应用题——利用线段图解决及倍差倍问题

合集下载

《运用线段图解决和差倍问题》教学设计

《运用线段图解决和差倍问题》教学设计

《运用线段图解决和差倍问题》教学设计广州市天河区华景小学尤学武范美容林慕燕马伟豪教学内容:运用线段图解决和差倍问题教材分析:和差倍应用题是中年级数学课本后面的思考题,安排得比较分散,如果按教材出现一题讲解一题,就题说题的话,学生只会被动接受,缺乏自主探究的过程,感悟不了“和差倍”这种典型问题的结构特点,掌握不了这类问题的解题方法,我们认为采用适当归类、集中教学的方式组织学生学习,将会起到事半功倍的作用。

因此,本节课在学生已有的对两数倍数关系的理解基础上,把小学中年级关于“和差倍”问题的思考题归类教学,掌握“和差倍”问题的解题方法,并让学生学会用画线段图的方法帮助自己理解数量关系,为学生在高年段学习应用题打下方法基础。

学情分析:和差倍问题思考题的文字叙述比较抽象,数量关系比较复杂,中年级小学生的思维又处于具体形象思维向抽象逻辑思维的过渡阶段,对于一些抽象问题理解起来困难较大。

如果教师一味的从字面去分析题意,用语言来表述数量关系,虽然老师讲的口干舌燥,学生却难以理解掌握,事倍功半。

即使是学生理解了,也只是局限于会做某个题目而已。

线段图在小学数学应用题教学特别是和差倍问题中起到了奇妙的作用,它可以帮助学生轻松、愉快的学会分析和解答复杂关系的和差倍应用题,既培养了学生的能力,又促进了学生思维的发展,所以运用线段图解决和差倍问题是行之有效的教学方法。

教学目标:1、掌握简单的和倍、差倍、和差应用题的解题方法并能正确解答。

2、学会借助线段图理解和差倍应用题的数量关系,掌握画线段图的分析数量关系的方法。

3、通过数与形有机地结合,让学生经历从抽象的文字到直观的再创造,能调动学生思维的积极性,提高他们分析和解决问题的能力。

教学重点:借助线段图理解和倍、差倍、和差应用题的结构特点和数量关系,并能正确解答。

教学难点:理解和倍、差倍、和差应用题的数量关系。

教学过程:一、复习铺垫,情景引入1、情景导入:为了迎接亚运会的到来,园林工人叔叔要用黄菊花和白菊花装饰一个花圃,在装饰的过程中,他们遇到了一些数学问题,你们能帮帮他们吗?(设计意图:结合亚运的元素,对学生进行爱我广州的教育,提高学生的学习兴趣,体现数学的应用价值。

典型应用题(二):和倍差问题

典型应用题(二):和倍差问题

典型应用题(二):和倍差问题和差问题【例1】某粮店购进大米和面粉共24吨,已知大米比面粉多6吨。

这个粮店购进大米和面粉各多少吨?思路引导大米和面粉共24吨,大米比面粉多6吨,如果给面粉添上6吨,总质量为(24+6)吨,正好是大米质量的2倍,可以用除法求出大米的质量。

同样的道理,把大米质量减去6吨,这时的总质量为(24-6)吨,正好是面粉质量的2倍。

正确解答:解法一:大米:(24+6)÷2=15(吨)面粉:24-15=9(吨)解法二:面粉:(24-6)÷2=9(吨)大米:24-9=15(吨)答:这个粮店购进大米15吨,面粉9吨。

解答和差问题的关键:首先找出两个数的和是多少,然后找出这两个数的差是多少,再用两数和加上两数差等于大数的2倍,可求出大数,或者用两数和减去两数差等于小数的2倍,可求出小数。

如果以上两数和或两数差没有直接给出,必须根据已知条件先求出来。

【变式1】甲、乙两班共有学生98人,从甲班调出4人到乙班后,两班人数相等。

两班原来各有多少人?和倍问题【例2】甲班和乙班共有图书160本。

甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?思路引导设:乙班的图书本数为1倍数,则甲班图书为3倍数,那么甲班和乙班图书本数的和是4倍数。

4倍数的数量是160本,可以求出1倍数,即乙班的图书本数,然后再求甲班的图书本数。

下图表示它们的关系:正确解答:160÷(3+1)=40(本)乙班40×3=120(本)或160-40=120(本)甲班答:甲班有图书120本,乙班有图书40本。

为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。

【变式2】南京长江大桥是长江上第一座由我国自行设计和建造的双层式铁路、公路两用桥,它的主桥比南昌八一大桥主桥长得多,这两座桥主桥共长5630米。

两座大桥的主桥各长多少米?差倍问题【例3】甲班的图书本数比乙班80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?思路引导如图:把乙班的图书本数看作1倍数,则甲班的图书本数是3倍数,那么甲班的图书本数比乙班多2倍数。

小学应用题和倍差倍问题练习详细讲解

小学应用题和倍差倍问题练习详细讲解

⼩学应⽤题和倍差倍问题练习详细讲解⼩学应⽤题和倍差倍问题和倍问题是已知两个数的和与两个数间的倍数关系,求这两个数分别是多少的应⽤题。

要想顺利地解答和倍应⽤题,最好的⽅法就是根据题意,画出线段图,使数量关系⼀⽬了然,从⽽正确列式解答。

解答和倍问题,关键是找出两数的和以及与其对应的倍数和,从⽽先求出1倍数,再求出⼏倍数,数量关系是:两数和÷(倍数+1)=⼩数(1倍数)⼩数×倍数=⼤数(⼏倍数)两数和⼀⼩数=⼤数已知两个数量的差,与这两个数量之间的倍数关系,求这两个数量各是多少的应⽤题叫差倍问题解答差倍问题与解答和倍问题常⽤的分析⽅法类似,都是要在已知的条件中确定⼀个数为标准数(即1倍数),再根据其他的数与这个较⼩数(1倍数)的倍数关系,确定两数的差相当于这样的多少倍(份)即⼏倍数,就可以求出1倍数(较⼩数),再算出其他各数。

因此,我们仍然可以根据已知条件和问题画线段图使数量关系⼀⽇了然,差倍问题的数量关系式是:两数差÷(倍数-1)=⼩数(1倍数)⼩数×倍数=⼤数(⼏倍数)或较⼩数+差=较⼤数。

例题精讲例1有两个仓库共存货物360吨,已知甲仓库所存货物是⼄仓库的2倍,甲、⼄两个仓库各存货物多少吨分析:根据题中“甲仓库所存货物是⼄仓库的2倍”这⼀条件,确定⼄仓库所存货物量为标准数(即1倍数),那么甲仓库所存货物就是2倍数,甲、⼄两仓库的倍数和就是(2+1);正好是两仓库所存货物总数即360吨,就可求出1倍数的存货量,⽤线段图表⽰为解:(1)甲、⼄两个仓库共存货物是⼄仓库的多少倍2+1=32)⼄仓库存货物多少吨360÷3=120(吨)(3)甲仓库存货物多少吨120×2=240(吨)或36 240(吨)综合算式:甲仓库:360÷(2+1)×2=240(吨)或360-360÷(2+1)=240(吨)⼄仓库:360÷(2+1)=120(吨答:甲仓库存货物240吨,⼄仓库存货物120吨。

小学奥数趣味学习《差倍问题》典型例题及解答

小学奥数趣味学习《差倍问题》典型例题及解答

小学奥数趣味学习《差倍问题》典型例题及解答已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

数量关系:两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数解题思路和方法:简单的题目直接利用公式,复杂的题目变通后利用公式。

例题1:莉莉的科技书比故事书多16本,科技书是故事书3倍,莉莉有科技书()本。

A、8B、12C、16D、24解:1、解决差倍问题,可以画线段图解决,也可以直接套用公式解决。

2、把故事书的本数看作1倍数,科技书的本数就是3倍数,科技书比故事书多16本,所以根据差倍公式两个数的差÷(几倍-1)=较小的数,可以求出故事书有16÷2=8本。

3、根据差倍公式较小的数×几倍=较大的数,可以求出科技书有8×3=24本。

例题2:甲桶油是乙桶油4倍,如果从甲桶倒出15千克给乙桶,两桶油的重量就相等了,则原来甲桶有油 ____ 千克,乙桶有油 ____ 千克。

解:1、根据题意,从甲桶倒出15千克给乙桶,两桶油的重量就相等了,说明原来甲桶油比乙桶油多15×2=30(千克)。

2、根据差倍公式两个数的差÷(几倍-1)=较小的数,可以求出乙桶有油30÷(4-1)=10(千克)。

3、根据差倍公式较小的数×几倍=较大的数,可以求出甲桶原有油10×4=40(千克)。

例题3:每件成品需要5个甲零件,2个乙零件。

开始时,甲零件的数量是乙零件数量的2倍,加工了30个成品之后甲零件和乙零件的数量一样多,那么还可以加工 _____ 个成品。

解:1、加工一个成品,甲零件比乙零件多用5-2=3(个),加工30个成品,甲零件比乙零件多用3×30=90(个)。

根据“加工了30个成品之后甲零件和乙零件的数量一样多”说明原来甲零件比乙零件多90个。

2、把乙原来的零件数看成1倍,甲就是这样的2倍,甲比乙多1倍,对应90个,求出乙原来有90÷(2-1)=90(个)3、那么甲原来有90×2=180(个)零件。

小学奥数和差和倍差倍问题

小学奥数和差和倍差倍问题

.
30
为美化校园,学校 买来松树、柏树和樟树共250 棵,松树的棵树比柏树的2倍多3棵,樟树比柏树 少5棵。求学校买回松树、柏树、樟树各多少棵?
•列式如下: • 柏树:(250+5-3)÷(1+1+2)=63(棵) • 松树:63×2+3=129(棵) • 樟树:63-5=58(棵)
.
31
练一练 • 1,三筐苹果共130个,第二筐苹果的个数是第一筐
的3倍,第三筐苹果的个数比第一筐的6倍多10个。 问三筐苹果各是多少个?
• 2,少先队一、二、三中队共植树165棵,二中队植 树的棵树比一中队的2倍多5棵,三中队植树的棵树 比一中队的3倍少20棵。三个中队各植树多少棵?
.
32
• 被除数与除数的和为320,商是7,被除数和除 数各是多少?


除数
被除数
解:现在每层书数:270÷3=90本
第一层:90+20=110本
第二层:90-20=70本
第三层:90+17=107本
.
16
和倍问题
方法教学: 让解题过程变得清晰可见。
.
17
专题简析:
• 已知两个数的和与两个数间的倍数关系,求 这两个数分别是多少,像这样的应用题,通 常叫做和倍问题。要想顺利地解答和倍应用 题,最好的方法就是根据题意,画出线段图, 使数量关系一目了然,从而正确列式解答。
.
21
练一练
• 1,小红和小明共有压岁钱800元,小红的钱数是 小明的3倍。小红和小明、三年级,已知三年 级所得本数是二年级的2倍。二、三年级各得图书 多少本?
.
22
例2:学校食堂里运来大米和面粉共1450千克,其 中大米比面粉重量的3倍少150千克,求运来大米 和面粉各多少千克?

线段图在和差倍问题中的应用

线段图在和差倍问题中的应用
数, 且 它 们 之 间 的数 量 关 系 也 不 明 晰 , 学 生 很 难 从 中理 清 头
数 学 教学 不仅要 传授 知识 , 还 需挖 掘一 类题 目中蕴含 的
数学 方法 , 进 行 归纳 总结 , 使学 生更 系统 地理解 数 学、 掌握数 学, 形成 一定 的数 学意识 。不 管是 和差 问题 、 和 倍 问题 还 是 差倍 问题 , 究其 根 本 , 都是 从倍 数来考 虑 然后解 题 。在 图 1

确、 完 整地 说 出题 目中 的所 有 信息 , 并 重 新 组 织成 为一 个 具 体 的实 际 问 题 , 则 可 以说 明他 们 已经 读 懂 线 段 图 , 理解 了线 段图所 表达 的信 息 , 解 决 问题就 轻而 易举 了。 ( 三) 化数 为图 。 深化 策略 意识 根据题 意 , 把所 有 的 已知条件 和 问题通 过线 段 图的形式 呈现 出来 , 需要 学 生把抽 象 转化 为形象 , 让学 生经历 由抽 象
( 1 2 ) 枚
思路也 会更 加清 晰 。即便 是遇 到 了变 式题 , 也 能够 根据 自己
的经验 进行 判 断和解 决 。
小春
图 1 线 段 图 上 的 数 量 关 系
二、 发 展“ 线段 图 思维” 在小 学数 学学 习中的 意 义
线段 图是 一种 重要 的数 形 结合 的思想 方法 , 它 可 以把 条 件、 问题清 晰化 , 数量 关 系 明 确化 , 激 活 学 生 的解 题 思 路 , 在 帮 助 学生 解决 问题 时 起到 了非 常 重要 的作 用 。同时 , 它 在 和 差 倍 问题 中 的应用 也 是 比较基 础 的 , 在 教学 时 要经 常渗 透 线 段 图的 教 学 , 养 成 不会 做 题 时 就画 图 的习 惯 , 提 高 学 生 分 析 问题 、 解 决 问题 的能 力 , 发 展学 生 的思维 , 为 后面 解 决更 复 杂 的应用题 奠 定扎 实基 础 。

差倍应用题2

差倍应用题2

差倍应用题与和倍应用题相似的是差倍应用题。

它的“基本数学格式”是:已知大、小二数之“差”,又知大数是小数的几倍,求大、小二数各是多少。

上面的问题中,有“差”、有“倍数”,所以叫做差倍应用题。

“差”是小数(即“1倍”数)的(倍数-1)倍,所以,小数=差÷(倍数-1)。

上式称为差倍公式。

由此得到大数=小数+差,或大数=小数×倍数。

例如,大、小数之差是152,大数是小数的5倍,则小数=152÷(5-1)=38,大数=38+152=190或38×5=190。

例1王师傅一天生产的零件比他的徒弟一天生产的零件多128个,且是徒弟的3倍。

师徒二人一天各生产多少个零件?分析:师徒二人一天生产的零件的“差”是128个。

小数(即“1倍”数)是徒弟一天生产的零件数,“倍数”为3。

由差倍公式可以求解。

解:徒弟一天生产零件128÷(3-1)=64(个),师傅一天生产零件128+64=192(个)或64×3=192(个)。

答:徒弟、师傅一天分别生产零件64个和192个。

例2两根电线的长相差30米,长的那根的长是短的那根的长的4倍。

这两根电线各长多少米?解:“差”=30,倍数=4,由差倍公式得短的电线长:30÷(4-1)=10(米),长的电线长:10+30=40(米)或10×4=40(米)。

答:短的电线长10米,长的电线长40米。

陆先生刚理发完,便要求理发师降他的头发“中分”理发师说做不到,为什么?解差倍应用题的关键是确定“1倍”数是谁,“差”是什么。

上两例中,“1倍”数及“差”都极明显地直接给出。

下面讲两个稍有变化,不直接给出“差”和“1倍”数的例子。

例3小云比小雨少20本书,后来小云丢了5本书,小雨新买了11本书,这时小雨的书比小云的书多2倍。

问:原来两人各有多少本书?分析与解:“小雨的书比小云的书多2倍”,即小雨的书是小云的书的3倍。

这个“倍数”是变化后的,所以“1倍”数应是小云变化后的书(见下图)。

解差倍问题的“金钥匙”——线段图

解差倍问题的“金钥匙”——线段图

解差倍问题的“金钥匙”——线段图作者:李云霞来源:《数学小灵通·3-4年级》2015年第02期已知两个数的差与两个数的倍数关系,求两个数各是多少,这类问题就是差倍问题。

解答这类问题时,如果我们能画出线段图分析,就能迅速找到解题的“金钥匙”。

例1.有大小两个鱼缸,原有鱼数相等。

如果从小鱼缸里拿出5尾鱼放到大鱼缸里,大鱼缸里的鱼数是小鱼缸里鱼数的3倍,大、小鱼缸原来各有多少尾鱼?我是这样解的。

从“这时大鱼缸里的鱼数是小鱼缸里鱼数的3倍”,很容易求出大、小鱼缸里鱼数的倍数差为3-1=2倍,但是与2倍相对应的两缸鱼数的差是多少呢?我们画出线段图就能看得很清楚。

从线段图上可以清楚地看出:大小两个鱼缸,原有鱼数相等,如果从小鱼缸里拿出5尾鱼放到大鱼缸里,大鱼缸里的鱼数就比小鱼缸里的鱼数多了两个5尾,即多了5+5=10(尾),而这1 0尾鱼正好与“大、小鱼缸里鱼数的倍数差2倍”相对应,这样就可以求出1倍数是10÷2=5(尾),进而求出大、小鱼缸原来各有鱼5×2=10(尾)。

综合算式为:(5+5)÷(3-1)×2=10(尾)。

例2.男、女学生参加劳动,如果少去1名男生,男女生人数相等;如果少去1名女生,男生人数是女生人数的2倍,男、女学生各有多少人?我是这样解的。

这道题是数量关系比较复杂而隐蔽的差倍问题,我们可以画出线段图从中寻求解题思路。

从线段图上可以清楚地看出:如果少去1名男生,男女生人数相等,可见男生比女生多1人;少去1名女生,男生比女生多1+1=2(人);与2人相对应的倍数差是2-1=1倍,这说明1倍数正好是2人,所以女生有2+1=3(人),男生有2+1+1=4(人)。

综合算式为:女生有(1 +1)÷(2-1)+1 =3(人),男生有3+1=4(人)。

三年级上册第五单元第招用“图示法”解决差倍问题人教版

三年级上册第五单元第招用“图示法”解决差倍问题人教版

RJ 三年级上册
第5招 用“图示法”解决差倍问题
学习第5单元后使用
用“图示法”解决同增或同减差不变的差倍问题
白兔和灰兔各采蘑菇多少个?
白兔与灰兔一起采蘑菇,白兔比灰兔多采了18个蘑菇,并且白兔采的蘑菇个数是灰兔的3倍。 答:篮球有24个,排球有8个。 现甲袋:(8+4)÷(3-1)=6(千克) 现甲袋:(8+4)÷(3-1)=6(千克) 女同学:9×4=36(人)或27+9=36(人) 答:白兔采蘑菇27个,灰兔采蘑菇9个。 原甲袋:6+4=10(千克) 原乙袋:10千克 用“图示法”解决同增或同减差不变的差倍问题
现第一个书架: (9+9)÷(3-1)=9(本) 原第一个书架: 9+9=18(本) 原第二个书架:18本 答:第一个书架原来存书18本,
第二个书架原来存书18本。
现甲袋:(8+4)÷(3-1)=6(千克)
现篮甲球袋 :6:8.+(81+6两=4)2÷4((袋个3-) 1盐)=6(千的克)质量相等,从甲袋取出4千克,给乙袋装入8
第一根剩下的长度:4×3=12(米)
女同学:9×4=36(人)或27+9=36(人) 1.希望小学体育室篮球的个数比排球多16个,篮球的个数是排球的3倍,篮球和排球分别有多少个?
篮球:8+16=24(个)
用“图示法”解决同增或同减差不变的差倍问题
答:该合唱组有男同学9人,女同学36人。 用“图示法”解决原两数相等,变化后一数减少另一数增加的差倍问题
(9+9)÷(3-1)=9(本)
3.在一道没有余数的除法算式中,除数比被除数少24, 商是7,被除数和除数各是几? 画线段图: 除数: 被除数:
除数:24÷(7-1)=4
24
被除数:4×7=28或4+24=28

应用题——利用线段图解决及倍差倍问题

应用题——利用线段图解决及倍差倍问题

用线段图解决简单的和倍差倍问题一、内容概括本讲为三年级较易接受且重要思维训练内容,本讲通过线段图来掌握和差倍问题,线段图是小学阶段数学中重要内容.掌握线段图对小学数学的学习,和数学的理解有着十分重要的意义 .二、知识导航1 .和倍问题,顾名思义就是两个数的和以及这两个数的倍数关系,求这两个数分别是多少的应用题,它是常见的典型应用题之一.要想顺利地解答和倍问题,最好的方法就是根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而正确迅速地列出算式.小数:大数:数量关系式可以这样表示:两数和÷〔倍数+1〕=一倍量两数和—小数=大数2 .差倍问题就是两个数的差和它们的倍数关系,求这两个数.解答差倍问题的关键是找出两个数的差,以及与差相对应的倍数差,从而求出一倍数,再求出其它的数.解题时,我们一般也是先借助线段图帮助自己分析题目的数量关系.小数:大数:数量关系可以这样表示:两数差÷〔倍数-1〕=一倍量两数差+小数=大数课前热身1 .7的四倍是〔〕,48是〔〕的6倍,57是3的〔〕倍.2 .泡泡有91颗黑色的巧克力豆,是白色巧克力豆的7倍,问泡泡的白色巧克力豆有多少颗?3. 二班有图书60本,一班的图书本书是二班的的3倍,求一班有图书多少本?4. 哥哥种了72棵树,哥哥种的数是弟弟的3倍,问兄弟两人共种多少棵树?三、例题精讲根底局部例题1. 小华和爷爷今年共72岁,爷爷的年纪是小华的8倍,问小华和爷爷各多少岁?【练习1】1. 泡泡和小新一共做了300道计算题,泡泡做的题目数量是小新的2倍,泡泡和小新各做了多少道计算题?2. 一个长方形的周长是36厘米,长是宽的2倍,这个长方形的面积是多少平方厘米例题2. 小白兔和小灰兔共有50个萝卜,小灰兔的比小白兔的2倍多2个,小白兔和小灰兔各有多少个萝卜?【练习2】新东方小学三年级共有328人,男生人数是女生人数的2倍还多7人,求男生和女生各有多少人?例题3. 小猴子聪聪和明明共有28个桃子,聪聪的桃子比明明的2倍少2个,聪聪和明明各有几个桃子?【练习3】数学兴趣小组共有成员30人,其中女生比男生的2倍少3人,问男生女生各有多少人?例题4. 李爷爷家养的鸭子比鸡多18只,鸭子的只数是鸡的3倍,你知道李爷爷家养的鸭和鸡各有多少只吗?【练习4】本?小新的课外书比迈斯多30本,小新的课外书是迈斯的4倍.问小新和迈斯各有课外书多少例题5. 新东方学校买来的白色粉笔比彩色粉笔多15箱,白色粉笔的箱数比彩色粉笔的4倍少3箱.新东方买来的白色粉笔和彩色粉笔各有多少箱?【练习5】妈妈的年龄比泡泡大24岁,今年妈妈的年龄比泡泡的3倍少2岁,问妈妈和泡泡今年各多少岁?例题6. 新东方学校买来的白色粉笔比彩色粉笔多15箱,白色粉笔的箱数比彩色粉笔的4倍还多3箱.新东方买来的白色粉笔和彩色粉笔各有多少箱?【练习6】爸爸的年龄比小新大30岁,今年爸爸的年龄比小新的3倍还多2岁,问爸爸和小新今年各多少岁?四、拓展局部例题7. 果园里有桃树、梨树、苹果树共392棵,桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?作业填空题1 )小红和妈妈的年龄加在一起是40岁,妈妈年龄是小红年龄的4倍,小红有〔〕岁,妈妈有〔〕岁.2 )生产队养公鸡、母鸡共404只,其中公鸡是母鸡的3倍,公鸡养了〔〕只,母鸡养了〔〕只.3 )小明买大单和小单线共25本,其中大单线的本数比小单线的本数的2倍多4本,大单线的本数有〔本,小单线的本数有〔〕本.4 )师傅和徒弟共生产零件190个,师傅生产的个数比徒弟的3倍少10个;师、徒各生产〔〕个.两个数的和是84,大数是小数的6倍,求这两个数3. 甲乙两个生产队人收桔子1000千克,甲队收的是乙队的3倍,甲、乙两队各收了桔子多少千克?4. 大村有两个粮仓共存粮食300吨.甲仓存粮比乙仓的2倍还多57吨,两个粮仓各存粮多少吨?5. 书店运来一批书,其中科技书和文艺书390本,科技书比文艺书的3倍少10本,科技书、文艺书各多少倍?6. 足球是排球的3倍,足球比排球多18只.足球和排球各多少只?7. 参加科技小组的人数,今年比去年多41人,今年人数比去年的3倍少3人.今年有多少人参加?8.山坡上有一群羊,其中有绵羊和山羊.绵羊比山羊的3倍多55只,绵羊比山羊多345只,两种羊各有多少只?。

画线段图解决和差倍问题

画线段图解决和差倍问题

画线段图解决和差倍问题这部分内容主要让学生通过解答只有两个已知条件的两步计算实际问题, 进一步实践并体验从问题出发分析和解决问题的策略,提高运用策略解决问题的能力。

教学目标 :1.经历探究和交流解决问题的过程,感受解决问题的策略,学会通过画线段图分析数量关系,掌握解决与和倍有关的两步计算的实际问题及相应的变式问题,提高学生解决问题的能力。

2. 感受数学与日常生活的密切联系,进一步增强学生对学习数学的兴趣和信心,初步形成独立思考的习惯和探究问题的意识。

教学重点 :用线段图辅助解决两步计算的和倍问题。

教学难点:分析数量关系。

教学准备 :课件教学方法:探究法、讨论法、、教师导学法、学生自学法,倡导自主、合作、探究的学习方式,教学过程 :一、谈话引入谈话:同学们,昨天妈妈带小明去人民公园玩,在公园门口他遇到这样的问题,他想知道这一天公园一共接待游客多少人?你们愿意帮助小明吗?设计说明:数学教学应以生活为原型,数学教学的内容应体现学生的社会生活。

这样把社会生活中的题材引入到数学课堂教学中, 会让学生感到数学课堂的亲切, 激起学习的兴趣。

二、呈现例题,弄清题意1. 教学例题。

(1)课件出示例题的教学情境图,引导学生认真观察。

(2)理解题意。

让学生观察情境图,说说从中获得了哪些信息。

追问:你能理解“下午接待游客是上午的3倍, 这一天一共接待游客多少人?”的意思吗?设计说明:先呈现例题中的情境图,引导学生收集数学信息,把理解题意的重点放在“下午接待游客是上午的3倍,这一天一共接待游客多少人?”这句话的含义上,不仅有助于激发学生的生活经验,而且能使接下来的画线段图分析数量关系, 解答问题提供了支持。

三、运用策略,探寻思路1. 引导:怎样解决“这一天公园一共接待游客多少人?”这一问题呢?今天我们还请来了一位数学小助手,它的名字叫线段图。

我们可以借助线段图来分析题目中的数量关系。

①先画一条线段表示上午接待游客人数。

上午: 365人②下午接待游客的线段该怎么表示?画多长呢?(同桌合作画画) 引导:下午接待游客是上午的3倍,要画这样的 3份(指名板演)下午:下午接待游客是上午的3倍2. 想一想,算一算。

四年级奥数讲义 借助线段图分析和倍、差倍问题

四年级奥数讲义 借助线段图分析和倍、差倍问题

借助线段图分析和倍、差倍问题同学们,今天给大家介绍两类应用题:一类是已知几个数的和,以及几个数之间的倍数关系,求各个数的应用题,称之为和倍问题,另一类是已知几个数的差,以及几个数之间的倍数关系,求各个数的应用题,称之为差倍问题。

同学们要想顺利地解答和倍、差倍问题,最妤的方法也是根据题目所给的条件和问题,画出线段图,可以使数量关系一目了然,从而帮助我们理清思路,找到解题的方法。

在具体解题时,找们先分析题中已知的是两个数量的和,还是差,再按照以下的方法,先求出倍数,再去解答题中提出的问题。

1.和倍问题和÷(倍数+1)=小数小数×倍数=大数和-小数=大数2.差倍问题差÷(倍数-1)=小数小数×倍数=大数小数+差=大数例题1:某养殖场有鸡、鸭共480只,其中鸭的只数使鸡的3倍,请问,鸡鸭各多少只?试一试1:学校图书馆买来科技书和故事书共240本,买来的故事书是科技书的3倍。

学校买来科技书和故事书各多少本?例题2:甲桶有油25千克,乙桶有油17千克,乙桶倒入多少千克油给甲桶后,甲桶油是乙桶的5倍?试一试2:小华有笔30枝,小明有笔15枝,问小明给几枚给小华后,小华笔的枝数是小明的8倍?例题3:水果店有梨和苹果共240箱,梨卖出40箱,又运进苹果70箱,这时苹果的箱数正好是梨的2倍,水果店原来有梨和苹果各多少箱?试一试3:甲、乙两数和为300,甲增加60,乙减少10后,甲是乙的6倍,甲、乙两数原来是多少?例题4:爷爷的年龄是孙子的7倍,爷爷比孙子大60岁,他俩分别是多少岁?试一试4:姐姐和妹妹都拿到一些压岁钱,姐姐比妹妹多拿400元,姐姐的压岁钱正好是妹妹的3倍,两人各拿多少压岁钱?例题5:电视机厂五月份比四月份多生产电视机400台,六月份比五月份多生产500台,六月份生产的台数正好是四月份的2倍,三个月各生产电视机多少台?试一试5:小华读书,第二天比第一天多读40页,第三天比第二天多读30页,而第三天读的正好是第一天的2倍,问三天各读了多少页?例题6:甲筐苹果的重量是乙筐的3倍,如果从甲筐取出24千克,从乙筐中取出6千克,两筐剩下的重量相等。

学会用线段图解答应用题

学会用线段图解答应用题

我们 先选 择 一条 线段 来表 示 小明 3 前 的岁 数 ,再 在 年
下面画出 5倍多一点的线段来表示 “ 爸爸的年龄比小明的
年 龄 的 5 还大 3 ” 倍 岁 。借助 直观 图 , 生不 难看 出 : 学 从 父子 年龄 之差 的 2 7岁中 去掉 3 , 与父 子年 龄 差 岁 就
。一 口=2 …… 0
o去 掉 2 个 和 口同样 多 0
4角 5角 +一 船笔 —— 一 一盒蜡笔的栈 ——+
②把算式转化为推理
因为 △比 口 多 1 ,而 。 比口 多 2 ,所 以原 来 的 O 比 2 0 △多 , :0—1 多 2 2=8( ) 个 。
先画 出两 条线 段 , 的表 示 5角 , 的 表示 4角 ; 着 , 长 短 接
例 3 △比 口多 l , : 2 o去掉 2 0个和 口同样 多 , △和 原 来
随后借助等式, 引导学生分析 : 因为同样的铅笔价格相
同, பைடு நூலகம்比之下 , 如果付出的钱越多 , 那么 , 男买的东西就越
贵 , 以 , 盒 蜡 笔 的 钱 比 一 个 卷 笔 刀 贵 , l (— 所 一 贵 角 5 4=
1嘲曙嘲
. / /
教学经纬 ・ 姜术
痕祈个幢化款嗲在小学美术教学申 庄用
浙江新昌县新 民小学( 15 0 石剑青 320 )
“ 术 课 程 具 有 人 文性 质 ,是 学 美 校 进 行 美 育 的主 要 途 径 , 实施 素 质 在 教 育 的 过 程 中 具 有 不 可 替 代 的 作 物。 是表 达和 抒 发情 感 的方 式 。 “ 美术 课 程 具 有 人 文 性 质 ,是 学 校进 行 美 育 的主 要 途 径 , 在实 施 素 质 教 育 的 过 程 中 具 有 不 可 替 代 的 作 用 。” 正如 新课 标 中所提 到 的 , 小学 美 为主 , 我 国小学 美 术教学 的开 端 。 是 17 年 6 , 99 月 教育 部 颁发 了第 二

线段图法解决差倍问题--奥数专题(课件)-2021-2022学年数学三年级上册 全国通用

线段图法解决差倍问题--奥数专题(课件)-2021-2022学年数学三年级上册 全国通用

二、题型讲解
例一:甲、乙两个书架,甲书架上图书的本数是乙书架上的3倍,又知 甲书架上图书的本数比乙书架多120本。两个书架各有图书多少本?
乙书架
1倍
甲书架
120本
3倍
总结: 1倍数= 差÷(倍数-1)
120本对应了(3-1)倍,可先算出1倍数是多少?
乙书架:120÷(3-1)=60(本) 甲书架:60×3=180(本)
梨: 苹果:
(25+15)对应了(2-1)倍,可先算出1倍数是多少?
1倍 25筐 少15筐
2倍
梨:(25+15)÷(2-1)=40(筐) 苹果: 40+25 =65(筐)
答:梨有40筐,苹果有65筐。
练习: 1.花坛里菊花比月季花多28枝,菊花的枝数比月季花的3倍少12枝。 花坛里有菊花和月季花各多少枝?
差倍问题
已知大小两个数的差与两个数的倍数,求两个数各是 多少的应用题,我们称之为“差倍”问题。目前阶段我们 主要利用线段图来帮助解答和倍问题。今天我们就一起探
究如何用线段图来解决问题吧?
一、差倍线段图的画法
例:根据题意画出差倍线段图。
甲组比乙组多12人,甲组人数是乙组的4倍。

乙组:
1倍
甲组:
12人 4倍
(三)除法算式差倍问题
例四:一道除法算式,商是5,被除数比除数多36,求被除数与除数 各是多少?
被除数是除数的5倍
36对应了(5-1)倍, 可先算出1倍数是多少?
除数:
1倍
被除数:
36 5倍
除数:36÷(5-1)=9 被除数:9×5 =45
答:被除数是45,除数是9。
总结: 与除法算式有关的差倍问题,要明确被除数与除数的倍数关系,找出 差与倍,再画出线段图,根据差倍公式求解。

图解差倍应用题

图解差倍应用题

十八.图解差倍应用题有一天爷爷接冬冬放学回家,冬冬问爷爷今年多少岁了。

爷爷不高兴了,又给他出了一个题:我们俩今年年龄差是48岁,我的年龄是你的7倍,你算一下我多少岁了?你能算出冬冬和爷爷各多少岁吗?小朋友,你一定自己就能给“差倍问题”下定义了吧?这类问题的解答方法与“和倍问题”类似。

快画图,试试看!【例l】学校田径队的男生比女生多12人,男生人数正好是女生人数的3倍。

女生有多少人?(画图解题)提示:“男生比女生多l2人”在线段图中怎样表示?12人占了线段图中的几份?你能从中求出什么?【例2】体育组的大绳比小绳多15条,大绳数量正好是小绳数量的4倍,大绳有多少条?(画图解题)提示:要想求出大绳有多少条?我们必需先求出小绳的数量。

相信你一定能够借助题中的条件画出线段图解答出来。

【例3】小东家养的母鸡比公鸡多24只,养的母鸡的只数是公鸡只数的4倍。

公鸡、母鸡各有多少只?(先画图,再解题)提示:“各”表示什么?先求小数,再求大数吧。

【例4】有甲、乙两袋大米,甲袋大米重量是乙袋大米重量的3倍,如果再往乙袋里装l0千克大米,两袋大米就一样多了。

原来乙袋大米有多少千克?(先画图,再解题)提示:“再往乙袋里装l0千克大米,两袋大米就一样多了。

”说明原来甲乙两袋大米相差多少?1.学校体育组的篮球比足球多l6个,篮球的个数不好是足球个数的3倍。

足球有多少个?(先画图,再解题)2.姐姐和弟弟两人做数学题,弟弟比姐姐少做l5道题,姐姐做的正好是弟弟做的4倍,弟弟做了多少道题?(先画图,再解题)3.小东家养的白兔比黑兔多l6只,白兔的只数是黑兔只数的3倍。

黑兔有多少只?(先画图,再解题)4.甲数是乙数的4倍,甲数与乙数的差是18。

乙数是多少?(先画图,再解题)5.妈妈的年龄是小丽的4倍,小丽比妈妈小27岁,妈妈今年多少岁?(先画图,再解题)6.学校体育组的篮球比排球少36个,排球的个数正好是篮球个数的5倍,排球有多少个?(先画图,再解题)7.玩具店里的“芭比娃娃”比“不倒翁”多16个,“芭比娃娃"是“不倒翁”的3倍。

小学数学应用题讲解——差倍问题

小学数学应用题讲解——差倍问题

差倍问题含义:已知两个数的差,以及它们的倍数关系,求这两个数各是多少,这样的问题叫做差倍问题。

数量关系:差÷(倍数-1)=较小数较小数×倍数=较大数差+较小数=较大数差倍问题类型一:基本型【例1】妈妈去超市买水果,她买的苹果的个数是橙子的3倍,苹果比橙子多18个。

妈妈买苹果和橙子各多少个?解题思路1:已知苹果和橙子个数的差是18,两者的倍数关系是3。

由公式直接求解。

列式:橙子 18÷(3-1)=9(个)苹果 9×3=27(个)或 9+18=27(个)答:妈妈买橙子9个,买苹果27个。

解题思路2:画线段图分析由图可知,将橙子的个数看作1份,苹果的个数是橙子个数的3倍,苹果的个数就是3份,苹果比橙子多2份,已知苹果比橙子多18个,即可求出1份是多少,再求出几份的量。

列式:橙子 18÷(3-1)=9(个)苹果 9×3=27(个)或 9+18=27(个)答:妈妈买橙子9个,买苹果27个。

【例2】在一道除法算式中,已知被除数比除数大252,商是7,被除数和除数各是多少?解题思路1:在除法算式中,被除数÷除数=商,此题中商是5,说明被除数是除数的5倍,已知被除数与除数的差是252,由公式直接求解。

列式:除数 252÷(7-1)=42被除数 42×7=294 或 42+252=294答:除数是42,被除数是294。

解题思路2:画线段图分析由图可知,被除数是除数的5倍,除数与被除数的差为252,直接用公式求解。

列式:除数 252÷(7-1)=42被除数 42×7=294 或 42+252=294答:除数是42,被除数是294。

总结:基本的差倍问题是题目中直接给出两个数的差与倍数关系,那么我们可以直接利用数量关系式求出这两个数各是多少,同时也可以利用画线段图的方式去理解分析。

【巩固练习】1、学校合唱组中女生人数是男生的4倍,女生比男生多42人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用题——利用线段图解决及倍差倍问题
线段图是一种常见的数据可视化工具,可以用来解决各种计量问题。

在实际应用中,我们经常会遇到一种问题,即如何利用线段图解决及
倍差倍问题。

通过分析线段图上的长度关系,我们可以得到满足题目
要求的解答。

本文将详细介绍如何应用线段图解决及倍差倍问题。

一、线段图的基本概念
在开始介绍如何应用线段图解决及倍差倍问题之前,我们先来了解
一下线段图的基本概念。

线段图由多个线段组成,每个线段表示一个
数值。

线段的长度代表相应数值的大小。

线段图可以用来展示不同类
别或不同变量之间的比较关系,使数据更加直观和易于理解。

二、及倍差倍问题的定义
及倍差倍问题是一类常见的数学问题,通常涉及到人口增长、物体
搬运等领域。

具体而言,及倍差倍问题要求我们在已知某个数值的前
提下,求解相对于该数值的倍数增长或倍数减少的另一个数值。

三、利用线段图解决及倍差倍问题的步骤
下面我们将具体介绍如何利用线段图解决及倍差倍问题的步骤,以
帮助读者更好地理解和应用。

1. 收集已知信息并绘制线段图
首先,我们需要收集已知信息,并按照线段的长度进行绘制。

根据
题目要求,确定线段的长度代表的数值,并在坐标轴上进行标注。

2. 分析线段长度
接下来,我们要分析线段的长度之间的关系。

根据题目要求,判断哪些线段表示及倍差倍关系。

通常,及倍差倍关系的线段长度之间会存在一定的比例关系。

3. 计算未知数值
在分析线段长度之间的关系后,我们可以利用已知数值推导出未知数值。

根据线段的比例关系,进行简单的数学计算,求解未知数值。

4. 检验答案
最后,我们应该检验所得的答案是否满足题目要求。

将求得的未知数值代入题目中进行验证,确保结果的准确性。

四、应用实例
为了更好地理解如何应用线段图解决及倍差倍问题,我们来看一个具体的实例。

假设某城市人口在2000年为500万,按照每年人口增长20%,我们需要求解该城市在2020年的人口。

首先,我们根据已知信息绘制线段图。

将2000年的人口表示为一条线段,长度为500万。

接下来,根据题目要求,分析线段长度之间的关系。

题目中给出的人口增长率为20%,即每年的人口增加0.2倍。

因此,我们可以得出线段长度之间的比例关系:2020年的人口是2000年人口的1加0.2倍。

然后,我们根据线段的比例关系进行计算。

将2000年的人口500
万乘以1加0.2,即可得到2020年的人口。

最后,我们将求得的结果代入题目中进行验证,确保答案的正确性。

五、总结
通过以上步骤,我们可以利用线段图解决及倍差倍问题。

线段图作
为一种直观、易于理解的数据可视化工具,可以帮助我们更好地分析
和解决各种计量问题。

在实际应用中,我们还可以将线段图与其他统
计方法相结合,进一步提高问题解决的准确性和效率。

总的来说,应用线段图解决及倍差倍问题需要通过收集已知信息、
绘制线段图、分析线段长度关系、计算未知数值和进行答案验证等步骤。

通过这样的分析方法,我们可以有效地解决线段图相关的问题,
并得出准确的答案。

文末不需要再次重复题目或其他内容,以上是关于应用线段图解决
及倍差倍问题的文章。

相关文档
最新文档