普通物理学课后习题

合集下载

普通物理学第一册修订版第五版课后练习题含答案

普通物理学第一册修订版第五版课后练习题含答案

普通物理学第一册修订版第五版课后练习题含答案普通物理学第一册修订版第五版是经典物理学入门教材之一,涵盖了力学、热学等基础知识。

本文将提供该教材课后练习题以及答案,供读者学习和参考。

第一章长度、时间和质量的测量选择题1.以下哪个物理量不是基本物理量?(A)A. 能量B. 质量C. 长度D. 时间2.物理量的国际制单位是(D)A. 英制单位B. 公制单位C. 自然单位D. 国际单位制3.以下哪个不属于国际制基本单位?(B)A. 米B. 千克米C. 秒D. 安培简答题1.什么是“国际单位制”(SI)?它的标准由哪些单位组成?答:国际单位制是现代公制单位制的基础,它是以米、千克、秒、安培、开尔文、摩尔和坎德拉这七个基本物理量的单位为标准而制定的。

这些单位和单位名称的标准由国际计量局发布,被称为“国际单位制”。

2.如何用千克、米和秒的单位定义力的单位牛顿?答:牛顿是力的国际单位。

它可以用千克、米和秒的单位来定义,1 N等于1千克物体在重力加速度为9.8 m/s²的情况下所受的力。

也可以用牛顿定律来定义,力是使1千克物体产生1m/s²加速度的力。

第二章运动学选择题1.下列说法正确的是?(D)A. 速度是一个矢量,速率是一个标量。

B. 物体的加速度一定和物体的速度方向一致。

C. 向右运动的物体,加速度要么向右,要么向左。

D. 两个物体相对静止,说明两个物体的相对速度为零。

简答题1.如何用向量方法解决平面运动问题?答:在平面运动中,一个物体在做匀速直线运动或匀加速直线运动时,我们可以用向量方法来解决很多问题。

首先,我们需要定义一个运动坐标系,并建立一个与坐标系相联系的矢量,通常是位置矢量。

然后通过求导或求导数,求出速度和加速度的矢量,并用它们来解决问题。

2.什么是匀速圆周运动?答:匀速圆周运动是一种做圆周运动并保持匀速的运动方式。

在匀速圆周运动中,物体可以有一个半径、一定的圆心和一个确定的速度。

程守洙《普通物理学》(第6版)(上册)(课后习题详解 热力学基础)【圣才出品】

程守洙《普通物理学》(第6版)(上册)(课后习题详解 热力学基础)【圣才出品】

6.2 课后习题详解一、复习思考题§6-1 热力学第零定律和第一定律6-1-1 怎样区别内能与热量?下面哪种说法是正确的?(1)物体的温度越高,则热量越多.(2)物体的温度越高,则内能越大.答:(1)内能①定义:内能是由热力学系统状态所决定的能量.微观上讲,内能是系统内粒子动能和势能的总和.②理解内能的概念时要注意以下问题:a.内能是状态函数,一般用宏观状态参量(如p、T、V)描述的系统状态,是单值函数;而理想气体的内能仅是温度T的单值函数;b.内能的增量只与确定的系统始、终态有关,与变化的过程无关;c.系统的状态若经历一系列过程又恢复原状态,则系统的内能不变;d.对系统作功或者传热可以改变系统的内能.(2)热量①定义:是指存在温度差的系统之间传递的能量.微观上讲,传递热量是通过分子之间的相互作用完成的.②理解热量的概念时要注意以下问题:a.热量是过程量,对某确定的状态,系统有确定的内能,但无热量可言;b.系统的热量传递,不仅与系统的始、终状态有关,也与经历的过程有关;c.在改变系统的内能方面,传热也是改变系统内能的一个途径,与作功等效,都可作为系统内能变化的量度.(2)①说法(1)是不正确的.温度是状态量,热量是过程量.“温度高”表示物体处在一个分子热运动的平均效果比较剧烈的宏观状态,无热量可言.②说法(2)不完全正确.a.对理想气体的内能仅是温度T的单值函数,故是正确的.b.对一般热力学系统,内能是分子热运动的动能与势能之和,即内能并非只是温度的单值函数.6-1-2 说明在下列过程中,热量、功与内能变化的正负:(1)用气筒打气;(2)水沸腾变成水蒸气.答:(1)功的分析:①气筒打气是外力压缩气筒内的空气,气筒内空气体积减小,即△V<0,因此气筒内空气作负功;②传热的分析:压缩过程进行得很快,气体还来不及与外界交换热量就已被压缩,因此可近似看作是绝热压缩过程,即Q=0.③内能的分析:根据热力学第一定律△E=Q-A=-A>0,因此气筒内空气的内能增加.(2)①若容器体积可以变化,水到达沸点时:a.大量吸收热量(Q>0);b.此过程温度不变,因而内能不变(△E=0);c.水汽的体积增加,对外作功(A>0).②若容器体积不能变化,水沸腾时:a.吸取足够的热量(Q>0);b.水汽不能对外膨胀作功;c.水汽从外界吸取大量热量而成为过热蒸汽,温度上升,内能增加.§6-2 热力学第一定律对于理想气体准静态过程的应用6-2-1 为什么气体热容的数值可以有无穷多个?什么情况下,气体的摩尔热容是零?什么情况下,气体的摩尔热容是无穷大?什么情况下是正值?什么情况下是负值?答:(1)气体热容的数值可以无穷多个的原因:根据热容定义,即不发生化学反应且在同等条件下温度升高1 K所需的热量.由于热量dQ是过程量,热力学系统可以经过无数个过程从一平衡态过渡到另一平衡态,不同的过程传热不同,因此这就对应有无数个不同的热容C.(2)C m=0气体的摩尔热容的定义是指1 mol气体温度升高1 K所需的热量,用C m表示.根据热容定义知,在绝热过程中dQ=0,因此C m=0.(3)等温过程中dT=0,由知,(4)C m取正值:根据热容定义:,C m的符号取决于dQ.如,①在恒压膨胀过程中,由于△E>0,A=p△V>0,则Q=△E+A>0,因此C p,m>0.②在恒容升温过程中,Q=△E>0,其摩尔热容C v,m也为正值.(5)C m取负值:在多方过程中,如果多方指数1<n<γ(γ为摩尔热容比),即系统温度升高1 K,反而放出热量(△Q<0),则将出现多方负热容,如6-2-2第(1)问.6-2-2 一理想气体经图6-1-1所示各过程,试讨论其摩尔热容的正负:(1)过程Ⅰ-Ⅱ;(2)过程Ⅰ′-Ⅱ(沿绝热线);(3)过程Ⅱ'-Ⅱ.图6-1-1答:设以上三个过程代号分别1,2,3,都经过升温后,系统的初、末状态的温度都相同,因此内能的增量都相同,即△E 1=△E 2=△E 3>0;过程曲线下的面积表示所作的功,包围的面积越大,作负功的绝对值也越大.由图可知.(1)过程2:为绝热过程,即,因此该过程的摩尔热容等于零.(2)过程1:根据热力学第一定律,则,得到.那么,,该过程升温反而放出热量,其摩尔热容为负值.这是因为外界压缩气体作功不仅提高了系统的内能,而且还向外界放出了一些热量,导致摩尔热容为负.(3)过程3:同理可得,,该过程中外界压缩系统作正功的同时系统还从外界吸取了热量才使系统升温,因此其摩尔热容为正值.6-2-3 对物体加热而其温度不变,有可能吗?没有热交换而系统的温度发生变化,有可能吗?答:这两种情况都是可能的.(1)对物体加热而温度不变时,则Q>0,内能不变△E=0,由热力学第一定律可知Q=A,说明系统吸收外界的热量全部用于对外作功,例如理想气体的等温膨胀.(2)没有热交换,说明是绝热过程,Q=0.若系统的温度发生变化,则内能也会发生相应变化.根据热力学第一定律有Q=△E+A=0,△E=-A.①假设是绝热膨胀过程,系统对外作功,则内能减少,说明这是通过消耗内能来做功的;②假设是绝热压缩过程,内能增加,说明外界对系统作功提高了系统的内能.§6-3 循环过程卡诺循环6-3-1 为什么卡诺循环是最简单的循环过程?任意热机的循环需要多少个不同温度的热源?答:(1)热力学第二定律表明,不可能制造一种只依靠一个热源循环动作的热机.也就是说,至少要两个以上的热源才可能制造循环动作的热机.卡诺循环是由两个可逆的等温过程和两个可逆的绝热过程组成的循环,包括一个提供热量的高温热源和一个接受热量的低温热源,因此这是构成循环热源数最少、最简单的理想循环.(2)如图6-1-2所示,任一可逆循环都可分割成许多小卡诺循环,小卡诺循环的数目越多,就与实际的循环过程越接近,所对应的不同温度热源数也就越多.图6-1-26-3-2 有两个热机分别用不同热源作卡诺循环,在p-V 图上;它们的循环曲线所包围的面积相等,但形状不同,如图6-1-3所示.它们吸热和放热的差值是否相同?对外所作的净功是否相同?效率是否相同?图6-1-3答:(1)做功分析:p-V 图中循环曲线所包围的面积即是循环系统对外作的净功,面积相同,而不论形状如何,这两个循环对外作的净功就相同;(2)热量分析:循环过程,系统的内能不变(△E=0),因此对外作的净功和系统与外界交换的热量相等,即吸热与放热之差相同.(3)效率分析:①根据热机效率的定义知:。

普通物理学第二版第三章课后习题答案

普通物理学第二版第三章课后习题答案

第三章 动量定理及动量守恒定律(习题)3.5.1质量为2kg 的质点的运动学方程为 j ˆ)1t 3t 3(i ˆ)1t 6(r 22+++-=(t 为时间,单位为s ;长度单位为m).求证质点受恒力而运动,并求力的方向大小。

解,j ˆ)3t 6(i ˆt 12v ++= j ˆ6i ˆ12a +=jˆ12i ˆ24a m F +==(恒量)012257.262412tg )N (83.261224F ==θ=+=-3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为ωω+ω=b,a, ,j ˆt sin b i ˆt cos a r为正常数,证明作用于质点的合力总指向原点。

解, ,j ˆt cos b i ˆt sin a v ωω+ωω-= r,j ˆt sin b i ˆt cos a a 22 ω-=ωω-ωω-= r m a m F ω-==3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。

解答,以谷筛为参照系,发生相对运动的条件是,g a ,mg f a m 000μ≥'μ=≥'a ' 最小值为)s /m (92.38.94.0g a 20=⨯=μ='以地面为参照系:解答,静摩擦力使谷粒产生最大加速度为,mg ma 0max μ= ,g a 0max μ=发生相对运动的条件是筛的加速度g a a0max μ=≥',a '最小值为)s /m (92.38.94.0g a20=⨯=μ='3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。

2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。

普通物理学习题及答案全

普通物理学习题及答案全
第五章静止电荷的电场
5-1
5-5
5-7
5-13
5-15
5-17
5-26
5-29
5-30
5-31
5-43
第六章恒定电流的磁场
6-1
6-4
6-5
6-7
6-12
6-15
6-19
6-23
6-26
6-28
第七章
7-2
7-5
7-7
7-14
7-15
7-16
教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。教育革命的对策是手脑联盟,结果是手与脑的力量都可以大到不可思议。
教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。教育革命的对策是手脑联盟,结果是手与脑的力量都可以大到不可思议。
目 录 contents
第一章力和运动
1-2
1-4
1-5
1-6
1-9
1-14
1-14题解:

〔m/s〕
〔m〕
第二章运动的守恒量和守恒定律
2-3
2-9
2-11
2-13
2-Hale Waihona Puke 62-172-19
2-23
2-27
第三章刚体的定轴转动
3-1
3-3
3-6
3-7
3-10
3-11
第四章狭义相对论根底
4-1
4-8
4-11

普通物理学第1单元课后习题部分答案

普通物理学第1单元课后习题部分答案

习题2解析
总结词
掌握了力的合成与分解的方法。
详细描述
这道题考查了力的合成与分解,通过分析物体的受力情况,正确地进行了力的 合成与分解,并利用平行四边形定则求解合力。
习题3解析
总结词
理解了动量守恒定律的基本概念和应 用。
详细描述
这道题考查了动量守恒定律的基本概 念,通过分析系统的受力情况和运动 情况,正确地应用了动量守恒定律求 解速度。
习题3答案
01
习题3-1答案: 略
02
习题3-2答案: 略
习题3-3答案: 略
03
04
习题3-4答案: 略
习题4答案
01
习题4-1答案:略
02
习题4-2答案:略
03
习题4-3答案:略
04
习题4-4答案:略
03
答案解析
习题1解析
总结词
理解了牛顿第二定律的基本概念 和应用。
详细描述
这道题考查了牛顿第二定律的基 本概念,通过分析物体的受力情 况,正确地应用了牛顿第二定律 求解加速度。
练习题三及答案
练习题三
什么是动量?请给出其计算公式。
VS
答案
动量是描述物体运动状态的物理量,等于 物体的质量乘以速度。其计算公式为 p=mv,其中p表示动量,m表示质量,v 表示速度。
THANKS
感谢观看
单元目标
掌握物理学的基本概 念和原理。
培养观察、实验和逻 辑思维能力,提高科 学素养。
学会运用物理学原理 解决实际问题。
02
课后习题答案
习题1答案
01
习题1-1答案:略
02
习题1-2答案:略
03
习题1-3答案:略

程守洙版普通物理学课后习题答案01运动学习题共75页

程守洙版普通物理学课后习题答案01运动学习题共75页
-36 m z^2
日录
1-3 一辆汽车沿笔直的公路行驶,速度 和时间的关系如图中折线OABCDEF^示。
(1)试说明图中0九AB. BC、CD、
DE、线段各表示什么运动?
(2)根据图中的曲线与数据,求汽车在整个行驶过程中所走的路程、位移和平均速度。
H录
解:由图的总面积可得到路程为:S =^(30+10)x5 ++(20x10) = 200(m)
总位移为:△ x= (30+10)x5 - +(20x10)=0 所以平均速度也为零
EB H录
1-4,直线1与圆弧2分别表示两质点A、B
从同一地点出发,沿同一方向做直线运动的 v-t图。已知S的初速vQ=b m/s,它的速率由
&变为0所化的时间为h(1) 试求好在时刻t 的加速度;(2) 设在B停止时,A恰好追上B,求A的速 度;(3) 在什么时候,A、B的速度相同?
1-12在竖直平面内,
光滑钢丝被弯成
图示曲线。质点穿在钢丝上,可沿它滑动。
己知其切向加速度为-gsinO ,9是曲线切向
与水平方向夹角。试证:质点在各处的速率a与其位置 坐标y有如下关系: v2-vo2 = 2g [y0-y) 式中〃。与%分别为
其初速度与初位置。
日录
y
dv dt
sin^=^ds
日录
—22 m/s
解:x = 4r - 2t3(1) △x=x-0=4m4x2-2><23= _8m
△久 _8 = _ 4111/s
P= △ t = 2
v= ^ = 4-6t2 = 4-6x22= -20 m/s
dt(2 ) △ JC =义3—-X^2=(4x 3 ™2x 33)- (4x l-2x 13)

普通物理学第二版第七章课后习题答案

普通物理学第二版第七章课后习题答案

第七章 刚体力学7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s 估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).[解 答]7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转[解 答](1)22(30001200)1/601.57(rad /s )t 12ωπβ⨯-⨯===V V(2)222220()(30001200)302639(rad)2215.7πωωθβ--===⨯所以 转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的角位移为球t 时刻的角速度和角加速度.[解 答]7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立O-xy 坐标系,原点在轴上.x 和y 轴沿水平和铅直向上的方向.边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45o 时,(3)转过90o时,A 点的速度和加速度在x 和y 轴上的投影.[解 答](1) A ˆˆt 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴==v(2)45θ=o时,由2A 1.2t t ,t 0.47(s)42.14(rad /s)v R πθωω=+==∴==⨯v v v得(3)当90θ=o时,由7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速度10rad/s ω=逆时针转动,求臂与铅直45o 时门中心G 的速度和加速度.[解 答]因炉门在铅直面内作平动,门中心G 的速度、加速度与B 或D点相同。

所以:7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反. 已知收割机前进速率为1.2m/s ,拔禾轮直径1.5m ,转速22rev/min,求压板运动到最低点挤压作物的速度.[解 答]取地面为基本参考系,收割机为运动参考系。

普通物理学第二版第七章课后习题答案

普通物理学第二版第七章课后习题答案

普通物理学第⼆版第七章课后习题答案第七章刚体⼒学7.1.1 设地球绕⽇作圆周运动.求地球⾃转和公转的⾓速度为多少rad/s?估算地球⾚道上⼀点因地球⾃转具有的线速度和向⼼加速度.估算地⼼因公转⽽具有的线速度和向⼼加速度(⾃⼰搜集所需数据).[解答]7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求⾓加速度.(2)在此时间内,发动机转了多少转?[解答](1)22(30001200)1/601.57(rad /s )t 12ωπβ?-?===V V(2)222220()(30001200)302639(rad)2215.7πωωθβ--===?所以转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的⾓位移为球t 时刻的⾓速度和⾓加速度.[解答]7.1.4 半径为0.1m 的圆盘在铅直平⾯内转动,在圆盘平⾯内建⽴O-xy 坐标系,原点在轴上.x 和y 轴沿⽔平和铅直向上的⽅向.边缘上⼀点A 当t=0时恰好在x 轴上,该点的⾓坐标满⾜21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)⾃t=0开始转45o 时,(3)转过90o 时,A 点的速度和加速度在x 和y 轴上的投影. [解答](1) A ??t 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴==v(2)45θ=o 时,由2A1.2t t,t0.47(s)42.14(rad/s)v Rπθωω=+==∴==?vvv得(3)当90θ=o时,由7.1.5 钢制炉门由两个各长1.5m的平⾏臂AB和CD⽀承,以⾓速度10rad/sω=逆时针转动,求臂与铅直45o时门中⼼G的速度和加速度.[解答]因炉门在铅直⾯内作平动,门中⼼G的速度、加速度与B或D点相同。

所以:7.1.6 收割机拔⽲轮上⾯通常装4到6个压板.拔⽲轮⼀边旋转,⼀边随收割机前进.压板转到下⽅才发挥作⽤,⼀⽅⾯把农作物压向切割器,另⼀⽅⾯把切割下来的作物铺放在收割台上,因此要求压板运动到下⽅时相对于作物的速度与收割机前进⽅向相反.已知收割机前进速率为1.2m/s,拔⽲轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度.[解答]取地⾯为基本参考系,收割机为运动参考系。

普通物理学习题及答案(上册)

普通物理学习题及答案(上册)

普通物理学习题及答案(上)1、 质点是一个只有( 质量 )而没有( 形状 )和( 大小 )的几何点。

2、 为了描写物体的运动而被选作为参考的物体叫( 参考系 )。

3、 当你乘坐电梯上楼时,以电梯为参考系描述你的运动是( 静止 )的,而以地面为参考系描述你的运动则是( 上升 )的4、 量化后的参考系称为( 坐标系 )。

5、 决定质点位置的两个因素是( 距离 )和( 方向 )。

这两个因素确定的矢量称为( 位置矢量 )。

6、 质点在一个时间段内位置的变化我们可以用质点初时刻位置指向末时刻位置的矢量来描写,这个矢量叫( 位移矢量 )。

7、 质点的速度描述质点的运动状态,速度的大小表示质点运动的( 快慢 ),速度的方向即为质点运动的( 方向 )。

质点的速度大小或是方向发生变化,都意味着质点有( 加速度 )。

8、 在xOy 平面内的抛物运动,质点的x 分量运动方程为t v x 0=,y 分量的运动方程为23gt y =,用位矢来描述质点的运动方程为( j gt i t v r203+= ).9、 一辆汽车沿着笔直的公路行驶,速度和时间的关系如图中折线OABCDEF 所示,则其中的BC 段汽车在做( 匀减速直线 )运动,汽车在整个过程中所走过的路程为( 200 )m ,位移为( 0 )m ,平均速度为( 0 )m/s10、 自然界的电荷分为两种类型,物体失去电子会带( 正 )电,获得额外的电子将带( 负 )电。

t/s11、 对于一个系统,如果没有净电荷出入其边界,则该系统的正、负电荷的电量的代数和将( 保持不变 )。

12、 真空中有一点电荷,带电量q=1.00×109C ,A 、B 、C 三点到点电荷的距离分别为10cm 、20cm 、30cm ,如图所示。

若选B 点的电势为零,则A 点的电势为( 45V ),C 点的电势为( -15V )。

13、 将一负电荷从无穷远处缓慢地移到一个不带电的导体附近,则导体内的电场强度( 不 变 ),导体的电势值( 减小 )(填增大、不变或减小)。

普通物理学第二版课后习题答案(全)

普通物理学第二版课后习题答案(全)

第一章 物理学和力学1.1国际单位制中的基本单位是那些?解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。

基本单位:米(m )、千克(kg )、时间(s )、安培(A )、温度(k )、摩尔(mol )、坎德拉(cd )。

力学中的基本量:长度、质量、时间。

力学中的基本单位:米(m )、千克(kg )、时间(s )。

1.2中学所学习的匀变速直线运动公式为,at 21t v s 20+= 各量单位为时间:s (秒),长度:m (米),若改为以h (小时)和km (公里)作为时间和长度的单位,上述公式如何?若仅时间单位改为h ,如何?若仅0v 单位改为km/h ,又如何?解答,(1)由量纲1LTvdim -=,2LT a dim -=,h/km 6.3h/km 360010h 36001/km 10s /m 33=⨯==--2223232h /km 36006.3h /km 360010)h 36001/(km 10s /m ⨯=⨯==--改为以h (小时)和km (公里)作为时间和长度的单位时,,at 36006.321t v 6.3s 20⨯⨯+=(速度、加速度仍为SI单位下的量值)验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 36006.321t v 6.3s 20⨯⨯+=计算得 )km (2.25927259202.71436006.321126.3s 2=+=⨯⨯⨯⨯+⨯⨯=(2). 仅时间单位改为h由量纲1LTv dim -=,2LTadim -=得h /m 3600h/m 3600h 36001/m s /m ===222222h /m 3600h /m 3600)h 36001/(m s /m ===若仅时间单位改为h ,得:,at 360021t v 3600s 220⨯+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20==== 利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 360021t v 3600s 220⨯+=计算得: )m (2592720025920000720014360021123600s 22=+=⨯⨯⨯+⨯⨯= (3). 若仅0v 单位改为km/h由量纲1LTv dim -=,得s/m 6.31h /km ,h /km 6.3)h 36001/(km 10s /m 3===-仅0v 单位改为km/h ,因长度和时间的单位不变,将km/h 换成m/s得,at 21t v 6.31s 20+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 21t v 6.31s 20+=计算得: )m (25927200259200007200360042136003600/11026.31s 23=+=⨯⨯+⨯⨯⨯=-1.3设汽车行驶时所受阻力f 与汽车的横截面积S 成正比,且与速率v 之平方成正比。

普通物理学第二版习题答案

普通物理学第二版习题答案

普通物理学第二版习题答案普通物理学第二版习题答案普通物理学是一门研究物质运动规律的学科,它不仅是理工科学生的必修课,也是培养学生科学思维和解决问题能力的重要课程之一。

在学习普通物理学的过程中,习题是非常重要的一环,通过解习题可以帮助学生巩固知识、加深理解,并培养学生的分析和解决问题的能力。

本文将为大家提供《普通物理学第二版》习题的答案,帮助读者更好地掌握物理学知识。

第一章:运动的描述1. 一辆汽车以10 m/s的速度匀速行驶,经过5秒后,汽车的位移是多少?答案:位移等于速度乘以时间,即位移=速度×时间=10 m/s × 5 s = 50 m。

2. 一个物体以4 m/s的速度向东运动,经过2秒后,它的速度变为8 m/s,方向保持不变。

求物体的加速度。

答案:加速度等于速度的变化量除以时间,即加速度=(8 m/s - 4 m/s)/ 2 s = 2 m/s²。

第二章:牛顿定律和运动学1. 一个质量为2 kg的物体受到一个5 N的力,求物体的加速度。

答案:根据牛顿第二定律,加速度等于力除以质量,即加速度=5 N / 2 kg = 2.5 m/s²。

2. 一个质量为0.5 kg的物体受到一个10 N的力,求物体的加速度。

答案:加速度等于力除以质量,即加速度=10 N / 0.5 kg = 20 m/s²。

第三章:力和运动1. 一个物体受到一个10 N的向上的力和一个5 N的向下的力,求物体的净力和加速度。

答案:净力等于所有力的矢量和,即净力=10 N - 5 N = 5 N。

加速度等于净力除以质量,即加速度=5 N / 质量。

2. 一个物体受到一个20 N的向右的力和一个10 N的向左的力,求物体的净力和加速度。

答案:净力等于所有力的矢量和,即净力=20 N - 10 N = 10 N。

加速度等于净力除以质量,即加速度=10 N / 质量。

第四章:工作和能量1. 一个物体的质量为2 kg,高度为10 m,求物体的重力势能。

程守洙《普通物理学》(第6版)(上册)(课后习题详解 力和运动)

程守洙《普通物理学》(第6版)(上册)(课后习题详解 力和运动)

1.2 课后习题详解一、复习思考题§1-1 质点运动的描述1-1-1 回答下列问题:(1)一物体具有加速度而其速度为零,是否可能?(2)一物体具有恒定的速率但仍有变化的速度,是否可能?(3)一物体具有恒定的速度但仍有变化的速率,是否可能?(4)一物体具有沿Ox轴正方向的加速度而又有沿Ox轴负方向的速度,是否可能?(5)一物体的加速度大小恒定而其速度的方向改变,是否可能?答:速度是表示物体运动的方向和快慢的物理量,为矢量,是位矢r的时间变化率;速率是表示速度的大小,为标量,是路程s对时间的的变化率;加速度是表示速度变化的快慢和方向的物理量,为矢量,是速度v的时间变化率.(1)可能.如:①竖直上抛物体运动到最高点的时刻,具有加速度(等于重力加速度),物体的速度为零;②弹簧振子在水平面上振动时,在位移达到最大值时,加速度不为零,而速度为零.(2)可能.速度是矢量,有大小和方向;速率是速度的大小.如,物体作匀速率圆周运动时,速度的大小(即速率)不变,但其方向不断变化着,因而其速度一直变化.(3)不可能.因为速度是矢量,有大小(即速率)和方向,当速率变化时,速度必将改变,不可能恒定.(4)可能.如:物体匀减速直线运动时的加速度方向和速度方向相反.(5)可能.如:①物体作抛体运动时,其加速度为重力加速度,大小和方向恒定保持不变,而其速度(大小和方向)却时刻变化着;②物体作匀速率圆周运动,其向心加速度的大小保持不变,但其速度的方向时刻沿圆周的切线方向,即速度的方向在改变着.1-1-2 回答下列问题:(1)位移和路程有何区别?在什么情况下两者的量值相等?在什么情况下并不相等?(2)平均速度和平均速率有何区别?在什么情况下两者的量值相等?瞬时速度和平均速度的关系和区别是怎样的?瞬时速率和平均速率的关系和区别又是怎样的?答:(1)①位移和路程的区别a .位移是矢量,是以质点在△t 时间内从起点到终点的有向线段来表示;b .路程是标量,是在△t 时间内质点实际路径的长度.在图1-1中,是位移,是路程.图1-1-1②两者量值相等和不相等时的情况a .两者相等的情况:在直线运动中,如运动方向不变,则质点的位移的大小与路程相等.曲线运动中,在△t 趋近于0的极限情况下,位移与轨迹重合,位移的大小才等于路程.b.两者不相等的情况:一般的曲线运动中,位移的大小|△r|与路程并不相等,只有在△t很短的情况下,质点的位移和运动轨迹近似地看作重合.(2)①平均速度和平均速率a.平均速度定义为,它是矢量.b.平均速率定义为,它是标量.②两者量值相等时的情况在一般情况下,在相同的时间内|△r|≠△s,所以平均速度和平均速率并不相等.只有在运动方向不变的直线运动中,平均速度在量值上才和平均速率相等.③瞬时速度和平均速度的关系与区别a.二者的关系瞬时速度是时间△t趋于零时平均速度的极限,即.b.二者的区别第一,瞬时速度和平均速度都是矢量.一般情况下,二者大小和方向都不相同.平均速度的方向是△t时间内位移△r的方向,而瞬时速度的方向是△t→0时沿运动轨迹的切线方向.第二,只有在匀速直线运动中,瞬时速度和平均速度的大小和方向才相等.④瞬时速率和平均速率的关系和区别a.二者的关系瞬时速率是指瞬时速度的大小,平均速率的大小等于单位时间内所经过的路程.它们都是标量.b.二者的区别一般情况下,它们不相等,只有在匀速直线运动中,瞬时速率才等于平均速率.1-1-3 回答下列问题:(1)有人说:“运动物体的加速度越大,物体的速度也越大”,你认为对不对?(2)有人说:“物体在直线上运动前进时,如果物体向前的加速度减小,物体前进的速度也就减小”,你认为对不对?(3)有人说:“物体加速度的值很大,而物体速度的值可以不变,是不可能的”,你认为如何?答:(1)这种说法是错误的.运动物体的加速度很大,只说明物体运动速度在变,且变化地很大,并不是运动的速度很大.如,弹簧振子在位移最大处,其加速度的值最大,而速度却等于零.(2)这种说法是错误的.物体作直线运动时,若向前运动的加速度减小,表明向前运动的速度的变化率在减小,但速度还是因有加速度继续增大,只是增大得平缓些.即使加速度减到零,物体仍向前作匀速直线运动,而不会减小.(3)这种说法是错误的.物体速度的大小不变,但速度的方向可改变.如,物体作匀速率圆周运动时,其向心加速度,如v的值很大,那么可得到很大的加速度,但是速度大小却保持不变.1-1-4 设质点的运动学方程x=x(t),y=y=(t),,在计算质点的速度和加速度时,有人先求出然后根据及而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即及你认为哪一种正确?两者差别何在?答:(1)在计算速度和加速度的大小时,前一种方法有错误,后面一个方法是正确的.(2)二者的差别:①前面一个计算方法错误在于忽视了位移、速度和加速度的矢量性,求出的只是速度v和加速度a的径向分量.②质点的速度按定义是,而不是.|d r|是位矢增量d r的大小,而dr是位矢r2和r1大小的差值,即r2-r1的极值,按速度定义应为速度的大小为同样,加速度的大小应为用平面极坐标表示时,设位置矢量r的大小为极径r,方向用极角θ表示.质点运动的速度v和加速度a也都可表示为沿径向的和垂直于径向的两个分量的叠加,即和其中所以,前者求出的只是速度v和加速度a的径向分量.§1-2 圆周运动和一般曲线运动1-2-1 试回答下列问题:(1)匀加速运动是否一定是直线运动?为什么?(2)在圆周运动中,加速度方向是否一定指向圆心?为什么?答:(1)不一定.如抛体运动,它的加速度为重力加速度g,大小和方向都不变,然而速度v的方向总是沿着轨迹的切线方向,时刻变化,不是直线运动.(2)不一定.如在变速率圆周运动中,质点既有向心(法向)加速度,又有切向加速度,合加速度就不指向圆心.1-2-2 对于物体的曲线运动有下面两种说法:(1)物体作曲线运动时,必有加速度,加速度的法向分量一定不等于零.(2)物体作曲线运动时速度方向一定在运动轨迹的切线方向,法向分速度恒等于零,因此其法向加速度也一定等于零.试判断上述两种说法是否正确,并讨论物体作曲线运动时速度、加速度的大小、方向及其关系.答:(1)第一种说法是正确的,第二种说法是错误的.①对于说法(1),因为物体作曲线运动时,它的速度方向一直在变化,因而一定存在法向加速度.②对于说法(2),法向加速度反映物体运动速度的方向变化.(2)物体作曲线运动时速度、加速度的大小、方向及其关系。

普通物理学第二版课后习题答案(全)

普通物理学第二版课后习题答案(全)
2
�得算计 用利 2 , 2 ta � t 0 v � s 1 h0.1 � s0063 � t , 2s/m0.4 � a ,s / m0.2 � 0 v
2 6.3 , 2 ta � t 0 v �s 1 1
:下一证验
s/m 成换 h/mk 将�变不位单的间时和度长因�h/mk 为改位单 0 v 仅 6.3 s/m � h / mk 1 0063 (/ m k 3 � 0 1 � s / m ,h / mk6.3 � ) h 1 得 得,
2
。误无果成此断判纲量据根。1 为纲量的边两子式出看以可�答解 �否误有果成此断 判纲量据根步初否能你 �1 纲量即数纯为 1 和 、�、 0、 1 01 � 量 质 的 体
9 2� 3�
物 些 某 示 表 p m和2 m、1m、M 中 其 1 1 m 2m m ] ) ( 01 � 1[ 2 ) ( 92 �01 � � M m 3 1m 3 �
1�
TL � v mid
纲量由
h/mk 为改位单 0 v 仅若 .�3� ) m(00272952 � 00002952 � 0027 � 2 1 � 4 � 20063 � � 1 � 2 � 0063 � s 2 1 �得算计 用利 2 , ta 0063 � � t 0 v0063 � s 2 2 1 ) m(00272952 � 00002952 � 0027 � 2 0063 � 4 � � 0063 � 2 � s 1
t2 �
程方迹轨得 t 去消 , 3 � t 2 � y , t 4 � x .① � 解 2
。移位的点质 1=t 至 1-=t 自求.�2� �迹轨的
点质求
.�1� � k 2 � j i e � r 为程方学动运点质 2.1.2 ˆ ˆ t2 e � ˆ t2 � �
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理学(作业题参考解答)第一章 质点运动学作业题:1-3; 1-5;1-8;1-11; 1-16作业题解答(参考)1-3 解:(1)t x 2=,22t y -=,422x y -=(x >0)(2)()()j i r 222t t -+=; 1=t s 到2=t s ,()()j i r 2r r v 32121-=--==t ∆∆(m·s -1) (3)()j i rv t t22d d -==; 1s 末和2s 末, ()j i v 221-=(m·s -1), ()j i v 422-=(m·s -1) (4)j va 2dtd -==,()()j a a 221-==(m·s -2) 1-5 解:t d d r v =,t d d v r =()()()()()()t0000v t 0t dt v t t dt t t v t 1t cos sin sin cos sin cos ωωωωωωωω-==+=-=+-⎡⎤⎣⎦⎰⎰t tr r v i j i j i j()j i r ⎪⎭⎫⎝⎛+-+=R t v v t v t ωωωωωcos sin 000, t v x ωωsin 0=,t v R v y ωωωcos 00-+= 将上两式中消去t 得质点的轨迹方程为 20202⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛--+ωωv v R y x1-8 解:3kv a -= ( k > 0,常数), 3d d kv t v -=或t k v v d d 3-=;⎰⎰-=tv v t k v v3d d 0 21200211)(⎪⎪⎭⎫⎝⎛+=t kv v t v ,t t kv v x d 211d 21200⎪⎪⎭⎫ ⎝⎛+=;t t kv v x x d 211d 21200t0⎪⎪⎭⎫ ⎝⎛+=⎰⎰,()1211)(20-+=t kv kv t x , xvv t x x v t v d d d d d d d d =⋅=,3kv a -=,x k vvd d 2-=, x kv v x v 001)(+= 1-11 解:t t t612d d 2-==ωβ;()t t t d 612d 2-=ω; ()⎰⎰-=t t t t2d 612d ωω2334t t -=ω(1s rad -⋅);t t R a t 6122-==β(2s m -⋅)1-16:解:B A A v v v 地对对地对+=B ;由于对地地对-B Bv v =对地对地对-=B B v v v A A ;A 机相对于B 机的速度大小为αcos 222B A B A AB v v v v v -+= )s m (91760cos 8001000280010001o 22-⋅=⨯⨯⨯-+=6540917866.0800arccos 30cos arccos o o '=⨯==AB B v v β第二章 质点动力学作业题:2-3;2-4;2-6;2-9;2-11;2-12;2-14;2-15;2-20作业题解答(参考)2-3 解:⎪⎪⎭⎫ ⎝⎛=-lv m mg T 2cos θ;⎪⎭⎫ ⎝⎛=-t v m mg d d sin θ;θθθd d d d sin ⎪⎭⎫ ⎝⎛=-t v m mg ()ωθθθl t m mg d d d d sin ⋅⎪⎭⎫⎝⎛=-; ωωθθd d sin ⋅-=l g⎰⎰⋅-=ωωθωωθθ0d d sin 0l g ;解得()2202121cos 1ωωθl l g -=- ()()1cos 211cos 22020-+=-+=θθωωgl v l g l ;⎪⎪⎭⎫ ⎝⎛+-=θcos 3220g g l v m T2-4 解:根据牛顿定律有 t v mt d d 40120=+;即0.40.12d d +=t tv; ()⎰⎰+=tvv t t v 0d 0.40.12d 0; )0.60.40.6(2t t v ++=m·s -1即20.60.40.6d d t t tx ++=;()t t t x x x t d 6.04.06.0d 002⎰⎰++=;)m 02020605(32t .t .t ..x +++=2-6 解:tv m kmv mg d d 2=--;y v v t yy v t v d d d d d d d d =⋅=,积分⎰⎰+-=y v v kv g v v y 020d d ⎪⎪⎭⎫ ⎝⎛++-=202ln 21kv g kv g k y ;最高处时,v =0,⎪⎪⎭⎫ ⎝⎛+==g kv g k y h 20max ln 21 (1) tv mkmv mg d d 2=+-;y v v t yy v t v d d d d d d d d =⋅=,y v mv kmv mg d d 2=+- ⎰⎰--=02d d hvkv g vv y ; 解出 12001-⎪⎪⎭⎫ ⎝⎛+=g kv v v2-9 解法1:根据动量原理得x x mv I -=0;0-=y y mv IgH v y 2=;gH v m I I I x y x 2222+=+=32.7108.922030.02=⨯⨯+⨯=)s N (⋅70020108922tan ..v gH mv mv I I x xy xy -=⨯⨯-=-=-==α, ︒=145α 小球所受到的平均冲力大小为)N (36602.032.7===t I F 2-11 解:()()u v m Mv v m M -+=+αcos 0可得人的水平速率的增量为u mM mv v v +=-=α∆cos 0g v t αsin 0=;所以人跳跃抛出物体后增加的距离为()u gm M mv t v x +=⋅=αsin ΔΔ0 2-12 解:0321=++p p p ;213p 10-==201007.1-⨯=(1s m kg -⋅⋅)3p 与1p 的夹角为8514933.522.9arctan 90arctan9021'︒=+︒=+︒=p p α2-14 解:yg mg F λ-=;()y g y m y F W d d d λ-==把水桶从水面提高到井口外力所做的总功 ()(J)882d 10=-=⎰y g y m W λ2-15 解: x x m F a 4.03.01043+=+==(m·s -2); 以3=x m 代入上式得5.1=a m·s -2 ;()⎰⎰+==-3030202d 43d 2121x x x F mv mv ()2723302=+=x x ;3.210272=⨯=v (m·s -1)2-20 解:第一个过程:210122121v m kx = 第二个过程:020=v ,则2m 碰后的速度为 102v v =第三个过程:()22222221cos 21v m R R g m v m ++=α根据牛顿定律得 Rv m N g m 222cos =+α可解得 kmgRk gR m x 27271==第三章 刚体力学作业题:3-1;3-5;3-8;3-11;3-12;3-15;3-16;3-18;3-20作业题解答(参考)3-1 解:(1)()()()2-33120s rad 1136012102110721432602⋅=⨯⨯-⨯⨯⨯=-=-=....t n n tπωωβ(2) ()()12212120606022160221n n tt t n n t n t t +πππβωθ=-⋅+=+= ()()()圈390602102172126022312=⨯⨯+⨯=⨯+==..n n t N πθ3-5 解: 1.0)300500(2⨯+==t .t .Fr M根据转动定律tJ J M d d ωβ==, 得t t t t J M d 101.00.300.50d d 3-2⨯+==ω ()3202100250d 300500d t t t t t +=+==⎰⎰ωωωω;t =3s ,()-1332s rad 1095431003250⋅⨯=⨯+⨯=.ω3-8 解:θλθcos d cos d d gr r r g m M ⋅=⋅⋅=;br a +=λ()θθcos 32d cos 2gl bl a r gr br a M l⎪⎭⎫ ⎝⎛+=+=⎰ ()()43022024131d d d bl al r br a r r r m r J ll 0l +=+===⎰⎰⎰λθωωθθωωd d d d d d d d J t J t JM =⋅==,θωωθd d 4131cos 32432⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+bl al gl bl a ωωθθωπd 4131d cos 3204322⎰⎰⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+bl al gl bl a ; ()()bl a l bl a g 34234++=ω3-11 解: ()J 109716030210004212142321k 1⨯=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯==..J E πω()J 101926010210004212132322k 2⨯=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯==..J E πω()J 10751109711012443k 1k 2⨯-=⨯-⨯=-=...E E W3-12 解:(1))2Rm πσ=,r r RmS m d 2d d 2ππσ== 2r/R gmr 2m g F d d d μμ==;mgR r/R gmr M Rμμ⎰-=-=02232d 2RgJ M 34μβ-==;t βωω=-0,g R t μωβωω4300=-= (2)根据动能定理,摩擦力的功为 2022041210ωωmR J W -=-=3-15 解:(1)⎰∆===∆t Fl t M J L d 0ω(2)()θωcos 1212120-=mgl J ;解得 ⎪⎪⎭⎫ ⎝⎛∆=gl m t F 2223-1arccos θ3-16 解:kt m = 其中,-13s kg 10⋅=-k 。

由角动量守恒定律,得()ωω20mr J J +=;解出 ()0230052021101021105ωωωωωω⨯⨯⎪⎭⎫ ⎝⎛-⨯=-=--.kr J t =5s3-18 解:取杆为研究对象。

20212l Mg J =-ω; lg32=ω 第二阶段取杆和物体A 组成的系统为研究对象ωωω'+'=2ml J J 带入J 可解出 mM l g M 33+='ω在第三阶段 ()2210ωμ'-=-l m s mg ; ()22323m M lM s +=μ3-20 解:00=L ;人走动后,设圆盘的角速度为ω,则人对地的角速度为ω',根据运动的相对性,有 ωυω+='2R ;角动量为ωω'+=22mR J L 系统角动量守恒 022='+ωωmR J ;υω2221222R R R +-=第五章 气体动理论作业题:5-3;5-7;5-9;5-11;5-12; 5-15;5-17作业题解答(参考)5-3 解:1. )(m 1044.23001038.11001.1325235--⨯=⨯⨯⨯==kT p n2. nm =ρ, )m kg (30110023.610321044.2323325--⋅=⨯⨯⨯⨯==.N n μρA (J)102163001038123232123k --⨯=⨯⨯⨯==..kT ε(1) nV 1= ;()()m 1045.31044.211932533-⨯=⨯===n V d5-7 解:μRTm kT v 332==;μR v T 32= (K)1001.131831021021134362121⨯=⨯⨯⨯⨯==-..μR v T(K)10611318310321021135362222⨯=⨯⨯⨯⨯==-...μR v T当132s m 104.2-⋅⨯=v 时,(K)1062.43183102104.232362121⨯=⨯⨯⨯⨯='='-.μR v T (K)1039.731831032104.233362222⨯=⨯⨯⨯⨯='='-.μR v T5-9 解:(1)T N R kT v m A2323212==; 得 )(mol 1015.631232-⨯==vm RTN A (2)1231423s m 103.110102.614.33001038.188-----⋅⨯=⨯⨯⨯⨯⨯⨯==m kT v π5-11 答:据平均速率、方均根速率和最概然速率的定义得20716253443523200000001υυυυυυυυυ⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑=NNNi ii 065.3υ=()2076253443523222222220122+⨯+⨯+⨯+⨯+⨯+==∑=υυυNN Ni ii099.3υ= 20个质点中出现速率为03υ的概率最大,有5个,故0p 3υυ=。

相关文档
最新文档