above the fluid is filled with a pressurized gas such as nitrogen. The gas pressure on the fluid reduces the creation of air bubbles and foaming.
• Suspension is the term given to the system of springs, shock absorbers and linkages that connects a vehicle to its wheels. Suspension systems serve a dual purpose – contributing to the car's roadholding/handling and braking for good active safety and driving pleasure, and keeping vehicle occupants comfortable and reasonably well isolated from road noise, bumps, and vibrations,etc.
• Most automotive vehicles have independent front suspension, usually using coil springs as part of either a short-arm long-arm or a MacPherson-strut suspension system. A MacPherson-strut suspension (see illustration) combines a coil spring and shock absorber into a strut assembly that requires only a beam-type lower control aion system for a vehicle with front-engine and front-wheel drive (see illustration), the weight of the vehicle applies an initial compression to the coil springs. When the tires and wheels encounter irregularities in the road, the springs further compress or expand to absorb most of the shock. The suspension at the rear wheels is usually simpler than for the front wheels, which require multiple-point attachments so the wheels can move up and down while swinging from side to side for steering.
• These goals are generally at odds, so the tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the forces acting on the vehicle do so through the contact patches of the tyres. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. The design of front and rear suspension of a car may be different.
相关文档
最新文档