初二数学--勾股定理讲义(经典)
勾股定理课件(共19张PPT)人教版初中数学八年级下册
1
+2·
2
ab =
即:在Rt△ABC 中,∠C=90 °
c2 = a2 + b2
1 2
c +ab
2
伽
菲
尔
德
证
法
归纳小结
“赵爽弦图”通过图形的切割、拼接,巧妙地利用面积关系证实
了命题的正确性,命题与直角三角形的边有关,我国把它称为
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
即a2+b2=c2.
勾股定理: 直角三角形两直角边a、b的平
方和,等于斜边c的平方。
即:a2+b2 =c2
谢谢观看
哲学家、数学家、天文学家
新知探究
思考
图17.1-2中三个正方形的面积有什么关系?等腰
直角三角形的三边之间有什么关系?
A
B
a
b
c
C
图17.1-2
三个正方形A、
B、C的面积有
什么关系?
新知探究
探究
等腰直角三角形有上述性质,其他
直角三角形是否也有这个性质?
C
A
B
C'
图1
A'
B'
图17.1-3
图2
(图中每个小方格代表一个单位面积)
教 学 目 标 / Te a c h i n g a i m s
1
2
了解勾股定理文化背景,体验勾股定理的探究过
程。
理解不同勾股定理的证明方法,能够分析
它们的异同。
能够用勾股定理解决直角三角形的相关学习
3
和解决生活中的实际问题。
情景导入
图17.1-1
毕达哥拉斯(Pythagoras,约前
华师版八年级数学 14.1勾股定理(学习、上课课件)
感悟新知
知1-练
2-1. 若直角三角形的三边长分别为2,4,x,则x的值可能
有( B )
A. 1个
B. 2个
C. 3个
D. 4个
感悟新知
知识点 2 勾股定理的证明
知2-讲
1. 常用证法 验证勾股定理的方法有很多,如测量法、几 何证明法等,但最常用的是通过拼图,构造特殊图形, 并根据拼图中各部分面积之间的关系来验证.
出第三边.
3. 运用勾股定理求解时,若分不清哪条边是斜边,则要分
类讨论,写出所有可能的情况,以免漏解或错解.
感悟新知
知1-练
例 1 在Rt△ABC中,∠A,∠B,∠C的对边分别为a,b, c,∠C=90°. (1)已知a=3,b=4,求c; (2)已知c=13,a=12,求b; (3)已知a∶b=2∶1,c=5,求b(结果保留根号). 解题秘方:紧扣“勾股定理的特征”解答.
感悟新知
知1-练
1-1. 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边 分别为a,b,c.
(1)若a∶b=3∶4,c=75,求a,b; 解:设a=3x(x>0),则b=4x. 由勾股定理得a2+b2=c2, 则(3x)2+(4x)2=752,解得x=15. ∴a=3×15=45,b=4×15=60.
图形
赵爽的“赵 爽弦图”
知2-讲
证明
∵ 大正方形的边长为c,
∴ 大正方形的面积为c2.
又∵大正方形的面积=
4×
1 2
ab+(a-b)2=a2+b2,
∴ a2+b2=c2
感悟新知
续表: 方法
刘徽的“青 朱出入图”
图形
知2-讲
证明
设大正方形的面积为S,则 S=c2. 根据“出入相补, 以盈补虚”的原理,有S= a2+b2,∴ a2+b2=c2
《勾股定理》PPT优质课件(第1课时)
A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
勾股定理-综合讲义
数学学科辅导讲义教学内容勾股定理教学目标一.考点:1.求线段长;2.最短路径问题;3.两点之间距离公式.教学重点根据已知条件,分析相应图形,并选取合适的方法,求线段长.教学难点1.在应用勾股定理的过程中,注意分清楚直角边和斜边,选择正确的公式来进行计算;2.所对的直角边是斜边的一半,注意分清楚“所对的直角边”和“斜边”.教学过程知识详解一.求线段长求线段长1.直接利用勾股定理:已知直角三角形的两条边,求另外一条;2.通过设未知数,根据勾股定理列方程,解方程;特殊三角形比例关系图1中,图2中,等面积法求高勾股定理与角平分线结合已知,AD为∠CAB的角平分线,则CD=CE,AC=AE已知AD、AC,根据勾股定理,可求出CD勾股定理与折叠问题结合直角三角形ABC中,折叠使点C与点A重合,则AE=CE,C△ABE=AB+BC=9+12=21网格与勾股定理辅助线构造直角三角形(1)与等腰三角形三线合一结合求各边长上图等腰△ABC中,作AD⊥BC,构造出30°、60°、90°的特殊三角形(2)作垂直构造直角三角形,并与特殊角结合下图中,已知任意一边长,可求出图中其他的边长二.勾股定理与最短距离1. 画出立体图形的展开图2. 利用“两点之间线段最短”和“勾股定理”求出最短距离分类思路图示正方体1. 画出平面展开图2. 确定A、B两点的对应点,连接后求解长方体长方体的平面展开图会有两种情况,选择路径更短的求解圆柱 B 点应该在侧面展开图的中间线上缠绕多圈1.圆柱体:看做是多个最短路径的结合2.长方体:展开侧面,连接A 、B 两点即可典型例题进门测:1. 适合下列条件的△ABC 中, 直角三角形的个数为( ) ①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580; ④;25,24,7===c b a ⑤.4,2,2===c b aA. 2个B. 3个C. 4个D. 5个 2. 在⊿ABC 中,若1,2,122+==-=n c n b n a ,则⊿ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形3. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( )A. 15°B. 30°C. 45°D. 60°4.已知,如图2,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .6cm 2B .8cm 2C .10cm 2D 12cm 25.如图(第17题)底面周长为12,高为8的圆柱体上有一只小蚂蚁要从点A 爬到点B ,则蚂蚁爬行的最短距离是( ).A .10B .8C .5D .4AB EF DC (图2)6.如图(第18题),已知矩形ABCD沿着直线BD折叠,使点C落在C'处,BC,交AD于点E,AD=8,AB =4,则DE的长为( ).A.3 B.4 C.5 D.67.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则CD的长为( ).A.32B.4 C.25D.4.51.点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都是1cm/s,设运动时间为t秒.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗:若变化,则说明理由,若不变,则求出它的度数;(2)连接PQ,①当t=2秒时,判断△BPQ的形状,并说明理由;②当PQ⊥BC时,则t=秒.(直接写出结果)2.如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,且BD=AD.(1)求证:CD⊥AB;(2)∠CAD=15°,E为AD延长线上的一点,且CE=CA.①求证:DE平分∠BDC;②若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明;③若N为直线AE上一点,且△CEN为等腰三角形,直接写出∠CNE的度数.3.如图1,△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:∠A=∠CED;(2)如图2,若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.随堂检测1.直角三角形两锐角的平分线所成钝角的度数是( )A.115°B.125°C.135°D.无法确定2.有四个三角形,分别满足下列条件:①一个内角等于另外两个内角之和;②三个内角之比为3:4:5;③三边之比为5:12:13;④三边长分别为7,24,25.其中直角三角形有( )A.1个B.2个C.3个D.4个3.在Rt△ABC中,∠C=90°,周长为60,斜边与一条直角边之比为13:5,则这个三角形三边长分别为( ) A.5,4,3 B.13,12,5 C.10,8,6 D.26,24,104.一等腰三角形底边长为10 cm,腰长为13 cm,则腰上的高为( )A.12 cm B.6013cm C.12013cm D.135cm6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )A.42 B.32 C.37或33 D.42或32课后练习1.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有( ) A.12个B.10个C.8个D.6个2.如图,在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,动点P从点A出发,以2cm/s的速度沿线段AB向点B运动.在运动过程中,当△APC为等腰三角形时,点P出发的时刻t可能的值为()A.5 B.5或8 C.52D.4或52第2题图第3题图3.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值_________.4.直角三角形三角形两直角边长为5和12,三角形内一点到各边距离相等,那么这个距离为________.4.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为6.如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为线段BC上的一动点,当BP为何值时,△DEP为等腰三角形.请求出所有BP的值.选择题专题6.如图,在把易拉罐中的水倒入一个圆水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,则此时水杯中的水深为( )A.2 cm B.4 cm C.6 cm D.8 cm7.如图,一架长2.5 m的梯子,斜靠在竖直的墙上,这时梯子顶端离地面2.4 m,为了安装壁灯.梯子顶端离地面降至2m,请你计算一下,此时梯子底端应再向远离墙的方向移动( )A.0.4 m B.0.8 m C.1.2 m D.不能确定8.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为( )A.7 m B.8 m C.9 m D.10 m9.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A.600 m B.500 m C.400 m D.300 m。
八年级数学勾股定理课件
举例说明
例如,对于多项式x² - 5x + 6,可以将其转化为x² - 2x - 3x + 6,然后利用勾股定理将中间两项进行分组,得到 (x - 2)(x - 3)的因式分解形式。
05
拓展:勾股定理与现实生活联系
建筑行业中应用举例
80%
确定直角
学生自我评价报告分享
学生可以分享自己在学习勾股定理过程中的心得体会,如遇到的 困难、解决问题的方法等。
学生可以展示自己的学习成果,如完成的练习题、绘制的图形等 ,并与其他同学交流学习经验。
课堂互动环节:小组讨论
分组讨论
学生可以分成小组,围绕勾股定 理的相关话题展开讨论,如勾股 定理的证明方法、勾股定理在实
计算机图形学中应用
三维建模
碰撞检测
在计算机图形学中,勾股定理可用于三 维建模中的距离计算、角度计算等,为 构建逼真的三维场景提供数学基础。
在计算机游戏中,勾股定理可用于实 现物体之间的碰撞检测,提高游戏的 真实感和交互性。
图形变换
勾股定理在计算机图形学中的图形变 换方面也有广泛应用,如旋转、缩放 等变换中涉及的角度和长度计算。
判断三角形形状
判断是否为直角三角形
通过验证三角形的三边是否满足勾股 定理来判断该三角形是否为直角三角 形。
判断三角形类型
结合三角形的其他性质,如三边关系 、内角和等,可以进一步判断三角形 的类型,如等腰直角三角形、等边三 角形等。
求解最短路径问题
平面内两点间最短路径
在平面内,两点之间的最短路径是直线段。利用勾股定理可以求解两点间的距离 。
八年级数学勾股定理课件
目
CONTENCT
初二数学勾股定理讲义
初二数学勾股定理【知识点归纳】考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有2c22+ba=勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。
(2)如果直角三角形的两直角边长分别为1n2-,2n(n>1),那么它的斜边长是()A、2n B、n+1 C、n2-1 D、1n2+(3)在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.222+=a c b+= B.222a b cC.222+= D.以上都有可能c b a(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A、25B、14C、7D、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
(2)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A、242c mc m D、602c m B、362c m C、482(3)已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A、5B、25C、7D、15例3:探索勾股定理的证明有四个斜边为c 、两直角边长为a,b 的全等三角形,拼成如图所示的五边形,利用这个图形证明勾股定理。
(word完整版)初二数学--勾股定理讲义(经典)
第一章 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nB 、n+1C 、n 2-1D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
八年级初二数学勾股定理(讲义及答案)含答案
八年级初二数学勾股定理(讲义及答案)含答案一、选择题1.已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,下列结论错误的是().∠=∠A.AF⊥AQ B.AF=AQ C.AF=AD D.F BAQ 2.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2=;②∠A=∠BHE;BD BE③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④3.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是()A.B.C.D.4.如图是一块长、宽、高分别为6cm、4cm、3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A.cm B.cm C.cm D.9cm5.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm 的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A .16cmB .18cmC .20cmD .24cm6.如图,△ABC 中,AB=10,BC=12,AC=213,则△ABC 的面积是( ).A .36B .1013C .60D .1213 7.下列结论中,矩形具有而菱形不一定具有的性质是( ) A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直8.以下列各组数为边长,能构成直角三角形的是( ) A .236、、 B .3、4、5 C .3、4、7D .2、3、49.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )A .5B .51-C .51+D .51-+10.如图,在ABC ∆中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=︒,4BE =,7AD =,则AB 的长为( )A .10B .53C .213D .15二、填空题11.如图,Rt △ABC 中,∠ACB =90o ,AC =12,BC =5,D 是AB 边上的动点,E 是AC 边上的动点,则BE +ED 的最小值为 .12.如图,在四边形ABCD 中,22AD =,3CD =,45ABC ACB ADC ∠=∠=∠=︒,则BD 的长为__________.13.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =,则AC 的长为_________14.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.15.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____.16.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.17.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___ 18.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______19.如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,若AD =4,DC =3,求BE 的长.20.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.三、解答题21.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.22.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD 中,∠ABC =70°,∠BAC =40°,∠ACD =∠ADC =80°,求证:四边形ABCD 是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =23,若存在一点D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.23.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O . (1)“距离坐标”为(1,0)的点有 个;(2)如图2,若点M 在过点O 且与直线AB 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD = 150︒,请写出p 、q 的关系式并证明;(3)如图3,点M 的“距离坐标”为(1,3),且∠DOB = 30︒,求OM 的长.24.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.26.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求ADAB的值.27.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD . (1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.28.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).29.如图,在△ABC中,D是边AB的中点,E是边AC上一动点,连结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,连结EF、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG≌△BDF;(2)请你连结EG,并求证:EF=EG;(3)设AE=x,CF=y,求y关于x的函数关系式,并写出自变量x的取值范围;(4)求线段EF长度的最小值.30.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A 出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).(1)AE=(用含t的代数式表示),∠BCD的大小是度;(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ; (3)点E 在边AC 上运动时,求∠EDF 的度数;(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据BD 、CE 分别是AC 、AB 边上的高,推导出EBH DCH ∠=∠;再结合题意,可证明FAC AQB △≌△,由此可得F BAQ ∠=∠,AF AQ =;再经90AEF ∠=得90F FAE ∠+∠=,从而证明AF ⊥AQ ;最后由勾股定理得222AQ AD QD =+,从而得到AF AD ≠,即可得到答案. 【详解】如图,CE 和BD 相较于H∵BD 、CE 分别是AC 、AB 边上的高 ∴CE AB ⊥,BD AC ⊥∴90BEC BDC AEF ADQ ∠=∠=∠=∠= ∴90EBH EHB DHC DCH ∠+∠=∠+∠=∵EHB DHC ∠=∠ ∴EBH DCH ∠=∠ 又∵BQ =AC 且CF =AB ∴FAC AQB △≌△∴F BAQ ∠=∠,AF AQ =,故B 、D 结论正确; ∵90AEF ∠=∴90F FAE ∠+∠=∴90BAQ FAE F FAE ∠+∠=∠+∠= ∴AF ⊥AQ 故A 结论正确; ∵90ADQ ∠= ∴222AQ AD QD =+ ∵0QD ≠ ∴AQ AD ≠ ∴AF AD ≠ 故选:C . 【点睛】本题考查了全等三角形、直角三角形、勾股定理、三角形的高等知识;解题的关键是熟练掌握全等三角形、直角三角形、勾股定理、三角形的高的性质,从而完成求解.2.A解析:A 【分析】先判断△DBE 是等腰直角三角形,根据勾股定理可推导得出BE ,故①正确;根据∠BHE 和∠C 都是∠HBE 的余角,可得∠BHE=∠C ,再由∠A=∠C ,可得②正确;证明△BEH ≌△DEC ,从而可得BH=CD ,再由AB=CD ,可得③正确;利用已知条件不能得到④,据此即可得到选项. 【详解】解:∵∠DBC=45°,DE ⊥BC 于E , ∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE , ∴BE ,故①正确;∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角, ∴∠BHE=∠C ,又∵在▱ABCD 中,∠A=∠C , ∴∠A=∠BHE ,故②正确; 在△BEH 和△DEC 中,BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BEH ≌△DEC , ∴BH=CD ,∵四边形ABCD 为平行四边形, ∴AB=CD ,∴AB=BH ,故③正确;利用已知条件不能得到△BCF ≌△DCE ,故④错误,故选A.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.3.D解析:D【解析】【分析】利用勾股定理和正方形的面积公式,对公式进行合适的变形即可判断各个选项是否争取.【详解】A中,根据勾股定理等于大正方形边长的平方,它就是正方形的面积,故正确;B中,根据小正方形的边长是2它等于三角形较长的直角边减较短的直角边即可得到,正确;C中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D中,根据A可得,C可得,结合完全平方公式可以求得,错误.故选D.【点睛】本题考查勾股定理.在A、B、C选项的等式中需理解等式的各个部分表示的几何意义,对于D选项是由A、C选项联立得出的.4.C解析:C【解析】【分析】本题中蚂蚁要跑的路径有三种情况,知道当蚂蚁爬的是一条直线时,路径才会最短.蚂蚁爬的是一个长方形的对角线.展开成平面图形,根据两点之间线段最短,可求出解.【详解】解:如图1,当爬的长方形的长是(4+6)=10,宽是3时,需要爬行的路径的长==cm;如图2,当爬的长方形的长是(3+6)=9,宽是4时,需要爬行的路径的长==cm;如图3,爬的长方形的长是(3+4)=7时,宽是6时,需要爬行的路径的长==cm.所以要爬行的最短路径的长cm.故选C.【点睛】 本题考查平面展开路径问题,本题关键知道蚂蚁爬行的路线不同,求出的值就不同,有三种情况,可求出值找到最短路线.5.C解析:C【分析】首先画出圆柱的侧面展开图,进而得到SC=12cm ,FC=18-2=16cm ,再利用勾股定理计算出SF 长即可.【详解】将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF 的长,由勾股定理,SF 2=SC 2+FC 2=122+(18-1-1)2=400,SF=20 cm ,故选C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.6.A解析:A【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=213∴(()22221021312x x -=-- ∴8x = ∴22221086AD AB BD =-=-=∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.7.C解析:C【分析】矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【详解】A 、菱形、矩形的内角和都为360°,故本选项错误;B 、对角互相平分,菱形、矩形都具有,故本选项错误;C 、对角线相等菱形不具有,而矩形具有,故本选项正确D 、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C .【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.8.C解析:C【分析】利用勾股定理的逆定理依次计算各项后即可解答.【详解】选项A ,222+≠,不能构成直角三角形;选项B ,222+≠,不能构成直角三角形;选项C ,222+=,能构成直角三角形;选项D ,222+≠,不能构成直角三角形.故选C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9.B解析:B【分析】由数轴上点P 表示的数为1-,点A 表示的数为1,得PA=2,根据勾股定理得PB 而即可得到答案.【详解】∵数轴上点P 表示的数为1-,点A 表示的数为1,∴PA=2,又∵l ⊥PA ,1AB =,∴PB =∵∴数轴上点C 1.故选B .【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.10.C解析:C【分析】设EC=x ,DC=y ,则直角△BCE 中,x 2+4y 2=BE 2=16,在直角△ADC 中,4x 2+y 2=AD 2=49,由方程组可求得x 2+y 2,在直角△ABC 中,2244ABx y【详解】解:设EC=x ,DC=y ,∠ACB=90°,∵D 、E 分别是BC 、AC 的中点,∴AC=2EC=2x ,BC=2DC=2y ,∴在直角△BCE 中,CE 2+BC 2=x 2+4y 2=BE 2=16在直角△ADC 中,AC 2+CD 2=4x 2+y 2=AD 2=49,∴2255164965x y ,即2213x y +=,在直角△ABC 中,2244413213ABx y .故选:C .【点睛】 本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE 和直角△ADC 求得22x y +的值是解题的关键.二、填空题11.【解析】 试题分析:作点B 关于AC 的对称点B′,过B′点作B′D ⊥AB 于D ,交AC 于E ,连接AB′、BE ,则BE+ED=B′E+ED=B′D 的值最小.∵点B 关于AC 的对称点是B′,BC=5,∴B′C=5,BB′=10.∵Rt △ABC 中,∠ACB=90°,AC=12,BC=5,∴22AC BC +,∵S △ABB′=12•AB•B′D=12•BB′•AC ,∴B′D=B 10121201313B AC AB '⋅⨯==,∴BE+ED= B′D=12013. 考点:轴对称-最短路线问题.12.5【分析】作AD′⊥AD ,AD′=AD 构建等腰直角三角形,根据SAS 求证△BAD ≌△CAD′,证得BD=CD′,∠DAD′=90°,然后在Rt △AD′D 和Rt △CD′D 应用勾股定理即可求解.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,∴∠BAD=∠CAD′,在△BAD 与△CAD′中,{BA CABAD CAD AD AD =∠=∠='',∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′=22()4AD AD +=',∵∠D′DA+∠ADC=90°,∴由勾股定理得CD′=22(')5DC DD +=,∴BD=CD′=5故答案为5.【点睛】本题考查了全等三角形的判定与性质,勾股定理,等腰直角三角形,正确引出辅助线构造等腰直角三角形是本题的关键.13.5【分析】由题意可知,AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,求出∠ACE =∠BCD 可证△ACE ≌△BCD ,可得AE =BD =3,∠ADB =90°,由勾股定理求出AB 即可得到AC 的长.【详解】解:如图所示,连接BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,且∠ACE =∠BCD =90°-∠ACD , 在ACE 和BCD 中,AC=BC ACE=BCD CE=CD ⎧⎪∠∠⎨⎪⎩∴△ACE ≌△BCD (SAS ),∴AE =BDE =∠BDC =45°,∴∠ADB =∠ADC+∠BDC =45°+45°=90°,∴AB,∵,∴BC=2【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.14.3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.15..(3,4)或(2,4)或(8,4).【分析】题中没有指明△ODP 的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P 的坐标.【详解】解:(1)OD 是等腰三角形的底边时,P 就是OD 的垂直平分线与CB 的交点,此时OP =PD ≠5;(2)OD 是等腰三角形的一条腰时:①若点O 是顶角顶点时,P 点就是以点O 为圆心,以5为半径的弧与CB 的交点, 在直角△OPC 中,CP =22OP OC -=2254-=3,则P 的坐标是(3,4). ②若D 是顶角顶点时,P 点就是以点D 为圆心,以5为半径的弧与CB 的交点, 过D 作DM ⊥BC 于点M ,在直角△PDM 中,PM =22PD DM -=3,当P 在M 的左边时,CP =5﹣3=2,则P 的坐标是(2,4);当P 在M 的右侧时,CP =5+3=8,则P 的坐标是(8,4).故P 的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).【点睛】本题考查了等腰三角形的性质和勾股定理的运用等知识,注意正确地进行分类,考虑到所有可能的情况并进行分析求解是解题的关键.16.72965【分析】分三种情形讨论:(1)如图1中,以点C 所在顶点为直角时;(2)如图2中,以点D 所在顶点为直角时;(3)如图3中,以点A 所在顶点为直角时.【详解】(1)如图1中,以点C所在顶点为直角时.∵AC=CD=4,BC=3,∴BD=CD+BC=7;(2)如图2中,以点D所在顶点为直角时,作DE⊥BC与E,连接BD.在Rt△BDE中DE=2,BE=5,∴BD2229=+=;DE BE(3)如图3中,以点A所在顶点为直角时,作DE⊥BC于E,在Rt△BDE中,DE=4.BE=7,∴BD2265=+=.DE BE故答案为:7或29或65.【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.17.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P+S Q=S K为从而易求S K.【详解】解:如下图所示,若A=S P=4.B=S Q=9,C=S K,根据勾股定理,可得A+B=C,∴C=13.若A=S P=4.C=S Q=9,B=S K,根据勾股定理,可得A+B=C,∴B=9-4=5.∴S K为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.18.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,D H⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE和Rt△DHF中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL)∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=GC-GE=CH-HF=CF=AB-BF=3223332+=②过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D 是AB 的中点, ∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=A B+BF=7+4=11∴EF=221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45°∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形可证AED CFD △△≌∴AE=CF=3,CE=BF=4∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴ED=DF=522,可证△E CF E DE ''∆∽,2223y x +=5252x =+综上可得:25x =∴2222E F DE DF DE '''''=+=1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.19.78【解析】 试题分析:根据矩形性质得AB=DC=6,BC=AD=8,AD ∥BC ,∠B=90°,再根据折叠性质得∠DAC=∠D′AC ,而∠DAC=∠ACB ,则∠D′AC=∠ACB ,所以AE=EC ,设BE=x ,则EC=4-x ,AE=4-x ,然后在Rt △ABE 中利用勾股定理可计算出BE 的长即可.试题解析:∵四边形ABCD 为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,∵△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,∴∠DAC=∠D′AC,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC,设BE=x ,则EC=4﹣x ,AE=4﹣x ,在Rt△ABE 中,∵AB 2+BE 2=AE 2,∴32+x 2=(4﹣x )2,解得x=78, 即BE 的长为78. 20.639+或639-【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解.【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== ,AH ∴===. 3DE =,3DH ∴=== ,DH EH ∴=,3AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ ,12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.三、解答题21.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒,2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.22.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23,∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-= ∴S △ADC =1423432⨯⨯=S △ABC =12AB×BC =3, ∴S 四边形ABCD =S △ADC +S △ABC =3②当CD =CB =BD =3∴△BDC 为等边三角形,过D 作DE ⊥BC 于E ,则∠BDE =160302⨯︒=︒, ∴132BE BD == ()()22222333DE BD BE =-=-=, ∴S △BDC =1233332⨯= 过D 作DF ⊥AB 交AB 延长线于F ,∵∠FBD=∠FBC -∠DBC =90︒-60︒=30︒,∴DF=123 S △ADB =12332⨯=, ∴S 四边形ABCD =S △BDC +S △ADB =3;③当DA =DC =DB 或AB =AD =BD 时,邻和四边形ABCD 不存在.∴邻和四边形ABCD 的面积是3或3【点睛】 本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.23.(1)2;(2)32q p =;(3)27OM =【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根据含30度直角三角形的性质和勾股定理求出223MN MO NO p =-=即可解决问题;(3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.【详解】解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个, 故答案为:2;(2)过M 作MN CD ⊥于N ,∵直线l AB ⊥于O ,150BOD ∠=︒,∴60MON ∠=︒,∵MN q =,OM p =,∴1122NO MO p ==, ∴2232MN MO NO p =-=, ∴3q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.∴OFP OMP △≌△,OEQ OMQ △≌△,∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,∴260EOF BOD ∠=∠=︒,∴△OEF 是等边三角形,∴OM OE OF EF ===,∵1MP =,3MQ =∴2MF =,3ME =,∵30BOD ∠=︒,∴150PMQ ∠=︒,过F 作FG QM ⊥,交QM 延长线于G ,∴30FMG ∠=︒,在Rt FMG △中,112FG MF ==,则3MG =, 在Rt EGF 中,1FG =,33EG ME MG =+=,∴22(33)127EF =+=,∴27OM =.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.24.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.【详解】解:(1)AE=BD ,AE ⊥BD ,理由如下:∵△ABC ,△ECD 都是等腰直角三角形, ∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE ⊥BD ;(2)∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6;(3)如图3,若点D 在AB 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD , ∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE⊥BD是本题的关键.25.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED2CD,∴BD2+AD2=2CD2,(3)解:连接EF,设BD=x,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2, ∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.(1)详见解析;(241;(33【分析】(1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证1302FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE 2AB =,3AB ,根据(1)思路得3AB .【详解】(1) 证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠EAC=∠DAB.在△ACE 与△ABD 中,AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD(SAS),∴BD CE =;(2)连接BD因为AD AE =, 60DAE BAC ∠=∠=,所以ADE ∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥ 所以1302FEA AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),所以30FEA BDA ∠=∠=,CE=BD=5所以90BDE BDA ADE ∠=∠+∠=所以BE=22225441BD DE +=+=(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=所以222AB AC AC +因为AB AC =所以AE 2=又因为45CAB ∠=所以90ABE ∠= 所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=所以BC=CD, 90BCD ∠=因为同(1)可得△ACD ≌△ECB(SAS)所以3AB所以33AD AB AB==。
【初二】第三章勾股定理讲义
勾股定理1.1 勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么222a b c +=.即直角三角形中两直角边的平方和等于斜边的平方。
1.2勾股定理的证明:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。
1.4勾股数:满足222a b c +=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
【例1】 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【例2】 若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为( )CABcb aDCGFE Hcb a cba ED CBA【例3】 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为______.【例4】 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定【例5】 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5 C【例6】 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍【例7】 在Rt ABC ∆中, 90C ∠=︒,(1)如果34a b ==,,则c =_______; (2)如果68a b ==,,则c =_______; (3)如果512a b ==,,则c =________; (4)如果1520a b ==,,则c =________.(5)若c =41,a =40,则b =______; (6)若∠A =30°,a =1,则c =______;(7)若∠A =45°,a =1,则b =______.【例8】 如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )A. a b c <<B. c a b <<C. c b a <<D. b a c <<【例9】 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 【例10】已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,•如果8cm AB =,10cm BC =,EC 的长为 . 【例11】一个矩形的抽屉长为24cm ,宽为7cm,在里面放一根铁条,那么铁条最长可以是 . 【例12】如图,将一根30㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和24㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?CBA“路”4m3m【例13】 将一根长为24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外边的长度为cm h ,则h 的取值范围为( ) 【例14】如图,以一个直角三角形的三边为边长分别向外作三个正方形,如果两个较大正方形的面积分别是576和676,那么最小的正方形的面积为( ) 【例15】在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)若a ∶b =3∶4,c =75cm ,求a 、b ; (2)若a ∶c =15∶17,b =24,求△ABC 的面积; (3)若c -a =4,b =16,求a 、c ; (4)若a 、b 、c 为连续整数,求a +b +c .2 勾股定理的逆定理【例1】 分别以下列四组数为一个三角形的边长:(1)6、8、10;(2)5、12、13;(3)8、15、17; (4)4、5、6,其中能构成直角三角形的有____________.(填序号)【例2】 下列线段不能组成直角三角形的是( ).A .a =6,b =8,c =10B .3,2,1===c b aC .43,1,45===c b a D .6,3,2===c b a【例3】 已知ABC △的三边长分别为5,13,12,则ABC △的面积为( )A .30B .60C .78D .不能确定【例4】 在ABC △中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________; ②若a 2+b 2=c 2,则∠c 为____________; ③若a 2+b 2<c 2,则∠c 为____________.【例5】 若ABC △中,()()2b a b a c -+=,则B ∠=____________; 【例6】 如图,正方形网格中,每个小正方形的边长为1,则网格上的ABC△是______三角形.【例7】 下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).A .1∶1∶2B .1∶3∶4C .9∶25∶26D .25∶144∶169【例8】 已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).A .一定是等边三角B .一定是等腰三角形C .一定是直角三角D .形状无法确定【例9】 若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以22a a a -+、、为边的三角形的面积为______.【例10】 ABC △的两边a b ,分别为512,,另一边c 为奇数,且a b c ++是3的倍数,则c 应为______,此三角形为______.【例11】 如图,ABC △中,90C ∠=︒,330AC B =∠=︒,,点P 是BC 边上的动点,则AP 长不可能是( )A .B .C .D .7【例12】 如图,在△ABC 中,已知AB =AC =2a ,∠ABC =15°,CD 是腰AB 上的高,求CD 的长.DCBA【例13】 如图所示,已知∠1=∠2,AD =BD =4,CE ⊥AD ,2CE =AC ,那么CD 的长是( )【例14】 如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.【例15】 如图,在ABC △中,CD AB ⊥于D ,9435AC BC DB ===,,.(1)求CD AD ,的值;(2)判断ABC △的形状,并说明理由.【例16】 已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.【例17】 如图所示,在四边形ABCD 中,已知:AB :BC :CD :DA =2:2:3:1,且∠B =90°,求∠DAB 的度数.【例18】 如图,已知CA ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD .(1)试猜想线段CE 与DE 的大小与位置关系,并说明你的结论; (2)若AC =5,BD =12,求CE 的长.【例19】 阅读理解题:(1)如图所示,在ABC △中,AD 是BC 边上的中线,且PBCA21EBDCADCBAABDCD CBACDBE AA12AD BC =.求证:90BAC ∠=︒(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.(3)直接运用这个结论解答下列题目:一个三角形一边长为5,这边上的中线长为,另两边之和为7,求这个三角形的面积.【例20】 已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .【例21】 已知∠MAN ,AC 平分∠MAN .(1)在图1中,若∠MAN =120°,∠ABC =∠ADC =90°,求证:AB +AD =AC ;(2)在图2中,若∠MAN =120°,∠ABC +∠ADC =180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;BCDN AM MAND CB【例22】 在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?. 1.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.2.如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆CB A底部B 的距离为6米,则折断点C 到旗杆底部B 的距离为3.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于 .4. Rt △ABC 中,斜边BC =2,则222AB AC BC ++的值为( ).5.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,则CD 的长为 .6.在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 7.如图,已知正方形ABED 与正方形BCFE ,现从A ,B ,C ,D ,E ,F 六个点中任取三个点,使得这三个点能作为直角三角形的三个顶点,则这样的直角三角形共有( )A .10B .12C .14D .168.如图,在Rt ABC △中,已知,90ACB ∠=︒,15B ∠=︒,AB 边的垂直平分线交AB 于E ,交BC 于D ,且13BD =,则AC 的长是 .9. 如图所示,在ABC △中,::3:4:5AB BC CA =,且周长为36,点P 从点A 开始沿AB 边向B 点以每秒1cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2cm 的速度移动,如果同时出发,则过3秒时,BPQ △的面积为( )2cm .10. 如图所示的一块地,已知AD =4m ,CD =3m ,AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.DCBAFECBDAE DBC AQCA。
初二物理--勾股定理讲义(经典)
初二物理--勾股定理讲义(经典)
引言
勾股定理是几何学中一条重要的定理,它描述了直角三角形之
间的关系。
本讲义介绍了勾股定理的原理、公式和应用。
勾股定理的原理
勾股定理由古希腊数学家毕达哥拉斯提出,它可以用来求解直
角三角形的边长关系。
根据定理,直角三角形的两条边长分别为a、b,斜边长为c,满足以下关系式:
c² = a² + b²
勾股定理的公式
勾股定理的数学表达式为:
c = √(a² + b²)
勾股定理的应用
勾股定理在几何学和物理学中有广泛的应用。
以下是一些常见
的应用场景:
1. 计算直角三角形的边长:已知两条边长,可以通过勾股定理求解第三条边长。
2. 判断三角形是否为直角三角形:根据勾股定理,如果三条边的边长满足a² + b² = c²,则该三角形为直角三角形。
3. 解决距离和速度问题:勾股定理可以用于计算物体的位移、速度和加速度之间的关系。
总结
勾股定理是一条重要的几何定理,它描述了直角三角形的边长关系。
了解勾股定理的原理、公式和应用,可以帮助我们解决直角三角形相关的问题,并应用到物理学等领域中。
以上是本讲义对勾股定理的简要介绍。
希望能够对你的学习有所帮助!。
《初二勾股定理讲解》课件
本PPT课件详细讲解了初二数学课程中的勾股定理,通过图文并茂的方式,带 领学生深入理解这一重要的几何定理。
引言
勾股定理是初中数学的基础,它是直角三角形中一条重要的等式,其应用广泛。学好勾股定理对于进一步学习 几何和数学有重要意义。
勾股定理的定义
直角三角形
勾股定理适用于直角三角形,即其中一个角为90度。
勾股三元组是一组满足勾股定 理的整数边长的三角形。
总结
勾股定理是数学中一条重要且有广泛应用的几何定理,学好勾股定理对于学 生的数学学习非常重要,希望大家能够努力掌握这一定理。
参考文献
- 《数学教学参考书目》 - 《初中数学教材》
通过数学运算和代数推导,可以证明勾股定理的代数性质。
勾股定理的应用
长方形的对角线
勾股定理可以用于计算长方形对角线的长正方形的边长。
直角三角形的中线
勾股定理可以用于计算直角三角形中线的长度。
...
勾股定理的拓展
广义勾股定理
勾股三元组
...
广义勾股定理是勾股定理在非 直角三角形中的推广和拓展。
斜边、直角边、另一条边
勾股定理描述了直角三角形的斜边平方等于两直角边平方和的关系。
勾股定理的表述
勾股定理可以简化成 a²+ b²= c²的等式。
勾股定理的证明
1
证明一:仿射几何
通过仿射几何的方法,可以得到勾股定理的几何证明。
2
证明二:相似三角形
使用相似三角形的性质,可以证明勾股定理的几何性质。
3
证明三:代数证明
初二数学《勾股定理》PPT课件
即直角三角形两直角边的平方和等于 斜边的平方.
a
c
勾
弦
b
股
在RT△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
勾股定理的各种表达式:
c2=a2+b2 a2=c2-b2 b2=c2-a2
5米
B
A
C
12米
解:∵BC⊥AC, ∴在Rt△ABC中, AC=12,BC=5, 根据勾股定理,
1.求下列图中表示边的未知数x、y、z的值.
①
81
144
x
y
z
②
③
625
576
144
169
如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( )
B
A
勾 股 定 理
C
一、情景引入
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
5米
B
A
C
12米
电线杆折断之前的高度=BC+AB=5米+AB的长
SA+SB=SC
图甲
图乙
A的面积
B的面积
C的面积
4
4
A
B
C
C
图甲
1.观察图甲,小方格 的边长为1. ⑴正方形A、B、C的 面积各为多少?
A.3米 B.4米 C.5米 D.6米
C
2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )
A
B
C
A.50米 B.120米 C.100米 D.130米
初二勾股定理讲义
c b a D C A B第一讲 勾股定理复习讲义知识点一、勾股定理1、勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
在ABC Rt ∆中,,,,90B A C ∠∠︒=∠C ∠的对边分别为c b a ,,,则有:①222b a c +=;②222b c a -=;③222a c b -=.2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数.常见勾股数如下(必须熟记):3、常见平方数(必须熟记):121112=; 144122=; 169132=; 196142=; 225152=;256162=; 289172=; 324182=; 361192=; 400202=;441212=; 484222=; 529232=; 576242=; 625252=4、勾股定理证明(等面积法)(1)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:222c b a =+。
(2)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:222c b a =+。
例题1.例题1.已知直角三角形的两边长分别为3和4,则斜边长为( )A .4B .5C .4或5D .5或变式练习:在△ABC 中,∠C =90°,AC =3,BC =4,则以AB 为边的正方形的面积为( )A .9B .16C .25D .53, 4, 56, 8, 10 9, 12, 15 12, 16, 20 15, 20, 25 5, 12, 1310, 24, 26 7, 24, 25 8 ,15 , 17 9, 40, 41例题2.两个边长分别为a ,b ,c 的直角三角形和一个两条直角边都是c 的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为( )A .(a +b )2=c 2B .(a ﹣b )2=c 2C .a 2﹣b 2=c 2D .a 2+b 2=c 2 变式练习:“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若ab =8,小正方形的面积为9,则大正方形的边长为( )A .9B .6C .5D .4例题3.如图1-1-1,在Rt ABC ∆中,ACB B A ABC ∠∠∠︒=∠,,,90所对的边分别为a,b,c.(1)若;,15,4:3:b c b a 求==(2)若.8,6的长及斜边上的高,求c b a ==变式练习:如图,△ABC 中,∠ACB=90°,AC=7,BC=24,CD ⊥AB 于D .(1)求AB 的长;(2)求CD 的长.知识点二、勾股定理的逆定理勾股定理的概念(1)语言表述:在一个直角三角形中,的平方和等于的平方.(2)公式表述:已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.则有.2.勾股定理的应用在直角三角形中,知道其中任意的都可以求出第三边.即:c=,a=,b=.例题1.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( )A.8 B.4 C.6 D.无法计算变式练习:1.若直角三角形的两边为3和4,则第三边的长为2.若已知一个直角三角形的周长为30 cm,其中一个直角边长为12 cm,则它的斜边为cm.例题2.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形a、b、c、d的边长分别是3、5、2、3,则最大正方形e的面积是()A.13 B.26C.47 D.94图1 图2变式练习:1.在直线上依次摆着7个正方形(如图6),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=_____.2.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的面积是.知识点三、折叠问题【例题】1.如图7,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A.53B.52C.4 D.5 图7 图82.某同学在制作手工作品的前两个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的长方形纸片ABCD;②将纸片沿着直线AE折叠,点D恰好落在BC 边上的点F处,请你根据①②步骤计算EC的长为.变式练习:1.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,若AB=6,BC=9,则BF的长为()A.4 B.3 2 C.4.5 D.52.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC 沿AE折叠,使点B落在AC边上的点B′处,求BE的长.知识点四、勾股定理中最短路径问题例题1.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米,现在要在河边CD上建造一水厂,向A、B两村送自来水,铺设水管的工程费用为每千米20000元,请你在CD上选择水厂的位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.例题2.如图,有一个圆柱体,它的高为20,底面半径为5,如果一直蚂蚁要从圆柱体的底面的A点,沿圆柱体表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长越为_______(л取3)例题3.如图①,一只蚂蚁在长方体的一个顶点A处,食物在这个长方体上和蚂蚁相对的顶点B处,蚂蚁急于吃到食物,所以沿长方体的表面向上爬,请你计算它从A处爬到B处的最短路线长为多少米?例题4.如图,︒AOB,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、=∠30Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________变式练习:1.如图,长方体的底面边长分别为1cm,3cm,高为6cm。
八年级初二数学 勾股定理(讲义及答案)含答案
八年级初二数学勾股定理(讲义及答案)含答案一、选择题1.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=5,AC=53,CB的反向延长线上有一动点D,以AD为边在右侧作等边三角形,连CE,CE最短长为()A.5B.53C.53D.532.已知等边三角形的边长为a,则它边上的高、面积分别是()A.2,24a aB.23,24a aC.233,24a aD.233,44a a3.如图,已知圆柱的底面直径6BCπ=,高3AB=,小虫在圆柱侧面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程的平方为()A.18 B.48 C.120 D.724.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.994D.5325.如图,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45︒,若AD=4,CD=2,则BD的长为()A .6B .27C .5D .256.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2a b +值为( )A .25B .9C .13D .1697.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( )A .AB 的中点B .BC 的中点 C .AC 的中点D .C ∠的平分线与AB 的交点 8.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是( )A .6B .32πC .2πD .129.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .610.有下列的判断: ①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形③如果△ABC 是直角三角形,那么a 2+b 2=c 2以下说法正确的是( )A .①②B .②③C .①③D .②二、填空题11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.12.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.13.如图,在四边形ABCD 中,22AD =,3CD =,45ABC ACB ADC ∠=∠=∠=︒,则BD 的长为__________.14.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.15.如图,O 为坐标原点,四边形OABC 为矩形,()20,0A ,()0,8C ,点D 是OA 的中点,点P 在边BC 上运动,当ODP ∆是以OD 为腰的等腰三角形时,则P 点的坐标为______.16.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.17.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .18.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC,则AC边上的高的长度是_____________.的角平分线,E是AD上的动点,F 19.如图,△ABC中,AB=AC=13,BC=10,AD是BAC是AB边上的动点,则BE+EF的最小值为_____.20.四边形ABCD中AB=8,BC=6,∠B=90°,AD=CD=52,四边形ABCD的面积是_______.三、解答题21.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,AD平分∠BAC,BD⊥AD于点D,E是AB的中点,连接CE交AD于点F,BD=3,求BF的长.22.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)23.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t :(秒)(1)OE =_________,OF =___________(用含t 的代数式表示)(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设MBN ∆的面积为S ,求S 与b 之间的函数关系式.24.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.25.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.26.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.27.如图1,△ABC 中,CD ⊥AB 于D ,且BD : AD : CD =2 : 3 : 4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40cm 2,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以每秒1cm 速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止. 设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.图1 图2 备用图28.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.29.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+;勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度;(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ;(3)点E 在边AC 上运动时,求∠EDF 的度数;(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】在CB 的反向延长线上取一点B ’,使得BC =B ’C ,连接AB ’,易证△AB ’D ≌△ABE ,可得∠ABE =∠B ’=60°,因此点E 的轨迹是一条直线,过点C 作CH ⊥BE ,则点H 即为使得BE 最小时的E 点的位置,然后根据直角三角形的性质和勾股定理即可得出答案.【详解】解:在CB 的反向延长线上取一点B ’,使得BC =B ’C ,连接AB ’,∵∠ACB =90°,∠ABC =60°,∴△AB ’B 是等边三角形,∴∠B ’=∠B ’AB =60°,AB ’=AB ,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠B’AD+∠DAB=∠DAB+∠BAE,∴∠B’AD=∠BAE,∴△AB’D≌△ABE(SAS),∴∠ABE=∠B’=60°,∴点E在直线BE上运动,过点C作CH⊥BE于点H,则点H即为使得BE最小时的E点的位置,∠CBH=180°-∠ABC-∠ABE=60°,∴∠BCH=30°,∴BH=12BC=52,∴CH=22BC BH-=53.即BE的最小值是53.故选C.【点睛】本题是一道动点问题,综合考查了全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质和勾股定理等知识,将△ACB构造成等边三角形,通过全等证出∠ABC 是定值,即点E的运动轨迹是直线是解决此题的关键.2.C解析:C【分析】作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD,利用勾股定理即可求出AD,再利用三角形面积公式即可解决问题.【详解】解:如图作AD⊥BC于点D.∵△ABC为等边三角形,∴∠B=60°,∠B AD=30°∴1122 BD AB a ==由勾股定理得,2222213()22AD AB BD a a a =-=-= ∴边长为a 的等边三角形的面积为12×a ×32a =34a 2, 故选:C .【点睛】本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.3.D解析:D【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【详解】解:把圆柱侧面展开,展开图如图所示,点A ,C 的最短距离为线段AC 的长.∵已知圆柱的底面直径6BC π=, ∴623AD ππ=⋅÷=, 在Rt ADC ∆中,90ADC ∠=︒ ,3CD AB ==,∴22218AC AD CD =+=,∴从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为()222472AC AC ==.故选D.【点睛】本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.4.B解析:B【分析】设小正方形的边长为x ,则矩形的一边长为(a+x ),另一边为(b+x ),根据矩形的面积的即等于两个三角形的面积之和,也等于长乘以宽,列出方程,化简再代入a,b 的值,得出x 2+7x=12,再根据矩形的面积公式,整体代入即可.【详解】设小正方形的边长为x ,则矩形的一边长为(a+x ),另一边为(b+x ),根据题意得 :2(ax+x 2+bx )=(a+x )(b+x ),化简得 :ax+x 2+bx-ab=0,又∵ a = 3 , b = 4 ,∴x 2+7x=12;∴该矩形的面积为=(a+x )(b+x )=(3+x )(4+x )=x 2+7x+12=24.故答案为B.【点睛】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.5.A解析:A【解析】【分析】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,根据等式的性质,可得∠BAD 与∠CAD′的关系,根据SAS ,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,则有∠AD′D=∠D′AD=45︒,∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD′中,''BC CA BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得,∠D′DA+∠ADC=90°,由勾股定理得,故选A.【点睛】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,添加辅助线作出全等图形是解题关键.6.A解析:A【分析】根据勾股定理可以求得22a b +等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据()2222a b a ab b +=++即可求解.【详解】根据勾股定理可得2213a b +=, 四个直角三角形的面积是:14131122ab ⨯=-=,即212ab =, 则()2222131225a b a ab b +=++=+=.故选:A .【点睛】本题考查了勾股定理以及完全平方式,正确根据图形的关系求得22a b +和ab 的值是关键.7.A解析:A【分析】先计算AB 2=2890000,BC 2=640000,AC 2=2250000,可得BC 2+AC 2=AB 2,那么△ABC 是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P 点的位置.【详解】解:如图∵AB 2=2890000,BC 2=640000,AC 2=2250000∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形,∴活动中心P 应在斜边AB 的中点.故选:A .【点睛】本题考查了勾股定理的逆定理.解题的关键是证明△ABC 是直角三角形.8.A解析:A【分析】分别求出以AB 、AC 、BC 为直径的半圆及△ABC 的面积,再根据S 阴影=S 1+S 2+S △ABC -S 3即可得出结论.【详解】解:如图所示:∵∠BAC=90°,AB=4cm ,AC=3cm ,BC=5cm ,∴以AB 为直径的半圆的面积S 1=2π(cm 2);以AC 为直径的半圆的面积S 2=98π(cm 2); 以BC 为直径的半圆的面积S 3=258π(cm 2); S △ABC =6(cm 2);∴S 阴影=S 1+S 2+S △ABC -S 3=6(cm 2);故选A .【点睛】 本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.10.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c 不一定是斜边,故错误;②正确;③若△ABC 是直角三角形,c 不是斜边,则a 2+b 2≠c 2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.二、填空题11.5【详解】解:如图,延长AE 交BC 于点F ,∵点E 是CD 的中点,∴DE=CE ,,∵AB ⊥BC ,AB ⊥AD,∴AD ∥BC,∴∠ADE=∠BCE 且DE=CE ,∠AED=∠CEF,∴△AED ≌△FEC (ASA ),∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,2213AF AB BF =+=, 6.52AF AE == 故答案为:6.5. 12.210或213或32【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==,∴25AB =,情况一:当25AD AB ==时,作AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即455AE =,1455DE = ∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即45BE =145DE =∴2225CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E ∴1122BC AC AB BE ⋅=⋅, ∴45BE =355CE ∴= ∵ABD △为等腰直角三角形∴152BF DF AB === ∴955DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:1021332【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 13.5【分析】作AD′⊥AD ,AD′=AD 构建等腰直角三角形,根据SAS 求证△BAD ≌△CAD′,证得BD=CD′,∠DAD′=90°,然后在Rt △AD′D 和Rt △CD′D 应用勾股定理即可求解.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,∴∠BAD=∠CAD′,在△BAD 与△CAD′中,{BA CABAD CAD AD AD =∠=∠='',∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得22()4AD AD +=',∵∠D′D A+∠ADC=90°,∴由勾股定理得22(')5DC DD +=,∴BD=CD′=5故答案为5.【点睛】本题考查了全等三角形的判定与性质,勾股定理,等腰直角三角形,正确引出辅助线构造等腰直角三角形是本题的关键.14.232【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4, ∴22224223AC AB BC =-=-=当AC 为腰时,则该三角形的腰长为3当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3, 设DE=x ,则AD=2x ,∵222AE DE AD +=, ∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:23或2【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.15.()4,8或()6,8或()16,8【分析】当ODP ∆是以OD 为腰的等腰三角形时,分为两种情况①点O 是顶角顶点时,②D 是顶角顶点时,根据勾股定理求出CP ,PM 即可.【详解】解:OD 是等腰三角形的一条腰时:①若点O 是顶角顶点时,P 点就是以点O 为圆心,以10为半径的弧与CB 的交点, 在直角△OPC 中,CP=22221086OP OC -=-=,则P 的坐标是(6,8). ②若D 是顶角顶点时,P 点就是以点D 为圆心,以10为半径的弧与CB 的交点, 过D 作DM ⊥BC 于点M ,在直角△PDM 中,22221086PD DM -=-= ,当P 在M 的左边时,CP=10-6=4,则P 的坐标是(4,8);当P 在M 的右侧时,CP=10+6=16,则P 的坐标是(16,8).故P 的坐标为:(6,8)或(4,8)或(16,8).故答案为:(6,8)或(4,8)或(16,8).【点睛】本题主要考查等腰三角形的性质及勾股定理的运用,注意正确地进行分类,考虑到所有的可能情况是解题的关键.16.4或【分析】分三种情况讨论:①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.【详解】①以A为直角顶点,向外作等腰直角三角形DAC,如图1.∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,如图2.连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°.又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,=∴CE=DE=22在Rt△BAC中,BC==BD===③以AC为斜边,向外作等腰直角三角形ADC,如图3.∵∠ADC=90°,AD=DC,且AC=2,∴AD=DC=AC sin45°=2=又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°.又∵在Rt△ABC中,BC==∴BD==故BD 的长等于4或25或10.故答案为4或25或10.【点睛】本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题, 17.55【解析】【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】展开图如图所示:由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,∴蚂蚁爬行的最短路径长=PQ=2222105PD QD +=+=55(cm ),故答案为:55.【点睛】本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.18.355【详解】 四边形DEFA 是正方形,面积是4; △ABF,△ACD 的面积相等,且都是 ×1×2=1. △BCE 的面积是:12×1×1=12.则△ABC的面积是:4﹣1﹣1﹣12=32.在直角△ADC中根据勾股定理得到:AC=222+1=5.设AC边上的高线长是x.则12AC•x=52x=32,解得:x=355.故答案为35 5.19.120 13【解析】∵AB=AC,AD是角平分线,∴AD⊥BC,BD=CD,∴B点,C点关于AD对称,如图,过C作CF⊥AB于F,交AD于E,则CF=BE+FF的最小值,根据勾股定理得,AD=12,利用等面积法得:AB⋅CF=BC⋅AD,∴CF=BC ADAB⋅=101213⨯=12013故答案为120 13.点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF⊥AB时,CF有最小值是解题的关键.20.49【解析】连接AC,在Rt△ABC中,∵AB=8,BC=6,∠B=90°,∴AC=22AB BC=10.在△ADC中,∵AD=CD=52,∴AD2+CD2=(52)2+(52)2=100.∵AC2=102=100,∴AD2+CD2=AC2,∴∠ADC=90°,∴S四边形ABCD =S△ABC+S△ACD=12AB•BC+12AD•DC=12×8×6+12×52×52=24+25=49.点睛:本题考查的是勾股定理及勾股定理的逆定理,不规则几何图形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.三、解答题21.BF的长为32【分析】先连接BF,由E为中点及AC=BC,利用三线合一可得CE⊥AB,进而可证△AFE≌△BFE,再利用AD为角平分线以及三角形外角定理,即可得到∠BFD为45°,△BFD为等腰直角三角形,利用勾股定理即可解得BF.【详解】解:连接BF.∵CA=CB,E为AB中点∴AE=BE,CE⊥AB,∠FEB=∠FEA=90°在Rt△FEB与Rt△FEA中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3∴BF ===【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.22.(1)见解析;(2)CDAD +BD ,理由见解析;(3)CD+BD【分析】(1)由“SAS ”可证△ADB ≌△AEC ;(2)由“SAS ”可证△ADB ≌△AEC ,可得BD =CE ,由直角三角形的性质可得DEAD ,可得结论;(3)由△DAB ≌△EAC ,可知BD =CE ,由勾股定理可求DH,由AD =AE ,AH ⊥DE ,推出DH =HE ,由CD =DE +EC =2DH +BDAD +BD ,即可解决问题;【详解】证明:(1)∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );(2)CDAD +BD ,理由如下:∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠BAC =90°,AD =AE ,∴DEAD ,∵CD =DE +CE ,∴CDAD +BD ;(3)作AH ⊥CD 于H .∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠DAE =120°,AD =AE ,∴∠ADH =30°,∴AH =12AD , ∴DH 22AD AH -3, ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD 3+BD ,故答案为:CD 3+BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.23.(1)6-t ,t+23;(2)D(1,3),y=34-x+154;(3)1515215()4215215()2b b S b b ⎧-+≤<⎪⎪=⎨⎪->⎪⎩【分析】(1)根据点E ,F 的运动轨迹和速度,即可得到答案;(2)由题意得:DF=OF=53,DE=OE=5,过点E 作EG ⊥BC 于点G ,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案;(3)根据题意得直线直线MN 的解析式为:34y x b =-+,从而得M(443b -,3),分2种情况:①当点M 在线段DB 上时, ②当点M 在DB 的延长线上时,分别求出S 与b 之间的函数关系式,即可.【详解】∵(0,0)O ,(6,0)A ,(0,3)C ,∴OA=6,OC=3,∵AE=t×1= t , ∴OE =6-t ,OF =(t+23)×1=t+23, 故答案是:6-t ,t+23; (2)当1t =时,OE =6-t=5,OF =t+23=53, ∵将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,∴DF=OF=53,DE=OE=5, 过点E 作EG ⊥BC 于点G ,则EG=OC=3,CG=OE=5,∴4=,∴CD=CG-DG=5-4=1,∴D(1,3),设直线DE 的解析式为:y=kx+b ,把D(1,3),E(5,0)代入y=kx+b ,得350k b k b +=⎧⎨+=⎩ ,解得:34154k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DE 的解析式为:y=34-x+154; (3)∵MN ∥DE ,∴直线直线MN 的解析式为:34y x b =-+, 令y=3,代入34y x b =-+,解得:x=443b -, ∴M(443b -,3). ①当点M 在线段DB 上时,BM=6-(443b -)=4103b -+, ∴1143(10)223S BM AB b =⋅=⨯⨯-+=215b -+, ②当点M 在DB 的延长线上时,BM=443b --6=4103b -, ∴1143(10)223S BM AB b =⋅=⨯⨯-=215b -,综上所述:1515215()4215215()2b b S b b ⎧-+≤<⎪⎪=⎨⎪->⎪⎩.【点睛】本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.24.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =∴222AC AD CD =-=,∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°,∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,∴∠EFC =∠BCG ,∴∠E =∠BCG ,在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH ,∴222GH BG BH BG =+=,∴2EG GH EH BG CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.25.(1)①详见解析;(2)222222CD n n =+-(1n >);(2)2AD BD CD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++()()22222211n n n =++=+ 又∵()2221AB n =+∴222AD BD AB +=∴△ABD 是直角三角形②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90°∴∠3=∠4由①知△ABD 是直角三角形∴1290∠+∠=︒又∵290E ∠+∠=︒∴∠1=∠E在ACD ∆和BCE ∆中,A 34E AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE∴CD CE =,AD BE =∴221DE BD BE BD AD n n =+=+=+-又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD =+=∴22CD =222222n n =+-(1n >) (2)AD 、BD 、CD 的数量关系为:2AD BD CD -=,理由如下:如图②,过点C 作CF ⊥CD 交BD 的延长线于点F ,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD ⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9ACD ∆和BCF ∆中97AC BCACD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△BCF∴CD=CF,AD=BF又∵∠DCF=90°∴由勾股定理得222DF CD CF CD=+=又DF=BF-BD=AD-BD∴2AD BD CD-=【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.26.(1)假;(2)∠A=45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a2=c2,再由勾股定理得a2+b2=c2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论;(3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a,AD=CD=a,DB=AB-AD=c-a,DG=BG=12(c-a),AG=12(a+c),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt△ABC是类勾股三角形,∴ab+a2=c2,在Rt△ABC中,∠C=90°,根据勾股定理得,a2+b2=c2,∴ab+b2=a2+b2,∴ab=a2,∴a=b,∴△ABC是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;②如图3,在AB边上取点D,连接CD,使∠ACD=∠A图3作CG⊥AB于G,∴∠CDB=∠ACD+∠A=2∠A,∵∠B=2∠A,∴∠CDB=∠B,∴CD=CB=a,∵∠ACD=∠A,∴AD=CD=a,∴DB=AB﹣AD=c﹣a,∵CG⊥AB,∴DG=BG=12(c﹣a),∴AG=AD+DG=a+12(c﹣a)=12(a+c),在Rt△ACG中,CG2=AC2﹣AG2=b2﹣[12(c+a)]2,在Rt△BCG中,CG2=BC2﹣BG2=a2﹣[12(c﹣a)]2,∴b2﹣[12(a+c)]2=a2﹣[12(c﹣a)]2,∴b2=ac+a2,∴△ABC是“类勾股三角形”.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,新定义“类勾股三角形”,分类讨论的数学思想,解本题的关键是理解新定义.27.(1)见详解;(2)①t值为:103s或6s;②t值为:4.5或5或4912.【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;②根据题意得出当点M在DA上,即2<t≤5时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=2t-4;分别得出方程,解方程即可.【详解】解:(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC=5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:由(1)知,AB=5x,CD=4x,∴S△ABC=12×5x×4x=40cm2,而x>0,∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AB=AC=10cm.由运动知,AM=10-2t,AN=t,①当MN∥BC时,AM=AN,即10-2t=t,∴103t ;当DN∥BC时,AD=AN,∴6=t,得:t=6;∴若△DMN的边与BC平行时,t值为103s或6s.②存在,理由:Ⅰ、当点M在BD上,即0≤t<2时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=2时,点M运动到点D,不构成三角形Ⅲ、当点M在DA上,即2<t≤5时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=5当DE=DM,则2t-4=5,∴t=4.5s;当ED=EM,则点M运动到点A,∴t=5s;当MD=ME=2t-4,如图,过点E作EF垂直AB于F,∵ED=EA,∴DF=AF=12AD=3,在Rt△AEF中,EF=4;∵BM=2t,BF=BD+DF=4+3=7,∴FM=2t-7在Rt△EFM中,(2t-4)2-(2t-7)2=42,∴t=49 12.综上所述,符合要求的t 值为4.5或5或4912. 【点睛】 本题主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.28.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为333-.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG =∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;(2)依然成立。
八年级数学《勾股定理》讲义.docx
老师姓名王志威学生姓名上课时间学科名称数学年级八年级备注【课题名称】八上数学《勾股定理》【考纲解读】1.学握勾股定理的含义;2.理解勾股数,并口会熟练地运用勾股数;3.能够根据勾股定理,解决实际问题。
【考点梳理】考点1:勾股定理(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)勾股定理的表示:如果直角三角形的两直角边分别为b,斜边为c,那么a2^-b2=c2(3)勾股定理的证明:勾股定理的证明方法很多,常见的是拼图法。
图形进过割补拼接后, 只要没冇重叠,没冇空隙,面积不会改变。
根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
考点2:勾股定理的适用范围勾股定理揭示了直角三角形三条边Z间所存在的数量关系,它只适用丁直角〔角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
考点3:勾股数(1)能够构成直角三角形的三边长的三个匸整数称为勾股数,即a2+b2=c2中,a, b, c 为正整数时,称a, b, c为一组勾股数。
(2)记住常见的勾股数可以提高解题速度,比如3,4,5; 6,&10; 5,12,13; 7,24,25; 8, 15, 17 等。
考点4:勾股定理的应用(1)已知直角三角形的任意两边长,求第三边。
在\ABC中,ZC = 90° ,则c = y]a2+b2 , b = V c2 - a2 ,a = c2 - b2 .(2)已知直角三角形-•边,可得另外两边之间的数量关系;(3)nJ以运用勾股定理解决一些实际问题,比如圆柱和长方体的最短距离问题。
【例题讲解】例2:卜列由线段a, b, c 纽成的三角形不是直角三角形的是()A. a=3, b=4, c=5B. a=2V13,b=3, c=V43C. a=12, b=10, c=20D. a=5, b=13, c=12例3:三角形的三边长a, b, c 满足2ab= (a+b ) 2 - c 2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形 D ・等边三角形例4:如图,冇两棵树,一棵高10米,另一棵高5米,两树相距12米.一只鸟从一棵树的 树梢飞到另一棵树的树梢,问小鸟至少飞行()A. 8 米B. 10 米C. 13 米D. 14 米 例5:如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最翹路线的长是(例6:如图,在2x2的正方形网格中有9个格点,已经取定点A 和B,在余下的7个点中任 取一点C,使AABC 为直角三角形的点C 有 ______________________________ 个.D. 194D. 2V17C. 144C. 4^2【课堂检测】1-如图’在UBC 中,"CB”分别以点A 和点B 为圆心,以相同的长(大于訓为半径作弧,两弧相交于点M 和点N,作直线MN 交AB 于点D,交BC 于点E.若AC=3,2.在△ ABC 中,ZC=90°,若 AC=3, BC=4,贝ij AB=( )A. V5B. 5C. V?D. 73. AABC 中,ZA, ZB, ZC 的对边分别记为a, b, c,由下列条件不能判定AABC 为直 角三角形的是( ) A. ZA+ZB=ZC B ・ ZA : ZB : ZC=1: 2: 3 C. a 2=c 2 - b 2 D. a : b : c=3: 4: 64.在厶ABC 中,Ae - AB =Be,那么( )A. ZA=90° B- ZB=90° C. ZC=90° D.不能确定 5.下列各组数中,能成为直角三角形的三条边长的是()A. 8、 15、 17 B ・ 10、24、25 C. 9、 15、20 D. 9、80、816. 如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,7. 如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm 的点B 处有一•饭粒, 此时一只蚂蚁正好在容器外撰,且离容器上沿3cm 的点A 处,则蚂 蚁吃到饭粒需爬行的最短路径是()A. 13cmB. 2V61cmC. V61cmD. 2y/~3icm8. 已知直角三角形的两边长为3丿里米和5厘米,则第三边长为205cm D. 210cmAB=5,则DE 等于(— 〜・ —3 8C. 蚂蚁月B9.三角形的三边长为a、b、c,且满足等式(a+b)2・c2=2ab,则此三角形是________________ 三角形(直角、锐角、钝角).10.如图,是美国总统Garfield于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:如图三个三介形均是直角三角形)11.如图,在四边形ABCD 屮,ZB=90°, AB=BC=4, CD=6, DA=2・求ZDAB 的度数.【课后作业】1.如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b >a)拼接在一起,贝IRU边形ABCD的面积为()A. b2+ (b - a)2B. b2+a2C. (b+a)2D. a2+2ab2.在ZXABC 中,ZA, ZB, ZC 的对边分别为a, b, c, 口(a+b)(a・ b) =c2,则()A. ZA为直角B. ZC为直角C. ZB为直角D.不是直角三角形3.已知a=3, b=4,若a, b, c能纟R成直角三角形,贝ij c=()A. 5B. V7C. 5 或祈D. 5 或64•下列是三角形的三边,能组成直角三角形的是()A. 1: 2: 3B. 1: V2: 3C. 2: 3: 5D. 1: 1: ^25.如图,西安路与南京路平行,并且与八一街垂有,曙光路与环城路垂直.如果小明站在南京路与八-•街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()西安路A. 400m B・ 525m C. 575m D・ 625m6.rfl于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()D. 18m7.己知等腰三角形的腰长为5,•腰上的高为3,则以底边为边长的正方形的面积为8.有一根长24cm的小木棒,把它分成三段,组成一个直角三角形,每段的长度都是偶数,贝IJ三段小木棒的长度分别是_______ m, ______ cm, ____ cm.9.写出一组直角三角形的三边长____________ .(要求是勾股数但3、4、5和6、8、10除外)10.如图所示,“赵爽弦图”由4个全等的直角三介形拼成,在Rt A ABC中,ZACB=90°,AC=b, BC=a,请你利用这个图形解决下列问题:(1)证明勾股定理;(2)说明a2+b2>2ab及其等号成立的条件.B11.如图,将边氏为a与b、对角线长为c的长方形纸片ABCD,绕点C顺时针旋转90。
八年级勾股定理讲义
勾股定理一.知识点拨勾股定理是数学史上一颗璀璨的明珠,在西方数学史上称之为“毕达哥拉斯定理”1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;9,12,15;3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n 的线段二.题型精析题型一 直角三角形中已知两边,求第三边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nB 、n+1C 、n 2-1D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
(2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242c mB 、36 2c mC 、482c mD 、602c m(3)已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A 、5B 、25C 、7D 、15例3:探索勾股定理的证明有四个斜边为c 、两直角边长为a,b 的全等三角形,拼成如图所示的五边形,利用这个图形证明勾股定理。
ABCMDGHF E考点二:勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。
(2)常见的勾股数:(3n,4n,5n ),(5n,12n,13n),(8n,15n,17n),(7n,24n,25n),(9n,40n,41n)…..(n 为正整数)(3)直角三角形的判定方法:①如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。
②有一个角是直角的三角形是直角三角形。
③两内角互余的三角形是直角三角形。
④如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
例题:例1:勾股数的应用(1)下列各组数据中的三个数,可作为三边长构成直角三角形的是( )A. 4,5,6B. 2,3,4C. 11,12,13D. 8,15,17 (2)若线段a ,b ,c 组成直角三角形,则它们的比为( ) A 、2∶3∶4B 、3∶4∶6C 、5∶12∶13D 、4∶6∶7例2:利用勾股定理逆定理判断三角形的形状 (1)下面的三角形中:①△ABC 中,∠C=∠A -∠B ;②△ABC 中,∠A :∠B :∠C=1:2:3; ③△ABC 中,a :b :c=3:4:5;④△ABC中,三边长分别为8,15,17.其中是直角三角形的个数有().A.1个 B.2个 C.3个 D.4个(2):1,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.不等边三角形(3)已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形(4)将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A.钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形(5)若△ABC的三边长a,b,c满足222a b c20012a16b20c+++=++,试判断△ABC的形状。
(6)△ABC的两边分别为5,12,另一边为奇数,且a+b+c是3的倍数,则c应为,此三角形为。
例3:求最大、最小角的问题(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是度。
(2)已知三角形三边的比为12,则其最小角为。
考点三:勾股定理的应用例题:例1:面积问题(1)下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是()A. 13B. 26C. 47D. 94A BCDES2S3S1ABCS3S2S1(图1)(图2)(图3)(3)如图,△ABC为直角三角形,分别以AB,BC,AC为直径向外作半圆,用勾股定理说明三个半圆的面积关系,可得()A. S1+ S2> S3B. S1+ S2= S3C. S2+S3< S1D. 以上都不是(2)如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是()A. S1- S2= S3B. S1+ S2= S3C. S2+S3< S1D. S2- S3=S1例2:求长度问题(1)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。
(2)在一棵树10m高的B处,有两只猴子,一只爬下树走到离树20m处的池塘A处;•另外一只爬到树顶D处后直接跃到A外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?CB 例3:最短路程问题(1)如图1,已知圆柱体底面圆的半径为2,高为2,AB,CD分别是两底面的直径,AD,BC是母线,若一只小虫从A点出发,从侧面爬行到C点,则小虫爬行的最短路线的长度是。
(结果保留根式)BD(图1)(2)如图2,有一个长、宽、高为3米的封闭的正方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短距离为。
(图2)例4:航海问题(1)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A 港向西北方向航行,经过1.5小时后,它们相距________海里.(2)如图1,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上。
该货船航行30分钟到达B处,此时又测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无暗礁危险?试说明理由。
D B CA(图1)(图2)(3)如图2,某沿海开放城市A接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度向D移动,已知城市A到BC的距离AD=100km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?例5:网格问题(1)如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A .0B .1C .2D .3(2)如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对 (3)如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) A . 25 B. 12.5 C. 9 D. 8.5BCAABCDCBA(图1) (图2) (图3) 例6:图形问题(1)如图1,求该四边形的面积(2)(2010四川宜宾)如图2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 .431213BC DA(图1) (图2) (3)某公司的大门如图所示,其中四边形AB CD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由 .(4)将一根长24㎝的筷子置于地面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h ㎝,则h 的取值范围 。
【培优提高】1.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm , 现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为 (A )4 cm(B )5 cm (C )6 cm (D )10 cm2.如图所示,在Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,CD =5㎝,求AB 的长. 3.3. 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:①使三角形的三边长分别为385; ②使三角形为钝角三角形且面积为4(在图乙中画一个即可).甲乙4.下列四组线段中,可以构成直角三角形的是( )A.1,2,3B.2,3,4C.3,4,5D.4,5,6 5.在△ABC 中,AB=6,AC=8,BC=10,则该三角形为( )A .锐角三角形B .直角三角形ABCDC . 钝角三角形D .等腰直角三角形6.已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .7.如图,每个小正方形的边长为1,ABC ∆的三边c b a ,,的大小关系式:(A )b c a << (B )c b a << (C )b a c << (D )a b c << 8.(本题满分10分)[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。