爆炸评价模型及伤害半径计算

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

爆炸评价模型及伤害半径计算

1、蒸气云爆炸(VCE )模型分析计算

(1)蒸气云爆炸(VCE )模型当爆炸性气体储存在贮槽内,一旦泄漏,遇到延迟点火则可能发生蒸气云爆炸,如果遇不到火源,则将扩散并消失掉。用TNT 当量法来预测其爆炸严重度。其原理是这样的:假定一定百分比的蒸气云参与了爆炸,对形成冲击波有实际贡献,并以TNT 当量来表示蒸气云爆炸的威力。其公式如下:

WTNT =

式中WTNT ——蒸气云的TNT 当量,kg ;

3――地面爆炸系数,取 3 =1.8

A ――蒸气云的TNT当量系数,取值范围为0.02%〜14.9%;

Wf ――蒸气云中燃料的总质量:kg ;

Qf ――燃料的燃烧热,kJ/kg ;

QTNT ——TNT 的爆热,QTNT=4120 〜4690kJ/kg。

(2)水煤气储罐蒸气云爆炸(VCE )分析计算由于合成氨生产装置使用的原料水煤气为一氧化碳与氢气混合物,具有低闪点、低沸点、爆炸极限较宽、点火能量低等特点,一旦泄漏,极具蒸气云爆炸概率。

若水煤气储罐因泄漏遇明火发生蒸气云爆炸(VCE ),设其贮量为70%时,则为2.81 吨,则其TNT 当量计算为:

取地面爆炸系数: 3 =1.8;

蒸气云爆炸TNT 当量系数,A=4%;

蒸气云爆炸燃烧时燃烧掉的总质量,

Wf=2.81 >1000=2810 (kg);

水煤气的爆热,以CO 30%、H2 43%计(氢为1427700kJ/kg, —氧化碳为10193 kJ/kg ):取

Qf=616970kJ/kg ;

TNT 的爆热,取QTNT=4500kJ/kg 。

将以上数据代入公式,得

WTNT = =27739(kg) 死亡半径 R1=13.6(WTNT/1000) 0.37

=13.6 送7.740.37 =13.6 g 42=46.5(m)

重伤半径R2,由下列方程式求解:

△P2=0.137Z2-3+0.119 Z2-2+0.269 Z2-1-0.019 Z2=R2/(E/P0)1/3 △ P2=A PS/P0 式中:

△ PS —— 引起人员重伤冲击波峰值,取

44000Pa ;

P0——环境压力(101300Pa );

E ——爆炸总能量(J ) , E=WTN X QTNT 。

将以上数据代入方程式,解得:

△ P2=0.4344

Z2=1.07

R2=1.07 X(27739 >4500 XI000/101300) 1/3 =1.07 >07=115(m)

轻伤半径R3,由下列方程式求解:

△P3=0.137Z3-3+0.119 Z3-2+0.269 Z3-1-0.019 Z3=R3/(E/P0)1/3 △ P3=A PS/P0

式中: △PS —— 引起人员轻伤冲击波峰值,取 17000Pa 。

将以上数据代入方程式,解得: △P3=0.168,

Z3=1.95

轻伤半径 R3=209 ( m )

2、沸腾液体扩展蒸气爆炸( BLEVE )模型分析计算

( 1 )沸腾液体扩展蒸气爆炸( BLEVE )模型

液态存贮的易燃液化气体突然瞬间泄漏时, 立即遇到火源就会发生剧烈的燃烧,

大的火球,形成强烈的热辐射,此种现象称为沸腾液体扩展蒸气爆炸,简称 BLEVE 球的特征可用国际

劳工组织( ILO )建议的蒸气爆炸模型来估算。

火球半径的计算公式为:

R=2.9W1/3

产生巨

沸腾液体扩展蒸气爆炸的主要危险是强烈的热辐射, 近场以外的压力效应不重要。 其火

式中R——火球半径,m;

W——火球中消耗的可燃物质量,kg。

对单罐储存,W 取罐容量的50%;双罐储存;W 取罐容量的70%;多罐储存,取W 为罐容量的90%。

( 2)液氨储罐沸腾液体扩展蒸气爆炸( BLEVE )模型分析计算

由于生产装置液氨贮罐区的液氨罐为多罐贮存, (共六只贮罐,其中三只50M3 ,三只

100M3 )最大库存量为250T。氨比重约0.6,取100M3罐,贝U

由W=100X0.6 X000 >90%=54000 ( kg)

代入式中,得到:

火球半径R=2.9(54000)1/3=109(m)

火球持续时间按下式计算:

t=0.45W1/3

式中:火球持续时间,单位为S.

将数据代入式中,得到:

t=0.45 (54000)1/3=17(s)

目标接收到热辐射通量的计算,按下式计算:

q(r)=q0R2r(1-0.058 Inr)/(R2+r2)3/2

式中:r——目标到火球中心的水平距离, m;

q0——火球表面的辐射通量, W/m2 。对柱形罐取270kW/m2 , 球形罐取200kW/m2 。

R——火球半径, m。R=109m 。

有了热辐射q (r) ,即可求不同伤害、破坏时的热通量及其半径。下面求不同伤害时的热通量:

死亡可根据下式计算:

Pr=-36.38+2.56 In(tq14/3)

式中:Pr=5

t――火球持续时间,取t=17s。

解得q1=21985W/m2 。

重伤可根据下式计算:

Pr=-43.143+3.0188 In(tq24/3)

解得q2=18693W/m2 。

轻伤可根据下式计算:

Pr=-39.83+3.0188 In(tq34/3)

解得q3=8207W/m2 。

通过q1、q2、q3可以求得对应的死亡半径R1、重伤半径R2及轻伤半径R3。(由于此方程式难以手算解出,故省略) 。

( 3)小结

通过计算,如果贮存区液氨储罐发生扩展蒸气爆炸,火球半径为109m。将可能造成

其他贮罐的连锁火灾和爆炸,造成灾难性的破坏。

3、液氨泄漏中毒事故的模拟计算

液氨贮存区最大贮存量为250T,假设有1T泄漏量,对蒸发成蒸气扩散造成的危害进行模拟计算。

( 1 )液态气体蒸气体积膨胀计算

在标准状态下(O C, 1013Mpa), 1摩尔气体占有22.4升体积。根据液态气体的相对密度,由下式可计算出它们气化后膨胀的体积:

V——膨胀后的体积(升)

V0——液态气体的体积(升)

DO ――液态气体的相对密度(水=1)

M——液态气体的的分子量

将液氨有关数据代入上式,由DO=O.597, M=17.O3 得到即液态氨若发生泄漏迅速气化,其膨胀体积为原液态体积的785 倍。(2)液态气体扩散半径模拟计算

液态气体泄漏后在高温下迅速气化并扩散,在一定泄漏量范围内,且液态气体比重大于空气,沿地面能扩散到相当远的地方,可模拟为半椭圆形,其短轴与长轴之比将随着扩散半径的增大而减少,可由下式计算:

相关文档
最新文档