初一下学期数学知识点及整套练习题
2021年北师大版七年级数学下册全册知识点与典型例题配套练习
![2021年北师大版七年级数学下册全册知识点与典型例题配套练习](https://img.taocdn.com/s3/m/698804d5f78a6529657d5354.png)
4. 若 2x1 16 ,则 x=________.
5. 若 am a3a4 ,则 m=________;若 x4 xa x16 ,则 a=__________; 若 xx2 x3x4x5 x y ,则 y=______;若 ax (a)2 a5 ,则 x=_______.
6. 若 am 2, an 5 ,则 amn =________.
第一章 整式
一、整式关于概念
1、单项式:数与字母乘积,这样代数式叫单项式。单独一种数或字母也是单项式。
2、单项式系数:单项式中数字因数。
3、单项式次数:单项式中所有字母指数和。
4、多项式: 几种单项式和叫多项式。
5、多项式项及次数:构成多项式中单项式叫多项式项,多项式中次数最高项次数
叫多项式次数。
6、整式:单项式与多项式统称整式。(分母具有字母代数式不是整式)
(1)(2a) (x 2 y 3c),
(2)(x 2)( y 3) (x 1)( y 2)
(3)(x y)(2x 1 y) 2
(2)计算下图中阴影某些面积
8、平方差公式 法则:两数各乘以这两数差,等于这两数平方差。 数学符号表达:
(a b)(a b) a2 b2 其中a, b既可以是数, 也可以是代数式.
(4)( 2 a2bc3 ) ( 3 c5 ) (1 ab2c)
3
43
6、单项式乘以多项式
法则:单项式乘以多项式,就是依照分派律用单项式去乘多项式每一项,再把所得积相
加。
7、多项式乘以多项式
法则:多项式乘以多项式,先用一种多项式每一项去乘另一种多项式每一项,再把所得积
相加。
练习七:(1)计算下列各式。
3)1.5104 _____________
七年级下册数学知识点和例题整理
![七年级下册数学知识点和例题整理](https://img.taocdn.com/s3/m/d4e09915f11dc281e53a580216fc700abb68522c.png)
七年级下册数学知识点和例题整理一、有理数1. 有理数的概念有理数包括正整数、负整数、零,以及分数。
有理数在数轴上的位置可以用来表示实际问题中的正负关系。
2. 有理数的加减法有理数的加减法遵循着相同符号相加取其绝对值再加上它们的符号,不同符号相加取其绝对值相减再按绝对值大小决定结果的符号。
例题:计算:(-5) + 8 - 3/5 + 1/43. 有理数的乘除法有理数的乘法和除法和正数的规律一致,同号得正,异号得负。
例题:计算:(-4) * 5 ÷ (-2)4. 有理数的比较有理数的大小比较可根据它们在数轴上的位置进行判断,也可以转化为同分母进行比较。
例题:比较:(-3/4) 与 5/8 的大小。
二、比例和比例的应用1. 比例的概念比例是指两个相似的量之间的比值关系,可以通过等式形式表示。
2. 比例的性质比例的性质包括比例分数的相等、比例的逆比也成比例、比例可相互比较。
例题:已知:a/b = c/d,求证:b/a = d/c。
3. 比例的应用比例在日常生活中有着广泛的应用,如规划图、工程施工等领域。
例题:甲、乙、丙三人合伙做一件事,甲出资5000元,乙出资3000元,丙出资2000元。
若利润为15万元,求甲、乙、丙三人分别分得多少利润。
三、实数的乘法与除法1. 正数和负数的乘法正数和负数相乘的结果为负数,负数和负数相乘的结果为正数。
例题:计算:(-6) * 32. 正数和负数的除法正数除负数的结果为负数,负数除正数的结果为负数。
例题:计算:(-9) ÷ 33. 乘方与乘方的运算乘方是指一个数自身连乘多次,乘方的运算分为有理数指数幂、乘方分解公式等。
例题:计算:(-2)^3四、二次根式1. 二次根式的定义二次根式是指含有平方根的代数式。
2. 二次根式的基本性质二次根式包括加法、减法、乘法、除法、乘方等运算。
例题:计算:√2 * √83. 二次根式的化简化简二次根式可通过合并同类项、有理化分子分母等方法进行。
七年级数学下册第六章实数知识集锦(带答案)
![七年级数学下册第六章实数知识集锦(带答案)](https://img.taocdn.com/s3/m/e9f1a334b94ae45c3b3567ec102de2bd9705de10.png)
七年级数学下册第六章实数知识集锦单选题1、如图,若数轴上的点A,B,C,D表示数−1,1,2,3,则表示数4−√11的点应在()A.A,O之间B.B,C之间C.C,D之间D.O,B之间答案:D分析:先估算出4−√11的值,再确定出其位置即可.解:∵9<11<16,∴3<√11<4,∴−4<−√11<−3,∴4−4<4−√11<4−3,即0<4−√11<1∴表示数4−√11的点应在O,B之间.故选:D.小提示:本题考查的是实数与数轴.熟知实数与数轴上各点是一一对应关系,能够正确估算出√11的值是解答此题的关键.2、若一个正方形的面积是12,则它的边长是()A.2√3B.3C.3√2D.4答案:A分析:根据正方形的面积公式即可求解.解:由题意知:正方形的面积等于边长×边长,设边长为a,故a²=12,∴a=±2√3,又边长大于0∴边长a=2√3.故选:A.小提示:本题考查了正方形的面积公式,开平方运算等,属于基础题.3、对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3答案:D分析:给x−y添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.解:∵(x−y)−z−m−n=x−y−z−m−n∴①说法正确∵x−y−z−m−n−x+y+z+m+n=0又∵无论如何添加括号,无法使得x的符号为负号∴②说法正确③第1种:结果与原多项式相等;第2种:x-(y-z)-m-n=x-y+z-m-n;第3种:x-(y-z)-(m-n)=x-y+z-m+n;第4种:x-(y-z-m)-n=x-y+z+m-n;第5种:x-(y-z-m-n)=x-y+z+m+n;第6种:x-y-(z-m)-n=x-y-z+m-n;第7种:x-y-(z-m-n)=x-y-z+m+n;第8种:x-y-z-(m-n)=x-y-z-m+n;故③符合题意;∴共有8种情况∴③说法正确∴正确的个数为3故选D .小提示:本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.4、已知min {a,b,c }表示取三个数中最小的那个数,例加:min{−1,−2,−3}=−3,当min{√x,x 2,x}=181时,则x 的值为( )A .181B .127C .13D .19 答案:D分析:根据题意可知√x,x 2,x 都小于1且大于0,根据平方根求得x 的值即可求解.解:∵min{√x,x 2,x}=181∴√x,x 2,x 都小于1且大于0∴x 2<x <√x∴x 2=181∴x =19(负值舍去)故选D小提示:本题考查了求一个数的平方根,判断√x,x 2,x 的范围是解题的关键.5、定义:若10x =N ,则x =log 10N ,x 称为以10为底的N 的对数,简记为lgN ,其满足运算法则:lgM +lgN =lg(M ⋅N)(M >0,N >0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2⋅lg5+lg5的结果为( )A .5B .2C .1D .0答案:C分析:根据新运算的定义和法则进行计算即可得.解:原式=lg2⋅(lg2+lg5)+lg5,=lg2⋅lg10+lg5,=lg2+lg5,=1,故选:C.小提示:本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键.6、在四个实数−2,0,−√3,−1中,最小的实数是()A.−2B.0C.−√3D.−1答案:A分析:根据实数比较大小的方法直接求解即可.解:∵−2<−√3<−1<0,∴四个实数−2,0,−√3,−1中,最小的实数是−2,故选:A.小提示:本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.7、下列说法正确的是()A.−81平方根是−9B.√81的平方根是±9C.平方根等于它本身的数是1和0D.√a2+1一定是正数答案:D分析:A、根据平方根的概念即可得到答案;B、√81的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出a2+1>0,再利用算术平方根的性质直接得到答案.A、−81是负数,负数没有平方根,不符合题意;B、√81=9,9的平方根是±3,不符合题意;C、平方根等于它本身的数是0,1的平方根是±1,不符合题意;D、a2+1>0,正数的算术平方根大于0,符合题意.小提示:此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.8、按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1答案:D分析:逐项代入,寻找正确答案即可.解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m+1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;小提示:本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.9、−√64的立方根等于()A.−8B.−4C.−2D.±2答案:C分析:先求出−√64=−8,再求出-8的立方根即可得.3=−2,解:∵−√64=−8,√−8∴−√64的立方根等于-2,故选:C.小提示:本题考查了立方根的意义,解题的关键是掌握立方根.10、下列说法正确的是()A.-4是(-4)2的算术平方根B.±4是(-4)2的算术平方根C.√16的平方根是-2D.-2是√16的一个平方根答案:D分析:根据算术平方根、平方根的定义逐项判断即可得.A、(−4)2=16,16的算术平方根是4,则此项错误,不符题意;B、(−4)2=16,16的算术平方根是4,则此项错误,不符题意;C、√16=4,4的平方根是±2,则此项错误,不符题意;D、√16=4,4的平方根是±2,则−2是√16的一个平方根,此项正确,符合题意;故选:D.小提示:本题考查了算术平方根、平方根,掌握理解定义是解题关键.填空题11、根据图中呈现的运算关系,可知a=______,b=______.答案:-2020 -2020分析:根据立方根和平方根的定义进行求解即可.解:∵2020的立方根是m,a的立方根是-m,∴m3=2020,∴(−m)3=−m3=−2020,∴a=−2020;∵n的两个平方根分别为2020、b,∴b =−2020,所以答案是:-2020,-2020.小提示:本题主要考查了平方根和立方根,熟知二者的定义是解题的关键.12、比较大小:√22______√33(填写“>”或“<”或“=”).答案:>分析:比较两者平方后的值即可.解:∵(√22)2=12,(√33)2=13,∵12>13, ∴ √22>√33. 所以答案是:>.小提示:本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果.13、写出一个比√2大且比√15小的整数______.答案:2(或3)分析:先分别求出√2与√15在哪两个相邻的整数之间,依此即可得到答案.∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数是2或3.所以答案是:2(或3)小提示:本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出√2与√15在哪两个相邻的整数之间是解答此题的关键.14、若√a +13与√a 2−53互为相反数,则a 3+5a 2﹣4的值为 _____.答案:12分析:先根据相反数的定义得√a +13+√a 2−53=0,再利用立方根的意义进行整理,最后利用整体代入的方法即可求得答案 .解:由题意得:√a +13+√a 2−53=03∴√a+13=−√a2−5∴a+1=﹣(a2﹣5).∴a2+a=4.∴a3+a2=4a.∴a3=﹣a2+4a.∴a3+5a2﹣4=﹣a2+4a+5a2﹣4=4a2+4a﹣4=4(a2+a)﹣4=4×4﹣4=12.所以答案是:12.小提示:本题考查的相反数的应用,立方根的应用,解题的关键是在于整理出所需形式,利用整体代入求解.15、若实数a的立方等于27,则a=________.答案:3分析:根据立方根的定义即可得.3=3,解:由题意得:a=√27所以答案是:3.小提示:本题考查了立方根,熟练掌握立方根的运算是解题关键.解答题16、据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:39.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:(1)已知x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是______;∴x=______.(2)y3=614125,且y为整数,按照以上思考方法,请你求出y的值.答案:(1)2#,2#,22#(2)y=85分析:(1)根据立方根的定义和题意即可得出答案;(2)根据(1)中的方法计算书写即可得出结果.(1)解:∵x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是2;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是2;∴x=22.所以答案是:2,2,22.(2)∵1000=103<614125<1003=100000,∴y一定是两位数;∵614125的个位数字是5,∴y的个位数字一定是5;划去614125后面的三位125得614,∵512=83<614<93=729,∴y的十位数字一定是8;∴y=85.小提示:本题考查立方根,灵活运用立方根的计算是解题的关键.17、如图,把图(1)中两个小正方形纸片分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到如图(2)的大正方形.问题发现若大正方形的面积为32cm2,则小正方形的面积是__________cm2,边长为___________cm;知识迁移某兴趣小组想将图(1)中的一个小正方形纸片,沿与边平行的方向剪裁出面积为12cm2,且长宽之比为3∶2的长方形纸片.兴趣小组能否剪裁出符合要求的长方形纸片?请说明理由.拓展延伸如图(3)是由5个边长为1的小正方形组成的纸片,能否把它剪开并拼成一个大正方形?若能,请画出示意图,并写出边的长度,若不能,请说明理由.答案:问题发现:小正方形的面积为16cm2,边长为4cm知识迁移:不能裁出符合要求的长方形纸片拓展延伸:能把它剪开并拼成一个大正方形,示意图见解析,大正方形边长为√5分析:问题发现:先求出小正方形的面积,再根据正方形的面积等于边长的平方求边长;知识迁移:设长和宽分别为3x、2x,利用面积列方程,最后检验即可;拓展延伸:新的大正方形面积为5,则边长为√5,可以把它剪开并拼成一个大正方形.问题发现:小正方形的面积为32÷2=16cm2,∴小正方形的边长为4cm.所以答案是:16;4.知识迁移:设长和宽分别为3x、2x,由题意得:3x⋅2x=12,整理得:x2=2,∵实际问题x为正数,∴x=√2,∴长方形的长为3x=3√2≈5.19>4,即裁剪后的长方形的长大于小正方形的边长,∴不能裁出符合要求的长方形纸片.拓展延伸:能把它剪开并拼成一个大正方形,裁剪示意图如图所示:∵原图形的面积是5,∴裁剪后的正方形面积也是5,∴大正方形边长为√5.小提示:本题考查了算术平方根的实际应用、正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.18、求下列式子中的x :(1)25(x ﹣35)2=49;(2)12(x +1)2=32. 答案:(1)x 1=2,x 2=−45(2)x 1=7,x 2=﹣9分析:(1)两边同时除以25,再开平方解一元一次方程即可;(2)方程两边同时乘以2,再开平方解一元一次方程即可.(1)解: 25(x ﹣35)2=49,(x ﹣35)2=4925, x ﹣35=±75,x ﹣35=75或x ﹣35=﹣75,解得:x 1=2,x 2=−45;(2)12(x +1)2=32, (x +1)2=32×2,(x +1)2=64, x +1=±8,x +1=8或x +1=﹣8,解得:x 1=7,x 2=﹣9.小提示:此题考查了利用平方根定义解方程,正确理解并掌握平方根的定义是解题的关键.。
浙教版七年级下册数学知识点总结及例题
![浙教版七年级下册数学知识点总结及例题](https://img.taocdn.com/s3/m/fa312d474b73f242336c5fbe.png)
浙教版七年级下册数学知识点总结及例题第1章平行线1.在同一平面内,两条直线的位置关系只有两种:相交与平行.2.平行线的定义:在同一平面内......,不相交的两条直线叫做平行线.“平行”用符号“∥”表示.思考:定义中为什么要有“在同一平面内”这个条件?3.平行线的基本事实:经过直线外...一点,有且只有一条直线与这条直线平行.思考:为什么要经过“直线外”一点?4.用三角尺和直尺画平行线的方法:一贴,二靠,三推,四画.(注意:作图题要写结论)5.★★★★★同位角、内错角、同旁内角判断过程:①画出给定的两个角的边(共三条边),公共边就是截线,剩下两条边就是被截线;②根据同位角、内错角、同旁内角的概念判断.同位角:在截线的同旁,被截线的同一侧.内错角:在截线的异侧,被截线之间.同旁内角:在截线的同旁,被截线之间.练习:如图,∠1和∠2是一对___________;∠2和∠3是一对___________;∠1和∠5是一对___________;∠1和∠3是一对___________;∠1和∠4是一对___________;∠4和∠5是一对___________;6.★★★★★平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)平行线的定义:在同一平面内......,不相交的两条直线平行;(5)平行于同一条直线的两条直线平行;(不必在同一平面内)(6)在同一平面内......,垂直于同一条直线的两条直线互相平行.练习:如图,要得到AB∥CD,那么可添加条件______________________________.(写出全部)7.★★★★★平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.练习:如图,已知∠1=58°,∠3=42°,∠4=138°,则∠2=________°.8.★★★★★图形的平移(1)概念:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.(2)性质:平移不改变图形的形状、大小和方向;一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.(3)描述一个图形的平移时,必须指出平移的方向..!..和距离练习:如图,已知△ABC和其平移后的△DEF.①点A的对应点是________,点B的对应点是________;②线段AC的对应线段是________;线段AB的对应线段是________;③平移的方向是__________,平移的距离是______________________.④若AC=AB=5,BC=4,平移的距离是3,则CF=________,DB=________,AE=________,四边形AEFC的周长是_________.9.★★★折叠问题方法:(1)找到折叠后和折叠前的图形,若折叠前的图形没有画出,自己必须补画上去;(2)找到折叠前后能重合的角,它们的度数相等;(3)利用平行线的性质、对顶角的性质、三角形的内角和、邻补角的性质、平角等计算出角度.练习:(1)如图,将一张纸条ABCD沿EF折叠,若折叠角∠FEC=64°,则∠1=________.(2)如图,有一条直的宽纸带,按图折叠,则∠α=_______.(3)如图,将一条两边沿互相平行的纸带折叠,①写出图中所有与∠6相等的角;②若∠6=x°,请用含x的代数式表示∠4的度数.第2章 二元一次方程组1.★★★二元一次方程的概念三个条件:(1)含有两个未知数;(2)未知数的项的次数是一次;(3)都是整式.练习:方程①x -1 y+2=0,②xy =-2,③x 2-5x =5,④2x =1-3y 中,为二元一次方程的是____________.2.★★★★把二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式(1)用含x 的代数式表示y ,则应变形为“y =…”的形式;(2)用含y 的代数式表示x ,则应变形为“x =…”的形式.练习:(1)已知方程2x -3y =7,用关于x 的代数式表示y 得_______________.(2)已知方程3x +2y =6,用关于y 的代数式表示x 得_______________.3.★二元一次方程的整数解方程3x +2y =21的正整数解是_________________________.4.二元一次方程组的概念三个条件:(1)两个一次方程;(2)两个方程共有两个未知数;(3)都是整式.5.★★★★★解二元一次方程组基本思路:消元消元方法:(1)代入消元;(2)加减消元.(注意:一定要把解代入原方程组检验,保证正确)练习:(1)⎩⎪⎨⎪⎧x -2y =23x +2y =10 (2)⎩⎪⎨⎪⎧y =3x 3x +y =126.★★★★常考题型练习:(1)已知代数式kx +b ,当x =2时值为-1,当x =3时值为-3,则a +b =_________.(2)若方程组⎩⎪⎨⎪⎧ax -2y =12x +by =5的解是⎩⎪⎨⎪⎧x =1y =a ,则b =________.(3)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =k x +2y =-1的解互为相反数,则k 的值是_______.(4)请你写出一个以⎩⎪⎨⎪⎧x =3y =-1为解的二元一次方程组:_______________. (5)已知方程组⎩⎪⎨⎪⎧2x +y =5x +3y =5,则x +y 的值为___________.7.某公司有甲、乙两个工程队.(1)两队共同完成一项工程,乙队先单独做1天后,再由两队合做2天完成了全部工程.已知甲队单独完成此项工程所需的天数是乙队单独完成所需的天数的三分之二,则甲、乙两队单独完成各需多少天?(2)甲工程队工作5天和乙工程队工作1天的费用和为34000元;甲工程队工作3天和乙工程队工作2天的费用和为26000元,则两队每天工作的费用各多少元?(3)该公司现承接一项(1)中2倍的工程由两队去做,且甲、乙两队不在同一天内合做,又必须各自做整数天,试问甲、乙两队各需做多少天?若按(2)中的付费,你认为哪种方式付费最少?8.某企业承接了一批礼盒的制作业务,该企业进行了前期的试生产,如图 1 所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图 2 所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该企业原计划用若干天加工纸箱 300 个,后来由于提升工作效率,实际加工时每天加工速度为原计划的 1.5 倍,这样提前 3 天超额完成了任务,且总共比原计划多加工 15 个,问原计划每天加工礼盒多少个;(2)若该企业购进正方形纸板 550 张,长方形纸板 1200 张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(3)该企业某一天使用的材料清单上显示,这天一共使用正方形纸板 100 张,长方形纸板a 张,全部加工成上述两种纸盒,且 150<a<168,试求在这一天加工两种纸盒时a 的所有可能值.(请直接写出结果)第3章整式的乘除1.★★★★★公式与法则(1)同底数幂的乘法:底数不变,指数相加.a m·a n=a m+n(m,n都是正整数)(2)幂的乘方:底数不变,指数相乘.(a m) n=a mn(m,n都是正整数)(3)积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab) n=a n b n(n都是正整数)(4)乘法公式:①平方差公式:(a+b)(a-b)=a2-b2②完全平方公式:(a+b)2=a2+b2+2ab(a-b)2=a2+b2-2ab(5)同底数幂的除法:底数不变,指数相减.a m÷a n=a m-n(a≠0)(6)a0=1(a≠0)(7)a-p=1a p(a≠0),当a是整数时,先指数变正,再倒数.当a是分数时,先把底数变倒数,再指数变正.(8)单项式乘单项式:系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式.(9)单项式乘多项式:用单项式去乘多项式的每一项,再把所得的积相加.m(a+b)=ma+mb(10)多项式乘多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. (a+n)(b+m)=ab+am+nb+nm(11)单项式除以单项式:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(12)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.(a+b+c)÷m=a÷m+b÷m+c÷m(m≠0)练习:(1)(2a2)3=___________;3y·(-2x2y3)=___________;(9x3-3x)÷(3x)=___________;(-2)0=___________;(-3)-3=___________;(-23)-2=___________;(2a-1)2=_______________;(a3)2•a-2a3• a4=______________;(1-2a)2-(2-a)(1+a)=_______________;(x-2)(x+2)-(1-2x)2=_________________.2.★★★★★用科学记数法表示较小的数:a×10-n(1≤|a|<10)方法:第一个不为零的数前面有几个零就是负几次方.练习:(1)科学记数法表示0.0000103=_________________.(2)1纳米=0.000000001米,则0.33纳米=________米.(用科学计数法表示)(3)把用科学记数法表示的数7.2×10-4写成小数形式为___________________.3.★★★★常考题型(1)已知a+b=3,ab=-1,则a2+b2=___________.(2)若多项式x2-(x-a)(x+2b)+4的值与x的取值大小无关,那么a,b一定满足_____________.(3)关于x的代数式(3-ax)(x2+2x-1)的展开式中不含x2项,则a=___________.(4)若代数式x2+3x+2可以表示为(x-1)2+a(x-1)+b的形式,则a+b的值是.(5)若(x-m)(2x+3)=2x2-nx+3,则m-n=__________.(6)若(2x-5y)2=(2x+5y)2+M,则代数式M应是__________________.(7)如图,一块砖的外侧面积为a,那么图中残留部分的墙面的面积为_______________.(8)如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条“之”字路,余下部分绿化,道路的宽为a米,则绿化的面积为________________m2.(9)定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2k(其中k是使n2k为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是_________.第4章因式分解1.★★★★因式分解的概念:把一个多项式....的形式,叫做因式分解,也叫分解...化成几个整式的积因式.因式分解和整式乘法是互逆关系.练习:下列从左到右边的变形,是因式分解的是()A.(3-x)(3+x)=9-x2 B.(y+1)(y-3)=-(3-y)(y+1)C.4yz-2y2z+z=2y(2z-yz)+z D.-8x2+8x-2=-2(2x-1)22.★★★★★因式分解的方法(1)提公因式法:先确定应提取的公因式,然后用公因式去除这个多项式,所得的商作为另一个因式,最后把多项式写成这两个因式的积的形式.ma+mb+mc=m(a+b+c)确定公因式的方法:系数的最大公因数和相同字母的最低次幂.Array(2)用乘法公式因式分解:①平方差公式:a2-b2=(a+b)(a-b)即:(□)2-(△)2=(□+△)(□-△)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2即:(□)2±2(□)(△)+(△)2=(□±△)2练习:(1)下列多项式能用完全平方公式分解因式的是()A.x2-4 B.x2+2x+4 C.4x2+4x+1 D.x2+y2(2)下列多项式能用平方差公式分解因式的是()A.x2+4 B.x2+2x+1 C.x2-4x D.-x2+9(3)因式分解:①a3-9a=_____________________. ②x-xy2=_____________________.③x2-8x+16=_________________. ④3ax2-6axy+3ay2=________________.⑤a3-4a(a-1)=_________________.⑥(x-2y)2-x+2y=________________.3.★★★★完全平方式:我们把多项式a2+2ab+b2和a2-2ab+b2叫做完全平方式.即:(□)2±2(□)(△)+(△)2练习:(1)若x2+(2p-3)x+9是完全平方式,则p的值等于=____________.(2)多项式9x2-x+1加上一个单项式后成为一个整式的平方,请写出3个满足条件的单项式:_____________________________.4.十字相乘法:十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。
七年级数学下册知识点及练习题
![七年级数学下册知识点及练习题](https://img.taocdn.com/s3/m/61a9602291c69ec3d5bbfd0a79563c1ec5dad76d.png)
七年级数学下册知识点及练习题七年级数学下册知识点及练习题|学习七年级数学最好把那些知识点加上着重号,以便复习时加强记忆。
为大家整理了七年级数学下册知识点,欢迎大家阅读!整式的运算一、整式1、单项式:则表示数与字母的积的代数式。
另外规定单独的一个数或字母也就是单项式。
单项式中的数字因数叫做单项式的系数。
注意系数包括前面的符号,系数是1时通常省略,是系数,的系数是单项式的次数就是指所有字母的指数的和。
2、多项式:几个单项式的和叫做多项式。
(几次几项式)每一个单项式叫作多项式的项,特别注意项包含前面的符号。
多项式的次数:多项式中次数最高的项的次数。
项的次数是几就叫做几次项,其中不含字母的项叫做常数项。
3、整式;单项式与多项式泛称为整式。
(最显著的特征:分母中不不含字母)二、整式的加减:①先去括号;(注意括号前有数字因数)②再分拆同类项。
(系数相乘,字母与字母指数维持不变)三、幂的运算性质1、同底数幂相加:底数维持不变,指数相乘。
2、幂的乘方:底数不变,指数相乘。
3、内积的乘方:把积中的每一个因式各自乘方,再把税金的幂相加。
4、零指数幂:任何一个不等于0的数的0次幂等于1。
()注意00没有意义。
5、正数整数指数幂:(正整数,)6、同底数幂相除:底数不变,指数相减。
()特别注意:以上公式的正反两方面的应用领域。
常见的错误:,,,,四、单项式除以单项式:系数相加,相同的字母相加,只在一个因式中发生的字母则联同它的指数做为内积的一个因式。
五、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。
六、多项式除以多项式:联同各项的符号把其中一个多项式的各项除以另一个多项式的每一项。
七、平方差公式两数的和除以这两数的差,等同于这两数的平方差。
即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方。
八、全然平方公式两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍。
常用错误:九、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式。
初中数学知识点总结加例题
![初中数学知识点总结加例题](https://img.taocdn.com/s3/m/9e1b488980c758f5f61fb7360b4c2e3f56272560.png)
初中数学知识点总结加例题一、数与代数。
(一)有理数。
1. 概念。
- 有理数包括整数和分数。
整数又分为正整数、0、负整数;分数分为正分数和负分数。
- 数轴:规定了原点、正方向和单位长度的直线。
- 相反数:绝对值相等,符号相反的两个数。
例如,3和 - 3互为相反数。
- 绝对值:一个数在数轴上所对应的点与原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
- 减法:减去一个数等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法:除以一个不等于0的数,等于乘这个数的倒数。
例题1:计算:(-2)+3 - (-5)解析:- 根据有理数的减法法则,(-2)+3 - (-5)=(-2)+3 + 5。
- 然后,按照有理数的加法法则,先计算(-2)+3 = 1。
- 计算1 + 5=6。
(二)实数。
1. 无理数:无限不循环小数,如√(2)、π等。
2. 实数的运算:实数的运算顺序是先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。
例题2:计算:√(4)+3 - π(精确到0.1)解析:- 先计算√(4)=2。
- 然后计算2 + 3-π=5-π。
- 因为π≈3.14,所以5 - π≈5 - 3.14 = 1.86≈1.9。
(三)代数式。
1. 整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
- 多项式:几个单项式的和叫做多项式。
- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
2. 整式的乘除。
- 同底数幂相乘,底数不变,指数相加,即a^m· a^n=a^m + n。
初一下学期数学知识点及整套练习题.doc
![初一下学期数学知识点及整套练习题.doc](https://img.taocdn.com/s3/m/4a641ab679563c1ec4da7199.png)
初一数学(下)应知应会的知识点整式的乘除1、幂运算(七个公式)m n m ①同底数幂相乘:底数不变,指数相加。
a a anm )②幂的乘方:底数不变,指数相乘( a an mnmm m③积的乘方:等于每个因数乘方的积( ab ) a bmm m④同指数幂相乘:指数不变,底数相乘。
a b ( ab )m n m⑤同底数幂相除:底数不变,指数相减。
a a a⑥零指数:任何非零数的0 次方等于1。
1 ( 0 )aan⑦负指数:任何非零数的负指数等于它的正指数的倒数。
1 ( a 0 )papa2.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.3.单项式与多项式的乘法:m(a+b+c)=ma+mb+m,c用单项式去乘多项式的每一项,再把所得的积相加.4.多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.5.乘法公式:(1)平方差公式:(a+b)(a-b)= a 2 2-b ,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:①(a+b) 2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;②(a-b)②(a-b) 2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;m÷a n=a m-n6.同底数幂的除法:a,底数不变,指数相减.7.零指数与负指数公式:0=1 (a≠0); a (1)a -n=1 ,(a ≠0). 注意:00,0-2 无意义;0,0-2 无意义;na(2)有了负指数,可用科学记数法记录小于 1 的数,例如:=×10-5 .8.单项式除以单项式: 系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.9.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.10.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线1. 角平分线的定义:A几何表达式举例:一条射线把一个角分成两个相等的部分,(1) ∵OC平分∠AOBC这条射线叫角的平分线. (如图)∴∠AOC∠= BOCOB(2) ∵∠AOC∠= BOC∴OC是∠AOB的平分线2.线段中点的定义:几何表达式举例:点C把线段AB分成两条相等的线段,(1) ∵C是AB中点点C叫线段中点.( 如图) A C B ∴AC = BC(2) ∵AC = BC∴C是AB中点3.等量公理:(如图) 几何表达式举例:(1)等量加等量和相等;(2)等量减等量差相等;(1) ∵AC=DB(3)等量的等倍量相等;(4)等量的等分量相等.∴AC+CD=DB+CD A即AD=BCB(2) ∵∠AOC∠= DOBCA B (1)C DDO (2)∴∠AOC∠-BOC∠= DOB∠-BOCA E 即∠AOB∠= DOCC (3) ∵∠BOC∠= GFMMO B F G(3)又∵∠AOB=∠2 BOC∠EFG=∠2 GFMA B E F (4)C G∴∠AOB∠= EFG1 (4) ∵AC=21 AB ,EG=2E F又∵AB=EF∴AC=EG4.等量代换:几何表达式举例:几何表达式举例:几何表达式举例:∵a=c ∵a=c b=d ∵a=c+db=c 又∵c=d b=c+d∴a=b ∴a=b ∴a=b5.补角重要性质:几何表达式举例:同角或等角的补角相等.( 如图) ∵∠1 +∠3=180°13∠2 +∠4=180°又∵∠3 =∠424∴∠1 =∠26.余角重要性质:几何表达式举例:同角或等角的余角相等.( 如图) 1 ∵∠1 +∠3=90°3∠2 +∠4=90°又∵∠3 =∠4 2 4∴∠1 =∠27.对顶角性质定理:几何表达式举例: A D对顶角相等.( 如图) ∵∠AOC∠= DOBOBC∴⋯⋯⋯⋯⋯8.两条直线垂直的定义:几何表达式举例:两条直线相交成四个角,有一个角是直角,这(1) ∵AB、CD互相垂直C两条直线互相垂直.( 如图) ∴∠COB=9°0A O B(2) ∵∠COB=9°0D∴AB、CD互相垂直9.三直线平行定理:几何表达式举例: A B两条直线都和第三条直线平行,那么,这两条∵AB∥EFC DE F直线也平行.( 如图) 又∵C D∥EF∴AB∥CD10.平行线判定定理:几何表达式举例:G两条直线被第三条直线所截:(1) ∵∠GEB∠= EFDA E B(1)若同位角相等,两条直线平行;( 如图) ∴A B∥CDC F D(2)若内错角相等,两条直线平行;( 如图) (2) ∵∠AEF=∠DFEH(3)若同旁内角互补,两条直线平行.( 如图) ∴A B∥CD(3) ∵∠BEF+∠DFE=18°0∴A B∥CD11.平行线性质定理:几何表达式举例:(1)两条平行线被第三条直线所截,同位角相等;(1) ∵AB∥CDG( 如图) ∴∠GEB∠= EFDA E B(2)两条平行线被第三条直线所截,内错角相等;(2)∵AB∥CDC F D( 如图) ∴∠AEF=∠DFEH(3)两条平行线被第三条直线所截,同旁内角互(3) ∵AB∥CD补.( 如图) ∴∠BEF+∠DFE=18°0 1、平行的说明(证明)以“三线八角”为基础判定:同位角相等性质:同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补同旁内角互补2、全等的说明(证明)判定:三边对应相等(SSS)性质:两边夹一角对应相等(SAS)对应边相等两角夹一边对应相等(ASA)两个三角形全等全等三角形两角及一角的对边对应相等(AAS)对应角相等直角边和斜边对应相等(HL)(A)角度的计算。
七年级数学下册知识点及典型试题
![七年级数学下册知识点及典型试题](https://img.taocdn.com/s3/m/14a01f254b73f242336c5fef.png)
七年级数学下册知识点汇总 第五章 相交线与平行线一、知识网络结构二、知识要点 1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 ,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫 平行线 。
如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 ,另一条边互为反向延长线的两个角是邻补角。
邻补角的性质: 邻补角互补 。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。
5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样 的两个角叫 同位角 。
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。
七年级数学知识点归纳及例题
![七年级数学知识点归纳及例题](https://img.taocdn.com/s3/m/1432f45cf4335a8102d276a20029bd64783e6209.png)
七年级数学知识点归纳及例题一、整数的概念与运算(一)整数的概念整数由正整数、0和负整数组成,用Z表示,其中0既不是正整数也不是负整数。
(二)整数的加减法整数的加法:两个正数相加或两个负数相加,结果为正;一个正数与一个负数相加,结果为负;0与任何整数相加,结果为原数。
整数的减法:减去一个整数相当于加上它的相反数。
(三)整数的乘除法整数的乘法:两个正数相乘或两个负数相乘,结果为正;一个正数与一个负数相乘,结果为负;0与任何整数相乘,结果为0。
整数的除法:整数除数除以非零整数被除数,所得商为整数,余数为0或者绝对值小于除数的绝对值。
例题:求a=-3,b=5的商和余数。
解:a÷b=-1···2。
所以商为-1,余数为2。
二、分数的概念与运算(一)分数的概念分数是用来表示除法的一种表达式。
分子为除数,分母为被除数。
(二)分数的加减乘除法分数的加减法:分母相同的分数相加减,只需将分子相加减即可;分母不同的分数相加减,先通分,再按分母相同的情况计算。
分数的乘法:分数相乘,分子相乘,分母相乘。
分数的除法:分数除分数,倒数相乘,分子分母分别乘以被除数的倒数。
(三)分数的化简与约分化简分数是指将分数以分子与分母的最大公约数除去。
约分分数是指将分数以分子与分母的最大公约数除去,使分数变为最简分数。
例题:将 $\frac{9}{12}$ 变为最简分数。
解:$\frac{9}{12}$ 的最大公约数为3,所以 $\frac{9}{12}$ 可化简为 $\frac{3}{4}$。
三、代数式(一)代数式的概念代数式是由数、字母及各种符号组成,可表示一切数或量的式子,如:$3x+5$。
(二)代数式的展开代数式的展开是指用运算法则把含有括号的代数式化为含有若干个项的代数式,比如:$(a+b)^2=a^2+2ab+b^2$。
(三)代数式的因式分解代数式的因式分解是指将代数式分解为若干个不可再分的乘积的形式,如 $12x^2+18x=6x(2x+3)$。
初一数学七下二元一次方程所有知识点总结和常考题型练习题
![初一数学七下二元一次方程所有知识点总结和常考题型练习题](https://img.taocdn.com/s3/m/723c65dd988fcc22bcd126fff705cc1755275f04.png)
初一数学七下二元一次方程所有知识点总结和常考题型练习题二元一次方程组知识点二元一次方程的解是指能够使二元一次方程的左右两边相等的两个未知数的值。
二元一次方程组是指含有两个未知数(x和y),并且含有未知数的项的次数都是1的方程组。
二元一次方程组的解是指二元一次方程组中的几个方程的公共解。
二元一次方程组的解有三种情况:无解、只有一组解和有无数组解。
例如,x+y=6和x+y=1就没有解;x+y=1和2x+y=2只有一组解;x+y=1和2x+2y=2有无数组解。
解二元一次方程组的方法有代入消元法和加减消元法。
代入消元法是指将一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
加减消元法是指两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
三元一次方程组是指方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程。
解三元一次方程组的关键也是“消元”:三元→二元→一元。
列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步:(1)审题,把实际问题抽象成数学问题,分析已知数和未知数;(2)设法找出能够表示题意两个相等关系;并用字母表示其中的两个未知数;(3)根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解这个方程组,求出两个未知数的值;(5)在对求出的方程的解做出是否合理判断的基础上,写出答案。
二元一次方程组练一、选择题1、下列各式是二元一次方程的是()。
2、若x=3,y=2是关于x、y的二元一次方程3x-ay=的一个(组)解,则a的值为()。
3、对于二元一次方程x-2y=1有无数个解,下列四组值不是该方程的解的一组是()。
4、二元一次方程x+2y=7在正整数范围内的解有()。
二、填空题1、二元一次方程组x+y=5,2x+3y=11的解为(,)。
【人教版】数学七年级下册:知识点精要归纳整理附全册同步练习及单元测试卷(含答案)
![【人教版】数学七年级下册:知识点精要归纳整理附全册同步练习及单元测试卷(含答案)](https://img.taocdn.com/s3/m/dee598826aec0975f46527d3240c844769eaa0ee.png)
【人教版】数学七年级下册:知识点精要归纳整理附全册同步练习及单元测试卷(含答案)第五章相交线与平行线5.1相交线5.1.1相交线:邻补角、对顶角(对顶角相等)、5.1.2垂线:垂直、垂线、垂足在同一平面内,过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
<=>垂线段最短。
点到直线的距离:直线外一点到这条直线的垂线段的长度。
5.1.3同位角、内错角、同旁内角。
(要会区分:顾名思义去理解)5.2平行线及其判定5.2.1平行线(平行)基本事实:经过直线外一点,有且只有一条直线与这条直线平行。
(平行公理)如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
5.2.2平行线的判定1、同位角相等,两直线平行2、内错角相等,两直线平行3、同旁内角互补,两直线平行5.3平行线的性质5.3.1性质(因为平行,所以同位角相等、内错角相等、同旁内角互补)5.3.2命题:判断一件事情的语句。
定理:经过推理证实的真命题。
证明:推理的过程。
5.4平移:整体沿某一直线方向移动,形状和大小完全相同,连接各组对应点的线段平行且相等。
第六章实数6.1平方根(算术平方根、被开方数、平方根或二次方根、开平方)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
6.2立方根(立方根或三次方根、开立方、根指数)正数的立方根是正数,负数的立方根是负数,0的立方根是0。
6.3实数:有理数和无理数的统称。
无理数:无限不循环小数。
数a的相反数是-a o一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。
第七章平面直角坐标系7.1平面直角坐标系7.1.1有序数对(a,b)。
7.1.2平面直角坐标系:在平面上,由两条互相垂直、原点重合的数轴组成。
X轴即横轴,y轴即纵轴,交点为原点,正方向分别为向右和向上。
有序数对即坐标。
象限:分为第一、二、三、四象限。
坐标轴上的点不属于任何象限。
(2021年整理)人教版七年级下册数学各章知识点及练习题
![(2021年整理)人教版七年级下册数学各章知识点及练习题](https://img.taocdn.com/s3/m/852afa49dd88d0d232d46a9b.png)
人教版七年级下册数学各章知识点及练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版七年级下册数学各章知识点及练习题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版七年级下册数学各章知识点及练习题的全部内容。
第一讲相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为——-—-—________对顶角的性质:______ ______3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直。
⑵连接直线外一点与直线上各点的所在线段中,_______________。
4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴_____________________________________.⑵___________________________ ⑶__________________________________。
北师大版初一数学(下册)知识点及练习(精华)
![北师大版初一数学(下册)知识点及练习(精华)](https://img.taocdn.com/s3/m/72b03a5cbfd5b9f3f90f76c66137ee06eef94e57.png)
第一章整式的运算1.1同底数幕的乘法►知识导航在学习新知识之前,我们先复习下什么叫乘方?s 求几个相同因数的积的运算叫做乘方� 指数底数一---—---a nl= a a a 幕`n 个a读出下表各式,指出底数和指数,并用积的形式来表示幕底数53`(—2)2(2a)4(a + 1)2计算下列式子,结果用幕的形式表示,然后观察结果23 x22=(2x2x 2)叶2x2)=2x2x2x2x2= 25依据上面式子我们可以得到同底数幕的乘法法则指数同底数幕的乘法法则:同底数的幕相乘,底数不变,指数相加矿·矿=am+n(m, n为正整数)积的形式► 同步练习一、填空题1. l Q m+l X l Q n-l = , —64 x(-6)5 = .2. 2 3 4x x+x x= , (x+ y)2(x+y)三3. 103 xlOOxlO+ lOOxlOOxlOO—10000x10x10=4. 若2x+I= 16, 则x=.5. 若矿=a3矿,则m=; 若X4X a= X l6, 则a=;若XX2X3X4X S= X y, 则y=; 若a x(-a)2=a s, 则x=.6. 若矿=2,矿=5,则a m+n= .二、选择题7. 下面计算正确的是()A·b3b2 = b6 ; B·x3 + x3 =炊;C·a4 + a2 = a6 ; D·mm5 = m68. 81x27可记为()A. 93 ;B. 37 ;C. 36 ;D. 3129. 若x-=1=-y,则下面多项式不成立的是()A. (y-x)2 = (x-y)2;B.(y-x)3 = -(x-y)3;C. (-y-x)2 = (x+ y)2;D. (x+ y)2 = x2 + y210. 计算(-2)1999+ (-2)2000等于()A. —23999 . ,B.-2;C. —i1999 . ,11. 下列说法中正确的是()A. -矿和(—a r一定是互为相反数C. 当n为偶数时,-矿和(-a r相等三、解答题:(每题8分,共40分)12. 计算下列各题:(1) (x-y)2•(x-y)3•(y-x)2-(y-x)3D. l1999B. 当n为奇数时,-矿和(—a f相等D. -矿和(-a r一定不相等(2) (a-b-c)·(b+c-a)2·(c-a+b)3(3)(-x)2•(-x)3 +2x•(-x)4-(-x)·x4 (4)X·X m-l +x2·X m-2-3-x3·X m-3 013已知lkm2的土地上,一年从太阳得到的能量相当于燃烧1.3X 108 kg煤所产生的能量,那么我国9.6xl06km2的土地上,一年从太阳得到的能量相当于燃烧煤多少于克?14·(1)计算并把结果写成一个底数幕的形式:也34X 9 X 81 ; @ 625 X 125 X 56 0(2)求下列各式中的x:也a x+3= a2x+1(a -::j:. O,a -=f:-1) ; ®P X. 矿=p2x(p-=f:-O,p-=f:-I)。
(完整word版)人教版七年级下册数学各章知识点及练习题(2),推荐文档
![(完整word版)人教版七年级下册数学各章知识点及练习题(2),推荐文档](https://img.taocdn.com/s3/m/3e27288727284b73f342500d.png)
第一讲相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为____________ .2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为--- _______ 对顶角的性质: ____3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_____ .垂线的性质:⑴过一点一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,______________ .4.直线外一点到这条直线的垂线段的长度,叫做______________________ .5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做______________ .6.在同一平面内,不相交的两条直线互相.同一平面内的两条直线的位置关系只有______与 ________ 两种 .7.平行公理:经过直线外一点,有且只有一条直线与这条直线_____ .推论:如果两条直线都与第三条直线平行,那么____________________ .8.平行线的判定:⑴.⑵ _________________________ ⑶ _____________________________________ .9.平行线的性质:⑴.( 2)_____________________________ . ⑶ _________________________________ . 10.把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做_____ .平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全 .⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段________________ .11.判断一件事情的语句,叫做____ _____________ . 命题由__ 和两部分组成。
(完整word版)初一数学下册知识点总结及练习(良心出品必属精品)
![(完整word版)初一数学下册知识点总结及练习(良心出品必属精品)](https://img.taocdn.com/s3/m/1093ba14b8f67c1cfbd6b870.png)
七年级数学(下册)知识点总结及练习相交线与平行线【知识点】1. 同一平面内,两直线不平行就相交。
2. 两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
3. 垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
4. 垂直三要素:垂直关系,垂直记号,垂足5. 垂直公理:过一点有且只有一条直线与已知直线垂直。
6. 垂线段最短;7. 点到直线的距离:直线外一点到这条直线的垂线段的长度。
8. 两条直线被第三条直线所截:同位角F (在两条直线的同一旁,第三条直线的同一侧),内错角Z (在两条直线内部,位于第三条直线两侧),同旁内角U (在两条直线内部,位于第三条直线同侧)。
9. 平行公理:过直线外一点有且只有一条直线与已知直线平行。
10. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a, 那么b//c P17 4 题11. 平行线的判定。
结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
平行线的性质:1. 两直线平行,同位角相等。
2. 两直线平行,内错角相等。
3. 两直线平行,同旁内角互补。
12. ★命题:“如果+题设,那么+结论。
”三角形和多边形1. 三角形内角和为180°2. 构成三角形满足的条件:三角形两边之和大于第三边。
判断方法:在△ ABC中, a、b为两短边,c为长边,如果a+b>c则能构成三角形,否则(a+b c)不能构成三角形(即三角形最短的两边之和大于最长的边)3. 三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差(的绝对值)【重点题目】三角形的两边分别为3和乙则三角形的第三边的取值范围为4. 等面积法:三角形面积丄底高,三角形有三条高,也就对应有三条底边,任取2其中一组底和高,三角形同一个面积公式就有三个表示方法,任取其中两个写成连等(可两边同时2消去-)底高底高,知道其中三条线段就可求出第四条'2例如:如图1,在直角△ ABC中, ACB=0°,CD是斜边AB上的高,则有AC BC CD AB A K n【重点题目】P70 8题例直角三角形的三边长分别为3、4、5,则斜边上的高为_B图15.等高法:高相等,底之间具有一定关系(如成比例或相等)【例】人。
(完整版)人教版七年级下册数学各章知识点及练习题
![(完整版)人教版七年级下册数学各章知识点及练习题](https://img.taocdn.com/s3/m/459923ffeff9aef8951e06a2.png)
第一讲相交线与平行线1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为____________ .2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为--- _______ 对顶角的性质: ____3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_____ .垂线的性质:⑴过一点一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,______________ .4. 直线外一点到这条直线的垂线段的长度,叫做______________________ .5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做______________ .6. 在同一平面内,不相交的两条直线互相.同一平面内的两条直线的位置关系只有______与 ________ 两种 .7. 平行公理:经过直线外一点,有且只有一条直线与这条直线_____ .推论:如果两条直线都与第三条直线平行,那么____________________ .8. 平行线的判定:⑴.⑵ _________________________ ⑶____________________________________ .9. 平行线的性质:⑴.( 2)____________________________ . ⑶_________________________________ . 10. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做_____ .平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全 .⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段________________ .11. 判断一件事情的语句,叫做____ _____________ . 命题由___ 和两部分组成。
(完整word版)人教版七年级下册数学各章知识点及练习题
![(完整word版)人教版七年级下册数学各章知识点及练习题](https://img.taocdn.com/s3/m/8e9e03014afe04a1b171dec5.png)
第一讲订交线与平行线1.两直订交所成的四个角中,有一条公共,它的另一互反向延,拥有种关系的两个角,互_____________.2.两直订交所成的四个角中,有一个公共点,而且一个角的两分是另一个角两的反向延,拥有种关系的两个角,互------________ 角的性:______ ______3.两直订交所成的四个角中,假如有一个角是直角,那么就称两条直相互_______.垂的性:⑴ 一点 ______________一条直与已知直垂直 .⑵ 接直外一点与直上各点的所在段中,_______________.4.直外一点到条直的垂段的度,叫做________________________.5.两条直被第三条直所截,构成八个角,在那些没有公共点的角中,⑴假如两个角分在两条直的同一方,而且都在第三条直的同,拥有种关系的一角叫做___________ ;⑵假如两个角都在两直之,而且分在第三条直的两,拥有种关系的一角叫做 ____________ ;⑶假如两个角都在两直之,但它在第三条直的同一旁,拥有种关系的一角叫做_______________.6.在同一平面内,不订交的两条直相互 ___________.同一平面内的两条直的地点关系只有________与_________两种 .7. 平行公义:直外一点,有且只有一条直与条直______.推:假如两条直都与第三条直平行,那么_____________________.8.平行的判断:⑴ _____________________________________.⑵___________________________⑶ __________________________________.9. 平行的性:⑴_________________.(2) _______________________________. ⑶__________________________________ . 10.把一个形整体沿某一方向移,会获取一个新形,形的种移,叫做_______.平移的性:⑴把一个形整体平移获取的新形与原形的形状与大小圆满______.⑵新形中的每一点,都是由原形中的某一点移后获取的,两个点是点.接各点的段_________________.11.判断一件事情的句,叫做_______.命由 ________和 _________两部分成。
七年级下数学知识点专练
![七年级下数学知识点专练](https://img.taocdn.com/s3/m/7fb69d35854769eae009581b6bd97f192279bfce.png)
七年级下数学知识点专练数学是一门需要长期积累的学科,每一年的学习都是建立在前一年的基础上。
七年级下学期的数学重点涵盖了多个知识点,包括数与式、图形与运算、方程与不等式等。
为了帮助大家更好地掌握这些知识点,本文将详细介绍七年级下数学的各个知识点,并提供相应的练习题进行巩固。
一、数与式1.整数在学习整数的基础概念后,我们需要了解有理数的概念。
有理数包括整数、分数、小数等,而整数是其中一种。
判断一个数是整数,我们可以通过判断其是否为有理数并且是否存在小数部分。
2.分数分数的概念相信大家都已经非常熟悉了。
在学习分数的基本概念后,我们需要掌握分数的计算方法、分数的化简、分数和小数的转化等。
3.数字的运算数字的四则运算是数学中最基础的内容,包括加、减、乘、除。
在学习数字的运算时,我们需要掌握四则运算的基本概念,同时也需要了解运算法则、运算顺序等。
4.代数式的定义与运算代数式可以看作是由数字或数学符号构成的一个式子。
在学习代数式的基本概念后,我们需要掌握代数式的加、减、乘、除等运算方法,并进一步学习代数式的化简。
练习题:1.判断下列数是否为整数:-5,3.14,1/2,52.计算下列分数的和:1/2+1/3+1/63.如果a=2,b=3,那么a+b-a*b的值为多少?4.将代数式3(x-1)+2(x+1)化简。
二、图形与运算1.平面图形的认识平面图形是指在同一平面内的点与线的集合,在学习平面图形的基本概念后,我们需要掌握各种不同平面图形的命名及其性质。
2.几何体的认识几何体是三维空间里的物体,包括球、立方体、长方体等。
在学习几何体的基本概念后,我们需要掌握各种不同几何体的命名及其性质。
3.图形的变换图形的变换包括平移、旋转、翻转等。
在学习图形的变换时,我们需要掌握变换的基本概念,同时也需要学习变换的作用和规律。
4.图形的相似与全等相似和全等是几何学中重要的概念。
在学习相似和全等的基本概念后,我们需要掌握相似和全等的条件及判断方法,同时也需要了解相似和全等图形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学(下)应知应会的知识点整式的乘除1、 幂运算(七个公式)① 同底数幂相乘:底数不变,指数相加。
aaa nm nm +=② 幂的乘方:底数不变,指数相乘aa mnnm=)(③ 积的乘方:等于每个因数乘方的积b a ab mmm=)(④ 同指数幂相乘:指数不变,底数相乘。
)(ab b a mmm= ⑤ 同底数幂相除:底数不变,指数相减。
a a a nm n m -=÷ ⑥ 零指数:任何非零数的0次方等于1。
)0(10≠=a a⑦负指数:任何非零数的负指数等于它的正指数的倒数。
)0(1≠=-a aa pp2.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.3.单项式与多项式的乘法: m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.4.多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加. 5.乘法公式:(1)平方差公式:(a+b)(a-b)= a 2-b 2,两个数的和与这两个数的差的积等于这两个数的平方差; (2)完全平方公式:① (a+b)2=a 2+2ab+b 2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍; ② (a-b)2=a 2-2ab+b 2, 两个数差的平方,等于它们的平方和,减去它们的积的2倍; 6.同底数幂的除法:a m÷a n=a m-n,底数不变,指数相减. 7.零指数与负指数公式: (1)a 0=1 (a ≠0); a -n=na 1,(a ≠0). 注意:00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1的数,例如:=×10-5 .8.单项式除以单项式:系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.9.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.10.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线1、平行的说明(证明)以“三线八角”为基础判定:同位角相等性质:同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补 同旁内角互补 2、 全等的说明(证明)判定: 三边对应相等 (SSS ) 性质:两边夹一角对应相等 (SAS ) 对应边相等 两角夹一边对应相等 (ASA ) 两个三角形全等 全等三角形两角及一角的对边对应相等 (AAS ) 对应角相等 直角边和斜边对应相等 (HL )(A ) 角度的计算。
1、 利用三角形的内角定理、外角定理来计算三角形的三个内角和为180度。
一个外角等于和它不相邻的两个内角的和。
概率的计算一般算法:所有情况数事件发生的情况数=可能性P 2、 面积算法:总面积事件发生所占的面积=可能性P整 式 的 乘 除(一)一、 填空1、同底数幂相除,底数 ,指数 。
2、=-22b a , =222b ab a ++ 3、()[]332-= ,=⋅÷235x x x4、()()=+-32x x ,()=--22b a 。
5、()()=+-+111x x 6、=⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-441221242x x x 7、()223543419y y x y x -÷⎪⎭⎫⎝⎛-÷= 8、()()=-23332223y a y a9、()=⎪⎭⎫⎝⎛---32221315.0a x a ax a 10、把()()()()()的形式化成nb a b a b a b a b a ---+--223: 11、 ()=⎪⎭⎫⎝⎛-÷+-++112313n n n a a a12、 +-x x 291 =( )213、 ()()=--+-b a b a 2214、 ()()N b a b a +-=+2233若,则=N15、 ⎪⎭⎫ ⎝⎛+3212x ()=27816+x16、()=+3b a 17、 =+==+22,65b a ab b a 则,若18、942++mx x 如果是一个完全平方式,那么=m二、 选择题1、下列各计算中,正确的是( ) (A ) 5552b b b=• (B ) 1055x x x =+ (C ) 532m m m=• (D ) 222b a b a =•2、下列多项式乘法中,利用乘法公式正确的是( )(A )()()x b a a bx bx a 22-=+-+ (B )()()3322b a bab a b a -=+++(C )()()222bab a b a b a ---=+-- (D )()()33222b a b ab ab a -=++-3、一个正方形的边长增加了cm 3,面积相应增加了239cm ,则这个正方形的边长为( )。
(A ) 6cm ;(B )5cm ;(C )8cm ;(D )7cm 。
4、计算结果与()22332b a b a -相同的是( )(A )()22332b a b a + (B ) ()22332b a ba -- (C )()23223b a b a - (D ) ()22332b a ba --5、有下列各运算: ①()()b a b a ba 22232222-=-÷- ②()()242242422b a b a b a -=-÷-③c b a c b a =÷2323212 ④()1255512232b abc c b a =-÷ 其中计算正确的是 ( )(A )①② (B )②③ (C )①④ (D )②④ 三、 计算题1、 2208.0125⨯2、 21993、()()()1351573222+--⋅--x x x x x 4、⎪⎭⎫⎝⎛-÷⎪⎭⎫⎝⎛+-n m n m na m n m 223344125.05215、()()2222422b ab a b a +-+ 6、()()()20542+++-x xx x四、 已知()35212810x x x x f -+=求 ⑴ ()()25xx f -÷⑵ ()()12-⋅x x f五、 已知一个长方体的高是1+a ,底面积是a a 12162-求这个长方体的体积六、 化简:()()()()933222++---+x x x x x x⑴当41-=x 时,求此代数式的值 ⑵如果代数式的值等于7,求x 的值七、先化简再求值:()()()3222a a b b b ab a b a -++++-,其中2,41=-=b a ;整 式 的 乘 除(二)(一)填空题(每小题2分,共计20分)1.x 10=(-x 3)2·_________=x 12÷x( )2.4(m -n )3÷(n -m )2=___________.3.-x 2·(-x )3·(-x )2=__________.4.(2a -b )()=b 2-4a 2.5.(a -b )2=(a +b )2+_____________.6.(31)-2+0=_________;4101×=__________.7.2032×1931=( )·( )=___________.8.用科学记数法表示-=___________.9.(x -2y +1)(x -2y -1)2=( )2-( )2=_______________.10.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________.(二)选择题(每小题2分,共计16分)11.下列计算中正确的是………………………………………………………………( ) (A )a n ·a 2=a 2n(B )(a 3)2=a 5 (C )x 4·x 3·x =x 7 (D )a 2n -3÷a 3-n =a3n -612.x2m +1可写作…………………………………………………………………………( )(A )(x 2)m +1(B )(x m )2+1(C )x ·x2m(D )(x m )m +113.下列运算正确的是………………………………………………………………( ) (A )(-2ab )·(-3ab )3=-54a 4b 4(B )5x 2·(3x 3)2=15x 12(C )(-)·(-10b 2)3=-b 7(D )(2×10n)(21×10n )=102n14.化简(a n b m)n ,结果正确的是………………………………………………………( )(A )a 2n bmn(B )n m n b a 2 (C )mn n b a 2(D )nm nba 215.若a ≠b ,下列各式中不能成立的是………………………………………………( ) (A )(a +b )2=(-a -b )2(B )(a +b )(a -b )=(b +a )(b -a )(C )(a -b )2n =(b -a )2n(D )(a -b )3=(b -a )316.下列各组数中,互为相反数的是…………………………………………………( ) (A )(-2)-3与23(B )(-2)-2与2-2(C )-33与(-31)3(D )(-3)-3与(31)317.下列各式中正确的是………………………………………………………………( ) (A )(a +4)(a -4)=a 2-4 (B )(5x -1)(1-5x )=25x 2-1 (C )(-3x +2)2=4-12x +9x2(D )(x -3)(x -9)=x 2-2718.如果x 2-kx -ab =(x -a )(x +b ),则k 应为…………………………………( )(A )a +b (B )a -b (C )b -a (D )-a -b(三)计算(每题4分,共24分) 19.(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);(3)(2a -3b )2(2a +3b )2 (4)(2x +5y )(2x -5y )(-4x 2-25y 2);(5)(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b ) (6)(x -3)(2x +1)-3(2x -1)2.20.用简便方法计算:(每小题3分,共9分)(1)982; (2)899×901+1; (3)(710)2002·()1000.(四)解答题(每题6分,共24分)21.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.22.已知a +b =5,ab =7,求222b a +,a 2-ab +b 2的值.23.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.24.已知a 2+b 2+c 2=ab +bc +ac ,求证a =b =c .(五)解方程组与不等式(25题3分)25.⎩⎨⎧+=-+=+-++.3)3)(4(0)2()5)(1(xy y x y x y x整 式 的 乘 除(三)1、()n ma a ⋅-5=………………………………………………………………………………………( )(A )nm a +-5 (B )nm a+5 (C )nm a+5 (D )-nm a+52、下列运算正确的是…………………………………………………………………………………( )(A )954a a a =+ (B )33333a a a a =⋅⋅(C )954632a a a =⨯ (D )()743a a =-3、=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-19971997532135…………………………………………………………………………( ) (A )1- (B )1 (C )0 (D )19974、设()()A b a b a +-=+223535,则A=……………………………………………………………() (A )30ab (B )60ab (C )15ab (D )12ab5、用科学记数方法表示0000907.0,得………………………………………………………………() (A )41007.9-⨯ (B )51007.9-⨯ (C )6107.90-⨯ (D )7107.90-⨯6、已知,3,5=-=+xy y x 则=+22y x ……………………………………………………………() (A )25. (B )25- (C )19 (D )19-7、已知,5,3==b a x x 则=-b a x 23……………………………………………………………………()(A )2527(B )109 (C )53(D )528、一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为……………() (A )6cm (B )5cm (C )8cm (D )7cm二、填空题:(每小题4分,共32分)9、()()=-⋅-3245a a _______。