2019年江苏省镇江市丹阳市吕城片中考数学一模试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年江苏省镇江市丹阳市吕城片中考数学一模试卷
一、填空题(本大题共12小题,每小题2分,共24分)
1.(2分)﹣5的倒数是.
2.(2分)计算:=.
3.(2分)分解因式:a3﹣4a=.
4.(2分)使分式有意义的x的取值范围是.
5.(2分)已知一组数据﹣3,x,﹣2,3,1,6的众数为3,则这组数据的中位数为.6.(2分)已知二次函数y=x2﹣2x+m的图象顶点在x轴下方,则m的取值范围是.7.(2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为.
8.(2分)如图A,D是⊙O上两点,BC是直径.若∠D=35°,则∠OAB的度数是.
9.(2分)已知点A(1,y1),B(m,y2)在二次函数y=x2﹣4x+1的图象上,且y1>y2,则实数m的取值范围是.
10.(2分)如图,在△ABC中,AC>AB,点D在BC上,且BD=BA,∠ABC的平分线BE交AD于点E,点F是AC的中点,连结EF.若四边形DCFE和△BDE的面积都为3,则△ABC的面积为.
11.(2分)如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D分别落在点B′,D′处,且点A,B′,D′在同一直线上,则tan∠DAD′.
12.(2分)如图,在平面直角坐标系中,点B(﹣1,4),点A(﹣7,0),点P是直线y
=x﹣1上一点,且∠ABP=45°,则点P的坐标为.
二、选择题(本大题共5小题,每小题3分,共15分)
13.(3分)下列四个数中,是无理数的是()
A.B.C.D.()2 14.(3分)如图是由6个大小相同的小正方体组成的几何体,它的俯视图是()
A.B.C.D.
15.(3分)有一张平行四边形纸片ABCD,已知∠B=75°,按如图所示的方法折叠两次,则∠BCF的度数等于()
A.60°B.55°C.50°D.45°
16.(3分)如图(1),在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图(2)所示,则边BC的长是()
A.B.C.D.6
17.(3分)如图,已知⊙C的半径为3,圆外一点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值()
A.2B.4C.5D.6
三、简答题(本大题共11小题,共81分)
18.(8分)(1)计算
(2)化简:(a﹣2)(a+3)﹣(a﹣1)2
19.(10分)(1)解方程:
(2)解不等式组:
20.(6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?
21.(6分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.
(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.
22.(5分)为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本进行整理,得到下列不完整的统计图表:
成绩x/分频数频率
50≤x<6020.04
60≤x<7060.12
70≤x<809b
80≤x<90a0.36
90≤x≤100150.30
请根据所给信息,解答下列问题:
(1)a=,b=;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?
23.(6分)如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.
(1)求证:△ABD≌△ECB;
(2)若∠ABD=30°,BE=3,求弧CD的长.
24.(6分)如图,小山坡上有一根垂直于地面的电线杆CD,小明从地面上的A处测得电线杆顶端C点的仰角是45°,后他正对电线杆向前走6米到达B处,测得电线杆顶端C点和电线杆底端D点的仰角分别是60°和30°.求电线杆CD的高度(结果保留根号)
25.(8分)如图,在平面直角坐标系中,函数y=(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,CB.
(1)若△ABD的面积为3,求k的值和直线AB的解析式;
(2)求证:=;
(3)若AD∥BC,求点B的坐标.
26.(8分)如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.
(1)求证:DF是⊙O的切线;
(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.
27.(8分)如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与A、C重合),连接PB,过点P作PE⊥PB,交射线DC于点E,已知AD=3,sin.设AP的
长为x.
(1)AB=;当x=1时,=;
(2)①试探究:否是定值?若是,请求出这个值;若不是,请说明理由;
②连接BE,设△PBE的面积为S,求S的最小值.
28.(10分)如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.
(1)求a的值;
(2)若PN:MN=1:3,求m的值;
(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.