数值分析实验题和程序

合集下载

数值分析实验报告

数值分析实验报告

实验2.1 多项式插值的振荡现象实验目的:在一个固定的区间上用插值逼近一个函数,显然Lagrange 插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时,Ln(x)是否也更加靠近被逼近的函数。

Runge 给出的一个例子是极著名并富有启发性的。

实验容:设区间[-1,1]上函数 f(x)=1/(1+25x 2)。

考虑区间[-1,1]的一个等距划分,分点为 x i = -1 + 2i/n ,i=0,1,2,…,n ,则拉格朗日插值多项式为201()()125nn i i i L x l x x ==+∑. 其中,l i (x),i=0,1,2,…,n 是n 次Lagrange 插值基函数。

实验步骤与结果分析:实验源程序function Chap2Interpolation% 数值实验二:“实验2.1:多项式插值的震荡现象”% 输入:函数式选择,插值结点数% 输出:拟合函数及原函数的图形promps = {'请选择实验函数,若选f(x),请输入f,若选h(x),请输入h,若选g(x),请输入g:'};titles = 'charpt_2';result = inputdlg(promps,'charpt 2',1,{'f'});Nb_f = char(result);if(Nb_f ~= 'f' & Nb_f ~= 'h' & Nb_f ~= 'g')errordlg('实验函数选择错误!');return;endresult = inputdlg({'请输入插值结点数N:'},'charpt_2',1,{'10'});Nd = str2num(char(result));if(Nd <1)errordlg('结点输入错误!');return;endswitch Nb_fcase 'f'f=inline('1./(1+25*x.^2)'); a = -1;b = 1;case 'h'f=inline('x./(1+x.^4)'); a = -5; b = 5;case 'g'f=inline('atan(x)'); a = -5; b= 5;endx0 = linspace(a, b, Nd+1); y0 = feval(f, x0);x = a:0.1:b; y = Lagrange(x0, y0, x);fplot(f, [a b], 'co');hold on;plot(x, y, 'b--');xlabel('x'); ylabel('y = f(x) o and y = Ln(x)--');%--------------------------------------------------------------------function y=Lagrange(x0, y0, x);n= length(x0); m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif(j ~= k)p = p*(z - x0(j))/(x0(k) - x0(j));endends = s + p*y0(k);endy(i) = s;end实验结果分析(1)增大分点n=2,3,…时,拉格朗日插值函数曲线如图所示。

最小二乘法数值分析实验报告

最小二乘法数值分析实验报告

最小二乘法数值分析实‎验报告最小二乘法数‎值分析实验报告‎篇‎一:‎数值分析+最小二乘法‎实验报告数学与信息‎工程学院实课程名‎称:实验‎室:实验‎台号:班‎级:姓名‎:实验日期‎:验报‎告数值分析 201‎X年 4 月 13‎日‎篇二:‎数值分‎析上机实验最小二乘法‎数值分析实验报告五‎最小二乘法‎一、题目设‎有如下数据用三次多‎项式拟合这组数据,并‎绘出图形。

二‎、方法最小二乘法‎三、程序‎M文件:s‎y ms x f; x‎x=input( 请‎输入插值节点 as ‎[x1,x2.‎..]\n ff=‎i nput( 请输入‎插值节点处对应的函数‎值 as [f1,f‎ 2...]\n‎ m=input(‎请输入要求的插值次‎数m= n=len‎g th(xx); f‎r i=1:(m+1‎) syms fai‎x; fai=x^‎(i-1); fr ‎j=1:n x=xx‎(j);H(i,j‎)=eval(fai‎); end end‎A=ff*(H) ‎*inv(H*(H)‎ syms x; ‎f=0; fr i=‎1:(m+1) f=‎f+A(i)*x^(‎i-1); end ‎f plt(xx,f‎f, * ) hld‎nezplt(f‎,[xx(1)‎,xx(n)])‎四、结果 sa‎v e and run‎之后:请‎输入插值节点 as ‎[x1,x2.‎..] [-3 -2‎-1 0 1 2 ‎3] 请输入插值节点‎处对应的函数值 as‎[f1,f2‎...] [-‎1.76 0.42 ‎1.2‎1.341.‎432.25‎4.38]‎请输入要求的插值次‎数m=3 f =1‎33/100+121‎469856021/‎3518437208‎8832*x-804‎2142191733‎/450359 96‎27370496*x‎^2+1020815‎915537309/‎9007199254‎740992*x^3‎五、拓展:‎最小二乘法计‎算方法比较简单,是实‎际中常用的一种方法,‎但是必须经计算机来实‎现,如果要保证精度则‎需要对大量数据进行拟‎合,计算量很大。

数值分析上机题目

数值分析上机题目

数值分析上机题目4(总21页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--实验一实验项目:共轭梯度法求解对称正定的线性方程组 实验内容:用共轭梯度法求解下面方程组(1) 123421003131020141100155x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪=⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 迭代20次或满足()(1)1110k k x x --∞-<时停止计算。

编制程序:储存m 文件function [x,k]=CGmethod(A,b)n=length(A);x=2*ones(n,1);r=b-A*x;rho=r'*r; k=0;while rho>10^(-11) & k<1000 k=k+1; if k==1 p=r; elsebeta=rho/rho1; p=r+beta*p; end w=A*p;alpha=rho/(p'*w); x=x+alpha*p; r=r-alpha*w; rho1=rho;rho=r'*r; end运行程序: clear,clcA=[2 -1 0 0;-1 3 -1 0;0 -1 4 -1;0 0 -1 5]; b=[3 -2 1 5]'; [x,k]=CGmethod(A,b)运行结果: x =(2) Ax b =,A 是1000阶的Hilbert 矩阵或如下的三对角矩阵, A[i,i]=4,A[i,i-1]=A[i-1,i]=-1,i=2,3,..,n b[1]=3, b[n]=3, b[i]=2,i=2,3,…,n-1迭代10000次或满足()()710k k r b Ax -=-≤时停止计算。

编制程序:储存m 文件function [x,k]=CGmethod_1(A,b) n=length(A);x(1:n,1)=0;r=b-A*x;r1=r; k=0;while norm(r1,1)>10^(-7)&k<10^4 k=k+1; if k==1 p=r; elsebeta=(r1'*r1)/(r'*r);p=r1+beta*p; end r=r1; w=A*p;alpha=(r'*r)/(p'*w); x=x+alpha*p; r1=r-alpha*w; end运行程序: clear,clc n=1000; A=hilb(n); b=sum(A')';[x,k]=CGmethod(A,b)实验二1、 实验目的:用复化Simpson 方法、自适应复化梯形方法和Romberg 方法求数值积分。

数值分析计算实习题

数值分析计算实习题

插值法1.下列数据点的插值x 0 1 4 9 16 25 36 49 64y 0 1 2 3 4 5 6 7 8可以得到平方根函数的近似,在区间[0,64] 上作图.(1)用这9 个点作8 次多项式插值Ls(x).(2)用三次样条( 第一边界条件)程序求S(x).从得到结果看在[0,64] 上,哪个插值更精确;在区间[0,1] 上,两种插值哪个更精确解:(1) 拉格朗日插值多项式,求解程序如下syms x l;x1=[0 1 4 9 16 25 36 49 64]; y1=[0 1 2 3 4 5 6 7 8]; n=length(x1);Ls=sym(0);for i=1:nl=sym(y1(i));for k=1:i-1l=l*(x-x1(k))/(x1(i)-x1(k));endfor k=i+1:n l=l*(x-x1(k))/(x1(i)-x1(k));endLs=Ls+l; endLs=simplify(Ls) % 为所求插值多项式Ls(x).输出结果为Ls = -/*xA2+95549/72072*x-1/00*xA8-2168879/0*xA4+19/0*xA7+657859/*xA3+33983/ 0*xA5-13003/00*xA6(2) 三次样条插值,程序如下x1=[0 1 4 9 16 25 36 49 64];y1=[0 1 2 3 4 5 6 7 8];x2=[0:1:64];y3=s plin e(x1,y1,x2);p=po Iyfit(x2,y3,3); % 得到三次样条拟合函数S=p(1)+p(2)*x+ p(3)*x^2+p(4)*xA3 % 得到S(x) 输出结果为:S =/6464-2399/88*x+/1984*xA2+2656867/624*xA3⑶ 在区间[0,64]上,分别对这两种插值和标准函数作图,Plot(x2,sqrt(x2),'b',x2,y2,'r',x2,y3,'y')蓝色曲线为y="X函数曲线,红色曲线为拉格朗日插值函数曲线,黄色曲线为三次样条插值曲线可以看到蓝色曲线与黄色曲线几乎重合,因此在区间[0,64] 上三次样条插值更精确。

数值分析—实验报告1

数值分析—实验报告1

wc=yi-jqz
wc = 0.00487093023460 数据分析:
表:ln(0.6)
内插
外插
x
0.4
0.5
0.7
0.7
0.8
0.9
f(x) -0.916291 -0.693147 -0.356675 -0.356675 -0.223144 -0.105361
yi
-0.50660833333333
-0.693147
-0.356675
试用 Lagrange 插值多项式来计算 ln(0.6)的近似值并估计误差。
运行结果:
format long
x=[0.40 0.50 0.70];y=[-0.916291 -0.693147
-0.356675];xin=0.6;yi=lg201541110131(x,y,xin)
实验仪器:
1、支持 Intel Pentium Ⅲ及其以上 CPU,内存 256MB 以上、硬盘 1GB 以上容量的微机; 软件配
有 Windows98/2000/XP 操作系统及 MATLAB 软件等。
2、了解 MATLAB 等软件的特点及系统组成,在电脑上操作 MATLAB 等软件。
实验内容、步骤及程序: 一、Lagrange 插值函数 程序: function yi=lg201541110131(x,y,xin) n=length(x); p=zeros(1,n); for k=1:n
一阶均差
2.23144000000000 -1.83026666666667
1.68236000000000
0
0
0
二阶均差
三阶均差
-0.916291000000000

数值分析计算方法

数值分析计算方法
}
void main(void)
{
double fa=fc(1),fb=fc(3),a=1,b=3,f,x0;
int k=0;
for(;b>a&&b-a>=pow(10,-4)*0.5;)
{
仁fc((a+b)/2);
if(仁=0)
{ x0=(a+b)/2; break;
}Байду номын сангаас
else if(fa*f<0)
{
double y;
y=pow((3*x+1),1.0/3);
return y;
}
double Derivative1(double x)
{
double y;
y=pow((3*x+1),-2.0/3);
return y;
} double Iterate2(double x) {
double y;
y=(1-x*x*x)/3.0;
1.19 817
1.23223
作五次插值,并求x1=0.46,x2=0.55,x3=0.60时的函数近似值.
1■实验目的:通过拉格朗日插值和牛顿插值的实例,了解两种求解方法,并分析 各自的优缺点。
2.算法描述:
3.源程序:
拉格朗日插值:
#include<stdio.h>
#define k2
void main()
三•实验三:分别用复化梯形公式和复化辛卜生公式计算f(x)=s in( x)/x的积分, 并与准确值比较判断精度。
1■实验目的:通过实例体会各种算法的精度。熟练掌握复化梯形,复化辛普森, 复化柯特斯求积方法的程序。

数值分析拉格朗日插值法上机实验报告

数值分析拉格朗日插值法上机实验报告
Input n:3
X[0]: 1
x[1]:-1
x[2]:2
y[0]:0
y[1]:-3
y[2]:4
Input xx:
x二,y=
3
拉格朗日插值模型简单,结构紧凑,是经典的插值法。但是由于拉格 朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新 计算。且当增大插值阶数时容易出现龙格现象。
在物理化学,资产价值鉴定工作和计算某一时刻的卫星坐标和钟差等 这些方面可以应用Lagrange插值。采用拉格朗日插值法计算设备等 功能重置成本,计算精度较高,方法快捷。但是这方法只能针对可比 性较强的标准设备,方法本身也只考虑了单一功能参数,它的应用范 围因此受到了一定的限制。作为一种探索,我们可以将此算法以 及其它算法集成与计算机评估分析系统中,作为传统评估分析方法的 辅助参考工具,以提高资产价值鉴定工作的科学性和准确性。
int i, j ;
float *a,yy二;/*a作为临时变量,记录拉格朗日插值多项*/
a= (f I oat*) ma I loc (n*s i zeof (f I oat));
for(i=0;i <=n-1;i++)
{
a[i]=y[i];
for(j=0;j<=n-1;j++)
if (j! = i)
{
pr i ntf (Error! The vaIue of n must in (0,20).);
getch () ; return 1 ;
}
for (i=0;i<=n-1;i++)
{
抽潼晴龙學扌追???探
scanf (%f, &x[i]);
)

数值分析大作业(牛顿下山法,拉格朗日法,切比雪夫法)及Matlab程序

数值分析大作业(牛顿下山法,拉格朗日法,切比雪夫法)及Matlab程序

课程设计课程名称:数值分析设计题目:学号:姓名:完成时间:2014.11.18题目一: 解线性方程组的直接法 设方程组Ax b =,其中250002511125555111x x x x x x A x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 矩阵中10.1(0,1,,5)k x k k =+=,b 由相应的矩阵元素计算,使解向量(1,1,,1)T x =。

(1) A 不变,对b 的元素6b 加一个扰动410-,求解方程组;(2) b 不变,对A 的元素22a 和66a 分别加一个扰动610-,求解方程组; (3) 对上述两种扰动方程组的解做误差分析。

一.数学原理:本计算采用直接法中的列主元高斯消元法,高斯列主元消元法原理如下: 1、设有n 元线性方程组如下:1111n n nn a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭1nx x ⎛⎫ ⎪ ⎪ ⎪⎝⎭=1nb b ⎛⎫ ⎪ ⎪ ⎪⎝⎭2、第一步:如果a11!=0, 令l i1= ai1/a11, I= 2,3,……,n用(-li1)乘第一个方程加到第i 个方程上,得同解方程组:a (1)11 a (1)12 . . . a (1)1nx 1 b (1)1 a (1)21 a (1)22 . . . a (1)2n x 2 b (1)2 . . . . . . . = . a (1)n-11 a (1)n-12 . . a (1)n-1n x n-1 b (1)n-1 a (1)n1 a (1)n2 . . . a (1)nn x n b (1)n简记为:A (2) x = b (2) 其中a (2)ij = a (1)ij – l i1 * a (1)1j , I ,j = 2,3,..,nb (2)I = b (1)I – l i1 * b (1)1 , I = 2,3,...,n 第二步:如果a (2)22 != 0,令l i2= a (2)i2/a (2)22, I= 3,……,n依据同样的原理,对矩阵进行化间(省略),依次下去,直到完成!最后,得到上三角方程组:a(1)11 a(1)12. . . a(1)1nx1b(1)10 a(1)22 . . . a(1)2nx2b(1)2. . . . . . . = .0 0 . . a(n-1)n-1n xn-1b(n-1)n-10 0 . . . a(n)nn xnb(n)n简记为:A(n) x = b(n)最后从方程组的最后一个方程进行回代求解为:Xn = b(n) / a(n)nnXi = ( b(k)k- ∑ a(k)kj x j ) / a(k)kk二.解题过程:1.由题中所给条件可求出b。

数值分析实验,用程序实现Hermite插值法

数值分析实验,用程序实现Hermite插值法

《数值分析》实验报告实验序号:实验六 实验名称: Hermite 插值法1. 实验目的:学会Hermite 插值法,并应用该算法于实际问题.2. 实验内容:求一个函数ϕ(x )用来近似函数f (x ),用分段三次Hermit 插值的方法来求解近似函数ϕ(x )并画出近似函数图像及原函数图像。

设在区间[a,b]上,给定n+1个插值节点b x x x x a n =<<<<=...210和相应的函数值n y y y ,...,,10以及一阶导数值''1'0,...,,ny y y ,求一个插值函数)(x H ,满足以下条件: (1)),...,2,1,0()(,)(''n i y x H y x H i i i i === (2) )(x H 在每一个小区间[1,+j j x x ]上是三次多项式。

对于给定函数11-,2511)(2≤≤+=x x x f 。

在区间[]11-,上画出f (x )和分段三次Hermit 插值函数)(x H 的函数图像。

3. 实验分析:算法分析:1. 分段三次Hermit 插值的算法思想:分段三次Hermit 插值的做法是在每一个小区间上作三次Hermit 插值,因此在每一个插值节点上都需要构造两个插值基函数)(),(x H x h i i ,然后再作它们的线性组合。

分段三次Hermit 插值基函数如下:⎪⎩⎪⎨⎧≤≤----+=其它 0 ))(21()(1021010100x x x x x x x x x x x x h ⎪⎩⎪⎨⎧≤≤---=其它 0 ))(()(10210100x x x x x x x x x x H1,...,2,1 0 ))(21( ))(21()(1211112111-=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<----+≤≤----+=++++---n i x x x x x x x x x x x x x x x x x x x x x x x h i i i i i i i i i i-i i i i i i i 其它1,...,2,1 0 ))(( ))(()(12111211-=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<---≤≤---=+++--n i x x x x x x x x x x x x x x x x x x x H i i i i i i i i-i i i i i 其它⎪⎩⎪⎨⎧≤<----+=---其它 0 ))(21()(1-n 2111n n n n n n n n x x x x x x x x x x x x h ⎪⎩⎪⎨⎧≤<---=--其它 0 ))(()(1-n 211n n n n n n x x x x x x x x x x H 分段三次Hermit 插值函数是:∑=+=n i i i i i x H y x h y x H 0'))()(()( 4. 实验代码:// LDlg.cpp : implementation file//#include "stdafx.h"#include "L.h"#include "LDlg.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif/////////////////////////////////////////////////////////////////////////////// CAboutDlg dialog used for App Aboutclass CAboutDlg : public CDialog{public:CAboutDlg();// Dialog Data//{{AFX_DATA(CAboutDlg)enum { IDD = IDD_ABOUTBOX };//}}AFX_DATA// ClassWizard generated virtual function overrides//{{AFX_VIRTUAL(CAboutDlg)protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support //}}AFX_VIRTUAL// Implementationprotected://{{AFX_MSG(CAboutDlg)//}}AFX_MSGDECLARE_MESSAGE_MAP()};CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD){//{{AFX_DATA_INIT(CAboutDlg)//}}AFX_DATA_INIT}void CAboutDlg::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(CAboutDlg)//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)//{{AFX_MSG_MAP(CAboutDlg)// No message handlers//}}AFX_MSG_MAPEND_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CLDlg dialogCLDlg::CLDlg(CWnd* pParent /*=NULL*/): CDialog(CLDlg::IDD, pParent){//{{AFX_DATA_INIT(CLDlg)// NOTE: the ClassWizard will add member initialization here//}}AFX_DATA_INIT// Note that LoadIcon does not require a subsequent DestroyIcon in Win32m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);}void CLDlg::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(CLDlg)// NOTE: the ClassWizard will add DDX and DDV calls here//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(CLDlg, CDialog)//{{AFX_MSG_MAP(CLDlg)ON_WM_SYSCOMMAND()ON_WM_PAINT()ON_WM_QUERYDRAGICON()ON_BN_CLICKED(IDC_LARGRI, OnLargri)ON_BN_CLICKED(IDC_BUTTON2, OnButton2)ON_BN_CLICKED(IDC_HERMITE, OnHermite)//}}AFX_MSG_MAPEND_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CLDlg message handlersBOOL CLDlg::OnInitDialog(){CDialog::OnInitDialog();// Add "About..." menu item to system menu.// IDM_ABOUTBOX must be in the system command range.ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);ASSERT(IDM_ABOUTBOX < 0xF000);CMenu* pSysMenu = GetSystemMenu(FALSE);if (pSysMenu != NULL){CString strAboutMenu;strAboutMenu.LoadString(IDS_ABOUTBOX);if (!strAboutMenu.IsEmpty()){pSysMenu->AppendMenu(MF_SEPARATOR);pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);}}// Set the icon for this dialog. The framework does this automatically // when the application's main window is not a dialogSetIcon(m_hIcon, TRUE); // Set big iconSetIcon(m_hIcon, FALSE); // Set small icon// TODO: Add extra initialization herereturn TRUE; // return TRUE unless you set the focus to a control}void CLDlg::OnSysCommand(UINT nID, LPARAM lParam){if ((nID & 0xFFF0) == IDM_ABOUTBOX){CAboutDlg dlgAbout;dlgAbout.DoModal();}else{CDialog::OnSysCommand(nID, lParam);}// If you add a minimize button to your dialog, you will need the code below // to draw the icon. For MFC applications using the document/view model, // this is automatically done for you by the framework.void CLDlg::OnPaint(){if (IsIconic()){CPaintDC dc(this); // device context for paintingSendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);// Center icon in client rectangleint cxIcon = GetSystemMetrics(SM_CXICON);int cyIcon = GetSystemMetrics(SM_CYICON);CRect rect;GetClientRect(&rect);int x = (rect.Width() - cxIcon + 1) / 2;int y = (rect.Height() - cyIcon + 1) / 2;// Draw the icondc.DrawIcon(x, y, m_hIcon);}else{CDialog::OnPaint();}}// The system calls this to obtain the cursor to display while the user drags // the minimized window.HCURSOR CLDlg::OnQueryDragIcon(){return (HCURSOR) m_hIcon;}void CLDlg::OnOK(){int x00=300,y00=350,i,j;double x;CDC *pDC=GetDC();pDC->SetMapMode(MM_LOMETRIC);pDC->SetViewportOrg(x00,y00);//画坐标轴与原函数for(i=-700; i<=700; i++){pDC->SetPixel(i,0,RGB(0,0,0));pDC->SetPixel(0,i,RGB(0,0,0));}for(x=-1; x<=1; x+=0.001){double j=400.0/(1+25*x*x);pDC->SetPixel(x*500,j,RGB(255,0,0));}pDC->TextOut(-30,-10,"0");pDC->TextOut(-30,430,"1");pDC->TextOut(490,-10,"1");pDC->TextOut(-490,-10,"-1");pDC->MoveTo(-10,680); //x箭头pDC->LineTo(0,700);pDC->MoveTo(0,700);pDC->LineTo(10,680);pDC->MoveTo(680,10); //y箭头pDC->LineTo(700,0);pDC->MoveTo(700,0);pDC->LineTo(680,-10);pDC->TextOut(-30,700,"y");pDC->TextOut(700,-10,"x");}void CLDlg::OnLargri(){int x00=300,y00=350,i,j;double x;CDC *pDC=GetDC();pDC->SetMapMode(MM_LOMETRIC);pDC->SetViewportOrg(x00,y00);//画坐标轴for(i=-700; i<=700; i++){pDC->SetPixel(i,0,RGB(0,0,0));pDC->SetPixel(0,i,RGB(0,0,0));}double yx[]={-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1}; pDC->TextOut(-30,-10,"0");pDC->TextOut(-30,430,"1");pDC->TextOut(490,-10,"1");pDC->TextOut(-490,-10,"-1");pDC->MoveTo(-10,680); //x箭头pDC->LineTo(0,700);pDC->MoveTo(0,700);pDC->LineTo(10,680);pDC->MoveTo(680,10); //y箭头pDC->LineTo(700,0);pDC->MoveTo(700,0);pDC->LineTo(680,-10);pDC->TextOut(-30,700,"y");pDC->TextOut(700,-10,"x");// 拉格朗日差值的函数double yy[12],lx[12],ly[12];double l_fenzi[12],l_fenmu[12];double l_x,l_y;for(i=0; i<=10; i++){yy[i]=1.0/(1+25*yx[i]*yx[i]);for(i=0; i<=10; i++){l_fenmu[i]=1.0;for(j=0; j<=10; j++){if(i!=j)l_fenmu[i]=l_fenmu[i]*(yx[i]-yx[j]);}}double qq,pp;for(qq=-1; qq<=1; qq+=0.0003){for(i=0; i<=10; i++){l_fenzi[i]=1.0;for(j=0; j<=10; j++){if(i!=j)l_fenzi[i]=l_fenzi[i]*(qq-yx[j]);}}pp=0;for(i=0; i<=11; i++){pp=pp+1.0/(1+25*yx[i]*yx[i])*l_fenzi[i]/l_fenmu[i];}pDC->SetPixel(qq*500,pp*390+5,RGB(132,112,225));}void CLDlg::OnButton2(){int x00=300,y00=350,i,j;double x;CDC *pDC=GetDC();pDC->SetMapMode(MM_LOMETRIC);pDC->SetViewportOrg(x00,y00);//画坐标轴与原函数for(i=-700; i<=700; i++){pDC->SetPixel(i,0,RGB(0,0,0));pDC->SetPixel(0,i,RGB(0,0,0));}double yx[]={-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1}; double yy[14];for(i=0; i<=10; i++){yy[i]=1.0/(1+25*yx[i]*yx[i]);}pDC->TextOut(-30,-10,"0");pDC->TextOut(-30,430,"1");pDC->TextOut(490,-10,"1");pDC->TextOut(-490,-10,"-1");pDC->MoveTo(-10,680); //x箭头pDC->LineTo(0,700);pDC->MoveTo(0,700);pDC->LineTo(10,680);pDC->MoveTo(680,10); //y箭头pDC->LineTo(700,0);pDC->MoveTo(700,0);pDC->LineTo(680,-10);pDC->TextOut(-30,700,"y");pDC->TextOut(700,-10,"x");// 线性分段差值的图像CPen pen;CPen*oldpen;pen.CreatePen(PS_SOLID,5,RGB(0,0,0));oldpen=pDC->SelectObject(&pen);for(i=0; i<10; i++){pDC->MoveTo(yx[i]*480,yy[i]*400);pDC->LineTo(yx[i+1]*480,yy[i+1]*400); }}void CLDlg::OnHermite(){int x00=300,y00=350,i,j;double x;CDC *pDC=GetDC();pDC->SetMapMode(MM_LOMETRIC);pDC->SetViewportOrg(x00,y00);//画坐标轴与原函数for(i=-700; i<=700; i++){pDC->SetPixel(i,0,RGB(0,0,0));pDC->SetPixel(0,i,RGB(0,0,0));}double yx[]={-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1};double yy[12];for(i=0; i<=10; i++){yy[i]=1.0/(1+25*yx[i]*yx[i]);}pDC->TextOut(-30,-10,"0");pDC->TextOut(-30,430,"1");pDC->TextOut(490,-10,"1");pDC->TextOut(-490,-10,"-1");pDC->MoveTo(-10,680); //x箭头pDC->LineTo(0,700);pDC->MoveTo(0,700);pDC->LineTo(10,680);pDC->MoveTo(680,10); //y箭头pDC->LineTo(700,0);pDC->MoveTo(700,0);pDC->LineTo(680,-10);pDC->TextOut(-30,700,"y");pDC->TextOut(700,-10,"x");//分段三次Hermite差值的函数double x0,x1,yd1,yd0,y1,y0;for(i=0; i<10; i++){x0=yx[i],x1=yx[i+1];y0=1.0/(1+25*x0*x0);y1=1.0/(1+25*x1*x1);yd0=-(50*x0)*1.0/((1+25*x0*x0)*(1+25*x0*x0));yd1=-(50*x1)*1.0/((1+25*x1*x1)*(1+25*x1*x1));for(double qq=x0; qq<x1; qq+=0.005){double pp= y0*(1+2*(qq-x0)/(x1-x0)) * (qq-x1)/(x0-x1) * (qq-x1)/(x0-x1)+y1*(1+2*(qq-x1)/(x0-x1)) * (qq-x0)/(x1-x0) * (qq-x0)/(x1-x0)+yd0*(qq-x0) * (qq-x1)/(x0-x1) * (qq-x1)/(x0-x1)+yd1*(qq-x1) * (qq-x0)/(x1-x0) * (qq-x0)/(x1-x0);pDC->SetPixel(qq*500,pp*400,RGB(225,185,15));}}}5.实验截图6. 实验结果分析:通过本次实验我对分段三次Hermit插值有了更深刻更全面的掌握,它在给定了节点处的函数值和导数值以后,构造了一个整体上具有一阶连续微商的插值函数。

《数值分析》上机实验报告

《数值分析》上机实验报告

数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。

1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。

当前后两个的差<=ε时,就认为求出了近似的根。

本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码:#include<stdio.h>#include<math.h>main(){double x2,f,f1;double x1=1.9; //取初值为1.9do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14;f1=7*pow(x2,6)-4*28*pow(x2,3);x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB上机程序function y=Newton(f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。

数值分析实验(4)

数值分析实验(4)

页脚内容1实验四 数值积分与数值微分专业班级:信计131班 姓名:段雨博 学号:2013014907 一、实验目的1、熟悉matlab 编程。

2、学习数值积分程序设计算法。

3、通过上机进一步领悟用复合梯形、复合辛普森公式,以及用龙贝格求积方法计算积分的原理。

二、实验题目 P1371、用不同数值方法计算积分049xdx =-⎰。

(1)取不同的步长h .分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确值比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善?(2)用龙贝格求积计算完成问题(1)。

三、实验原理与理论基础1.1复合梯形公式及其复合辛普森求解[]()()()11101()()222n n n k k k k k h h T f x f x f a f x f b --+==⎡⎤=+=++⎢⎥⎣⎦∑∑误差关于h 的函数:()()212n b a R fh f η-''=-页脚内容2复合辛普森公式:()()()()111/201426n n n k k k k h S f a f x f x f b --+==⎡⎤=+++⎢⎥⎣⎦∑∑误差关于h 的函数:()()441802n n b a h R f I S f η-⎛⎫=-=- ⎪⎝⎭1.2龙贝格求积算法:龙贝格求积公式是梯形法的递推化,也称为逐次分半加速法,它是在梯形公式、辛普森公式和柯特斯公式之间的关系的基础上,构造出一种计算积分的方法,同时它有在不断增加计算量的前提下提高误差的精度的特点。

计算过程如下:(1)取0,k h b a ==-,求:()()()[]()00.,.2hT f a f b k a b =+→⎡⎤⎣⎦令k 1记为区间的二分次数 (2)求梯形值02k b a T -⎛⎫⎪⎝⎭即按递推公式12102122n n n k k h T T f x -+=⎛⎫=+ ⎪⎝⎭∑计算0k T .(3)求加速值,按公式()()()111444141m m k k k mm m m m T T T +--=---逐个求出T 表的地k 行其余各元素()()1,2,,k j j T j k -=(4)若()()001k k T T ε--<(预先给定的精度),则终止计算,并取()()0;1k T I k k ≈+→否则令转(2)继续计算。

数值分析matlab数值试验

数值分析matlab数值试验

实验一:误差传播及算法稳定性实验1.21、试验程序:function charpt1_2% 误差传播及算法稳定性实验clc;clear all;promps={'请选择递推关系式,若选E1=1/e,En=1-nEn-1,请输入1,若选EN=0,En-1=(1-En)/n,请输入2:'};I=1;while Iresult=inputdlg(promps,'charpt1_2',1,{'1'});Nb=str2num(char(result));if ((Nb~=1)|(Nb~=2))I=0;endend%%%%%%%%%%%%%%%%%I=1;while Iresult=inputdlg('请输入递推步数 n>=1:','charpt1_2',1,{'10'});steps=str2num(char(result));if (steps>0)&(steps==fix(steps)) %% 如果steps大于0且为整数I=0;endend%%%%%%%%%%%%%%%%%result=inputdlg('请输入计算中所采用的有效数字位数n:','charpt1_2',1,{'5'});Sd=str2num(char(result));format long %% 设置显示精度result=zeros(1,steps); %% 存储计算结果err=result; %% 存储计算的绝对误差值func=result; %% 存储用quadl计算的近似值%%%%%%%%%%%%%%%%%%% 用quadl计算积分近似值for n=1:stepsfun=@(x) x.^n.*exp(x-1);func(n)= quadl(fun,0,1);end%%%%%%%%%%%%%%%%%%% 用自定义算法计算if(Nb==1)digits(Sd);result(1)=subs(vpa(1/exp(1)));for n=2:stepsresult(n)=subs(vpa(1-n*result(n-1)));enderr=abs(result-func);elseif(Nb==2)digits(Sd);result(steps)=0;for n=(steps-1):-1:1result(n)=subs(vpa((1-result(n+1))/(n+1)));enderr=abs(result-func);end%%%%%%%%%%%%%%%%%%% 输出结果数值及图像clf;disp('库函数计算值:');disp(sprintf('%e ',func));disp('递推值:');disp(sprintf('%e ',result));disp('误差值:');disp(sprintf('%e ',err));if(Nb==1)plot([1:steps],result,'-rs',[1:steps],func,':k*',[1:steps],err,'-.bo' );elseif(Nb==2)plot([steps:-1:1],result,'-rs',[steps:-1:1],func,':k*',[steps:-1:1],e rr,'-.bo');endxlabel('第n步');ylabel('计算值');legend('自定义算法结果','库函数计算结果','误差值');grid on2、试验结果:选择递推关系式1,递推步数为10,有效数字为5位,计算结果如下:库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-0011.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002递推值:3.678800e-001 2.642400e-001 2.072800e-001 1.708800e-001 1.456000e-0011.264000e-001 1.152000e-001 7.840000e-0022.944000e-001 -1.944000e+000误差值:5.588280e-007 1.117662e-006 3.352927e-006 1.341222e-0056.705713e-005 4.023702e-004 2.816427e-003 2.253226e-002 2.027877e-001 2.027877e+00012345678910第n 步计算值选择递推关系式2,递推步数为10,有效数字为5位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678800e-001 2.642400e-001 2.072800e-001 1.708900e-001 1.455300e-001 1.267900e-001 1.125000e-001 1.000000e-001 1.000000e-001 0.000000e+000 误差值:5.588280e-007 1.117662e-006 3.352927e-006 3.412224e-006 2.942873e-006 1.237016e-005 1.164270e-004 9.322618e-004 8.387707e-003 8.387707e-002第n 步计算值选择递推关系式1,递推步数为10,有效数字为6位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678790e-001 2.642420e-001 2.072740e-001 1.709040e-001 1.454800e-001 1.271200e-001 1.101600e-001 1.187200e-001 -6.848000e-002 1.684800e+000 误差值:4.411720e-007 8.823378e-007 2.647073e-006 1.058778e-0055.294287e-005 3.176298e-004 2.223573e-003 1.778774e-002 1.600923e-001 1.600923e+00012345678910第n 步计算值选择递推关系式2,递推步数为10,有效数字为6位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678800e-001 2.642410e-001 2.072770e-001 1.708930e-001 1.455360e-001 1.267860e-001 1.125000e-001 1.000000e-001 1.000000e-001 0.000000e+000 误差值:5.588280e-007 1.176622e-007 3.529274e-007 4.122239e-007 3.057127e-006 1.637016e-005 1.164270e-004 9.322618e-004 8.387707e-003 8.387707e-002第n 步计算值3、结果分析:很明显第二种递推式结果要比第一种好,式1在第七步后有明显误差,而式2在第三步后基本与近似解一致。

数值分析实验报告

数值分析实验报告

《数值分析》实验报告学院:计算机科学与软件学院姓名:XXX班级:计算机XX班学号:XXXXXX实验一:舍入误差与数值稳定性实验目的:1、 通过上机编程,复习巩固以前所学程序设计语言;2、 通过上机计算,了解舍入误差所引起的数值不稳定性。

3、 通过上机计算,了解运算次序对计算结果的影响,从而尽量避免大数吃小数的现象。

实验内容:用两种不同的顺序计算644834.11000012≈∑=-n n ,分析其误差的变化。

实验流程图:实验源程序:#include <stdio.h>#include <math.h>void main(){ int i;float s1=0,s2=0,d1,d2;for (i=1;i<=10000;i++)s1=s1+1.0f/(i*i);for (i=10000;i>=1;i--)s2=s2+1.0f/(i*i);d1=(float)(fabs(1.644834-s1));d2=(float)(fabs(1.644834-s2));printf("正向求和结果为%f\n 误差为%f\n\n",s1,d1);printf("反向求和结果为%f\n 误差为%f\n\n",s2,d2);if(d1<d2)printf("正向求和误差小于负向求和误差\n");else if(d1==d2)printf("正向求和误差等于负向求和误差\n"); elseprintf("正向求和误差大于负向求和误差\n");}实验结果:实验分析:第一次做数值实验,又一次使用C语言编程,没有了刚学习C语言的艰难,能够将实验步骤转换成流程图并编写出完整的实验代码,在经过多次调试、改正后得到正确的程序和结果。

这个实验较简单,计算误差时如果输入数据有误差,而在计算过程中舍入误差不增长,则称此算法是稳定的,否则称此算法是数值不稳定的,减少运算次数可以减小舍入误差。

哈工大-数值分析上机实验报告

哈工大-数值分析上机实验报告

Emax= 0.70770085900503,0 此时由 Emax 可以看出,不选主元的结果应该可以说是不正确了,这是由机器误差引 起的。 当 10 20 时,不选主元和选主元的计算结果如下 NaN NaN NaN Emax=NaN, 0 不选主元时,程序报错: Warning: Divide by zero. 。这是因为机器计算的最小精度为 10-15,所以此时的 10 20 就认为是 0,故出现了错误现象。而选主元时则没有这种现象, 而且由 Emax 可以看出选主元时的结果应该是精确解。
x3 x 1 0
x0=1; x0=0.45, x0=0.65;
( x 1) 2 (2 x 1) 0
当 x0=0.45 时,计算结果为 x= 0.49999999999983; f(x)= -8.362754932994584e-014; k=4; 由 f(x)知结果满足要求,而且又迭代次数只有 4 次看出收敛速度很快,实际上该方程确实 有真解 x=0.5。 当 x0=0.65 时,计算结果为 x= 0.50000000000000; f(x)=0; k=9; 由 f(x)知结果满足要求,实际上该方程确实有真解 x=0.5,但迭代次数增多,实际上当取 x0〉0.68 时,x≈1,就变成了方程的另一个解,这说明 Newton 法收敛与初值很有关系, 有的时候甚至可能不收敛。
实验报告
结果分析和讨论: 例 用最小二乘法处理下面的实验数据 . xi fi 3 2.01 4 2.98 5 3.50 6 5.02 7 5.47 8 6.02 9 7.05
Hale Waihona Puke 并作出 f ( x) 的近似分布图。 分别采用一次,二次和五次多项式来拟合数据得到相应的拟合多项式为: y1=-0.38643+0.82750x ; y2=-1.03024+1.06893x-0.02012x2; y5=-50.75309+51.53527x-19.65947x2+3.66585x3-0.32886x4+0.01137x5; 分别作出它们的曲线图,图中点划线为 y1 曲线,实线为 y2 曲线,虚线为 y5 曲线。’x’为 给定的数据点。从图中可以看出并不是多项式次数越高越好,次数高了,曲线越能给定点 处和实际吻合,但别的地方就很差了。因此,本例选用一次和两次的多项式拟合应该就可 以了。

数值分析实验作业,gauss消去法的数值稳定性分析

数值分析实验作业,gauss消去法的数值稳定性分析

实验3.1 Gauss 消去法的数值稳定性试验实验目的:观察和理解Gauss 消元过程中出现小主元(即)(k kka 很小)时引起的方程组解的数值不稳定性。

实验内容:求解方程组b Ax =,其中(1)⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⨯=11212592.1121-130.6-291.51314.59103.015-1A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2178.4617.591b ; (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=2010151526990999999999.23107102A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=15019000000000.582b .实验要求:(1) 计算矩阵的条件数,判断系数矩阵是良态的还是病态的。

(2) 用Gauss 列主元消去法求得L 和U 及解向量421,R x x ∈.(3) 用不选主元的Gauss 消去法求得L ~和U ~及解向量421~,~R x x ∈.(4) 观察小主元并分析其对计算结果的影响.程序如下:计算矩阵条件数及Gauss 列主元消去法:format longengA1=[0.3e-15 59.14 3 1;5.291 -6.130 -1 2;11.2 9 5 2;1 2 1 1]; b1=[59.17;46.78;1;2]; n=4;k2=cond(A1) %k2为矩阵的条件数;for k=1:n-1a=max(abs(A1(k:n,k))); [p,k]=find(A1==a); B=A1(k,:);c=b1(k);A1(k,:)=A1(p,:);b1(k)=b1(p); A1(p,:)=B;b1(p)=c; if A1(k,k)~=0A1(k+1:n,k)=A1(k+1:n,k)/A1(k,k);A1(k+1:n,k+1:n)=A1(k+1:n,k+1:n)-A1(k+1:n,k)*A1(k,k+1:n); else break end endL1=tril(A1,0); for i=1:n L1(i,i)=1; end L=L1U=triu(A1,0) for j=1:n-1b1(j)=b1(j)/L(j,j);b1(j+1:n)=b1(j+1:n)-b1(j)*L(j+1:n,j); endb1(n)=b1(n)/L(n,n); for j=n:-1:2b1(j)=b1(j)/U(j,j);b1(1:j-1)=b1(1:j-1)-b1(j)*U(1:j-1,j); endb1(1)=b1(1)/U(1,1); x1=b1运行结果如下: K2=68.43;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⨯=-14929.00202.00893.0011755.04724.00011079.2600118L⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=801.0000231.1835.2001314.5902592.11U 1x =[18.9882;3.3378;-34.747;-33.9865] 不选主元的Gauss 消去法程序:clearformat longengA1=[0.3e-15 59.14 3 1;5.291 -6.130 -1 2;11.2 9 5 2;1 2 1 1]; b1=[59.17;46.78;1;2]; n=4;for k=1:n-1A1(k+1:n,k)=A1(k+1:n,k)/A1(k,k);A1(k+1:n,k+1:n)=A1(k+1:n,k+1:n)-A1(k+1:n,k)*A1(k,k+1:n); endL1=tril(A1,0); for i=1:n L1(i,i)=1; end L=L1U=triu(A1,0) for j=1:n-1b1(j)=b1(j)/L(j,j);b1(j+1:n)=b1(j+1:n)-b1(j)*L(j+1:n,j); endb1(n)=b1(n)/L(n,n); for j=n:-1:2b1(j)=b1(j)/U(j,j);b1(1:j-1)=b1(1:j-1)-b1(j)*U(1:j-1,j); endb1(1)=b1(1)/U(1,1); x1=b1程序运行结果如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯⨯=10189.010333.3011168.21033.3700110637.170001~151515L⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--⨯-⨯-⨯-⨯=-5.000816010637.171091.5210043.101314.59103.0~15151815U ]0;0;0005.1;6848.23[~1=x同理可得2A 对应的系数矩阵条件数及Gauss 列主元消去法求解结果: K2=8.994;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⨯=1333.04.0001104.0-3.0-0015.0000112-L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=36667.300030.26005.155.2010710U ]0.1;;0.1;0.1;10444.0[152-⨯=-x不选主元的Gauss 消去法结果:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯=1400.0109999.0-001104998.2-5.00013.0-0001~1212L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯⨯--=-3667.3000107495.5109987.14003.26100.1010710~121212U ]000145.1;99994.0;000.1;1045.1[~52-⨯-=-x实验4.5 三次样条插值函数的收敛性问题提出:多项式插值不一定收敛的,即插值的节点多,效果不一定就好。

(完整word版)matlab数值分析例题

(完整word版)matlab数值分析例题

1、 在MATLAB 中用Jacobi 迭代法讨论线性方程组,1231231234748212515x x x x x x x x x -+=⎧⎪-+=-⎨⎪-++=⎩(1)给出Jacobi 迭代法的迭代方程,并判定Jacobi 迭代法求解此方程组是否收敛。

(2)若收敛,编程求解该线性方程组.解(1):A=[4 -1 1;4 —8 1;-2 1 5] %线性方程组系数矩阵A =4 -1 1 4 -8 1 —2 1 5>> D=diag(diag(A))D =4 0 0 0 —8 0 0 0 5〉〉 L=—tril (A,-1) % A 的下三角矩阵L =0 0 0 —4 0 0 2 —1 0〉〉U=-triu(A,1)% A的上三角矩阵U =0 1 —10 0 —10 0 0B=inv(D)*(L+U)% B为雅可比迭代矩阵B =0 0.2500 —0。

25000.5000 0 0.12500。

4000 —0.2000 0〉〉r=eigs(B,1)%B的谱半径r =0。

3347 〈1Jacobi迭代法收敛。

(2)在matlab上编写程序如下:A=[4 —1 1;4 -8 1;—2 1 5];〉〉b=[7 —21 15]';>〉x0=[0 0 0]’;〉〉[x,k]=jacobi(A,b,x0,1e—7)x =2。

00004.00003。

0000k =17附jacobi迭代法的matlab程序如下:function [x,k]=jacobi(A,b,x0,eps)% 采用Jacobi迭代法求Ax=b的解%A为系数矩阵%b为常数向量%x0为迭代初始向量%eps为解的精度控制max1= 300; %默认最多迭代300,超过300次给出警告D=diag(diag(A));%求A的对角矩阵L=-tril(A,—1); %求A的下三角阵U=—triu(A,1); %求A的上三角阵B=D\(L+U);f=D\b;x=B*x0+f;k=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;k=k+1;if(k〉=max1)disp(’迭代超过300次,方程组可能不收敛’);return;endend2、设有某实验数据如下:(1)在MATLAB中作图观察离散点的结构,用多项式拟合的方法拟合一个合适的多项式函数;(2)在MATLAB中作出离散点和拟合曲线图。

工程数值分析实验报告(3篇)

工程数值分析实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,对工程实际问题进行建模、求解和分析。

通过学习数值方法的基本原理和算法,提高解决实际工程问题的能力。

二、实验内容1. 线性方程组的求解2. 矩阵特征值与特征向量的计算3. 函数插值与曲线拟合4. 数值微分与积分三、实验步骤1. 线性方程组的求解(1)编写程序实现高斯消元法、克劳斯消元法和列主元素法(2)设计输入界面,用户输入增广矩阵的行和列,填写系数及常数项(3)分别运用三种方法求解线性方程组,比较求解结果的正确性、数值稳定性和计算效率2. 矩阵特征值与特征向量的计算(1)编写程序实现幂法、QR算法和逆幂法(2)设计输入界面,用户输入矩阵的行和列,填写矩阵元素(3)分别运用三种方法计算矩阵的特征值与特征向量,比较求解结果的准确性和计算效率3. 函数插值与曲线拟合(1)编写程序实现拉格朗日插值、牛顿插值和样条插值(2)设计输入界面,用户输入函数的自变量和函数值,选择插值方法(3)分别运用三种方法进行函数插值,比较插值结果的准确性和光滑性4. 数值微分与积分(1)编写程序实现有限差分法、龙格-库塔法和辛普森法(2)设计输入界面,用户输入函数的导数或积分的上下限,选择数值方法(3)分别运用三种方法进行数值微分和积分,比较求解结果的准确性和计算效率四、实验结果与分析1. 线性方程组的求解通过实验,我们发现列主元素法在求解线性方程组时具有较好的数值稳定性,计算效率也较高。

而高斯消元法和克劳斯消元法在处理大型稀疏矩阵时存在一定的困难。

2. 矩阵特征值与特征向量的计算实验结果表明,QR算法和逆幂法在计算矩阵特征值与特征向量时具有较高的准确性和计算效率。

幂法在处理大型稀疏矩阵时表现出较好的性能。

3. 函数插值与曲线拟合在函数插值和曲线拟合实验中,样条插值方法具有较好的准确性和光滑性。

拉格朗日插值和牛顿插值方法在处理简单函数时表现良好,但在处理复杂函数时可能存在精度问题。

《数值分析》课程实验报告范文

《数值分析》课程实验报告范文

《数值分析》课程实验报告范文《数值分析》课程实验报告姓名:学号:学院:机电学院日期:2022年某月某日目录实验一函数插值方法1实验二函数逼近与曲线拟合5实验三数值积分与数值微分7实验四线方程组的直接解法9实验五解线性方程组的迭代法15实验六非线性方程求根19实验七矩阵特征值问题计算21实验八常微分方程初值问题数值解法24实验一函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。

试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。

实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。

在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t的拟合曲线。

t(分)051015202530354045505501.272.162.863.443.874.154.374.51 4.584.024.64二、要求1、用最小二乘法进行曲线拟合;2、近似解析表达式为;3、打印出拟合函数,并打印出与的误差,;4、另外选取一个近似表达式,尝试拟合效果的比较;5、某绘制出曲线拟合图。

三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线代数方程组;3、探索拟合函数的选择与拟合精度间的关系四、实验步骤:第一步先写出线性最小二乘法的M文件functionc=lpoly(某,y,m)n=length(某);b=zero(1:m+1);f=zero(n,m+1); fork=1:m+1f(:,k)=某.^(k-1);enda=f'某f;b=f'某y';c=a\b;c=flipud(c);第二步在命令窗口输入:>>lpoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:an=-0.00240.20370.2305即所求的拟合曲线为y=-0.0024某2+0.2037某+0.2305在编辑窗口输入如下命令:>>某=[0,5,10,15,20,25,30,35,40,45,50,55];>>y=-0.0024某某.^2+0.2037某某+0.2305;>>plot(某,y)命令执行得到如下图五、实验结论分析复杂实验数据时,常采用分段曲线拟合方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验3.1编制以函数{}n kk x=危机的多项式最小二乘拟合程序,并用于对表3.11中的数据作3次取权数1i w ≡,求拟合曲线3*kk k a xφ==∑中的参数{}k a 、平方误差2σ,并作离散数据{},i i x y 的拟合曲线*()y x φ=的图形。

程序代码: x0=-1:0.5:2;y0=[-4.447 -0.452 0.551 0.048 -0.447 0.549 4.552]; n=3;alph=polyfit(x0,y0,n) %参数{a k } y=polyval(alph,x0);r=(y0-y)*(y0-y)' %平方误差2σ=r y=polyval(alph,x); x=-1:0.01:2; y=plot(x,y,'k--'); xlabel('x');ylabel('y0 * and polyfit.y--'); hold on;plot(x0,y0,'*');title('离散数据的3项拟合') gridon;实验结果:拟合函数*()y x φ=的图形:拟合曲线3*kkka xφ==∑中的参数{}k a中3210,,,a a a a依次为alph中的四个数值。

alph =1.9991 -2.9977 -0.0000 0.5491平方误差2σ=r。

r =2.1762e-005实验分析:最小二乘曲线拟合是在离散情形下的最佳平方逼近,拟合的曲线很光滑,而且所有的7个数值点均在曲线上,拟合效果很好;拟合的平方误差很小,为10-5量级。

二、实验3.2编制正交化多项式最小二乘拟合程序,并用于求解上题中的3次多项式最小二乘拟合问题,作拟合曲线的图形,计算平方误差,并与上题结果进行比较。

程序代码:x=-1:0.5:2;y=[-4.447 -0.452 0.551 0.048 -0.447 0.549 4.552];n=3;result=inputdlg({'请输入权向量w:'},'charpt-3',1,{'[1 1 1 1 1 1 1]'});w=str2num(char(result));m=length(x)-1;s1=0;s2=ones(1,m+1);v2=sum(w);d(1)=y*w';c(1)=d(1)/v2;for k=1:nxs=x.*s2.^2*w';a(k)=xs/v2;if(k==1)b(k)=0;elseb(k)=v2/v1;ends3=(x-a(k)).*s2-b(k)*s1;v3=s3.^2*w';d(k+1)=y.*s3*w';c(k+1)=d(k+1)/v3;s1=s2;s2=s3;v1=v2;v2=v3;endr=y.*y*w'-c*d'alph=zeros(1,n+1)T=zeros(n+1,n+2);T(:,2)=ones(n+1,1);T(2,3)=-a(1);if(n>=2)for k=3:n+1for i=3:k+1T(k,i)=T(k-1,i)-a(k-1)*T(k-1,i-1)-b(k-1)*T(k-2,i-2);endendendfor i=1:n+1for k=i:n+1alph(n+2-i)=alph(n+2-i)+c(k)*T(k,k+2-i);endendxmin=min(x);xmax=max(x);dx=(xmax-xmin)/(25*m);t=(xmin-dx):dx:(xmax+dx);s=alph(1);for k=2:n+1s=s.*t+alph(k);endplot(x,y,'x',t,s,'-');xlabel('x');ylabel('y');grid on;disp(alph);disp(r);实验结果:拟合曲线图形:参数{}k a 中3210,,,a a a a 依次为alph 中的四个数值:1.9991 -2.9977 -0.0000 0.5491 平方误差2σ=r :2.1762e-005实验分析:比较实验3.1和3.2的结果发现:对于同一个数据表,两种方法的拟合参数、误差均是相等的,表示这两种方法的拟合效果是一样的。

因为这个数据表不是病态的法方程组,所以没有体现出正交多项式曲线拟合的优点。

根据这两个实验代码和运算时间来看,我们在做曲线拟合时可以先初步判断数据点是否病态,若否,就直接用最小二乘法拟合。

以避免不必要的程序复杂化。

三、实验5.1 常微分方程性态和R-K 法稳定性试验实验目的:考察下面微分方程右端项中函数y 前面的参数对方程性态的影响(它可以使方程为好条件的或坏条件的)和研究计算步长对R-K 法计算稳定性的影响。

实验题目:常微分方程初值问题'1,01,(0)1,y ay ax x y ⎧=-+<<⎨=⎩其中,5050a -≤≤.其精确解为()axy x e x =+。

实验要求:本实验题都用4阶经典R-K 法计算。

(1)对参数a 分别取4个不同的数值:一个大的正值,一个小的正值,一个绝对值小的负值和一个绝对值大的负值。

取步长h=0.01,分别用经典的R-K 法计算,将四组计算结果画在同一张图上,进行比较并说明相应初值的性态。

(2)取参数a 为一个绝对值不大的负值和两个计算步长,一个步长使参数ah 在经典R-K 法的稳定域内,另一个步长在经典R-K 法的稳定域外。

分别用经典R-K 法计算并比较结果。

取全域等距的10个点上的计算值,列表说明。

程序代码(1): function charp5_1 clf;result=inputdlg({'请输入参数a:'},'charpt-5',1,{'40'});a=str2num(char(result));result=inputdlg({'请输入(0 1)之间的步长:'},'实验5.1',1,{'0.01'}); h=str2num(char(result));x=0:h:1;y=x;N=length(x);y(1)=1;func=inline('1+(y-x).*a');for n=1:N-1k1=func(a,x(n),y(n));k2=func(a,x(n)+h/2,y(n)+k1*h/2);k3=func(a,x(n)+h/2,y(n)+k2*h/2);k4=func(a,x(n)+h,y(n)+k3*h);y(n+1)=y(n)+h*(k1+2*k2+2*k3+k4)/6;endy0=log(exp(a*x)+x);result=inputdlg({'请输入参数b:'},'charpt-5',1,{'10'});b=str2num(char(result));result=inputdlg({'请输入(0 1)之间的步长:'},'实验5.1',1,{'0.01'}); h=str2num(char(result));x=0:h:1;y=x;N=length(x);y(1)=1;func=inline('1+(y-x).*b');for n=1:N-1k1=func(b,x(n),y(n));k2=func(b,x(n)+h/2,y(n)+k1*h/2);k3=func(b,x(n)+h/2,y(n)+k2*h/2);k4=func(b,x(n)+h,y(n)+k3*h);y(n+1)=y(n)+h*(k1+2*k2+2*k3+k4)/6;endy1=log(exp(b*x)+x);result=inputdlg({'请输入参数c:'},'charpt-5',1,{'-10'});c=str2num(char(result));result=inputdlg({'请输入(0 1)之间的步长:'},'实验5.1',1,{'0.01'}); h=str2num(char(result));x=0:h:1;y=x;N=length(x);y(1)=1;func=inline('1+(y-x).*c');for n=1:N-1k1=func(c,x(n),y(n));k2=func(c,x(n)+h/2,y(n)+k1*h/2);k3=func(c,x(n)+h/2,y(n)+k2*h/2);k4=func(c,x(n)+h,y(n)+k3*h);y(n+1)=y(n)+h*(k1+2*k2+2*k3+k4)/6;endy2=log(exp(c*x)+x);result=inputdlg({'请输入参数d:'},'charpt-5',1,{'-40'});d=str2num(char(result));result=inputdlg({'请输入(0 1)之间的步长:'},'实验5.1',1,{'0.01'}); h=str2num(char(result));x=0:h:1;y=x;N=length(x);y(1)=1;func=inline('1+(y-x).*d');for n=1:N-1k1=func(d,x(n),y(n));k2=func(d,x(n)+h/2,y(n)+k1*h/2);k3=func(d,x(n)+h/2,y(n)+k2*h/2);k4=func(d,x(n)+h,y(n)+k3*h);y(n+1)=y(n)+h*(k1+2*k2+2*k3+k4)/6;endy3=log(exp(d*x)+x);plot(x,y0,x,y1,x,y2,x,y3);hold on;xlabel('x');ylabel('y=log(exp(a*x)+x)');legend('y0(a=40)','y1(a=10)','y2(a=-10)','y3(a=-40)');实验结果(1):注释:由于y 轴数据差异较大,所以图形中对y 值取对数。

实验分析(1):经典R-K 算法的绝对稳定区域是 2.785h 0a -≤≤,因此当h=0.01时,a 的取值范围应该是278.50a -≤≤ 但有5050a -≤≤,因此a 的稳定区域为500a -≤≤。

相关文档
最新文档