2019年江苏省镇江市丹阳市吕城片中考数学一模试卷
丹阳市2019届九年级中考数学模拟试题(含答案解析)
丹阳市2019届九年级中考数学模拟试题一.填空题(满分24分,每小题2分)1.1的倒数是.2.计算:|﹣5|﹣=.3.分解因式:4m2﹣16n2=.4.若使代数式有意义,则x的取值范围是.5.5个正整数,中位数是4,唯一的众数是6,则这5个数和的最大值为.6.若二次函数y=mx2﹣2x+1的图象与x轴有交点,则m的取值范围是.7.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面积等于cm2.8.如图,AB为⊙O的直径,点C在圆上,过点C作AB的垂线交⊙O于点D,连结AD,若的度数为50°,则∠ADC的度数是°.9.已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:x…﹣2 0 2 3 …y…8 0 0 3 …当x=﹣1时,y=.10.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M,N在AC边上,∠MON=∠B,若△OMN 与△OBC相似,则CM=.11.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,∠CFE=β,则tanα•tanβ=.12.如图,在平面直角坐标系中,点A(12,0),点B(0,4),点P是直线y=﹣x﹣1上一点,且∠ABP=45°,则点P的坐标为.二.选择题(满分15分,每小题3分)13.有下列各数:3.14159,﹣,0.131131113…(相邻两个3之间依次多一个1),﹣π,,﹣,其中无理数有()A.1个B.2个C.3个D.4个14.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.515.有一张平行四边形纸片ABCD,已知∠B=70°,按如图所示的方法折叠两次,则∠BCF的度数等于()A.55°B.50°C.45°D.40°16.如图,AB是⊙O的直径,C、D是AB下方半圆上的点,点P从点O出发,沿OA→→BO的路径运动一周,设∠CPD的度数为y,运动时间为x,则下列图形能大致地刻画y与x之间关系的是()A.B.C.D.17.如图,在⊙O中,A,B,D为⊙O上的点,∠AOB=52°,则∠ADB的度数是()A.104°B.52°C.38°D.26°三.解答题(共11小题,满分81分)18.(8分)计算:(1)2﹣2+﹣sin30°;(2)(x﹣2)2﹣(x+3)(x﹣1).19.(10分)解方程与不等式组:(1)解方程:;(2)解不等式组:20.(6分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:品名猕猴桃芒果批发价(元/千克)20 40零售价(元/千克)26 50(1)他购进的猕猴桃和芒果各多少千克?(2)如果猕猴桃和芒果全部卖完,他能赚多少钱?21.(6分)小明家将于5月1日进行自驾游,由于交通便利,准备将行程分为上午和下午.上午的备选地点为:A﹣鼋头渚、B﹣常州淹城春秋乐园、C﹣苏州乐园,下午的备选地点为:D﹣常州恐龙园、E﹣无锡动物园.(1)请用画树状图或列表的方法分析并写出小明家所有可能的游玩方式(用字母表示即可);(2)求小明家恰好在同一城市游玩的概率.22.(5分)为了解我校初一年级学生的身高情况,随机对初一男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据调查所得数据绘制如图所示的统计图表.由图表中提供的信息,回答下列问题:组别身高(cm)A x<150B150≤x<155C155≤x<160D160≤x<165E x≥165(1)在样本中,男生身高的中位数落在组(填组别序号);(2)求女生身高在B组的人数;(3)我校初一年级共有男生500人,女生480人,则身高不低于160cm的学生人数.23.(6分)如图,正方形ABCD的边长为1,其中弧DE、弧EF、弧FG的圆心依次为点A、B、C.(1)求点D沿三条弧运动到点G所经过的路线长;(2)判断直线GB与DF的位置关系,并说明理由.24.(6分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)x+b与反比例函数y=的图象交于第一象限内的P(,8),25.(8分)已知一次函数y=k1Q(4,m)两点,与x轴交于A点.(1)写出点P关于原点的对称点P′的坐标;(2)分别求出这两个函数的表达式;(3)求∠P′AO的正切值.26.(8分)如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)若∠EBD为α,请将∠CAD用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若AD=,求的值.27.(8分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.28.(10分)如图1,在平面直角坐标系中,直线y=x+m与x轴、y轴分别交于点A、点B(0,﹣1),抛物线y=+bx+c经过点B,交直线AB于点C(4,n).(1)分别求m、n的值;(2)求抛物线的解析式;(3)点D在抛物线上,且点D的横坐标为t(0<t<4),DE∥y轴交直线AB于点E,点F在直线AB上,且四边形DFEG为矩形(如图2),若矩形DFEG的周长为p,求p与t的函数关系式和p的最大值.参考答案一.填空题1.解:1的倒数是=.2.解:原式=5﹣3=2.故答案为:2.3.解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)4.解:∵分式有意义,∴x的取值范围是:x+2≠0,解得:x≠﹣2.故答案是:x≠﹣2.5.解:因为五个正整数从小到大排列后,其中位数是4,这组数据的唯一众数是6,所以这5个数据分别是x,y,4,6,6,其中x=1或2,y=2或3.所以这5个数的和的最大值是2+3+4+6+6=21.故答案为:21.6.解:由题意可知:,∴,解得:m≤1且m≠0,故答案为:m≤1且m≠07.解:圆锥的侧面积=×2π×4×6=24π,故答案为:24π.8.解:∵AB为⊙O的直径,点C在圆上,过点C作AB的垂线交⊙O于点D,∴,∵的度数为50°,∴的度数为50°,∴∠ADC的度数是25°,故答案为:25.9.解:依据表格可知抛物线的对称轴为x=1,∴当x=﹣1时与x=3时函数值相同,∴当x=﹣1时,y=3.故答案为:3.10.解:∵∠ACB=90°,AO=OB,∴OC=OA=OB,∴∠B=∠OCB,∵∠MON=∠B,若△OMN与△OBC相似,∴有两种情形:①如图1中,当∠MON=∠OMN时,∵∠OMN=∠B,∠OMC+∠OMN=180°,∴∠OMC+∠B=180°,∴∠MOB+∠BCM=90°,∴∠MOB=90°,∵∠AOM=∠ACB,∠A=∠A,∴△AOM∽△ACB,∴=,∴=,∴AM=,∴CM=AC﹣AM=8﹣=.②如图2中,当∠MON=∠ONM时,∵∠BOC=∠OMN,∴∠A+∠ACO=∠ACO+∠MOC,∴∠MOC=∠A,∵∠MCO=∠ACO,∴△OCM∽△ACO,∴OC2=CM•CA,∴25=CM•8,∴CM=,故答案为或.11.解:过C点作MN⊥BF,交BG于M,交EF于N,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE=3,由勾股定理得,CG==4,∴DG=DC﹣CG=1,则AG==,∵=,∠ABG=∠CBE,∴△ABG∽△CBE,∴==,解得,CE=,∵∠MBC=∠CBG,∠BMC=∠BCG=90°,∴△BCM∽△BGC,∴=,即=,∴CM=,∴MN=BE=3,∴CN=3﹣=,∴EN==,∴FN=EF﹣EN=5﹣=,∴tanα•tanβ=•=×=.故答案为:.12.解:如图所示,将线段AB绕点B顺时针旋转90°得到线段BC,则点C的坐标为(﹣4,﹣8),由于旋转可知,△A BC为等腰直角三角形,令线段AC和线段BP交于点M,则M为线段AC的中点,所以点M的坐标为(4,﹣4),又B为(0,4),设直线BP为y=kx+b,将点B和点M代入可得,解得k=﹣2,b=4,可得直线BP为y=﹣2x+4,由于点P为直线BP和直线y=﹣x﹣1的交点,则由解得,所以点P的坐标为(5,﹣6),故答案为(5,﹣6).二.选择题(共5小题,满分15分,每小题3分)13.解:在所列实数中,无理数有0.131131113…,﹣π,这3个,故选:C.14.解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.15.解:由折叠可得,∠CED=90°=∠BCE,又∵∠D=∠B=70°,∴∠DCE=20°,由折叠可得,∠DCF=2×20°=40°,∴∠BCF=50°,故选:B.16.解:当P在由O向A上运动时,可知∠CPD的度数在逐渐减小,当P在上运动时,∠CPD =∠COD,当P在由B向O上运动时,恰好是由O向A运动的相反过程,即逐渐增大.故选:D.17.解:∵∠AOB=52°,∴∠ADB=26°,故选:D.三.解答题(共11小题,满分81分)18.(1)解:原式=+2﹣=2;(2)解:原式=x2﹣4x+4﹣(x2+2x﹣3)=﹣6x+7.19.解:(1)3(x﹣3)=2﹣8x,3x﹣9=2﹣8x,3x+8x=2+9,11x=11,x=1,检验:x=1时,3x=3≠0,∴分式方程的解为x=1;(2)解不等式3x﹣4≤x,得:x≤2,解不等式x+3>x﹣1,得:x>﹣8,则不等式组的解集为﹣8<x≤2.20.解:(1)设购进猕猴桃x千克,购进芒果y千克,根据题意得:,解得:.答:购进猕猴桃20千克,购进芒果30千克.(2)26×20+50×30﹣1600=420(元).答:如果猕猴桃和芒果全部卖完,他能赚420元钱.21.解:(1)列表如下:或树状图;∴小明家所有可能选择游玩的方式有:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)小明家恰好在同一城市游玩的可能有(A,E),(B,D)两种,∴小明家恰好在同一城市游玩的概率==.22.解:(1)∵抽取的样本中,男生人数有2+4+12+14+8=40人,∴男生身高的中位数是第21、22个数的平均数,∴男生身高的中位数落在D组;故答案为:D;(2)∵男生、女生的人数相同,∴女生有40人,∴女生身高在B组的人数有:40×(1﹣20%﹣30%﹣15%﹣5%)=12人;故答案为:12;(3)根据题意得:500×+480×(15%+5%)=275+96=371(人),答:身高不低于160cm的学生人数有371人.23.解:(1)根据弧长公式得所求路线长为: ++=3π.(2)GB⊥DF.理由如下:在△FCD和△GCB中,∵,∴△FCD≌△GCB(SAS),∴∠G=∠F,∵∠F+∠FDC=90°,∴∠G+∠FDC=90°,∴∠GHD=90°,∴GB⊥DF.24.解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则A E=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.25.解:(1)点P关于原点的对称点P′的坐标是(﹣,﹣8);(2)∵P(,8)在y=的图象上∴k2=×8=4∴反比例函数的表达式是:y=∵Q(4,m)在y=的图象上∴4×m=4,即m=1∴Q(4,1)(5分)∵y=k1x+b过P(,8)、Q(4,1)两点∴k1+b=8∴k1=﹣24k1+b=1 b=9∴一次函数的解析式是y=﹣2x+9;(3)作P'B⊥x轴于B,则P'B=8,BO=对于y=﹣2x+9,令y=0,则x=∴AB=+=5在Rt△ABP'中tan∠P′AO==.26.解:(1)连接CD、DE,⊙E中,∵ED=EB,∴∠EDB=∠EBD=α,∴∠CED=∠EDB+∠EBD=2α,⊙D中,∵DC=DE=AD,∴∠CAD=∠ACD,∠DCE=∠DEC=2α,△ACB中,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴∠CAD==;(2)设∠MBE=x,∵EM=MB,∴∠MEB=∠MBE=x,当EF为⊙D的切线时,∠DEF=90°,∴∠CED+∠MEB=90°,∴∠CED=∠DCE=90°﹣x,△ACB中,同理得,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴2∠CAD=180°﹣90°=90°,∴∠CAD=45°;(3)由(2)得:∠CAD=45°;由(1)得:∠CAD=;∴∠MBE=30°,∴∠CED=2∠MBE=60°,∵CD=DE,∴△CDE是等边三角形,∴CD=CE=DE=EF=AD=,Rt△DEM中,∠EDM=30°,DE=,∴EM=1,MF=EF﹣EM=﹣1,△ACB中,∠NCB=45°+30°=75°,△CNE中,∠CEN=∠BEF=30°,∴∠CNE=75°,∴∠CNE=∠NCB=75°,∴EN=CE=,∴===2+.27.解:(1)如图1,∵∠ACB=90°,AC=BC=2,∴∠A=∠ABC=45°,AB=2,∵AM=t,∠AMN=90°,∴MN=AM=t,AN=AM=t,则BN=AB﹣AN=2﹣t,故答案为:2﹣t.(2)如图2,∵AM=t,AC=BC=CD=2,∠BDC=∠DBE=45°,∴DM=MN=AD﹣AM=4﹣t,∴DN=DM=(4﹣t),∵PM=BC=2,∴PN=2﹣(4﹣t)=t﹣2,∴BP=t﹣2,∴PE=BE﹣BP=2﹣(t﹣2)=4﹣t,则NE==,∵DE=2,∴①若DN=DE,则(4﹣t)=2,解得t=4﹣;②若DN=NE,则(4﹣t)=,解得t=3;③若DE=NE,则2=,解得t=2或t=4(点N与点E重合,舍去);综上,当t=4﹣或t=3或t=2时,△DNE是等腰三角形.(3)①当0≤t<2时,如图3,由题意知AM=MN=t,则CM=NQ=AC﹣AM=2﹣t,∴DM=CM+CD=4﹣t,∵∠ABC=∠CBD=45°,∠NQB=∠GQB=90°,∴NQ=BQ=QG=2﹣t,则NG=4﹣2t,∴S=•t•(4﹣2t+4﹣t)=﹣(t﹣)2+,当t=时,S取得最大值;②当2≤t≤4时,如图4,∵AM=t,AD=AC+CD=4,∴DM=AD﹣AM=4﹣t,∵∠DMN=90°,∠CDB=45°,∴MN=DM=4﹣t,∴S=(4﹣t)2=(t﹣4)2,∵2≤t≤4,∴当t=2时,S取得最大值2;综上,当t=时,S取得最大值.28.解:(1)∵直线y=x+m与y轴交于点B(0,﹣1),∴m=﹣1,∴直线解析式为y=x﹣1,∵直线经过点C(4,n),∴n=×4﹣1=2;(2)∵抛物线经过点C和点B,∴,解得,∴抛物线解析式为y=x2﹣x﹣1;(3)∵点D的横坐标为t(0<t<4),DE∥y轴交直线AB于点E,∴D(t, t2﹣t﹣1),E(t, t﹣1),∴DE=t﹣1﹣(t2﹣t﹣1)=﹣t2+2t,∵DE∥y轴,∴∠DEF=∠ABO,且∠EFD=∠AOB=90°,∴△DFE∽△AOB,∴==,在y=x﹣1中,令y=0可得x=,∴A(,0),∴OA=,在Rt△AOB中,OB=1,∴AB=,∴==,∴DF=DE,EF=DE,∴p=2(DE+EF)=2×(+)DE=DE=(﹣t2+2t)=﹣t2+t=﹣(t ﹣2)2+,∵﹣<0,∴当t=2时,p有最大值.。
【优选】2019年江苏省镇江市丹阳市中考数学一模试卷(有答案)
17.如图,在长方形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若OC=5cm,则CD的长为( )
A.6cmB.7cmC.8cmD.10cm
三.解答题(共11小题,满分91分)
18.(8分)(1)计算:3tan30°﹣|1﹣ |+(2008﹣π)0
11.【分析】通过解直角三角形可得出点C的坐标,设平移后点A、C的对应点分别为A′、C′,利用一次函数图象上点的坐标特征可找出点C′的坐标,根据平移的性质结合平行四边形的面积公式即可求出线段AC扫过的面积.
【解答】解:∵y=﹣x﹣3.
∴A(1,0),B(3,0),
∴AB=2.
∵∠ABC=90°,AC=2 ,
23.(8分)如图,四边形ABCD中,AB⊥BC,∠BCD=150°,∠BAD=60°,AB=4,BC=2 ,求CD的长.
24.(7分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
已知A(2,5).求:
(1)b和k的值;
(2)△OAB的面积.
27.(8分)已知抛物线y=x2+bx+c经过点(1,0)和点(0,3).
(1)求此抛物线的解析式及顶点坐标;
(2)当自变量x满足﹣1≤x≤3时,求函数值y的取值范围;
(3)将此抛物线沿x轴平移m个单位后,当自变量x满足1≤x≤5时,y的最小值为5,求m的值.
=12.
故填空答案:12.
2019届江苏省丹阳市吕城片九年级上学期第一次月考数学试卷【含答案及解析】
2019届江苏省丹阳市吕城片九年级上学期第一次月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、填空题1. 关于的方程是一元二次方程,则的取值范围是____________.2. 已知关于的方程的一个根为-2,则=____,方程的另一个根是_____.3. 方程的根是____________.4. 实数是关于的方程的一个根,代数式_____.5. 当=_____时,代数式的值与代数式的值相等.6. 关于x的一元二次方程有实数根,则的取值范围是______________.7. 已知半径为4的圆中,弦AB把圆周分成1:3两部分,则弦AB长是_________.8. 如图,是⊙O的直径,点、在⊙O上,,,则=_____.9. 将量角器按如图所示的方式放置在三角形纸片上,使点C在半圆圆心上,点B在半圆上,边AB、AC分别交圆于点E、F,点B、E、F对应的读数分别为160°、70°、50°,则∠A的度数为.10. 如图是我市将要开发的一块长方形的土地,长为km,宽为3km,建筑开发商将这块土地分为甲、乙、丙三部分,其中甲和乙均为正方形,现计划甲地建住宅区,乙地建商业区,丙地开辟成小区公园,若已知丙地的面积为2km2,则x的值为_____.11. 如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60º,则BC的长为_____.12. 三角形两边长分别是3和4,第三边的长是一元二次方程的一个实数根,则该三角形的面积是___________.二、选择题13. 方程的解的情况是().A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根14. 已知⊙的直径为3cm,点到圆心的距离cm,则点().A.在⊙外 B.在⊙上 C.在⊙内 D.不能确定15. 某市计划经过两年的时间,将城市绿地面积从今年的144万平方米提高到225万平方米,则平均每年增长().A.15% B.20% C.25% D.30%16. 如图,P是半径为5的⊙O内一点,且OP=3,在过点P的所有⊙O的弦中,弦长为整数的弦的条数为().A.2 B.3 C.4 D.517. 根据下列表格中的对应值:18. x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09td19. 在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为().A.22 B.24 C. D.三、解答题20. 用适当的方法解下列方程(1)(2)(3)(4)21. 先化简再求值:,其中是一元二次方程的根.22. 已知关于x的一元二次方程有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.23. 一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:(1)桥拱半径.(2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?24. 已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.25. 水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤。
2019年江苏省镇江市丹阳市中考数学一模试卷(含答案)
2019年江苏省镇江市丹阳市中考数学一模试卷一.填空题(共12小题,满分24分,每小题2分)1.化简﹣(﹣)的结果是.2.已知x m=6,x n=3,则x m﹣n的值为.3.若二次根式在实数范围内有意义,则x的取值范围是.4.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.5.分解因式:a3﹣a=.6.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.7.已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为.8.若圆锥的底面半径是10,侧面展开图是一个半圆,则该圆锥的母线长为.9.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC 分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长.10.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为.11.如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC=2,直线l的关系式为:y=﹣x﹣3.将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积为平方单位.12.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线y=上,点N在直线y=x+3上,则抛物线y=﹣abx2+(a+b)x的顶点坐标是.二.选择题(共5小题,满分15分,每小题3分)13.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为()A.0.324×108 B.32.4×106C.3.24×107D.324×10814.如图所示的几何体的左视图是()A.B.C.D.15.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤216.如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针旋转60°到AB位置,且左边细管位置不变,则此时“U”形装置左边细管内水柱的高度约为()A.4cm B.2cm C.3cm D.8cm17.如图,在长方形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B 落在E处,AE交DC于点O,若OC=5cm,则CD的长为()A.6cm B.7cm C.8cm D.10cm三.解答题(共11小题,满分91分)18.(8分)(1)计算:3tan30°﹣|1﹣|+(2008﹣π)0(2)化简:÷(1+)19.(10分)(1)解方程:=2﹣(2)解不等式组:,并把解集在数轴上表示出来.20.(6分)在△ABC中,点D、E、F分别是BC、AB、AC边的中点.求证:△BED≌△DFC.21.(6分)在一个口袋中有3个完全相同的小球,把它们分别标号为1、2、3,随机地摸取一个小球后放回,再随机地摸出一个小球.求“两次取的小球的标号相同”的概率.请借助列表法或树形图说明理由.22.(14分)为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图(1)补全条形统计图.(2)这次抽取的学生成绩的中位数在的分数段中;这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?23.(8分)如图,四边形ABCD中,AB⊥BC,∠BCD=150°,∠BAD=60°,AB=4,BC=2,求CD的长.24.(7分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.25.(7分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.26.(7分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.27.(8分)已知抛物线y=x2+bx+c经过点(1,0)和点(0,3).(1)求此抛物线的解析式及顶点坐标;(2)当自变量x满足﹣1≤x≤3时,求函数值y的取值范围;(3)将此抛物线沿x轴平移m个单位后,当自变量x满足1≤x≤5时,y的最小值为5,求m的值.28.(10分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD 上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF =BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)2019年江苏省镇江市丹阳市中考数学一模试卷参考答案一.填空题(共12小题,满分24分,每小题2分)1.【分析】根据相反数的定义作答.【解答】解:﹣(﹣)=.故答案是:.【点评】考查了相反数.求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n 是一个整体,在整体前面添负号时,要用小括号.2.【分析】根据同底数幂的除法法则求解.【解答】解:∵x m=6,x n=3,∴x m﹣n=6÷3=2.故答案为:2.【点评】本题考查了同底数幂的除法,解答本题的关键是掌握同底数幂的除法法则:底数不变,指数相减.3.【分析】直接利用二次根式的性质得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x﹣2019≥0,解得:x≥2019.故答案为:x≥2019.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.4.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.【点评】本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.5.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.6.【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),据此判断即可.【解答】解:∵共有2+8+7+10+3=30个数据,∴其中位数是第15、16个数据的平均数,而第15、16个数据均为1.3万步,则中位数是1.3万步,故答案为:1.3.【点评】此题主要考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.【分析】根据方程有两个相等的实数根得出△=0,求出m的值即可.【解答】解:∵关于x的方程x2+3x﹣m=0有两个相等的实数根,∴△=32﹣4×1×(﹣m)=0,解得:m=﹣,故答案为:﹣.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac的关系是解答此题的关键.8.【分析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×5,解得x=10.故答案为20.【点评】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.9.【分析】根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD的周长=ED+CD+CF+OF+OE =ED+AE+CD+OE+OF=AD+CD+OE+OF,由此就可以求出周长.【解答】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故填空答案:12.【点评】本题利用了平行四边形的性质和已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.10.【分析】先根据五边形的内角和求∠E=∠D=108°,由切线的性质得:∠OAE=∠OCD=90°,最后利用五边形的内角和相减可得结论.【解答】解:正五边形的内角=(5﹣2)×180°÷5=108°,∴∠E=∠D=108°,连接OA、OC,∵AE、CD分别与⊙O相切于A、C两点,∴∠OAE=∠OCD=90°,∴∠AOC=540°﹣90°﹣90°﹣108°﹣108°=144°,故答案为:144°.【点评】本题考查了正五边形的内角和、内角的度数、切线的性质,本题的五边形内角可通过外角来求:180°﹣360°÷5=108°.11.【分析】通过解直角三角形可得出点C的坐标,设平移后点A、C的对应点分别为A′、C′,利用一次函数图象上点的坐标特征可找出点C′的坐标,根据平移的性质结合平行四边形的面积公式即可求出线段AC 扫过的面积.【解答】解:∵y=﹣x﹣3.∴A(1,0),B(3,0),∴AB=2.∵∠ABC=90°,AC=2,∴BC=4,∴C(3,4).设平移后点A、C的对应点分别为A′、C′,当y=﹣x﹣3=4时,x=﹣7,∴C′(﹣7,4),∴CC′=10.∵线段AC扫过的四边形ACC′A′为平行四边形,∴S=CC′•BC=10×4=40.答:线段AC扫过的面积为40.故答案为:40【点评】本题考查了待定系数法求一次函数解析式、解直角三角形、一次函数图象上点的坐标特征、平行四边形的面积以及坐标与图形变化中的平移,解题的关键是通过解直角三角形以及一次函数图象上点的坐标特征找出点C、C′的坐标.12.【分析】根据点的对称性可求出ab和a+b的值,从而得出抛物线的解析式,再利用配方法可求其顶点坐标.【解答】解:∵M、N关于y轴对称的点,∴纵坐标相同,横坐标互为相反数∴点M坐标为(a,b),点N坐标为(﹣a,b),∴由点M在双曲线y=上知b=,即ab=1;由点N在直线y=x+3上知b=﹣a+3,即a+b=3,则抛物线y=﹣abx2+(a+b)x=﹣x2+3x=﹣(x﹣)2+,∴抛物线y=﹣abx2+(a+b)x的顶点坐标为(,),故答案为(,),【点评】本题主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.二.选择题(共5小题,满分15分,每小题3分)13.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3240万用科学记数法表示为:3.24×107.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【解答】解:图中几何体的左视图如图所示:故选:D.【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.15.【分析】根据方程的解为负数得出m﹣2<0,解之即可得.【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列出不等式是解题的关键.16.【分析】AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,易得AC=2CH=2x,细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,利用水的体积不变得到x•S+x •2S=6•S+6•S,然后求出x后计算出AC即可.【解答】解:AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,∵∠BAH=90°﹣60°=30°,∴AC=2CH=2x,∴细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,∵x•S+x•2S=6•S+6•S,解得x=4,∴CH=x=4,即此时“U”形装置左边细管内水柱的高度约为4cm.故选:A.【点评】本题考查了解直角三角形的应用,旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.17.【分析】由折叠的性质可得:∠BAC=∠EAC=∠ACD,可得AO=CO=5cm,根据勾股定理可求DO的长,即可求CD的长.【解答】解:∵折叠∴∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,∴CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查了折叠问题,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.三.解答题(共11小题,满分91分)18.【分析】(1)根据实数的混合计算解答即可;(2)根据分式的混合计算解答即可.【解答】解:(1)原式=;(2)原式===.【点评】此题考查分式的混合计算,关键是根据运算法则和顺序解答.19.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)去分母得:5(1﹣x)=20﹣2(x+2),5﹣5x=20﹣2x﹣4,﹣5x+2x=20﹣4﹣5,﹣3x=11,x=﹣;(2)∵解不等式①得:x>﹣2,解不等式②得:x≥0.6,∴不等式组的解集是x≥0.6,在数轴上表示为:.【点评】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集、解一元一次方程等知识点,能正确根据等式的性质进行变形是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.20.【分析】先根据三角形中位线定理得出∠EDB=∠C,∠B=∠FDC,再由F是AC边的中点得出FC=AC,故可得出DE=FC,利用AAS定理即可得出结论.【解答】证明:∵点D、E分别是BC、AB的中点,∴ED∥AC,ED=AC,∴∠EDB=∠C.又∵F是AC边的中点,∴FC=AC,∴DE=FC,同理可得,∠B=∠FDC,在△EBD和△FDC中,∵,∴△BED≌△DFC(AAS).【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.21.【分析】用列表法列举出所有情况,看所求的情况与总情况的比值即可得答案.【解答】解:作树状图可得:(5分)“两次取的小球的标号相同”的概率为P=(9分)【点评】树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据频数分布表补全条形图即可得;(2)根据中位数的定义求解可得,将成绩在60≤x<70的分数段的人数除以总人数可得百分比;(3)用总人数乘以样本中90分以上(含90分)的人数所占比例可得.【解答】解(1)补全条形图如下:(2)∵被调查的总人数为2+6+9+18+15=50人,而第25、26个数据均落在80≤x<90,∴这次抽取的学生成绩的中位数在80≤x<90的分数段中,这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是×100%=12%,故答案为:80≤x<90,12%;(3).答:该年级参加这次比赛的学生中成绩“优”等的约有105人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】延长AB、DC交于点E,利用等边三角形的判定和三角函数解答即可.【解答】解:分别延长AB、DC交于点E.∵∠BCD=150°°,∴∠BCE=30°.∵AB⊥BC,∠CBE=90°,∴∠AEC=60°.又∠BAD=60°.∴△AED是等边三角形,在Rt△BCE中,∵BC=2,∠BCE=30°,cos30=,EC=4,∴CD=2.【点评】此题考查勾股定理问题,关键是利用等边三角形的判定和勾股定理解答.24.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B 的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.25.【分析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD 为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似即可得证;(3)由三角形ABC为直角三角形,利用勾股定理求出BC的长,再由OD 垂直平分BC,得到DB=DC,根据(2)的相似,得比例,求出所求即可.【解答】(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.【点评】此题考查了相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.26.【分析】(1)由直线y=x+b与双曲线y=相交于A,B两点,A(2,5),即可得到结论;(2)过A作AD⊥y轴于D,BE⊥y轴于E根据y=x+3,y=,得到B (﹣5,﹣2),C(﹣3,0),求出OC=3,然后根据三角形的面积公式即可得到结论.【解答】解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD=2.∵b=3,k=10,∴y=x+3,y=.由得:或,∴B点坐标为(﹣5,﹣2).∴BE=5.设直线y=x+3与y轴交于点C.∴C点坐标为(0,3).∴OC=3.∴S△AOC=OC•AD=×3×2=3,S△BOC=OC•BE=×3×5=.∴S△AOB=S△AOC+S△BOC=.【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键.27.【分析】(1)利用待定系数法求抛物线解析式;然后把一般式配成顶点式得到抛物线的顶点坐标;(2)先计算出当x=﹣1和x=3对应的函数值,然后根据二次函数的性质解决问题;(3)设此抛物线沿x轴向右平移m个单位后抛物线解析式为y=(x﹣2﹣m)2﹣1,利用二次函数的性质,当2+m>5,此时x=5时,y=5,即(5﹣2﹣m)2﹣1=5,;设此抛物线沿x轴向左平移m个单位后抛物线解析式为y=(x﹣2+m)2﹣1,利用二次函数的性质得到2﹣m<1,此时x =1时,y=5,即(1﹣2﹣m)2﹣1=5,然后分别解关于m的方程即可.【解答】解:(1)把(1,0),(0,3)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2﹣4x+3;∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1);(2)当x=﹣1时,y=x2﹣4x+3=8,当x=3时,y=x2﹣4x+3=0,∴当﹣1≤x≤3时,函数值y的取值范围为﹣1≤x<8;(3)设此抛物线沿x轴向右平移m个单位后抛物线解析式为y=(x﹣2﹣m)2﹣1,∵当自变量x满足1≤x≤5时,y的最小值为5,∴2+m>5,即m>3,m2=3﹣此时x=5时,y=5,即(5﹣2﹣m)2﹣1=5,解得m(舍去),设此抛物线沿x轴向左平移m个单位后抛物线解析式为y=(x﹣2+m)2﹣1,∵当自变量x满足1≤x≤5时,y的最小值为5,∴2﹣m<1,即m>1,m2=1﹣此时x=1时,y=5,即(1﹣2﹣m)2﹣1=5,解得m(舍去),综上所述,m的值为3+或1+.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.也考查了二次函数的性质.28.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF =BE+DF,只要再证明△AFG≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠GAF=∠FAE即可得出EF=BE+FD.【解答】解:【发现证明】如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∠FAE=75°∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.【点评】此题主要考查了四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解本题的关键是作出辅助线,构造全等三角形.。
2019年江苏省镇江市丹阳市中考数学一模试卷((有答案))
2019年江苏省镇江市丹阳市中考数学一模试卷一.填空题(共12小题,满分24分,每小题2分)1.化简﹣(﹣)的结果是.2.已知x m=6,x n=3,则x m﹣n的值为.3.若二次根式在实数范围内有意义,则x的取值范围是.4.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.5.分解因式:a3﹣a=.6.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.7.已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为.8.若圆锥的底面半径是10,侧面展开图是一个半圆,则该圆锥的母线长为.9.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长.10.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为.11.如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC=2,直线l的关系式为:y=﹣x﹣3.将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积为平方单位.12.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线y=上,点N在直线y=x+3上,则抛物线y=﹣abx2+(a+b)x的顶点坐标是.二.选择题(共5小题,满分15分,每小题3分)13.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为()A.0.324×108B.32.4×106C.3.24×107D.324×10814.如图所示的几何体的左视图是()A.B.C.D.15.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2B.m>2C.m<2D.m≤216.如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针旋转60°到AB位置,且左边细管位置不变,则此时“U”形装置左边细管内水柱的高度约为()A.4cm B.2cm C.3cm D.8cm17.如图,在长方形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若OC=5cm,则CD的长为()A.6cm B.7cm C.8cm D.10cm三.解答题(共11小题,满分91分)18.(8分)(1)计算:3tan30°﹣|1﹣|+(2008﹣π)0(2)化简:÷(1+)19.(10分)(1)解方程:=2﹣(2)解不等式组:,并把解集在数轴上表示出来.20.(6分)在△ABC中,点D、E、F分别是BC、AB、AC边的中点.求证:△BED≌△DFC.21.(6分)在一个口袋中有3个完全相同的小球,把它们分别标号为1、2、3,随机地摸取一个小球后放回,再随机地摸出一个小球.求“两次取的小球的标号相同”的概率.请借助列表法或树形图说明理由.22.(14分)为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图(2)这次抽取的学生成绩的中位数在的分数段中;这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?23.(8分)如图,四边形ABCD中,AB⊥BC,∠BCD=150°,∠BAD=60°,AB=4,BC=2,求CD 的长.24.(7分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.25.(7分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.26.(7分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.27.(8分)已知抛物线y=x2+bx+c经过点(1,0)和点(0,3).(1)求此抛物线的解析式及顶点坐标;(2)当自变量x满足﹣1≤x≤3时,求函数值y的取值范围;(3)将此抛物线沿x轴平移m个单位后,当自变量x满足1≤x≤5时,y的最小值为5,求m的值.28.(10分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)2019年江苏省镇江市丹阳市中考数学一模试卷参考答案与试题解析一.填空题(共12小题,满分24分,每小题2分)1.【分析】根据相反数的定义作答.【解答】解:﹣(﹣)=.故答案是:.【点评】考查了相反数.求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.2.【分析】根据同底数幂的除法法则求解.【解答】解:∵x m=6,x n=3,∴x m﹣n=6÷3=2.故答案为:2.【点评】本题考查了同底数幂的除法,解答本题的关键是掌握同底数幂的除法法则:底数不变,指数相减.3.【分析】直接利用二次根式的性质得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x﹣2019≥0,解得:x≥2019.故答案为:x≥2019.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.4.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.【点评】本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.5.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.6.【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),据此判断即可.【解答】解:∵共有2+8+7+10+3=30个数据,∴其中位数是第15、16个数据的平均数,而第15、16个数据均为1.3万步,则中位数是1.3万步,故答案为:1.3.【点评】此题主要考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.【分析】根据方程有两个相等的实数根得出△=0,求出m的值即可.【解答】解:∵关于x的方程x2+3x﹣m=0有两个相等的实数根,∴△=32﹣4×1×(﹣m)=0,解得:m=﹣,故答案为:﹣.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac的关系是解答此题的关键.8.【分析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×5,解得x=10.故答案为20.【点评】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.9.【分析】根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF,由此就可以求出周长.【解答】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故填空答案:12.【点评】本题利用了平行四边形的性质和已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.10.【分析】先根据五边形的内角和求∠E=∠D=108°,由切线的性质得:∠OAE=∠OCD=90°,最后利用五边形的内角和相减可得结论.【解答】解:正五边形的内角=(5﹣2)×180°÷5=108°,∴∠E=∠D=108°,连接OA、OC,∵AE、CD分别与⊙O相切于A、C两点,∴∠OAE=∠OCD=90°,∴∠AOC=540°﹣90°﹣90°﹣108°﹣108°=144°,故答案为:144°.【点评】本题考查了正五边形的内角和、内角的度数、切线的性质,本题的五边形内角可通过外角来求:180°﹣360°÷5=108°.11.【分析】通过解直角三角形可得出点C的坐标,设平移后点A、C的对应点分别为A′、C′,利用一次函数图象上点的坐标特征可找出点C′的坐标,根据平移的性质结合平行四边形的面积公式即可求出线段AC扫过的面积.【解答】解:∵y=﹣x﹣3.∴A(1,0),B(3,0),∴AB=2.∵∠ABC=90°,AC=2,∴BC=4,∴C(3,4).设平移后点A、C的对应点分别为A′、C′,当y=﹣x﹣3=4时,x=﹣7,∴C′(﹣7,4),∴CC′=10.∵线段AC扫过的四边形ACC′A′为平行四边形,∴S=CC′•BC=10×4=40.答:线段AC扫过的面积为40.故答案为:40【点评】本题考查了待定系数法求一次函数解析式、解直角三角形、一次函数图象上点的坐标特征、平行四边形的面积以及坐标与图形变化中的平移,解题的关键是通过解直角三角形以及一次函数图象上点的坐标特征找出点C、C′的坐标.12.【分析】根据点的对称性可求出ab和a+b的值,从而得出抛物线的解析式,再利用配方法可求其顶点坐标.【解答】解:∵M、N关于y轴对称的点,∴纵坐标相同,横坐标互为相反数∴点M坐标为(a,b),点N坐标为(﹣a,b),∴由点M在双曲线y=上知b=,即ab=1;由点N在直线y=x+3上知b=﹣a+3,即a+b=3,则抛物线y=﹣abx2+(a+b)x=﹣x2+3x=﹣(x﹣)2+,∴抛物线y=﹣abx2+(a+b)x的顶点坐标为(,),故答案为(,),【点评】本题主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.二.选择题(共5小题,满分15分,每小题3分)13.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3240万用科学记数法表示为:3.24×107.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【解答】解:图中几何体的左视图如图所示:故选:D.【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.15.【分析】根据方程的解为负数得出m﹣2<0,解之即可得.【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列出不等式是解题的关键.16.【分析】AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,易得AC=2CH=2x,细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,利用水的体积不变得到x•S+x•2S=6•S+6•S,然后求出x后计算出AC即可.【解答】解:AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,∵∠BAH=90°﹣60°=30°,∴AC=2CH=2x,∴细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,∵x•S+x•2S=6•S+6•S,解得x=4,∴CH=x=4,即此时“U”形装置左边细管内水柱的高度约为4cm.故选:A.【点评】本题考查了解直角三角形的应用,旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.17.【分析】由折叠的性质可得:∠BAC=∠EAC=∠ACD,可得AO=CO=5cm,根据勾股定理可求DO的长,即可求CD的长.【解答】解:∵折叠∴∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,∴CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查了折叠问题,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.三.解答题(共11小题,满分91分)18.【分析】(1)根据实数的混合计算解答即可;(2)根据分式的混合计算解答即可.【解答】解:(1)原式=;(2)原式===.【点评】此题考查分式的混合计算,关键是根据运算法则和顺序解答.19.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)去分母得:5(1﹣x)=20﹣2(x+2),5﹣5x=20﹣2x﹣4,﹣5x+2x=20﹣4﹣5,﹣3x=11,x=﹣;(2)∵解不等式①得:x>﹣2,解不等式②得:x≥0.6,∴不等式组的解集是x≥0.6,在数轴上表示为:.【点评】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集、解一元一次方程等知识点,能正确根据等式的性质进行变形是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.20.【分析】先根据三角形中位线定理得出∠EDB=∠C,∠B=∠FDC,再由F是AC边的中点得出FC=AC,故可得出DE=FC,利用AAS定理即可得出结论.【解答】证明:∵点D、E分别是BC、AB的中点,∴ED∥AC,ED=AC,∴∠EDB=∠C.又∵F是AC边的中点,∴FC=AC,∴DE=FC,同理可得,∠B=∠FDC,在△EBD和△FDC中,∵,∴△BED≌△DFC(AAS).【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.21.【分析】用列表法列举出所有情况,看所求的情况与总情况的比值即可得答案.【解答】解:作树状图可得:(5分)“两次取的小球的标号相同”的概率为P=(9分)【点评】树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据频数分布表补全条形图即可得;(2)根据中位数的定义求解可得,将成绩在60≤x<70的分数段的人数除以总人数可得百分比;(3)用总人数乘以样本中90分以上(含90分)的人数所占比例可得.【解答】解(1)补全条形图如下:(2)∵被调查的总人数为2+6+9+18+15=50人,而第25、26个数据均落在80≤x<90,∴这次抽取的学生成绩的中位数在80≤x<90的分数段中,这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是×100%=12%,故答案为:80≤x<90,12%;(3).答:该年级参加这次比赛的学生中成绩“优”等的约有105人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】延长AB、DC交于点E,利用等边三角形的判定和三角函数解答即可.【解答】解:分别延长AB、DC交于点E.∵∠BCD=150°°,∴∠BCE=30°.∵AB⊥BC,∠CBE=90°,∴∠AEC=60°.又∠BAD=60°.∴△AED是等边三角形,在Rt△BCE中,∵BC=2,∠BCE=30°,cos30=,EC=4,∴CD=2.【点评】此题考查勾股定理问题,关键是利用等边三角形的判定和勾股定理解答.24.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.25.【分析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似即可得证;(3)由三角形ABC为直角三角形,利用勾股定理求出BC的长,再由OD垂直平分BC,得到DB=DC,根据(2)的相似,得比例,求出所求即可.【解答】(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.【点评】此题考查了相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.26.【分析】(1)由直线y=x+b与双曲线y=相交于A,B两点,A(2,5),即可得到结论;(2)过A作AD⊥y轴于D,BE⊥y轴于E根据y=x+3,y=,得到B(﹣5,﹣2),C(﹣3,0),求出OC=3,然后根据三角形的面积公式即可得到结论.【解答】解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD=2.∵b =3,k =10,∴y =x +3,y =.由得:或,∴B 点坐标为(﹣5,﹣2). ∴BE =5.设直线y =x +3与y 轴交于点C . ∴C 点坐标为(0,3). ∴OC =3.∴S △AOC =OC •AD =×3×2=3,S △BOC =OC •BE =×3×5=.∴S △AOB =S △AOC +S △BOC =.【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键. 27.【分析】(1)利用待定系数法求抛物线解析式;然后把一般式配成顶点式得到抛物线的顶点坐标; (2)先计算出当x =﹣1和x =3对应的函数值,然后根据二次函数的性质解决问题;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为y =(x ﹣2﹣m )2﹣1,利用二次函数的性质,当2+m >5,此时x =5时,y =5,即(5﹣2﹣m )2﹣1=5,;设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为y =(x ﹣2+m )2﹣1,利用二次函数的性质得到2﹣m <1,此时x =1时,y =5,即(1﹣2﹣m )2﹣1=5,然后分别解关于m 的方程即可.【解答】解:(1)把(1,0),(0,3)代入y =x 2+bx +c 得,解得,∴抛物线解析式为y =x 2﹣4x +3; ∵y =x 2﹣4x +3=(x ﹣2)2﹣1, ∴抛物线的顶点坐标为(2,﹣1); (2)当x =﹣1时,y =x 2﹣4x +3=8, 当x =3时,y =x 2﹣4x +3=0,∴当﹣1≤x ≤3时,函数值y 的取值范围为﹣1≤x <8;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为y =(x ﹣2﹣m )2﹣1, ∵当自变量x 满足1≤x ≤5时,y 的最小值为5, ∴2+m >5,即m >3,此时x =5时,y =5,即(5﹣2﹣m )2﹣1=5,解得m 1=3+,m 2=3﹣(舍去),设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为y =(x ﹣2+m )2﹣1, ∵当自变量x 满足1≤x ≤5时,y 的最小值为5,∴2﹣m<1,即m>1,此时x=1时,y=5,即(1﹣2﹣m)2﹣1=5,解得m1=1+,m2=1﹣(舍去),综上所述,m的值为3+或1+.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.也考查了二次函数的性质.28.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG ≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠GAF=∠FAE即可得出EF=BE+FD.【解答】解:【发现证明】如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∠FAE=75°∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.【点评】此题主要考查了四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解本题的关键是作出辅助线,构造全等三角形.。
2019年江苏省镇江市丹阳市中考数学一模试卷 (1)
23.(6 分)如图,正方形 ABCD 的边长为 1,其中弧 DE、弧 EF、弧 FG 的圆心依次为点 A、 B、C. (1)求点 D 沿三条弧运动到点 G 所经过的路线长; (2)判断直线 GB 与 DF 的位置关系,并说明理由.
24.(6 分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点 B 处测得楼 顶 A 的仰角为 22°,他正对着城楼前进 21 米到达 C 处,再登上 3 米高的楼台 D 处,并 测得此时楼顶 A 的仰角为 45°. (1)求城门大楼的高度; (2)每逢重大节日,城门大楼管理处都要在 A,B 之间拉上绳子,并在绳子上挂一些彩 旗,请你求出 A,B 之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈ , cos22°≈ ,tan22°≈ )
些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为
()
A.2
B.3
C.4
D.5
15.(3 分)有一张平行四边形纸片 ABCD,已知∠B=70°,按如图所示的方法折叠两次,
则∠BCF 的度数等于( )
第 2页(共 28页)
A.55°
B.50°
C.45°
D.40°
16.(3 分)如图,AB 是⊙O 的直径,C、D 是 AB 下方半圆上的点,点 P 从点 O 出发,沿
°.
9.(2 分)已知二次函数 y=ax2+bx+c 中,自变量 x 与函数 y 的部分对应值如下表:
x
…
﹣2
0
2
3
…
y
…
8
0
0
3
…
当 x=﹣1 时,y=
.
10.(2 分)如图,O 为 Rt△ABC 斜边中点,AB=10,BC=6,M,N 在 AC 边上,∠MON
2019年江苏省镇江市丹阳市吕城片中考数学一模试卷-含详细解析
2019年江苏省镇江市丹阳市吕城片中考数学一模试卷副标题一、选择题(本大题共5小题,共15.0分)1.下列四个数中,是无理数的是()A. B. C. D.2.如图是由6个大小相同的小正方体组成的几何体,它的俯视图是()A.B.C.D.3.有一张平行四边形纸片ABCD,已知∠B=75°,按如图所示的方法折叠两次,则∠BCF的度数等于()A. B. C. D.4.如图(1),在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图(2)所示,则边BC的长是()A. B. C. D. 65.如图,已知⊙C的半径为3,圆外一点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值()A. 2B. 4C. 5D. 6二、填空题(本大题共12小题,共24.0分)6.-5的倒数是______.7.计算:=______.8.分解因式:a3-4a=______.9.使分式有意义的x的取值范围是______.10.已知一组数据-3,x,-2,3,1,6的众数为3,则这组数据的中位数为______.11.已知二次函数y=x2-2x+m的图象顶点在x轴下方,则m的取值范围是______.12.圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为______.13.如图A,D是⊙O上两点,BC是直径.若∠D=35°,则∠OAB的度数是______.14.已知点A(1,y1),B(m,y2)在二次函数y=x2-4x+1的图象上,且y1>y2,则实数m的取值范围是______.15.如图,在△ABC中,AC>AB,点D在BC上,且BD=BA,∠ABC的平分线BE交AD于点E,点F是AC的中点,连结EF.若四边形DCFE和△BDE的面积都为3,则△ABC的面积为______.16.如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D分别落在点B′,D′处,且点A,B′,D′在同一直线上,则tan∠DAD′______.17.如图,在平面直角坐标系中,点B(-1,4),点A(-7,0),点P是直线y=x-1上一点,且∠ABP=45°,则点P的坐标为______.三、计算题(本大题共1小题,共8.0分)18.(1)计算(2)化简:(a-2)(a+3)-(a-1)2四、解答题(本大题共10小题,共73.0分)19.(1)解方程:>(2)解不等式组:20.某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?21.九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是______.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.22.为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=______,b=______;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在______分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?23.如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.24.如图,小山坡上有一根垂直于地面的电线杆CD,小明从地面上的A处测得电线杆顶端C点的仰角是45°,后他正对电线杆向前走6米到达B处,测得电线杆顶端C点和电线杆底端D点的仰角分别是60°和30°.求电线杆CD的高度(结果保留根号)25.如图,在平面直角坐标系中,函数y=(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;(2)求证:=;(3)若AD∥BC,求点B的坐标.26.如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.27.如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与A、C重合),连接PB,过点P作PE⊥PB,交射线DC于点E,已知AD=3,sin.设AP 的长为x.(1)AB=______;当x=1时,=______;(2)①试探究:否是定值?若是,请求出这个值;若不是,请说明理由;②连接BE,设△PBE的面积为S,求S的最小值.28.如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求a的值;(2)若PN:MN=1:3,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O 逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.答案和解析1.【答案】C【解析】解:A.=-2,是有理数;B.是分数,属于有理数;C.是无理数;D.()2=3是有理数;故选:C.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】C【解析】解:从物体上面看,第一层有3个正方形,第二层的左边有1个正方形.故选:C.细心观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形判定则可.本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误地选其它选项.3.【答案】A【解析】解:由折叠可得,∠CED=90°=∠BCE,又∵∠D=∠B=75°,∴∠DCE=15°,由折叠可得,∠DCF=2×15°=30°,∴∠BCF=60°,故选:A.由折叠可得∠CED=90°=∠BCE,即可得到∠DCE=15°,由折叠可得∠DCF=2×15°=30°,即可得到∠BCF=60°.本题主要考查了折叠问题以及平行四边形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.【答案】B【解析】解:由图象可知,AB=3,AC=6如图,当x=1时,BP⊥ACRt△ABP中,BP==2,∵PC=6-1=5,∴Rt△CBP中,BC==,故选:B.由图象可知,BP⊥AC时,AP=5,由勾股定理求出BP,再求PC求BC即可.本题以动点的函数图象为背景,考查了数形结合思想.解答时,注意利用勾股定理计算相关数据.5.【答案】B【解析】解:连接OP,PC,OC,∵OP≥OC-PC=2,∴当点O,P,C三点共线时,OP最小,最小值为2,∵OA=OB,∠APB=90°,∴AB=2OP,当O,P,C三点共线时,AB有最小值为2OP=4,故选:B.连接OP,PC,OC,根据OP+PC≥OC,求出OP的最小值,根据直角三角形的性质得到AB=2OP,计算得到答案.本题主要考查了几何问题的最值,掌握三角形两边和大于第三边,两边差小于第三边,得到点O,P,C三点共线时,OP最短是解题的关键.6.【答案】【解析】解:因为-5×()=1,所以-5的倒数是.根据倒数的定义可直接解答.本题比较简单,考查了倒数的定义,即若两个数的乘积是1,我们就称这两个数互为倒数.7.【答案】1【解析】解:原式=3-2=1.故答案为:1.直接利用二次根式的性质和绝对值的性质化简,进而得出答案.此题主要考查了实数运算,正确化简各数是解题关键.8.【答案】a(a+2)(a-2)【解析】解:原式=a(a2-4)=a(a+2)(a-2).故答案为:a(a+2)(a-2)原式提取a,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9.【答案】x≠-3【解析】解:若分式有意义,则x+3≠0,解得:x≠-3.故答案为x≠-3.分式有意义的条件是分母不为0.本题考查的是分式有意义的条件:当分母不为0时,分式有意义.10.【答案】2【解析】解:∵数据-3,x,-2,3,1,6的众数为3,∴3出现的次数是2次,∴x=3,数据重新排列是:-3,-2、1、3、3、6,所以中位数是(1+3)÷2=2.故答案为:2.先根据众数定义求出x,再把这组数据从小到大排列,找出正中间的那个数就是中位数.本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.【答案】m<1【解析】解:因为抛物线图象顶点在x轴下方,且抛物线开口向上,则抛物线与x轴有两个交点,所以(-2)2-4×1×m>0,解得m<1.故答案为m<1.根据题意可知抛物线与x轴有两个交点,根据b2-4ac>0求解即可.本题主要考查二次函数图象的性质以及抛物线与x轴交点情况.12.【答案】3【解析】解:设它的母线长为l,根据题意得×2π×1×l=3π,即它的母线长为3.故答案为3.设它的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到×2π×1×l=3π,然后解关于l的方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.【答案】55°【解析】解:∵∠D=35°,∴∠AOB=70°,∵OA=OB,∴∠OAB=∠OBA==55°,故答案为:55°.根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠OAB的度数.本题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.14.【答案】1<m<3【解析】解:二次函数y=x2-4x+1的对称轴为x=2,∴A(1,y1)的对称点为(3,y1),∵A(1,y1),B(m,y2)为其图象上的两点,且y1>y2,∴1<m<3.故答案为:1<m<3.根据二次函数的对称性求得对称轴,然后根据函数的单调性解答.本题考查了二次函数图象上点的坐标特征.二次函数的对称性和二次函数的性质是关键.15.【答案】10【解析】解:∵BD=AB,BE是∠ABC的平分线,∴AE=DE,∴△BDE的面积与△ABE的面积均为3,又∵点F是AC的中点,∴EF是△ACD的中位线,∴2EF=CD,EF∥DC,∴△AEF∽△ADC,∴S△ACD=4S△AEF,∵四边形CDEF的面积为3,∴△ACD的面积为4,∴△ABC的面积为3+3+4=10.故答案为:10.依据BD=AB,BE是∠ABC的平分线,即可得到AE=DE,进而得出△BDE的面积与△ABE的面积均为3,再根据EF是△ACD的中位线,即可得出△ACD的面积为4,即可得到△ABC的面积为3+3+4=10.本题主要考查了三角形中位线定理以及相似三角形的判定与性质,相似三角形的面积的比等于相似比的平方.16.【答案】=【解析】解:由题意可得:AD∥CD′,故△ADB′∽△D′CB′,则=,设AD=x,则B′C=x,DB′=4-x,AB=CD′=4,故=,解得:x1=-2-2(不合题意舍去),x2=-2+2,则DB′=6-2,故答案为:.直接利用旋转的性质结合相似三角形的判定与性质得出DB′的长进而得出答案.此题主要考查了旋转的性质以及相似三角形的判定与性质,正确得出DB′的长是解题关键.17.【答案】(,)【解析】解:将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(3,-2),取AA′的中点K(-2,-1),直线BK与直线y=x-2的交点即为点P.∵直线BK的解析式为y=5x+9,由,解得,∴点P坐标为(-,),故答案为:(-,).将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(3,-2),取AA′的中点K(-2,-1),直线BK与直线y=x-2的交点即为点P.求出直线BK的解析式,利用方程组确定交点P坐标即可本题考查一次函数图象上的点的特征,等腰直角三角形的性质,待定系数法等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.18.【答案】解:(1)原式=+1-=1;(2)原式=a2+3a-2a-6-(a2-2a+1)=3a-7.【解析】(1)先计算负整数指数幂、零指数幂、代入三角函数值,再计算加减可得;(2)先利用多项式乘多项式和完全平方公式计算,再去括号、合并同类项即可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则、完全平方公式及负整数指数幂、零指数幂、特殊锐角三角函数值.19.【答案】解:(1)去分母得:x=2x-1+2,解得:x=-1,经检验x=-1为原方程的解;(2)分别解不等式,得到,所以不等式组解集为-1<x≤4.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:设甲种奖品买了x件,乙种奖品买了y件.根据题意得:,解得:.答:甲种奖品买了12件,乙种奖品买了18件.【解析】设甲种奖品买了x件,乙种奖品买了y件.根据两种奖品共30件以及共花了396元,即可得出关于x、y的二元一次方程,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.21.【答案】【解析】解:(1)所选的学生性别为女生的概率==,故答案为:;(2)画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴这2名学生来自同一个班级的概率为=.(1)根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.22.【答案】18 0.18 80≤x<90【解析】解:(1)抽取的总人数是2÷0.04=50(人),a=50×0.36=18,b==0.18;故答案是:18,0.18;(2);(3)中位数会落80≤x<90段,故答案是:80≤x<90;(4)该年级参加这次比赛的350名学生中成绩“优”等的人数约是:350×0.30=105(人).答:约有105人.(1)根据第一组的人数是2,对应的频率是0.04即可求得总人数,然后根据频率的公式即可求得;(2)根据(1)即可补全直方图;(3)根据中位数的定义即可判断;(4)利用总人数乘以对应的频率即可求得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【答案】(1)证明:∵∠A=90°,CE⊥BD,∴∠A=∠BEC=90°.∵BC∥AD,∴∠ADB=∠EBC.∵将斜边BD绕点B顺时针方向旋转至BC,∴BD=BC.在△ABD和△ECB中,∴△ABD≌△ECB;(2)∵△ABD≌△ECB,∴AD=BE=3.∵∠A=90°,∠BAD=30°,∴BD=2AD=6,∵BC∥AD,∴∠A+∠ABC=180°,∴∠ABC=90°,∴∠DBC=60°,∴弧CD的长为=2π.【解析】(1)因为这两个三角形是直角三角形,根据旋转的性质得出BC=BD,由AD∥BC推出∠ADB=∠EBC,从而能证明△ABD≌△ECB;(2)由全等三角形的性质得出AD=BE=3.根据30°角所对的直角边等于斜边的一半得出BD=2AD=6,根据平行线的性质求出∠DBC=60°,再代入弧长计本题考查了全等三角形的判定和性质,平行线的性质,旋转的性质,弧长的计算,证明出△ABD≌△ECB是解题的关键.24.【答案】解:延长CD交AB于点E.∵∠DBE=30°,∴设DE=x,则BE=,∵∠CBE=60°,∴CE=,∵∠CBE=45°则,解得:.∴CD=CE-DE=2.【解析】延长CD交AB于点E.根据CE=AE,构建方程求出x即可.本题考查解直角三角形的应用-仰角俯角问题,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.25.【答案】解:(1)∵函数y=(x>0,k是常数)的图象经过A(2,6),∴k=2×6=12,∵B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,∴mn=12①,BD=m,AE=6-n,∵△ABD的面积为3,∴BD•AE=3,∴m(6-n)=3②,联立①②得,m=3,n=4,∴B(3,4);设直线AB的解析式为y=kx+b(k≠0),则,∴ ,∴直线AB的解析式为y=-2x+10∴BE=m-2,CE=n,DE=2,AE=6-n,∴DE•AE=2(6-n)=12-2n,BE•CE=n(m-2)=mn-2n=12-2n,∴DE•AE=BE•CE,∴(3)由(2)知,,∵∠AEB=∠DEC=90°,∴△DEC∽△BEA,∴∠CDE=∠ABE∴AB∥CD,∵AD∥BC,∴四边形ADCB是平行四边形.又∵AC⊥BD,∴四边形ADCB是菱形,∴DE=BE,CE=AE.∴B(4,3).【解析】(1)先求出k的值,进而得出mn=12,然后利用三角形的面积公式建立方程,联立方程组求解即可;(2)先表示出BE,CE,DE,AE,进而求出BE•CE和DE•CE即可得出结论;(3)利用(2)的结论得出△DEC∽△BEA,进而得出AB∥CD,即可得出四边形ADCB是菱形即可得出点B的坐标.此题是反比例函数综合题,主要考查了待定系数法,相似三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,解(1)的关键是确定出k 的值,解(2)的关键是表示出DE•AE,BE•CE,解(3)的关键是判断出四边形ADCB是菱形.26.【答案】(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD.∵DE∥AB,∴∠ABD=∠BDE.∴∠CBD=∠BDE.∵ED=EF,∴∠EDF=∠EFD.∵∠EDF+∠EFD+∠EDB+∠EBD=180°,∴∠BDF=∠BDE+∠EDF=90°.∵OD是半径,∴DF是⊙O的切线.(2)解:连接DC,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°.∵∠ABD=∠CBD,BD=BD,∴△ABD≌△CBD.∴CD=AD=4,AB=BC.∵DE=5,∴,EF=DE=5.∵∠CBD=∠BDE,∴BE=DE=5.∴BF=BE+EF=10,BC=BE+EC=8.∴AB=8.∵DE∥AB,∴△ABF∽△MEF.∴.∴ME=4.∴DM=DE-EM=1.【解析】(1)先得出∠ABD=∠CBD,进而得出OD⊥DF,即可得出结论;(2)连接DC,利用全等三角形的判定得出△ABD≌△CBD,进而解答即可.主要考查了切线的判定,关键是根据全等三角形的判定和性质解答.27.【答案】4【解析】解:(1)作PM⊥AB于M交CD于N.如图1所示:∵四边形ABCD是矩形,∴BC=AD=3,∠ABC=90°,∴sin∠BAC==,∴AB===4.在Rt△APM中,PA=1,PM=,AM=,∴BM=AB-AM=,∵MN=AD=3,∴PN=MN-PM=,∵∠PMB=∠PNE=∠BPE=90°,∴∠BPM+∠EPN=90°,∠EPN+∠PEN=90°,∴∠BPM=∠PEN,∴△BMP∽△PNE,∴===,故答案为4,;(2)①结论:的值为定值.理由如下:当点E在点C左侧时,如图1所示:由PA=x,可得PM=x.∴AM=x,BM=4-x,PN=3-x,∵△BMP∽△PNE,∴===.当点E在点C右侧时,如图2所示:同理得出=.综上所述:的值为定值.②在Rt△PBM中,PB2=BM2+PM2=(4-x)2+(x)2=x2-x+16,∵∴=.∴PE=PB,∴S=•PB•PE=PB2=(x2-x+16)=(x-)2+,∵0<x<5,∴x=时,S有最小值=.(1)作PM⊥AB于M交CD于N.根据三角函数和勾股定理求出AB,求出PN和BM的长,由△BMP∽△PNE,推出=,即可得出结果;(2)①为定值.证明方法类似(1);②利用勾股定理求出PB2,根据三角形的面积公式得出二次函数,再利用二次函数的性质即可解决问题.此题是四边形综合题,考查了矩形的性质、相似三角形的判定和性质、勾股定理、锐角三角函数以及二次函数等知识;熟练掌握矩形的性质和勾股定理,证明三角形相似是解决问题的关键.28.【答案】解:(1)∵A(4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a=-;(2)由(1)可知抛物线解析式为y=-x2+x+2,令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4-m,∵PM⊥x轴,∴△OAB∽△PAN,∴=,即=,∴PN=(4-m),∵M在抛物线上,∴PM=-m2+m+2,∵PN:MN=1:3,∴PN:PM=1:4,∴-m2+m+2=4×(4-m),解得m=3或m=4(舍去);(3)在y轴上取一点Q,使=,如图,由(2)可知P1(3,0),且OB=2,∴=,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴=,∴当Q(0,)时QP2=BP2,∴AP2+BP2=AP2+QP2≥AQ,∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值为.【解析】(1)把A点坐标代入可得到关于a的方程,可求得a的值;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使=,可证得△P2OB∽△QOP2,则可求得Q点坐标,则可把AP2+BP2化为AP2+QP2,利用三角形三边关系可知当A、P2、Q 三点在一条线上时有最小值,则可求得答案.本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、勾股定理、三角形三边关系等知识.在(2)中用m分别表示出PN和PM是解题的关键,在(3)确定出取得最小值时的位置是解题的关键.本题考查知识点较多,综合性较强,特别是(3)中构造三角形相似,难度较大.。
精编2019级镇江市市区中考数学一模试卷(有标准答案)
江苏省镇江市市区中考数学一模试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.﹣5的相反数是.2.计算:()2= .3.如图,a∥b,直线c与直线a,b相交,已知∠1=110°,则∠2= °.4.当a= 时,式子的值为2.5.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.6.一组数据:3,5,2,5,3,7,5,则这组数据的中位数是.7.如图,半径为3cm的扇形纸片的周长为10cm,将它围成一个圆锥的侧面,则圆锥的底面圆的半径等于cm.(结果保留π)8.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是cm.9.如图,△ABC内接于⊙O,∠BAC=30°,BC=,则⊙O的半径等于.10.在直角坐标系中有两点A(6,3)、B(6,0).以原点O为位似中心,把线段AB按相似的1:3缩小后得到线段CD,点C在第一象限(如图),则点C的坐标为.11.设甲、乙两车在同一直线公路上相向匀速行驶,相遇后两车停下来,把乙车的货物卸到甲车用了100秒,然后两车分别按原路原速返回.设x秒后两车之间的距离为y米,y关于x的函数关系如图所示,则a= 米.12.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为()A.0.1072×106B.1.072×105C.1.072×106D.10.72×10414.如图是几何体的三视图,该几何体是()A.正三棱柱 B.正三棱锥 C.圆锥 D.圆柱15.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>016.已知点E(2,1)在二次函数y=x2﹣8x+m(m为常数)的图象上,则点E关于图象对称轴的对称点坐标是()A.(4,1) B.(5,1) C.(6,1) D.(7,1)17.如图,正方形ABCD边长为2,点P是线段CD边上的动点(与点C,D不重合),∠PBQ=45°,过点A 作AE∥BP,交BQ于点E,则下列结论正确的是()A.BP•BE=2B.BP•BE=4C. = D. =三、解答题(本大题共有11小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.计算:•sin45°+(3﹣π)0+(﹣2)(2)化简:(a﹣)÷.19.(1)解方程组:(2)解不等式: +1≥x﹣3.20.如图,E、F分别是▱ABCD的边BC、AD上的中点.(1)求证:△ABE≌△CDF;(2)当∠BAC= °时,四边形AECF是菱形.21.图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.22.甲、乙两人做游戏,规则如下:每人手中各持分别标有“1”、“2”、“3”的三张纸牌,甲、乙背靠背同时从各自的纸牌中随机抽取一张,规定纸牌数字大的获胜,数字相同时不分胜负.请你用树状图或列表法求甲获胜的概率.23.某校为迎接中学生文娱汇演,原计划由八年级(1)班的3个小组制作288面彩旗,后因时间紧急,增加了1个小组参与任务,完成任务过程中,每名学生可比原计划少做3面彩旗.如果每个小组的人数相等,那么每个小组有学生多少名?24.已知:线段a,b和∠MBN(1)作△ABC,使BC=a,AC=b,∠ABC=∠MBN;(2)当∠MBN=30°时,如果(1)中所作的三角形只能有一个,则a,b间满足的数量关系式是.25.从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)26.一个不透明的盒中装有若干个除颜色外都相同的红球与黄球.在这个口袋中先放入2个白球,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色后放回盒中,再继续摸球,全班一共做了400次这样的摸球试验.如果知道摸出白球的频数是40,你能估计在未放入白球前,袋中原来共有多少个小球吗?(2)提出问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?活动操作:先从盒中摸出8个球,画上记号放回盒中.再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色、是否有记号,放回盒中,再继续摸球、记录、放回袋中.统计结果:摸球试验活动一共做了50次,统计结果如下表:球的类别无记号有记号红色黄色红色黄色摸到的次数18 28 2 2由上述的摸球试验推算:①盒中红球、黄球各占总球数的百分比分别是多少?②盒中有红球多少个?27.如图,AB为⊙O的直径,AB=2,点在M在QO上,MC垂直平分OA,点N为直线AB上一动点(N不与A 重合),若△MNP∽△MAC,PC与直线AB所夹锐角为α.(1)若AM=AC,点N与点O重合,则α= °;(2)若点C、点N的位置如图所示,求α的度数;(3)当直线PC与⊙O相切时,则MC的长为.28.如图,在平面直角坐标系中,一次函数y=﹣x﹣3分别与x轴、y轴相交于A、B两点,二次函数y=x2+mx+n (m≠6)的图象经过点A.(1)试证明二次函数y=x2+mx+n(m≠6)的图象与x轴有两个交点;(2)若二次函数y=x2+mx+n图象的顶点D在直线AB上,求m,n的值;(3)设二次函数y=x2+mx+n的图象与x轴的另一个交点为点C,顶点D关于x轴的对称点设为点E,以AE,AC为邻边作平行四边形EACF,顶点F能否在该二次函数的图象上?如果在,求出这个二次函数的表达式;如果不在,请说明理由?江苏省镇江市市区中考数学一模试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共计24分.)1.﹣5的相反数是 5 .【考点】相反数.【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故答案为:5.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.计算:()2= .【考点】有理数的乘方.【分析】根据有理数的乘方的定义进行计算即可得解.【解答】解:()2=.故答案为:.【点评】本题考查了有理数的乘方,是基础题,熟记概念并准确计算是解题的关键.3.如图,a∥b,直线c与直线a,b相交,已知∠1=110°,则∠2= 70 °.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由补角的定义即可得出结论.【解答】解:∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°.故答案为:70.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.4.当a= 4 时,式子的值为2.【考点】算术平方根.【分析】根据题意得出=2,求出即可.【解答】解:根据题意得: =2,即a=4,故答案为:4.【点评】本题考查了算术平方根,能根据=2求出a是解此题的关键.5.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.【考点】概率公式.【分析】由从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,直接利用概率公式求解即可求得答案.【解答】解:∵从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,∴恰好抽到初三(1)班的概率是:.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6.一组数据:3,5,2,5,3,7,5,则这组数据的中位数是 5 .【考点】中位数.【分析】把这组数按从大到小(或从小到大)的顺序排列,因为数的个数是奇数个,所以中间那个数就是中位数.【解答】解:按照从小到大的顺序排列为:2,3,3,5,5,5,7,中位数为:5.故答案为:5.【点评】本题考查了中位数的定义,解题时牢记中位数的定义是关键.7.如图,半径为3cm的扇形纸片的周长为10cm,将它围成一个圆锥的侧面,则圆锥的底面圆的半径等于cm.(结果保留π)【考点】圆锥的计算;弧长的计算.【分析】首先根据题意确定扇形的弧长,然后根据扇形的弧长等于圆锥的底面周长求解.【解答】解:∵半径为3cm的扇形纸片的周长为10cm,∴扇形的弧长为10﹣3﹣3=4cm,设圆锥的底面周长为r,则2πr=4,∴r==,故答案为:.【点评】本题考查了圆锥的计算及弧长的计算,能够了解圆锥的底面周长等于扇形的弧长是解答本题的关键,难度不大.8.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是 4 cm.【考点】菱形的性质.【分析】根据菱形的性质,BD是∠ABC的平分线,再根据角平分线的性质即可得到点P到BC的距离.【解答】解:在菱形ABCD中,BD是∠ABC的平分线,∵PE⊥AB于点E,PE=4cm,∴点P到BC的距离=PE=4cm.故答案为:4.【点评】本题利用菱形的对角线平分一组对角的性质求解,熟练掌握菱形的性质是解题的关键.9.如图,△ABC内接于⊙O,∠BAC=30°,BC=,则⊙O的半径等于.【考点】三角形的外接圆与外心.【分析】首先作⊙O的直径CD,连接BD,可得∠CBD=90°,然后由直角三角形的性质求出直径CD,即可求得答案.【解答】解:作⊙O的直径CD,连接BD,如图所示:∴∠CBD=90°,∵∠D=∠BAC=30°,BC=,∴CD=2BC=2,∴⊙O的半径=.故答案为:.【点评】此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.在直角坐标系中有两点A(6,3)、B(6,0).以原点O为位似中心,把线段AB按相似的1:3缩小后得到线段CD,点C在第一象限(如图),则点C的坐标为(2,1).【考点】位似变换;坐标与图形性质.【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又∵OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1).故答案为:(2,1).【点评】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.11.设甲、乙两车在同一直线公路上相向匀速行驶,相遇后两车停下来,把乙车的货物卸到甲车用了100秒,然后两车分别按原路原速返回.设x秒后两车之间的距离为y米,y关于x的函数关系如图所示,则a= 225 米.【考点】一次函数的应用.【分析】根据图象可以看出,经过20秒甲、乙两车一共行驶900米,得出甲、乙两车的速度和,又把乙车的货物卸到甲车后两车分别按原路原速返回,则所求a值为速度和乘以时间5秒.【解答】解:∵经过20秒甲、乙两车一共行驶900米,∴甲、乙两车的速度和为:900÷20=45(米/秒),∴a=45×(125﹣120)=225(米).故答案为225.【点评】本题是一道运用函数图象表示出来的行程问题,考查了相遇问题的运用,路程=速度×时间的运用,解答时认真分析函数图象的含义是关键.12.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.【考点】反比例函数与一次函数的交点问题.【分析】由点A、B的坐标利用待定系数法即可求出一次函数与反比例函数的解析式,设出点P的坐标为(n,﹣2n+14)(1<n<6).由反比例的函数解析式表示出来M、N点的坐标,分割矩形OCPD,结合矩形和三角形的面积公式即可得出结论.【解答】解:设反比例函数解析式为y=,一次函数解析式为y=kx+b,由已知得:12=和,解得:m=12和.∴一次函数解析式为y=﹣2x+14,反比例函数解析式为y=.∵点P在线段AB上,∴设点P的坐标为(n,﹣2n+14)(1<n<6).令x=n,则y=;令y=﹣2n+14,则=﹣2n+14,解得:x=.∴点M(n,),点N(,﹣2n+14).S四边形PMON=S矩形OCPD﹣S△ODN﹣S△OCM=n(﹣2n+14)﹣n•﹣••(﹣2n+14)=﹣2n2+14n﹣12=﹣2+.∴当n=时,四边形PMON面积最大,最大面积为.故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题以及待定系数法求函数解析式,解题的关键是利用分割法求出四边形PMON面积关于点P横坐标的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据分割法找出面积的函数关系式,再结合函数的性质(单调性、二次函数的顶点之类)来解决最值问题.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为()A.0.1072×106B.1.072×105C.1.072×106D.10.72×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将107200用科学记数法表示为1.072×105.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.14.如图是几何体的三视图,该几何体是()A.正三棱柱 B.正三棱锥 C.圆锥 D.圆柱【考点】由三视图判断几何体.【分析】该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.【解答】解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为正三棱柱.故选:A.【点评】本题主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力,是个简单题.15.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>0【考点】随机事件.【分析】根据必然事件指在一定条件下,一定发生的事件,可得答案.【解答】解:A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.16.已知点E(2,1)在二次函数y=x2﹣8x+m(m为常数)的图象上,则点E关于图象对称轴的对称点坐标是()A.(4,1) B.(5,1) C.(6,1) D.(7,1)【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】求得对称轴,即可求得对称点.【解答】解:由二次函数y=x2﹣8x+m可知对称轴为x=﹣=﹣=4,∵点E(2,1)与点(6,1)关于图象对称轴对称,∴点E关于图象对称轴的对称点坐标是(6,1),故选C.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴是解题的关键.17.如图,正方形ABCD边长为2,点P是线段CD边上的动点(与点C,D不重合),∠PBQ=45°,过点A 作AE∥BP,交BQ于点E,则下列结论正确的是()A.BP•BE=2B.BP•BE=4C. = D. =【考点】正方形的性质.【分析】连接AP,作EM⊥PB于M,根据S△PBE=S△ABP=S正方形ABCD=2即可解决问题.【解答】解:如图,连接AP,作EM⊥PB于M.∵AE∥PB,∴S△PBE=S△ABP=S正方形ABCD=2,∴•PB•EM=2,∵∠EBM=45°,∠EMB=90°,∴EM=BE,∴•PB•BE=2,∴PB•BE=4.故选B.【点评】本题考查正方形的性质、平行线的性质等知识,解题的关键是发现△PBE的面积是定值,题目有一定难度,属于中考选择题中的压轴题.三、解答题(本大题共有11小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.(1)计算:•sin45°+(3﹣π)0+(﹣2)(2)化简:(a﹣)÷.【考点】实数的运算;分式的混合运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数;分式.【分析】(1)原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=×+1﹣2=1+1﹣2=0;(2)原式=•(a+1)=a2.【点评】此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则是解本题的关键.19.(1)解方程组:(2)解不等式: +1≥x﹣3.【考点】解一元一次不等式;解二元一次方程组.【分析】(1)利用加减法即可求解;(2)去分母,去括号,移项,合并同类项,系数化成1即可求解.【解答】解:(1)方程组:;①×3得3x+3y=0 ③③﹣②得x=﹣3,将x=﹣3代入①式,得y=3,则方程组的解为:;(2)解不等式:≥x﹣3,移项,得﹣x≥﹣3﹣1,合并同类项,得﹣≥﹣4,系数化为1得x≤8,则不等式的解集为:x≤8.【点评】本题考查了二元一次方程组和一元一次方程的解法,解方程组的基本思想是消元.20.如图,E、F分别是▱ABCD的边BC、AD上的中点.(1)求证:△ABE≌△CDF;(2)当∠BAC= 90 °时,四边形AECF是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)首先根据平行四边形的性质1可得AD=BC,AB=CD,∠B=∠D,再根据中点的性质可得BE=DF,然后利用SAS判定△ABE≌△CDF即可;(2)首先证明四边形AECF是平行四边形,再添加∠BAC=90°,根据直角三角形斜边中线等于斜边的一半可得AE=EC,从而可判定四边形AECF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠B=∠D,∵E、F分别是▱ABCD的边BC、AD上的中点,∴BE=BC,DF=AD,∴BE=DF.在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)当∠BAC=90°时,四边形AECF是菱形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF=EC,∴四边形AECF是平行四边形,∵∠BAC=90°,E为BC中点,∴AE=EC=BC,∴四边形AECF是菱形,故答案为:90.【点评】此题主要考查了平行四边形的性质和菱形的判定,关键是掌握平行四边形对边相等,对角相等,邻边相等的平行四边形是菱形.21.图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.【考点】条形统计图;折线统计图.【分析】(1)根据图①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;(2)由图可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.【解答】解:(1)410﹣(100+90+65+80)=410﹣335=75;如图:(2)商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.8万元,故小刚的说法是错误的.【点评】本题是统计题,考查了条形统计图和折线统计图,是基础知识要熟练掌握.22.甲、乙两人做游戏,规则如下:每人手中各持分别标有“1”、“2”、“3”的三张纸牌,甲、乙背靠背同时从各自的纸牌中随机抽取一张,规定纸牌数字大的获胜,数字相同时不分胜负.请你用树状图或列表法求甲获胜的概率.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与甲获胜的情况,再利用概率公式即可求得答案.【解答】解:列表得:1 2 3乙甲1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)∵共有9种等可能的结果,甲获胜的有3种情况,∴甲获胜的概率是: =.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.某校为迎接中学生文娱汇演,原计划由八年级(1)班的3个小组制作288面彩旗,后因时间紧急,增加了1个小组参与任务,完成任务过程中,每名学生可比原计划少做3面彩旗.如果每个小组的人数相等,那么每个小组有学生多少名?【考点】分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设每个小组有学生x名,,解得,x=8,经检验,x=8是原分式方程的根,答:每个小组有学生8名.【点评】本题考查分式方程的应用,解答此类问题的关键是明确题意,列出相应的方程,注意分式方程要检验.24.已知:线段a,b和∠MBN(1)作△ABC,使BC=a,AC=b,∠ABC=∠MBN;(2)当∠MBN=30°时,如果(1)中所作的三角形只能有一个,则a,b间满足的数量关系式是b=a或b ≥a .【考点】作图—复杂作图.【专题】作图题.【分析】(1)在BN上截取BC=a,然后以点C为圆心,b为半径画弧交BM于A点,则△ABC满足要求;(2)要使所作的三角形只能有一个,则以点C为圆心,b为半径画弧只与BM有唯一公共点,则b=a或b ≥a.【解答】解:(1)如图,△ABC为所作;(2)故答案:b=a或b≥a.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作AD⊥BC于点D,根据正切的定义求出BD,根据正弦的定义求出AD,根据等腰直角三角形的性质求出CD,计算即可.【解答】解:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=50,则AD=25,BD=25,在Rt△ADC中,AD=25,CD=25,则BC=25+25.答:观察点B到花坛C的距离为(25+25)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,理解仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.26.(1)一个不透明的盒中装有若干个除颜色外都相同的红球与黄球.在这个口袋中先放入2个白球,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色后放回盒中,再继续摸球,全班一共做了400次这样的摸球试验.如果知道摸出白球的频数是40,你能估计在未放入白球前,袋中原来共有多少个小球吗?(2)提出问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?活动操作:先从盒中摸出8个球,画上记号放回盒中.再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色、是否有记号,放回盒中,再继续摸球、记录、放回袋中.统计结果:摸球试验活动一共做了50次,统计结果如下表:球的类别无记号有记号红色黄色红色黄色摸到的次数18 28 2 2由上述的摸球试验推算:①盒中红球、黄球各占总球数的百分比分别是多少?②盒中有红球多少个?【考点】模拟实验.【专题】探究型.【分析】(1)根据试验次数和白球的频数可以估算出摸到白球的概率,从而可以得到未放入白球前袋中的小球个数;(2)①根据表格可以得到袋中红球和黄球的百分比;②根据表格和题意可以得到袋中的球的数量,然后根据红球所占的百分比可以得到红球的个数.【解答】解:(1)设盒中在未放入白球前共有x个球解得x=18,即袋中原来共有18个小球;(2)由题意可得,①盒中红球占总球数的百分比是: =40%,盒中黄球占总球数的百分比是: =60%;②设盒中有x个球,,解得x=100.100×40%=40个,即盒中有40个红球.【点评】本题考查模拟实验,解题的关键是明确题意,根据表格中的数据和试验的结果可以计算出相应的概率,找出所求问题需要的条件.27.如图,AB为⊙O的直径,AB=2,点在M在QO上,MC垂直平分OA,点N为直线AB上一动点(N不与A 重合),若△MNP∽△MAC,PC与直线AB所夹锐角为α.(1)若AM=AC,点N与点O重合,则α= 30 °;(2)若点C、点N的位置如图所示,求α的度数;(3)当直线PC与⊙O相切时,则MC的长为.【考点】圆的综合题.【专题】综合题.【分析】(1)根据AM=AC,MC垂直平分AO,OM=OA,可以求得△MAO的形状,然后根据点C在圆O上,AP 是圆O的直径,从而可以求得α的值;(2)根据AM=AC,MC垂直平分AO,OM=OA,可以求得△MAO的形状,△MNP∽△MAC,从而可以求得∠AMC和α的值,从而可以求得α的值;(3)根据题意和图形,以及(2)中α的值,直线PC与⊙O相切.可以分别求得MD、DC的长,从而可以求得MC的长.【解答】解:(1)如右图一所示,∵AM=AC,MC垂直平分AO,OM=OA,∴MA=AC=MO=OA,∵点M在圆O上,∴点C在圆O上,∵AP是圆O的直径,∴∠ACP=90°,∵AP=2AC,∴∠APC=30°,即α=30°,故答案为:30;(2)连接MO,如右图二所示,∵MC垂直平分AO,MO=AO,∴MA=MO=AO,∴∠MAO=60°,∵△MNP∽△MAC,∴,∠AMC=∠NMP,∴∠AMN=∠CMP,∴△AMN∽△CMP,∴∠MAN=∠MCP,∵∠MAN=60°,∴∠MCP=60°,又∵∠CDB=90°,∴α=90°﹣60°=30°;(3)连接OE,如右图三所示,∵AB=2,MC垂直平分AO,∴AO=1,DO=,MD=,由(2)可得,α=30°,∵OE=1,∠OEF=90°,∴OF=2OE=2,∴DF=,∴DC=DF•tanα==,∴MC=MD+DC==,故答案为:.【点评】本题考查圆的综合题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.28.如图,在平面直角坐标系中,一次函数y=﹣x﹣3分别与x轴、y轴相交于A、B两点,二次函数y=x2+mx+n (m≠6)的图象经过点A.(1)试证明二次函数y=x2+mx+n(m≠6)的图象与x轴有两个交点;(2)若二次函数y=x2+mx+n图象的顶点D在直线AB上,求m,n的值;(3)设二次函数y=x2+mx+n的图象与x轴的另一个交点为点C,顶点D关于x轴的对称点设为点E,以AE,AC为邻边作平行四边形EACF,顶点F能否在该二次函数的图象上?如果在,求出这个二次函数的表达式;如果不在,请说明理由?【考点】二次函数综合题.【分析】(1)根据待定系数法,可得n与m的关系,根据根的判别式,可得答案;(2)根据顶点坐标公式,可得顶点坐标,根据直线上点的坐标满足函数解析式,可得关于m的方程,根据n=3m﹣9,可得答案;(3)根据因式分解法,可得C点坐标,根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得E 点坐标,根据平形四边顶点的坐标关系,可得F点坐标,根据F点的坐标是否满足函数解析式,可得答案.【解答】解:(1)当x=0时,y=﹣3,即B(0,﹣3),当y=0时,﹣x﹣3=0,解得x=﹣3,即A点坐标(﹣3,0).A(﹣3,0),B(0,﹣3),二次函数y=x2+mx+n的图象经过点A(﹣3,0),则n=3m﹣9.即y=x2+mx+(3m﹣9).∵b2﹣4ac=m2﹣4(3m﹣9)=m2﹣12m+36=(m﹣6)2,又m≠6,∴b2﹣4ac>0,则二次函数y=x2+mx+(3m﹣9)的图象与x轴有两个交点;(2)二次函数y=x2+mx+n,即y=x2+mx+(3m﹣9).顶点坐标为(﹣,﹣ +3m﹣9),因为二次函数y=x2+mx+n图象的顶点在直线AB上,。
江苏丹阳2019年中考重点试题(一)--数学
江苏丹阳2019年中考重点试题(一)--数学〔考试时间:120分钟 总分:120分〕第一卷〔选择题 共30分〕一.选择题〔共10小题,每题3分,计30分.每题只有一个选项是符合题意的〕 1、-41的倒数是〔 〕A 、4B 、- 41C 、 41D 、-42、如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为 〔 〕3、用科学记数法表示0.0000210,结果是〔 〕A 、2.10×10-4B 、2.10×10-5C 、 2.1×10-4D 、2.1×10-5 4.关于函数y =-k 2x 〔k 是常数,k ≠0〕的图象,以下说法不正确的选项是〔 〕A 、是一条直线B 、过点〔1k,-k 〕C 、通过【一】三象限或【二】四象限D 、y 随着x 增大而减小5、如下图,河堤横断面迎水坡AB 的坡比是1堤高BC =5m ,那么坡面AB 的长度是〔 〕A 、10mB 、mC 、15mD 、m6、为了解某班学生每天使用零花钱的情况,小明随机调查了15名同学,结果如下表:关于这15名同学每天使用的零花钱,以下说法正确的选项是〔 〕A 、众数是5元B 、平均数是2.5元C 、极差是4元D 、中位数是3元 7、两圆相外切,连心线长度是10厘米,其中一圆的半径为6厘米,那么另一圆的半径是〔 〕A 、16厘米B 、10厘米C 、6厘米D 、4厘米 8、如图,是反比例函数1k y x =和2k y x=〔12k k <〕在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,假设2AOBS∆=,那么21k k -的值是〔 〕A 、1B 、2C 、4D 、89、如图,在平行四边形ABCD 中,E 是BC 的中点,且∠AEC =∠DCE ,那么以下结论不.正确的选....项是..( ) A 、S △AFD =2S △EFB B 、BF =21DFC 、四边形AECD 是等腰梯形 D 、∠AEB =∠ADC10、假设二次函数2()1y x m =--,当x ≤1时,y 随x 的增大而减小,那么m 的取值范围是〔 〕A 、m =1B 、m >1C 、m ≥1D 、m ≤1第二卷〔非选择题 共90分〕二.填空题〔共6小题,每题3分,计18分〕 11、不等式2x +1>0的解集是 、12、如下图,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,假设∠l =58°,那么∠2= ___________ 、 逆命题改写成“假如……,那么……”的形式:、14.某种商品的标价为200元,为了吸引顾客,按标价的八折出售,这时仍可盈利25%,那么这种商品的进价是元、15.一次函数y =kx +b ,当0≤x ≤2时,对应的函数值y 的取值范围是-4≤y ≤8,那么kb 的值为16、三个边长分别为2、3、5的正方形如图排列,那么图中阴影部分面积为、 三.解答题〔共9小题,计72分〕 17.〔此题总分值5分〕 化简,求值:111(11222+---÷-+-m m m m m m 〕,其中m =3、18.〔此题总分值6分〕如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F 、求证:BE =CF 、 19.〔此题总分值7分〕2017年,陕西西安被教育部列为“减负”工作改革试点地区。
【精选3份合集】江苏省镇江市2019年中考一模数学试卷有答案含解析
5.将函数
的图象用下列方法平移后,所得的图象不经过点 A(1,4)的方法是( )
A.向左平移 1 个单位
B.向右平移 3 个单位
C.向上平移 3 个单位
D.向下平移 1 个单位
解析:D
【解析】
A.平移后,得 y=(x+1)2,图象经过 A 点,故 A 不符合题意;
B.平移后,得 y=(x−3)2,图象经过 A 点,故 B 不符合题意; C.平移后,得 y=x2+3,图象经过 A 点,故 C 不符合题意;
中考数学模拟试卷(解析版)
注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形 码粘贴区。 2.选择题必须使用 2B 铅笔填涂;非选择题必须使用 0.5 毫米黑色字迹的签字笔书写,字 体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿 纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
A.70°
B.44°
C.34°
D.24°
解析:C
【解析】
【分析】
易得△ABD 为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC
【详解】
∵AB=BD,∠B=40°,
∴∠ADB=70°,
∵∠C=36°,
∴∠DAC=∠ADB﹣∠C=34°.
故选 C.
【点睛】
本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.
D.1 或 4
解析:C
【解析】
试题解析:∵x=-2 是关于 x 的一元二次方程 x2 3 ax a2 0 的一个根, 2
∴(-2)2+ 3 a×(-2)-a2=0,即 a2+3a-2=0, 2
江苏省丹阳市吕城片2019届九年级下学期第一次调研考试数学试题(含答案)
2019年初三数学调研测试 2019.3一、填空题(本大题共12小题,每小题2分,共24分)1.-5的倒数是 .2.-2= . 3. 分解因式:34a a -=______. 4.若分式13x x -+有意义,则实数x 的取值范围是 . 5.已知一组数据-3,x ,-2, 3,1,6的众数为3,则这组数据的中位数为 . 6.已知二次函数22y x x m =-+的图像顶点在x 轴下方,则m 的取值范围是_________ . 7.圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为 .8.如图A ,D 是⊙O 上两点,BC 是直径.若∠D =35°,则∠OAB 的度数是 . 9.已知点1(1,)A y ,2(,)B m y 在二次函数241y x x =-+的图像上,且12y y >,则实数m 的取值 范围是 .10.如图,在ABC V 中,AC AB >,点D 在BC 上,且BD BA =,ABC ∠的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和BDE V 的面积都为3,则ABC V 的面积为 .11.如图,矩形ABCD 中,AB =4,将矩形ABCD 绕点C 顺时针旋转90°,点B 、D 分别落在点''D B 、 处,且点''D B A 、、在同一直线上,则tan 'DAD ∠= .12.如图,在平面直角坐标系中,点B (-1,4),点A (-7,0),点P 是直线-1y x =上一点,且∠ABP =45°,则点P 的坐标为.第8题 第10题 第12题二、选择题(本大题共5小题,每小题3分,共15分)13.下列四个数中,是无理数的是 ( )A .3-8B .227C .π2D .(3)214.如图是由6个大小相同的小正方体组成的几何体,它的俯视图是 ( )从正面看ABCD第11题D'A'B'DCB A15. 有一张平行四边形纸片ABCD ,已知75B ︒∠=,按如图所示的方法折叠两次,则BCF ∠的度数等于 ( ) A. 60° B. 55° C. 50° D. 45°16.如图(1),在△ABC 中,点P 从点A 出发向点C 运动,在运动过程中,设x 表示线段AP 的长y 表示线段BP 的长,y 与x 的关系如图(2)所示,则边BC 的长是 ( )17.如图,已知⊙C 的半径为3,圆外一点O 满足5OC =,点P 为⊙C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA OB =,90APB ∠=,l 不经过点C ,则AB 的最小值 ( ) A. 2 B. 4 C. 5 D. 6(第16题)三、简答题(本大题共11小题,共81分)18. (本题满分8分) (1)计算(-1+tan30π-- (2)化简:()()()2231a a a -+--19.(本题满分10分)BCB(第15题)(1)解方程:212112xx x=---(2)解不等式组:()23411.32xx x+⎧⎪⎨--⎪⎩>,≥20. (本题满分6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?21.(本题满分6分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔。
2019年江苏省镇江市市区中考数学一模试卷含解析
2019年江苏省镇江市市区中考数学一模试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.(2分)﹣2的相反数是.2.(2分)计算:m2•m3=.3.(2分)因式分解:9﹣p2=.4.(2分)要使分式有意义,则x应满足的条件是.5.(2分)方程x(x﹣1)=x的解为.6.(2分)如图,直线c与直线a、b相交于点A、B,a∥b,作AC⊥AB于点C,∠1=55°,那么∠2=.7.(2分)已知圆锥的底面半径为1,母线长为2,则圆锥的侧面展开图的圆心角为.8.(2分)如图,点E在平行四边形ABCD的边DC上,若DE:EC=2:3,则△AFB与△CFE的面积之比为.9.(2分)如图,△ABC内接于⊙O,∠BAC=30°,BC=,则⊙O的半径等于.10.(2分)已知二次函数y=x2+2x+a图象的顶点在x轴上方,则实数a的取值范围是.11.(2分)如图,点D在等边△ABC内,将线段DB绕点D顺时针旋转60°得到线段DE,连结AD、AE、DC,若∠EAD=43°,则∠ADC=.12.(2分)如图,点A(1,﹣1)、B在反比例函数y=﹣(x>0)的图象上,点C、D在反比例函数y=(k>0,x>0)的图象上,AC∥BD∥y轴,BD长为1.4,△COA与△CBD的面积之比为10:7,则k的值为.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.(3分)数字0.000 0031用科学记数法表示的结果是()A.3.1×10﹣5B.3.1×10﹣6C.3.1×10﹣7D.3.1×10﹣8 14.(3分)为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.29.39.10.3A.中位数B.众数C.平均数D.方差15.(3分)小明根据右表,作了三个推测:x2﹣1﹣210 1.11000 1.00110000 1.0001(1)2﹣(x>0)的值随着x的增大越来越小;(2)2﹣(x>0)的值有可能等于1;(3)2﹣(x>0)的值随着x的增大越来越接近于1;则推测正确的是()A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)16.(3分)小丽在两张6×10的网格纸(网格中的每个小正方形的边长为1个单位长度)中分别画出了如图所示的物体的左视图和俯视图,这个物体的体积等于()A.24B.30C.48D.6017.(3分)已知△ABC的三边长分别是4,5,6,则△ABC的内切圆半径是()A.B.C.D.三、解答题(本大题共11题,计81分,解答时应写出必要的文字说明、证明过程或演算步骤)18.(8分)(1)计算:sin45°+(3﹣π)0﹣()﹣1(2)化简:1﹣÷19.(10分)(1)解方程:+=1(2)解不等式组20.(6分)小明就本班同学“上网情况”进行了一次调查统计.下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)若全校有1830名学生,请你估计出“其他”部分的学生人数.21.(6分)甲、乙两人做游戏,每人手中各持一个不透明的袋子,每个袋中装了分别标有“1”、“2”、“3”的三个小球,每个小球除数字外均相同,游戏规则如下:甲、乙同时从各自的袋中随机摸出一个小球,摸出小球数字大的获胜,数字相同时不分胜负.请你用树状图或列表法求甲获胜的概率.22.(6分)如图,四边形ABCD是平行四边形,把△ABD沿对角线BD翻折180°得到△A'BD.(1)利用尺规作出△A'BD.(要求保留作图痕迹,不写作法);(2)设DA'与BC交于点E,求证:△BA'E≌△DCE.23.(6分)如图,在小山的东侧A点有一个热气球,受西风的影响以30米/分的速度沿与地面成75角的方向飞行,20分钟后到达C处,此时热气球上的人测得小山西侧与点A 在同一水平线上的B点的俯角为30°,计算A、B两点间的距离.24.(6分)某旗舰网店用8000元购进甲、乙两种口罩,全部销售完后一共获利2800元,进价和售价如下表:品名甲种口罩乙种口罩价格进价(元/袋)2025售价(元/袋)2635(1)该店购进甲、乙两种口罩各多少袋?(2)该店再次以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若这次购进的两种口罩均销售完毕,且本次销售一共获利不少于3680元,那么乙种口罩每袋最多让利多少元?25.(6分)经过点A(4,1)的直线与反比例函数y=的图象交于点A、C,AB⊥y轴,垂足为B,连接BC.(1)求反比例函数的表达式;(2)若△ABC的面积为6,求直线AC的函数表达式;(3)在(2)的条件下,点P在双曲线位于第一象限的图象上,若∠P AC=90°,则点P 的坐标是.26.(7分)如图Rt△ABC中,∠ACB=90°,AC=4,BC=2,点P在边AC上运动(点P 与点A、C不重合).以P为圆心,P A为半径作⊙P交边AB于点D、过点D作⊙P的切线交射线BC于点后(点E与点B不重合).(1)求证:BE=DE;(2)若P A=1.求BE的长;(3)在P点的运动过程中.(BE+P A)•P A的值是否有最大值?如果有,求出最大值;如果没有,请说明理由.27.(9分)把二次函数y=x2+bx+c的图象沿y轴向下平移3个单位长度,再沿x轴向左平移1个单位长度后,得抛物线M,其顶点恰好落在y轴上点(0,﹣1).【解决问题】请直接写出抛物线M的函数表达式,并求b、c的值.【探索研究】小明在抛物线M上任意找了一个点P(m,n),以点P为圆心,OP长为半径画圆,他观察发现所画出的圆与过点(0,﹣2)且平行于x轴的直线相切,请判断他的发现是否正确?并说明理由.【理解应用】将抛物线M的图象绕原点O顺时针旋转90°得抛物线N,C为抛物线N上一动点,点Q 的坐标为(1,﹣1)、直接写出△OCQ周长的最小值.28.(11分)如图,在平面直角坐标系xOy中,已知A(6,8),AB⊥y轴,垂足为B.点D 在y轴上,直线AD与x轴相交于点G.将线段AB沿直线AD翻折,点B的对应点设为点C.(1)如果点C恰好落在线段OA上,求点D的坐标及DC所在的直线函数表达式;(2)在(1)的条件下,若E为线段AG上一动点,过点E作AB的平行线,与线段OA 相交于点M.与直线CD相交于点N.设点E的横坐标为s,线段MN的长为t①求t与s之间的函数表达式,并写出变量s的取值范围;②若经过M、N、C三点的圆与坐标轴相切,写出所有符合条件的s的值;(3)当点C到x轴的距离取得最大值时,直接写出点D的坐标.2019年江苏省镇江市市区中考数学一模试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共计24分.)1.(2分)﹣2的相反数是2.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(2分)计算:m2•m3=m5.【分析】根据同底数幂相乘,底数不变指数相加进行计算即可得解.【解答】解:m2•m3=m2+3=m5.故答案为:m5.【点评】本题考查了同底数幂相乘,底数不变指数相加的性质,熟记性质是解题的关键.3.(2分)因式分解:9﹣p2=(3﹣p)(3+p).【分析】直接利用平方差公式分解因式得出答案.【解答】解:9﹣p2=(3﹣p)(3+p).故答案为:(3﹣p)(3+p).【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.4.(2分)要使分式有意义,则x应满足的条件是x≠1.【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得1﹣x≠0,则x≠1,故答案为:x≠1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.(2分)方程x(x﹣1)=x的解为x1=0,x2=2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣1)=x,x(x﹣1)﹣x=0,x(x﹣1﹣1)=0,x=0,x﹣1﹣1=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.6.(2分)如图,直线c与直线a、b相交于点A、B,a∥b,作AC⊥AB于点C,∠1=55°,那么∠2=35°.【分析】依据平行线的性质,即可得到∠1=∠3=55°,再根据垂线的定义,即可得出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=55°,又∵AC⊥AB,∴∠BAC=90°,∴∠2=90°﹣∠3=35°,故答案为:35°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,内错角相等.7.(2分)已知圆锥的底面半径为1,母线长为2,则圆锥的侧面展开图的圆心角为180°.【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,设圆心角的度数是n度.则=2π,解得:n=180.故答案为:180°【点评】本题主要考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(2分)如图,点E在平行四边形ABCD的边DC上,若DE:EC=2:3,则△AFB与△CFE的面积之比为.【分析】利用相似三角形的面积比等于相似比的平方即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵DE:EC=2:3,∴EC:AB=3:5,∵CE∥AB,∴△ABF∽△CEF,∴=()2=,故答案为【点评】本题考查平行四边形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.(2分)如图,△ABC内接于⊙O,∠BAC=30°,BC=,则⊙O的半径等于.【分析】作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【解答】解:作直径BD,连接CD,由圆周角定理得,∠D=∠BAC=30°,∠BCD=90°,∴BD=2BC=2,故答案为:.【点评】本题考查的是三角形的外接圆与外心,掌握圆周角定理及其推论是解题的关键.10.(2分)已知二次函数y=x2+2x+a图象的顶点在x轴上方,则实数a的取值范围是a >1.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:抛物线的对称轴为x=﹣=﹣=﹣1,将x=﹣1代入y=x2+2x+a,∴y=1﹣2+a=a﹣1,所以抛物线的顶点为(﹣1,a﹣1),∴a﹣1>0,∴a>1,故答案为:a>1.【点评】本题考查二次函数图象和系数的关系,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.11.(2分)如图,点D在等边△ABC内,将线段DB绕点D顺时针旋转60°得到线段DE,连结AD、AE、DC,若∠EAD=43°,则∠ADC=103°.【分析】由“SAS”可证△AEB≌△CDB,可得∠BDC=∠AEB,由四边形内角和和三角形内角和定理可求∠ADC度数.【解答】解:连接BE,∵将线段DB绕点D顺时针旋转60°得到线段DE,∴DE=BD,∠BDE=60°∴△BDE是等边三角形∴BD=DE=BE,∠DBE=60°∵△ABC是等边三角形∴AB=BC,∠ABC=∠DBE=60°∴∠ABE=∠DBC,且AB=BC,BD=BE∴△AEB≌△CDB(SAS)∴∠BDC=∠AEB∵∠AEB+∠ADB+∠EAD+∠DBE=360°∴∠BDC+∠ADB=257°∵∠ADC+∠ADB+∠BDC=360°∴∠ADC=103°故答案为:103°【点评】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定和性质,四边形的内角和和三角形内角和定理,熟练运用这些定理进行推理是本题的关键.12.(2分)如图,点A(1,﹣1)、B在反比例函数y=﹣(x>0)的图象上,点C、D在反比例函数y=(k>0,x>0)的图象上,AC∥BD∥y轴,BD长为1.4,△COA与△CBD的面积之比为10:7,则k的值为.【分析】由题意,可得A(1,﹣1),C(1,k),B(a,﹣),则△COA面积=×1×(k+1),根据△COA与△CBD的面积之比为10:7,求得△CBD的面积=(k+1).因为△CBD的面积=×1.4×(a﹣1),得出a=,表示出D的坐标,根据反比例系数k的几何意义得到k=()(1.4﹣),即可得出k的值.【解答】解:∵AC∥BD∥y轴,∴A(1,﹣1),C(1,k),B(a,﹣),∴△COA面积=×1×(k+1),∵△COA与△CBD的面积之比为10:7,∴△CBD的面积=(k+1).∵△CBD的面积=×1.4×(a﹣1),∴(a﹣1)=(k+1),∴2(a﹣1)=k+1,∴a=,∴D(,1.4﹣),∴k=()(1.4﹣),解得k=故答案为.【点评】本题考查反比例函数系数k的几何意义,三角形面积的计算,解题的关键是用k 表示出△COA与△CBD的面积.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.(3分)数字0.000 0031用科学记数法表示的结果是()A.3.1×10﹣5B.3.1×10﹣6C.3.1×10﹣7D.3.1×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0031=3.1×10﹣6,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(3分)为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.29.39.10.3A.中位数B.众数C.平均数D.方差【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【解答】解:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数,故选:A.【点评】此题主要考查了中位数,关键是掌握中位数定义.15.(3分)小明根据右表,作了三个推测:x2﹣1﹣210 1.11000 1.00110000 1.0001(1)2﹣(x>0)的值随着x的增大越来越小;(2)2﹣(x>0)的值有可能等于1;(3)2﹣(x>0)的值随着x的增大越来越接近于1;则推测正确的是()A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)【分析】将三个式子分别变形后分析即可得到正确的答案.【解答】解:2﹣=2﹣(1﹣)=1+,(1)当x>0时,会随着x的增大而减小.所以,1+会随着x的增大而减小,故(1)对;(2)不为0,故,1+的值不可能等于1,故(2)不对;(3)又因为当x>0时,>0,所以1+>1,且会随着x的增大而越来越接近1,故正确.故选:B.【点评】本题考查了分式的加减法,熟练掌握分式加减法的运算是解题的关键.16.(3分)小丽在两张6×10的网格纸(网格中的每个小正方形的边长为1个单位长度)中分别画出了如图所示的物体的左视图和俯视图,这个物体的体积等于()A.24B.30C.48D.60【分析】补全几何体左角,可见左角的体积是长宽高分别为4、2、1的小长方体体积的一半,大长方体长宽高分别为8、2、4,用大长方体体积减去小长方体体积就是物体体积.【解答】解:如图,补全几何体左角,根据左视图与俯视图标记几何体的尺寸.这个物体的体积:8×2×4﹣×4×1×2=64﹣4=60,故选:D.【点评】本题考查了几何体的三视图,熟练根据三视图数据标示几何体尺寸是解题的关键.17.(3分)已知△ABC的三边长分别是4,5,6,则△ABC的内切圆半径是()A.B.C.D.【分析】设AC=4,BC=5,AB=6,作AD⊥BC于D,设BD=x,则CD=5﹣x,由勾股定理得出方程,求出BD=,得出AD=,由三角形面积公式得出△ABC的面积=BC×AD=,再由△ABC的内切圆半径与△ABC的面积关系即可得出结果.【解答】解:如图所示:设AC=4,BC=5,AB=6,作AD⊥BC于D,设BD=x,则CD=5﹣x,由勾股定理得:AD2=AB2﹣BD2=AC2﹣CD2,∴62﹣x2=42﹣(5﹣x)2,解得:x=,∴BD=,∴AD==,∴△ABC的面积=BC×AD=×5×=,∴△ABC的内切圆半径==;故选:B.【点评】本题考查了三角形的内切圆、勾股定理、三角形面积公式;求出三角形的面积S,熟记三角形内切圆半径=是解题的关键.三、解答题(本大题共11题,计81分,解答时应写出必要的文字说明、证明过程或演算步骤)18.(8分)(1)计算:sin45°+(3﹣π)0﹣()﹣1(2)化简:1﹣÷【分析】(1)根据特殊角的三角函数、零指数幂和负整数指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题.【解答】解:(1)sin45°+(3﹣π)0﹣()﹣1=+1﹣2=1+1﹣2=0;(2)1﹣÷=1﹣=1﹣==﹣.【点评】本题考查分式的混合运算、特殊角的三角函数、零指数幂和负整数指数幂,解答本题的关键是明确它们各自的计算方法.19.(10分)(1)解方程:+=1(2)解不等式组【分析】(1)根据分式方程的解法即可求出答案.(2)根据一元一次不等式组的解法即可求出答案.【解答】解:(1)﹣=1=12﹣x=x﹣4x=3,经检验,x=3是原分式方程的解;(2)由①得:x>﹣3,由②得:x≤4,∴该不等式组的解集为:﹣3<x≤4.【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(6分)小明就本班同学“上网情况”进行了一次调查统计.下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有50名学生;(2)补全条形统计图;(3)若全校有1830名学生,请你估计出“其他”部分的学生人数.【分析】(1)根据玩游戏的人数与所占的百分比列式计算即可得解;(2)求出聊天的人数,再求出其他的人数,然后补全统计图即可;(3)用全校的学生人数乘以其他所占的百分比,列式计算即可得解.【解答】解:(1)该班学生总人数为:15÷30%=50名;(2)“聊天”的学生人数:50×18%=9名,“其他”的学生人数:50﹣15﹣9﹣16=50﹣40=10名,补全统计图如图所示;(3)全校1830名学生中,“其他”部分的学生人数为:1830×=366名.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(6分)甲、乙两人做游戏,每人手中各持一个不透明的袋子,每个袋中装了分别标有“1”、“2”、“3”的三个小球,每个小球除数字外均相同,游戏规则如下:甲、乙同时从各自的袋中随机摸出一个小球,摸出小球数字大的获胜,数字相同时不分胜负.请你用树状图或列表法求甲获胜的概率.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与甲获胜的情况,再利用概率公式即可求得答案.【解答】解:列表得:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)∵共有9种等可能的结果,甲获胜的有3种情况,∴甲获胜的概率为.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.(6分)如图,四边形ABCD是平行四边形,把△ABD沿对角线BD翻折180°得到△A'BD.(1)利用尺规作出△A'BD.(要求保留作图痕迹,不写作法);(2)设DA'与BC交于点E,求证:△BA'E≌△DCE.【分析】(1)分别以B、D为圆心,BA和DA为半径画弧交于点A′,则△A'BD满足条件;(2)先根据平行四边形的性质得到AB=CD,∠A=∠C,则利用折叠性质得到BA=BA′,所以BA′=CD,然后根据“AAS”可证明△BA'E≌△DCE.【解答】(1)解:如图,△A'BD为所求;(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠A=∠C,∵△ABD沿对角线BD翻折180°得到△A'BD,∴BA=BA′,∴BA′=CD,在△BA'E和△DCE中,∴△BA'E≌△DCE.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质和全等三角形的判定.23.(6分)如图,在小山的东侧A点有一个热气球,受西风的影响以30米/分的速度沿与地面成75角的方向飞行,20分钟后到达C处,此时热气球上的人测得小山西侧与点A 在同一水平线上的B点的俯角为30°,计算A、B两点间的距离.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD 的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×20=600米,∴AD=AC•sin45°=300米.在Rt△ABD中,∵∠B=30°,∴AB=2AD=600米,答:A、B两点间的距离为600米.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.24.(6分)某旗舰网店用8000元购进甲、乙两种口罩,全部销售完后一共获利2800元,进价和售价如下表:品名甲种口罩乙种口罩价格进价(元/袋)2025售价(元/袋)2635(1)该店购进甲、乙两种口罩各多少袋?(2)该店再次以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若这次购进的两种口罩均销售完毕,且本次销售一共获利不少于3680元,那么乙种口罩每袋最多让利多少元?【分析】(1)分别根据旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,得出等式组成方程求出即可;(2)根据甲种口罩袋数是第一次的2倍,要使第二次销售活动获利不少于3680元,得出不等式求出即可.【解答】解;(1)设网店购进甲种口罩x袋,乙种口罩y袋,根据题意得出:,解得:,答:甲种口罩200袋,乙种口罩160袋;(2)设乙种口罩每袋售价z元,根据题意得出:160(z﹣25)+2×200×(26﹣20)≥3680,解得:z≥33,∴最多让利=35﹣33=2元答:乙种口罩每袋售价为每袋最多让利2元.【点评】本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,列一元一次不等式解实际问题的运用及解法,在解答过程中寻找能够反映整个题意的等量关系是解答本题的关键.25.(6分)经过点A(4,1)的直线与反比例函数y =的图象交于点A、C,AB⊥y轴,垂足为B,连接BC.(1)求反比例函数的表达式;(2)若△ABC的面积为6,求直线AC的函数表达式;(3)在(2)的条件下,点P在双曲线位于第一象限的图象上,若∠P AC=90°,则点P 的坐标是(,8).【分析】(1)将点A坐标代入反比例函数表达式中,即可得出结论;(2)先求出AB,设出点C的纵坐标,利用△ABC的面积为6,求出点C纵坐标,再代入反比例函数表达式中,求出点C坐标,最后用待定系数法求出直线AC的解析式;(3)先求出直线AP的解析式,再和反比例函数解析式联立求解即可得出结论.【解答】解:∵点A(4,1)在反比例函数y=的图象上,∴k=4×1=4,∴反比例函数的表达式为y=;(2)设点C的纵坐标为m,∵AB⊥y轴,A(4,1),∴AB=4,∵△ABC的面积为6,∴AB×(1﹣m)=6,∴m=﹣2,由(1)知,反比例函数的表达式为y=,∴点C的纵坐标为:﹣2,∴点C(﹣2,﹣2),设直线AC的解析式为y=k'x+b,将点A(4,1),C(﹣2,﹣2)代入y=k'x+b中,,∴,∴直线AC的函数表达式为y=x﹣1;(3)由(2)知直线AC的函数表达式为y=x﹣1,∵∠P AC=90°,∴AC⊥AP,∴设直线AP的解析式为y=﹣2x+b',将A(4,1)代入y=﹣2x+b'中,﹣8+b'=1,∴b'=9,∴直线AP的解析式为y=﹣2x+9①,由(1)知,反比例函数的表达式为y=②,联立①②解得,(舍)或,∴点P的坐标为(,8),故答案为:(,8).【点评】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积公式,方程组的解法,用方程或方程组的思想解决问题是解本题的关键.26.(7分)如图Rt△ABC中,∠ACB=90°,AC=4,BC=2,点P在边AC上运动(点P 与点A、C不重合).以P为圆心,P A为半径作⊙P交边AB于点D、过点D作⊙P的切线交射线BC于点后(点E与点B不重合).(1)求证:BE=DE;(2)若P A=1.求BE的长;(3)在P点的运动过程中.(BE+P A)•P A的值是否有最大值?如果有,求出最大值;如果没有,请说明理由.【分析】(1)证明∠BDE=∠B,即可求解;(2)证明∠GED=∠BAC=α,AD=2AP cosα=,DG=BG=BC=﹣,BE =DE==5﹣2x,即可求解;(3)设:P A=x,则(BE+P A)•P A=﹣2x2+5x,即可求解.【解答】解:(1)连接PD,则∠P AD=∠ADP=α,∵DE是圆的切线,则∠EDP=90°,则∠PDA+∠BDE=90°,即:α+∠BDE=90°,而∠B=90°﹣α,∴BE=DE;(2)设:P A=x,过点E作EG⊥BD,则点G为BD的中点,∠BAC+∠PDA=90°,∠PDA+∠EDB=90°,∴∠GED=∠GDE,∴∠GED=∠BAC=α,tan∠BAC==tanα,则cosα=,sinα=,AD=2AP cosα=,DG=BG=BD=(AB﹣AD)=(2﹣)=﹣,BE=DE==5﹣2x,当P A=x=1时,BE=3;(3)设:P A=x,由(2)知:BE=DE=5﹣2x,则(BE+P A)•P A=﹣x2+5x,∵﹣1<0,故(BE+P A)•P A有最大值,当x=时,有最大值为.【点评】本题考查的是圆的基本知识的综合运用,涉及到解直角三角形、二次函数最值计算等知识点,综合性强,难度适中.27.(9分)把二次函数y=x2+bx+c的图象沿y轴向下平移3个单位长度,再沿x轴向左平移1个单位长度后,得抛物线M,其顶点恰好落在y轴上点(0,﹣1).【解决问题】请直接写出抛物线M的函数表达式,并求b、c的值.【探索研究】小明在抛物线M上任意找了一个点P(m,n),以点P为圆心,OP长为半径画圆,他观察发现所画出的圆与过点(0,﹣2)且平行于x轴的直线相切,请判断他的发现是否正确?并说明理由.【理解应用】将抛物线M的图象绕原点O顺时针旋转90°得抛物线N,C为抛物线N上一动点,点Q 的坐标为(1,﹣1)、直接写出△OCQ周长的最小值3+.【分析】【解决问题】按抛物线M的顶点直接写出函数表达式;把抛物线M平移反推回原抛物线函数表达式的顶点式,再展开为一般式即求得b、c的值.【探索研究】要判断圆与直线y=﹣2是否相切,只需计算圆心P到直线y=﹣2的距离与半径是否相等即可.把点P的坐标代入抛物线M,得到m、n的关系式,用m表示OP 的长,用m表示P到直线y=﹣2的距离,得到相等,即相切.【理解应用】先画出旋转后的抛物线N,得到顶点为(﹣1,0),按【探索研究】可得抛物线N上的点C到直线x=﹣2的距离等于OC的长,故可把求△OCQ周长里的OC转化为点C到直线x=﹣2的垂线段CD,易得当D、C、Q在同一直线上时,CO+CQ=CD+CQ =EQ最小,求EQ和OQ的长即求得周长最小值.【解答】解:【解决问题】∵平移后的抛物线M,顶点为(0,﹣1),a=∴抛物线M的函数表达式为:y=x2﹣1根据平移规则,抛物线M向上平移3个单位长度,向右平移1个单位长度得原抛物线∴原抛物线函数表达式为:y=(x﹣1)2﹣1+3=x2﹣x+∴b=﹣,c=.【探索研究】小明的判断正确,理由如下:∵过点(0,﹣2)且平行于x轴的直线即直线y=﹣2∴过点P作P A⊥直线y=﹣2于点A,如图1∵点P(m,n)在抛物线M上∴n=m2﹣1∴OP2=m2+n2=m2+(m2﹣1)2=m2+m4﹣m2+1=m4+m2+1=(m2+1)2∵P A=n﹣(﹣2)=m2﹣1+2=m2+1∴OP=P A∴直线y=﹣2与⊙P相切【理解应用】如图2,抛物线M旋转后得到的抛物线N开口向右,顶点为(﹣1,0)作直线x=﹣2,过点C作CD⊥直线x=﹣2于点D,过点Q作QE⊥直线x=﹣2于点E 由【探索研究】可知,CD=CO∴CO+CQ=CD+CQ∴当D、C、Q在同一直线上时,CO+CQ=CD+CQ=EQ最小∵Q(1,﹣1)∴OQ=,EQ=1﹣(﹣2)=3∴C△OCQ=CO+CQ+OQ,最小值为EQ+OQ=3+故答案为:3+【点评】本题考查了二次函数的平移,直线与圆的位置关系,线段和最小值问题.解题关键是抛物线经过旋转后其具有的图形性质不变,即得到OC=CD的转换过程,再利用求线段和的最小值基本解题思路转化到同一直线上来计算.28.(11分)如图,在平面直角坐标系xOy中,已知A(6,8),AB⊥y轴,垂足为B.点D 在y轴上,直线AD与x轴相交于点G.将线段AB沿直线AD翻折,点B的对应点设为点C.(1)如果点C恰好落在线段OA上,求点D的坐标及DC所在的直线函数表达式;(2)在(1)的条件下,若E为线段AG上一动点,过点E作AB的平行线,与线段OA 相交于点M.与直线CD相交于点N.设点E的横坐标为s,线段MN的长为t①求t与s之间的函数表达式,并写出变量s的取值范围;②若经过M、N、C三点的圆与坐标轴相切,写出所有符合条件的s的值﹣或0或10;(3)当点C到x轴的距离取得最大值时,直接写出点D的坐标(0,14).【分析】(1)过点C作CH⊥y轴于H,由翻折知△ABD≌△ACD,通过勾股定理求出BD=3,OD=5,即可求出D坐标;证△OCH∽△OAB,求出点C坐标,用待定系数法。
镇江市市区2019年中考数学一模试卷含答案解析+【精选五套中考模拟卷】
镇江市市区2019年中考数学一模试卷含答案解析2019年江苏省镇江市市区中考数学一模试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.﹣5的相反数是.2.计算:()2= .3.如图,a∥b,直线c与直线a,b相交,已知∠1=110°,则∠2= °.4.当a= 时,式子的值为2.5.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.6.一组数据:3,5,2,5,3,7,5,则这组数据的中位数是.7.如图,半径为3cm的扇形纸片的周长为10cm,将它围成一个圆锥的侧面,则圆锥的底面圆的半径等于cm.(结果保留π)8.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是cm.9.如图,△ABC内接于⊙O,∠BAC=30°,BC=,则⊙O的半径等于.10.在直角坐标系中有两点A(6,3)、B(6,0).以原点O为位似中心,把线段AB按相似的1:3缩小后得到线段CD,点C在第一象限(如图),则点C的坐标为.11.设甲、乙两车在同一直线公路上相向匀速行驶,相遇后两车停下来,把乙车的货物卸到甲车用了100秒,然后两车分别按原路原速返回.设x秒后两车之间的距离为y米,y关于x的函数关系如图所示,则a= 米.12.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为()A.0.1072×106B.1.072×105C.1.072×106D.10.72×10414.如图是几何体的三视图,该几何体是()A.正三棱柱 B.正三棱锥 C.圆锥 D.圆柱15.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>016.已知点E(2,1)在二次函数y=x2﹣8x+m(m为常数)的图象上,则点E关于图象对称轴的对称点坐标是()A.(4,1) B.(5,1) C.(6,1) D.(7,1)17.如图,正方形ABCD边长为2,点P是线段CD边上的动点(与点C,D不重合),∠PBQ=45°,过点A作AE ∥BP,交BQ于点E,则下列结论正确的是()A.BP•BE=2B.BP•BE=4C. = D. =三、解答题(本大题共有11小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.计算:•sin45°+(3﹣π)0+(﹣2)(2)化简:(a﹣)÷.19.(1)解方程组:(2)解不等式: +1≥x﹣3.20.如图,E、F分别是▱ABCD的边BC、AD上的中点.(1)求证:△ABE≌△CDF;(2)当∠BAC= ° 时,四边形AECF是菱形.21.图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.22.甲、乙两人做游戏,规则如下:每人手中各持分别标有“1”、“2”、“3”的三张纸牌,甲、乙背靠背同时从各自的纸牌中随机抽取一张,规定纸牌数字大的获胜,数字相同时不分胜负.请你用树状图或列表法求甲获胜的概率.23.某校为迎接中学生文娱汇演,原计划由八年级(1)班的3个小组制作288面彩旗,后因时间紧急,增加了1个小组参与任务,完成任务过程中,每名学生可比原计划少做3面彩旗.如果每个小组的人数相等,那么每个小组有学生多少名?24.已知:线段a,b和∠MBN(1)作△ABC,使BC=a,AC=b,∠ABC=∠MBN;(2)当∠MBN=30°时,如果(1)中所作的三角形只能有一个,则a,b间满足的数量关系式是.25.从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)26.一个不透明的盒中装有若干个除颜色外都相同的红球与黄球.在这个口袋中先放入2个白球,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色后放回盒中,再继续摸球,全班一共做了400次这样的摸球试验.如果知道摸出白球的频数是40,你能估计在未放入白球前,袋中原来共有多少个小球吗?(2)提出问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?活动操作:先从盒中摸出8个球,画上记号放回盒中.再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色、是否有记号,放回盒中,再继续摸球、记录、放回袋中.统计结果:摸球试验活动一共做了50次,统计结果如下表:球的类别无记号有记号红色黄色红色黄色摸到的次数18 28 2 2由上述的摸球试验推算:①盒中红球、黄球各占总球数的百分比分别是多少?②盒中有红球多少个?27.如图,AB为⊙O的直径,AB=2,点在M在QO上,MC垂直平分OA,点N为直线AB上一动点(N不与A重合),若△MNP∽△MAC,PC与直线AB所夹锐角为α.(1)若AM=AC,点N与点O重合,则α=°;(2)若点C、点N的位置如图所示,求α的度数;(3)当直线PC与⊙O相切时,则MC的长为.28.如图,在平面直角坐标系中,一次函数y=﹣x﹣3分别与x轴、y轴相交于A、B两点,二次函数y=x2+mx+n (m≠6)的图象经过点A.(1)试证明二次函数y=x2+mx+n(m≠6)的图象与x轴有两个交点;(2)若二次函数y=x2+mx+n图象的顶点D在直线AB上,求m,n的值;(3)设二次函数y=x2+mx+n的图象与x轴的另一个交点为点C,顶点D关于x轴的对称点设为点E,以AE,AC 为邻边作平行四边形EACF,顶点F能否在该二次函数的图象上?如果在,求出这个二次函数的表达式;如果不在,请说明理由?2019年江苏省镇江市市区中考数学一模试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共计24分.)1.﹣5的相反数是 5 .【考点】相反数.【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故答案为:5.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.计算:()2= .【考点】有理数的乘方.【分析】根据有理数的乘方的定义进行计算即可得解.【解答】解:()2=.故答案为:.【点评】本题考查了有理数的乘方,是基础题,熟记概念并准确计算是解题的关键.3.如图,a∥b,直线c与直线a,b相交,已知∠1=110°,则∠2= 70 °.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由补角的定义即可得出结论.【解答】解:∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°.故答案为:70.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.4.当a= 4 时,式子的值为2.【考点】算术平方根.【分析】根据题意得出=2,求出即可.【解答】解:根据题意得: =2,即a=4,故答案为:4.【点评】本题考查了算术平方根,能根据=2求出a是解此题的关键.5.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.【考点】概率公式.【分析】由从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,直接利用概率公式求解即可求得答案.【解答】解:∵从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,∴恰好抽到初三(1)班的概率是:.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6.一组数据:3,5,2,5,3,7,5,则这组数据的中位数是 5 .【考点】中位数.【分析】把这组数按从大到小(或从小到大)的顺序排列,因为数的个数是奇数个,所以中间那个数就是中位数.【解答】解:按照从小到大的顺序排列为:2,3,3,5,5,5,7,中位数为:5.故答案为:5.【点评】本题考查了中位数的定义,解题时牢记中位数的定义是关键.7.如图,半径为3cm的扇形纸片的周长为10cm,将它围成一个圆锥的侧面,则圆锥的底面圆的半径等于cm.(结果保留π)【考点】圆锥的计算;弧长的计算.【分析】首先根据题意确定扇形的弧长,然后根据扇形的弧长等于圆锥的底面周长求解.【解答】解:∵半径为3cm的扇形纸片的周长为10cm,∴扇形的弧长为10﹣3﹣3=4cm,设圆锥的底面周长为r,则2πr=4,∴r==,故答案为:.【点评】本题考查了圆锥的计算及弧长的计算,能够了解圆锥的底面周长等于扇形的弧长是解答本题的关键,难度不大.8.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是 4 cm.【考点】菱形的性质.【分析】根据菱形的性质,BD是∠ABC的平分线,再根据角平分线的性质即可得到点P到BC的距离.【解答】解:在菱形ABCD中,BD是∠ABC的平分线,∵PE⊥AB于点E,PE=4cm,∴点P到BC的距离=PE=4cm.故答案为:4.【点评】本题利用菱形的对角线平分一组对角的性质求解,熟练掌握菱形的性质是解题的关键.9.如图,△ABC内接于⊙O,∠BAC=30°,BC=,则⊙O的半径等于.【考点】三角形的外接圆与外心.【分析】首先作⊙O的直径CD,连接BD,可得∠CBD=90°,然后由直角三角形的性质求出直径CD,即可求得答案.【解答】解:作⊙O的直径CD,连接BD,如图所示:∴∠CBD=90°,∵∠D=∠BAC=30°,BC=,∴CD=2BC=2,∴⊙O的半径=.故答案为:.【点评】此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.在直角坐标系中有两点A(6,3)、B(6,0).以原点O为位似中心,把线段AB按相似的1:3缩小后得到线段CD,点C在第一象限(如图),则点C的坐标为(2,1).【考点】位似变换;坐标与图形性质.【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又∵OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1).故答案为:(2,1).【点评】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.11.设甲、乙两车在同一直线公路上相向匀速行驶,相遇后两车停下来,把乙车的货物卸到甲车用了100秒,然后两车分别按原路原速返回.设x秒后两车之间的距离为y米,y关于x的函数关系如图所示,则a= 225 米.【考点】一次函数的应用.【分析】根据图象可以看出,经过20秒甲、乙两车一共行驶900米,得出甲、乙两车的速度和,又把乙车的货物卸到甲车后两车分别按原路原速返回,则所求a值为速度和乘以时间5秒.【解答】解:∵经过20秒甲、乙两车一共行驶900米,∴甲、乙两车的速度和为:900÷20=45(米/秒),∴a=45×(125﹣120)=225(米).故答案为225.【点评】本题是一道运用函数图象表示出来的行程问题,考查了相遇问题的运用,路程=速度×时间的运用,解答时认真分析函数图象的含义是关键.12.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.【考点】反比例函数与一次函数的交点问题.【分析】由点A、B的坐标利用待定系数法即可求出一次函数与反比例函数的解析式,设出点P的坐标为(n,﹣2n+14)(1<n<6).由反比例的函数解析式表示出来M、N点的坐标,分割矩形OCPD,结合矩形和三角形的面积公式即可得出结论.【解答】解:设反比例函数解析式为y=,一次函数解析式为y=kx+b,由已知得:12=和,解得:m=12和.∴一次函数解析式为y=﹣2x+14,反比例函数解析式为y=.∵点P在线段AB上,∴设点P的坐标为(n,﹣2n+14)(1<n<6).令x=n,则y=;令y=﹣2n+14,则=﹣2n+14,解得:x=.∴点M(n,),点N(,﹣2n+14).S四边形PMON=S矩形OCPD﹣S△ODN﹣S△OCM=n(﹣2n+14)﹣n•﹣••(﹣2n+14)=﹣2n2+14n﹣12=﹣2+.∴当n=时,四边形PMON面积最大,最大面积为.故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题以及待定系数法求函数解析式,解题的关键是利用分割法求出四边形PMON面积关于点P横坐标的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据分割法找出面积的函数关系式,再结合函数的性质(单调性、二次函数的顶点之类)来解决最值问题.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为()A.0.1072×106B.1.072×105C.1.072×106D.10.72×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将107200用科学记数法表示为1.072×105.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.如图是几何体的三视图,该几何体是()A.正三棱柱 B.正三棱锥 C.圆锥 D.圆柱【考点】由三视图判断几何体.【分析】该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.【解答】解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为正三棱柱.故选:A.【点评】本题主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力,是个简单题.15.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>0【考点】随机事件.【分析】根据必然事件指在一定条件下,一定发生的事件,可得答案.【解答】解:A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.16.已知点E(2,1)在二次函数y=x2﹣8x+m(m为常数)的图象上,则点E关于图象对称轴的对称点坐标是()A.(4,1) B.(5,1) C.(6,1) D.(7,1)【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】求得对称轴,即可求得对称点.【解答】解:由二次函数y=x2﹣8x+m可知对称轴为x=﹣=﹣=4,∵点E(2,1)与点(6,1)关于图象对称轴对称,∴点E关于图象对称轴的对称点坐标是(6,1),故选C.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴是解题的关键.17.如图,正方形ABCD边长为2,点P是线段CD边上的动点(与点C,D不重合),∠PBQ=45°,过点A作AE ∥BP,交BQ于点E,则下列结论正确的是()A.BP•BE=2B.BP•BE=4C. = D. =【考点】正方形的性质.【分析】连接AP,作EM⊥PB于M,根据S△PBE=S△ABP=S正方形ABCD=2即可解决问题.【解答】解:如图,连接AP,作EM⊥PB于M.∵AE∥PB,∴S△PBE=S△ABP=S正方形ABCD=2,∴•PB•EM=2,∵∠EBM=45°,∠EMB=90°,∴EM=BE,∴•PB•BE=2,∴PB•BE=4.故选B.【点评】本题考查正方形的性质、平行线的性质等知识,解题的关键是发现△PBE的面积是定值,题目有一定难度,属于中考选择题中的压轴题.三、解答题(本大题共有11小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.(1)计算:•sin45°+(3﹣π)0+(﹣2)(2)化简:(a﹣)÷.【考点】实数的运算;分式的混合运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数;分式.【分析】(1)原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=×+1﹣2=1+1﹣2=0;(2)原式=•(a+1)=a2.【点评】此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则是解本题的关键.19.(1)解方程组:(2)解不等式: +1≥x﹣3.【考点】解一元一次不等式;解二元一次方程组.【分析】(1)利用加减法即可求解;(2)去分母,去括号,移项,合并同类项,系数化成1即可求解.【解答】解:(1)方程组:;①×3得3x+3y=0 ③③﹣②得x=﹣3,将x=﹣3代入①式,得y=3,则方程组的解为:;(2)解不等式:≥x﹣3,移项,得﹣x≥﹣3﹣1,合并同类项,得﹣≥﹣4,系数化为1得x≤8,则不等式的解集为:x≤8.【点评】本题考查了二元一次方程组和一元一次方程的解法,解方程组的基本思想是消元.20.如图,E、F分别是▱ABCD的边BC、AD上的中点.(1)求证:△ABE≌△CDF;(2)当∠BAC= 90 ° 时,四边形AECF是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)首先根据平行四边形的性质1可得AD=BC,AB=CD,∠B=∠D,再根据中点的性质可得BE=DF,然后利用SAS判定△ABE≌△CDF即可;(2)首先证明四边形AECF是平行四边形,再添加∠BAC=90°,根据直角三角形斜边中线等于斜边的一半可得AE=EC,从而可判定四边形AECF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠B=∠D,∵E、F分别是▱ABCD的边BC、AD上的中点,∴BE=BC,DF=AD,∴BE=DF.在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)当∠BAC=90°时,四边形AECF是菱形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF=EC,∴四边形AECF是平行四边形,∵∠BAC=90°,E为BC中点,∴AE=EC=BC,∴四边形AECF是菱形,故答案为:90.【点评】此题主要考查了平行四边形的性质和菱形的判定,关键是掌握平行四边形对边相等,对角相等,邻边相等的平行四边形是菱形.21.图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.【考点】条形统计图;折线统计图.【分析】(1)根据图①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;(2)由图可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.【解答】解:(1)410﹣(100+90+65+80)=410﹣335=75;如图:(2)商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.8万元,故小刚的说法是错误的.【点评】本题是统计题,考查了条形统计图和折线统计图,是基础知识要熟练掌握.22.甲、乙两人做游戏,规则如下:每人手中各持分别标有“1”、“2”、“3”的三张纸牌,甲、乙背靠背同时从各自的纸牌中随机抽取一张,规定纸牌数字大的获胜,数字相同时不分胜负.请你用树状图或列表法求甲获胜的概率.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与甲获胜的情况,再利用概率公式即可求得答案.【解答】解:列表得:1 2 3乙甲1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)∵共有9种等可能的结果,甲获胜的有3种情况,∴甲获胜的概率是: =.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.某校为迎接中学生文娱汇演,原计划由八年级(1)班的3个小组制作288面彩旗,后因时间紧急,增加了1个小组参与任务,完成任务过程中,每名学生可比原计划少做3面彩旗.如果每个小组的人数相等,那么每个小组有学生多少名?【考点】分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设每个小组有学生x名,,解得,x=8,经检验,x=8是原分式方程的根,答:每个小组有学生8名.【点评】本题考查分式方程的应用,解答此类问题的关键是明确题意,列出相应的方程,注意分式方程要检验.24.已知:线段a,b和∠MBN(1)作△ABC,使BC=a,AC=b,∠ABC=∠MBN;(2)当∠MBN=30°时,如果(1)中所作的三角形只能有一个,则a,b间满足的数量关系式是b=a或b≥a .【考点】作图—复杂作图.【专题】作图题.【分析】(1)在BN上截取BC=a,然后以点C为圆心,b为半径画弧交BM于A点,则△ABC满足要求;(2)要使所作的三角形只能有一个,则以点C为圆心,b为半径画弧只与BM有唯一公共点,则b=a或b≥a.【解答】解:(1)如图,△ABC为所作;(2)故答案:b=a或b≥a.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作AD⊥BC于点D,根据正切的定义求出BD,根据正弦的定义求出AD,根据等腰直角三角形的性质求出CD,计算即可.【解答】解:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=50,则AD=25,BD=25,在Rt△ADC中,AD=25,CD=25,则BC=25+25.答:观察点B到花坛C的距离为(25+25)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,理解仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.26.(1)一个不透明的盒中装有若干个除颜色外都相同的红球与黄球.在这个口袋中先放入2个白球,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色后放回盒中,再继续摸球,全班一共做了400次这样的摸球试验.如果知道摸出白球的频数是40,你能估计在未放入白球前,袋中原来共有多少个小球吗?(2)提出问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?活动操作:先从盒中摸出8个球,画上记号放回盒中.再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色、是否有记号,放回盒中,再继续摸球、记录、放回袋中.统计结果:摸球试验活动一共做了50次,统计结果如下表:球的类别无记号有记号红色黄色红色黄色摸到的次数18 28 2 2由上述的摸球试验推算:①盒中红球、黄球各占总球数的百分比分别是多少?②盒中有红球多少个?【专题】探究型.【分析】(1)根据试验次数和白球的频数可以估算出摸到白球的概率,从而可以得到未放入白球前袋中的小球个数;(2)①根据表格可以得到袋中红球和黄球的百分比;②根据表格和题意可以得到袋中的球的数量,然后根据红球所占的百分比可以得到红球的个数.【解答】解:(1)设盒中在未放入白球前共有x个球解得x=18,即袋中原来共有18个小球;(2)由题意可得,①盒中红球占总球数的百分比是: =40%,盒中黄球占总球数的百分比是: =60%;②设盒中有x个球,,解得x=100.100×40%=40个,即盒中有40个红球.27.如图,AB为⊙O的直径,AB=2,点在M在QO上,MC垂直平分OA,点N为直线AB上一动点(N不与A重合),若△MNP∽△MAC,PC与直线AB所夹锐角为α.(1)若AM=AC,点N与点O重合,则α=30 °;(2)若点C、点N的位置如图所示,求α的度数;(3)当直线PC与⊙O相切时,则MC的长为.【考点】圆的综合题.【专题】综合题.【分析】(1)根据AM=AC,MC垂直平分AO,OM=OA,可以求得△MAO的形状,然后根据点C在圆O上,AP是圆O的直径,从而可以求得α的值;(2)根据AM=AC,MC垂直平分AO,OM=OA,可以求得△MAO的形状,△MNP∽△MAC,从而可以求得∠AMC和α的值,从而可以求得α的值;(3)根据题意和图形,以及(2)中α的值,直线PC与⊙O相切.可以分别求得MD、DC的长,从而可以求得MC的长.【解答】解:(1)如右图一所示,∵AM=AC,MC垂直平分AO,OM=OA,∴MA=AC=MO=OA,∵点M在圆O上,∴点C在圆O上,∵AP是圆O的直径,∴∠ACP=90°,∵AP=2AC,∴∠APC=30°,即α=30°,故答案为:30;(2)连接MO,如右图二所示,∵MC垂直平分AO,MO=AO,∴MA=MO=AO,∴∠MAO=60°,∵△MNP∽△MAC,∴,∠AMC=∠NMP,∴∠AMN=∠CMP,∴△AMN∽△CMP,∴∠MAN=∠MCP,∵∠MAN=60°,∴∠MCP=60°,又∵∠CDB=90°,∴α=90°﹣60°=30°;(3)连接OE,如右图三所示,∵AB=2,MC垂直平分AO,∴AO=1,DO=,MD=,由(2)可得,α=30°,∵OE=1,∠OEF=90°,∴OF=2OE=2,∴DF=,∴DC=DF•tanα==,∴MC=MD+DC==,故答案为:.【点评】本题考查圆的综合题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.28.如图,在平面直角坐标系中,一次函数y=﹣x﹣3分别与x轴、y轴相交于A、B两点,二次函数y=x2+mx+n (m≠6)的图象经过点A.(1)试证明二次函数y=x2+mx+n(m≠6)的图象与x轴有两个交点;(2)若二次函数y=x2+mx+n图象的顶点D在直线AB上,求m,n的值;(3)设二次函数y=x2+mx+n的图象与x轴的另一个交点为点C,顶点D关于x轴的对称点设为点E,以AE,AC 为邻边作平行四边形EACF,顶点F能否在该二次函数的图象上?如果在,求出这个二次函数的表达式;如果不在,请说明理由?【考点】二次函数综合题.【分析】(1)根据待定系数法,可得n与m的关系,根据根的判别式,可得答案;(2)根据顶点坐标公式,可得顶点坐标,根据直线上点的坐标满足函数解析式,可得关于m的方程,根据n=3m ﹣9,可得答案;(3)根据因式分解法,可得C点坐标,根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得E点坐标,根据平形四边顶点的坐标关系,可得F点坐标,根据F点的坐标是否满足函数解析式,可得答案.【解答】解:(1)当x=0时,y=﹣3,即B(0,﹣3),当y=0时,﹣x﹣3=0,解得x=﹣3,即A点坐标(﹣3,0).A(﹣3,0),B(0,﹣3),二次函数y=x2+mx+n的图象经过点A(﹣3,0),则n=3m﹣9.即y=x2+mx+(3m﹣9).∵b2﹣4ac=m2﹣4(3m﹣9)=m2﹣12m+36=(m﹣6)2,又m≠6,∴b2﹣4ac>0,则二次函数y=x2+mx+(3m﹣9)的图象与x轴有两个交点;(2)二次函数y=x2+mx+n,即y=x2+mx+(3m﹣9).顶点坐标为(﹣,﹣ +3m﹣9),因为二次函数y=x2+mx+n图象的顶点在直线AB上,。
【附5套中考模拟试卷】江苏省镇江市2019-2020学年中考数学一模试卷含解析
江苏省镇江市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,A、B为⊙O上两点,D为弧AB的中点,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,则BECE的值为()A.3 B.3C.33+D.31+2.实数21-的相反数是()A.21-B.21+C.21--D.12-3.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A.64×105B.6.4×105C.6.4×106D.6.4×107 4.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.245B.125C.12 D.245.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚6.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4C.(﹣2x)2=4x2D.(a+b)2=a2+b27.式子2x1x1+-有意义的x的取值范围是()A.1x2≥-且x≠1B.x≠1C.1x2≥-D.1x>2-且x≠18.如图,直角坐标平面内有一点(2,4)P,那么OP与x轴正半轴的夹角α的余切值为()A .2B .12C .55D .5 9.第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )A .15B .25C .12D .3510.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .11.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .1012.函数4x -x 的取值范围是A.x≥0B.x≥4C.x≤4D.x>4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知整数k<5,若△ABC的边长均满足关于x的方程2x3x80k-+=,则△ABC的周长是.14.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.15.若m+1m=3,则m2+21m=_____.16.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.17.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.18.如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么∠AOC度数为_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.求证:AB=AF;若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.20.(6分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?21.(6分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(8分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?23.(8分) (y ﹣z)1+(x ﹣y)1+(z ﹣x)1=(y+z ﹣1x)1+(z+x ﹣1y)1+(x+y ﹣1z)1. 求222(1)(1)(1)(1)(1)(1)yz zx xy x y z ++++++的值. 24.(10分)在平面直角坐标系xOy 中,抛物线y =ax 2+2ax+c (其中a 、c 为常数,且a <0)与x 轴交于点A (﹣3,0),与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为1.(1)求抛物线的表达式;(2)求∠CAB 的正切值;(3)如果点P 是x 轴上的一点,且∠ABP =∠CAO ,直接写出点P 的坐标.25.(10分)计算:8﹣4cos45°+(12)﹣1+|﹣2|. 26.(12分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A 优秀”、“B 一般”、“C 较差”、“D 良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题:(1)本班有多少同学优秀?(2)通过计算补全条形统计图.(3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?27.(12分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE ,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC .(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,3≈1.73)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】连接,,CD BD D 为弧AB 的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:120,ACB ADB ∠=∠=o ,CAD CBD ∠=∠在BC 上截取BF AC =,连接DF,则ACD V ≌BFD △,根据全等三角形的性质可得:,CD FD = ,ADC BDF ∠=∠ ,ADC ADF BDF ADF ∠+∠=∠+∠ 即120,CDF ADB ∠=∠=o ,DE BC ⊥根据等腰三角形的性质可得:,CE EF = 30,DCF DFC ∠=∠=o 设,DE x = 则,BF AC x ==3,tan 30DE CE EF x ===o 即可求出BE CE的值. 【详解】如图:连接,,CD BDD 为弧AB 的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:120,ACB ADB ∠=∠=o ,CAD CBD ∠=∠在BC 上截取BF AC =,连接DF,,AC BF CAD FBD AD BD =⎧⎪∠=∠⎨⎪=⎩则ACD V ≌BFD △,,CD FD ∴= ,ADC BDF ∠=∠,ADC ADF BDF ADF ∠+∠=∠+∠即120,CDF ADB ∠=∠=o,DE BC ⊥根据等腰三角形的性质可得:,CE EF = 30,DCF DFC ∠=∠=o设,DE x = 则,BF AC x ==,tan 30DE CE EF ===oBE BF EF CE CE +=== 故选C.【点睛】考查弧,弦之间的关系,全等三角形的判定与性质,等腰三角形的性质,锐角三角函数等,综合性比较强,关键是构造全等三角形.2.D【解析】【分析】根据相反数的定义求解即可.【详解】1的相反数是1,故选D .【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.3.C【解析】【分析】由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6400000=6.4×106,故选C.点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.A【解析】【分析】【详解】解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=12AC=12×8=4,BO=12BD=12×6=3,由勾股定理的,AB=22AO BO+=2243+=5,∵DH⊥AB,∴S菱形ABCD=AB•DH=12 AC•BD,即5DH=12×8×6,解得DH=245.故选A.【点睛】本题考查菱形的性质.5.A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用6.C【解析】【分析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【详解】A 、x 2•x 3=x 5,故A 选项错误;B 、x 2+x 2=2x 2,故B 选项错误;C 、(﹣2x)2=4x 2,故C 选项正确;D 、( a+b)2=a 2+2ab+b 2,故D 选项错误,故选C .【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键7.A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使2x 1+在实数范围内有意义,必须12x 10x 1{{x 2x 102x 1+≥≥-⇒⇒≥--≠≠且x 1≠.故选A . 8.B【解析】【分析】作PA ⊥x 轴于点A ,构造直角三角形,根据三角函数的定义求解.【详解】过P 作x 轴的垂线,交x 轴于点A ,∵P(2,4),∴OA=2,AP=4,.∴4tan 22AP OA α=== ∴1cot 2α=. 故选B .【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.9.B【解析】【分析】先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.【详解】∵有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张, ∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是25. 故选B .【点睛】本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a>0, ∵对称轴为直线02b x a =->, ∴b<0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x=1时y=a+b+c<0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x ++=图象在第二、四象限,。
2019年江苏省镇江市中考数学一模试卷附解析
O x y2019年江苏省镇江市中考数学一模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如果用□表示1个立方体,用 表示两个立方体叠加,•用■表示三个立方体叠加,那么下图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )B CAD2.下列命题中正确的是 ( ) A .垂直于直径的直线是圆的切线 B .经过切点的直线是圆的切线 C .经过直径的一端的直线是圆的切线D .圆心到直线的距离等于半径,则该直线与圆相切3.如图所示是二次函数2122y x =−+的图象在x 轴上方的一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为与其最.接近的值是( ) A .4 B .163C .2πD .84. 下列各式计算正确的是( ) A .253565⨯=B .3533315⨯=C .352532530⨯=⨯⨯=D .3255810⨯=5.已知点(0,0),(0,一2),(-4,0),(一1,2),(2,-2),(-2,4).其中在x 轴上的点的个数有( ) A .0个B .1个C .2个D .3个6.如图是一个礼品包装盒的表面展开图,将它折成立方体后,“祝”的对面是( )A .“牛”字B .“年”字C .“大”字D .“吉”字 7.如图,∠1=∠2,则下列结论中正确的是( )A .AD ∥BCB .AB ∥CDC .AD ∥EFD .EF ∥BC8.计算234()(2)x x ⋅−的结果是( ) A .916xB . 1016xC .1216xD .2416x9.若|324|x y +−与26(573)x y +−互为相反数,则x 与y 的值是( )A .11x y =⎧⎨=−⎩B .21x y =⎧⎨=−⎩C . 231x y ⎧=⎪⎨⎪=⎩D .不存在10.在一次美化校园的活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?若设支援拔草的有x 人,则下列方程中正确的是 ( )A .32+x=2×18B .32+x=2(38-x )C .52-x =2(18+x )D .52-x=2×18 11.若25x a b 与30.2y a b −是同类项,则 x 、y 的值分别是( ) A .3x =±,2y =± B .3x =,2y = C .3x =−,2y =− D .3x =,2y =− 12.4-(-7)等于( )A . 3B . 11C . -3D . -1113.数轴上A 、B 两点分别是8.2,365,则 A .B 两点间的距离为( ) A .4145B .2145C .-1. 6D .1. 614.在中央电视台举办的青年业余歌手比赛中,8 位评委给某选手所评分数如下表:评委 1 2 3 4 567 8 得分9.09. 19.69. 59. 3 9.49. 89. 2则该选手最后得分是( ) A . 9. 36B . 9.35C . 9.45D .9.28二、填空题15.在Rt △ABC 中,∠C=90°,AB=5,AC=4,则sinA 的值为________.16.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满 足函数关系y=-0.1x 2+2.6x +43(0≤x ≤30),且y 值越大,表示接受能力越强.则当x 满 足 ,学生的接受能力逐渐增强.17.若x=一2,y=3满足一次函数y=kx-3,则k= .18.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式 .19.在甲、乙两地之间修二条笔直的公路,从甲地测得公路的走向是北偏东48°. 甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 .20.如图,三个同心圆,O 为圆心,a ⊥b ,最大圆的半径为r ,•则图中阴影部分的面积为________.21. 如图,把△ABC 向左平移,使平移的距离等于BC,则B 的对应点是 ,AB 的对应线段是 ,∠ABC 的对应角是 .22.如图,∠1∶∠2∶∠3=1∶2∶3,则∠4= . 72 º23.如图,AB+BC>AC ,其理由是 .24.根据规律填代数式:2(21)122⨯++=;3(31)1232⨯+++=;4(41)12342⨯++++=;…… 123n ++++= .25.如图所示,甲、乙、丙、丁四个长方形拼成正方形EFGH ,中间阴影为正方形.已知甲、乙、丙、丁四个长方形面积的和是32cm 2,四边形ABCD 的面积是20cm 2,则甲、乙、丙、丁四个长方形周长的总和为 cm . 解答题三、解答题26.求下列各组数的比例中项.(1) -5 ,-125 ;(2)112,23;(3737327. 如图,△ABC 是边长为 2 的正三角形,以 BC 为直径作⊙O 交AB ,AC 于D 、E , 连结 DE .求:(1)⌒DE 的度数;(2)DE 的长.28.已知二次函数22y x ax a =++−,试说明该函数的图象与 x 轴的交点情况.29.如图,在△ABC 中,中线BE ,CD 交于点O ,F ,G 分别是OB ,OC 的中点. 求证:四边形DFGE 是平行四边形.30.“五一”期间,两家商场都在对某品牌电脑实行打折销售.已知电脑原价为a 元,甲商场的打折方案是:先打八折,再降m 元;乙商场的打折方案是:先降m 元,再打八折.如果去甲商场买来回要付20元车费,如果去乙商场买来回要付10元车费.现在王阿姨想买一台该品牌的电脑,你会对她提些什么建议呢?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.C5.C6.D7.C8.B9.B10.B11.B12.B13.D14.B二、填空题 15.5316. 0≤x ≤1317.-318.3y x = 19.48°20. 214r π21. B ,,A ,B ,,∠A ,B ,C ,22.23.两点之间线段最短24. (1)2n n +25. 48三、解答题 26.(1)25±;(2)1±;(3)2±27.(1)连结 OD 、OE ,∵∠ B= ∠C= 60°,OB= OD=OE=OC ,∴∠BOD=∠COE=∠EOD=60°,∴⌒DE 的度数为60°(2)∵∠BOD=∠GOE=∠EOD=60°,∴BD= DE= EC ,∵∠DOE=60°,OD=OE , ∴∠ODE= ∠BDO=60°,∠ADE=60°,∴DE ∥BC .∴∠ADE=∠B=∠C= ∠AED=∠A= 60°,AD= DE=AE= BD ,∵AB=2,∴DE=12AB=1. 28.∵2224(2)48(2)40a a a a a −−=−+=−+>,∴ 无论a 取何值,22y x ax a =++−始终与 x 轴有两个交点.29.提示:∵DE //12BC ,FG //12BC ,∴DE //FG ,∴四边形DFGE 是平行四边形 30.甲:0.8a-m+20 乙:0.8(a-m)+10,甲与乙之差为-O .2m+10,∴m=50时,甲、乙商场一样;m<50时,去乙商场;m>50时,去甲商场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年江苏省镇江市丹阳市吕城片中考数学一模试卷一、填空题(本大题共12小题,每小题2分,共24分)1.(2分)﹣5的倒数是.2.(2分)计算:=.3.(2分)分解因式:a3﹣4a=.4.(2分)使分式有意义的x的取值范围是.5.(2分)已知一组数据﹣3,x,﹣2,3,1,6的众数为3,则这组数据的中位数为.6.(2分)已知二次函数y=x2﹣2x+m的图象顶点在x轴下方,则m的取值范围是.7.(2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为.8.(2分)如图A,D是⊙O上两点,BC是直径.若∠D=35°,则∠OAB的度数是.9.(2分)已知点A(1,y1),B(m,y2)在二次函数y=x2﹣4x+1的图象上,且y1>y2,则实数m的取值范围是.10.(2分)如图,在△ABC中,AC>AB,点D在BC上,且BD=BA,∠ABC的平分线BE交AD于点E,点F是AC的中点,连结EF.若四边形DCFE和△BDE的面积都为3,则△ABC的面积为.11.(2分)如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D分别落在点B′,D′处,且点A,B′,D′在同一直线上,则tan∠DAD′.12.(2分)如图,在平面直角坐标系中,点B(﹣1,4),点A(﹣7,0),点P是直线y=x﹣1上一点,且∠ABP=45°,则点P的坐标为.二、选择题(本大题共5小题,每小题3分,共15分)13.(3分)下列四个数中,是无理数的是()A.B.C.D.()2 14.(3分)如图是由6个大小相同的小正方体组成的几何体,它的俯视图是()A.B.C.D.15.(3分)有一张平行四边形纸片ABCD,已知∠B=75°,按如图所示的方法折叠两次,则∠BCF的度数等于()A.60°B.55°C.50°D.45°16.(3分)如图(1),在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图(2)所示,则边BC的长是()A.B.C.D.617.(3分)如图,已知⊙C的半径为3,圆外一点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值()A.2B.4C.5D.6三、简答题(本大题共11小题,共81分)18.(8分)(1)计算(2)化简:(a﹣2)(a+3)﹣(a﹣1)219.(10分)(1)解方程:(2)解不等式组:20.(6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?21.(6分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.22.(5分)为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<6020.0460≤x<7060.1270≤x<809b80≤x<90a0.3690≤x≤100150.30请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?23.(6分)如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.24.(6分)如图,小山坡上有一根垂直于地面的电线杆CD,小明从地面上的A处测得电线杆顶端C点的仰角是45°,后他正对电线杆向前走6米到达B处,测得电线杆顶端C点和电线杆底端D点的仰角分别是60°和30°.求电线杆CD的高度(结果保留根号)25.(8分)如图,在平面直角坐标系中,函数y=(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;(2)求证:=;(3)若AD∥BC,求点B的坐标.26.(8分)如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.27.(8分)如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与A、C重合),连接PB,过点P作PE⊥PB,交射线DC于点E,已知AD=3,sin.设AP的长为x.(1)AB=;当x=1时,=;(2)①试探究:否是定值?若是,请求出这个值;若不是,请说明理由;②连接BE,设△PBE的面积为S,求S的最小值.28.(10分)如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求a的值;(2)若PN:MN=1:3,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.2019年江苏省镇江市丹阳市吕城片中考数学一模试卷参考答案与试题解析一、填空题(本大题共12小题,每小题2分,共24分)1.(2分)﹣5的倒数是.【解答】解:因为﹣5×()=1,所以﹣5的倒数是.2.(2分)计算:=1.【解答】解:原式=3﹣2=1.故答案为:1.3.(2分)分解因式:a3﹣4a=a(a+2)(a﹣2).【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)4.(2分)使分式有意义的x的取值范围是x≠﹣3.【解答】解:若分式有意义,则x+3≠0,解得:x≠﹣3.故答案为x≠﹣3.5.(2分)已知一组数据﹣3,x,﹣2,3,1,6的众数为3,则这组数据的中位数为2.【解答】解:∵数据﹣3,x,﹣2,3,1,6的众数为3,∴3出现的次数是2次,∴x=3,数据重新排列是:﹣3,﹣2、1、3、3、6,所以中位数是(1+3)÷2=2.故答案为:2.6.(2分)已知二次函数y=x2﹣2x+m的图象顶点在x轴下方,则m的取值范围是m<1.【解答】解:因为抛物线图象顶点在x轴下方,且抛物线开口向上,则抛物线与x轴有两个交点,所以(﹣2)2﹣4×1×m>0,解得m<1.故答案为m<1.7.(2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为3.【解答】解:设它的母线长为l,根据题意得×2π×1×l=3π,解得l=3,即它的母线长为3.故答案为3.8.(2分)如图A,D是⊙O上两点,BC是直径.若∠D=35°,则∠OAB的度数是55°.【解答】解:∵∠D=35°,∴∠AOB=70°,∵OA=OB,∴∠OAB=∠OBA==55°,故答案为:55°.9.(2分)已知点A(1,y1),B(m,y2)在二次函数y=x2﹣4x+1的图象上,且y1>y2,则实数m的取值范围是1<m<3.【解答】解:二次函数y=x2﹣4x+1的对称轴为x=2,∴A(1,y1)的对称点为(3,y1),∵A(1,y1),B(m,y2)为其图象上的两点,且y1>y2,∴1<m<3.故答案为:1<m<3.10.(2分)如图,在△ABC中,AC>AB,点D在BC上,且BD=BA,∠ABC的平分线BE交AD于点E,点F是AC的中点,连结EF.若四边形DCFE和△BDE的面积都为3,则△ABC的面积为10.【解答】解:∵BD=AB,BE是∠ABC的平分线,∴AE=DE,∴△BDE的面积与△ABE的面积均为3,又∵点F是AC的中点,∴EF是△ACD的中位线,∴2EF=CD,EF∥DC,∴△AEF∽△ADC,∴S△ACD=4S△AEF,∵四边形CDEF的面积为3,∴△ACD的面积为4,∴△ABC的面积为3+3+4=10.故答案为:10.11.(2分)如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D分别落在点B′,D′处,且点A,B′,D′在同一直线上,则tan∠DAD′=.【解答】解:由题意可得:AD∥CD′,故△ADB′∽△D′CB′,则=,设AD=x,则B′C=x,DB′=4﹣x,AB=CD′=4,故=,解得:x1=﹣2﹣2(不合题意舍去),x2=﹣2+2,则DB′=6﹣2,则tan∠DAD′===.故答案为:.12.(2分)如图,在平面直角坐标系中,点B(﹣1,4),点A(﹣7,0),点P是直线y =x﹣1上一点,且∠ABP=45°,则点P的坐标为(﹣,﹣).【解答】解:将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(3,﹣2),取AA′的中点K(﹣2,﹣1),直线BK与直线y=x﹣2的交点即为点P.∵直线BK的解析式为y=5x+9,由,解得,∴点P坐标为(﹣,﹣),故答案为:(﹣,﹣).二、选择题(本大题共5小题,每小题3分,共15分)13.(3分)下列四个数中,是无理数的是()A.B.C.D.()2【解答】解:A.=﹣2,是有理数;B.是分数,属于有理数;C.是无理数;D.()2=3是有理数;故选:C.14.(3分)如图是由6个大小相同的小正方体组成的几何体,它的俯视图是()A.B.C.D.【解答】解:从物体上面看,第一层有3个正方形,第二层的左边有1个正方形.故选:C.15.(3分)有一张平行四边形纸片ABCD,已知∠B=75°,按如图所示的方法折叠两次,则∠BCF的度数等于()A.60°B.55°C.50°D.45°【解答】解:由折叠可得,∠CED=90°=∠BCE,又∵∠D=∠B=75°,∴∠DCE=15°,由折叠可得,∠DCF=2×15°=30°,∴∠BCF=60°,故选:A.16.(3分)如图(1),在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图(2)所示,则边BC的长是()A.B.C.D.6【解答】解:由图象可知,AB=3,AC=6如图,当x=1时,BP⊥ACRt△ABP中,BP==2,∵PC=6﹣1=5,∴Rt△CBP中,BC==,故选:B.17.(3分)如图,已知⊙C的半径为3,圆外一点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值()A.2B.4C.5D.6【解答】解:连接OP,PC,OC,∵OP≥OC﹣PC=2,∴当点O,P,C三点共线时,OP最小,最小值为2,∵OA=OB,∠APB=90°,∴AB=2OP,当O,P,C三点共线时,AB有最小值为2OP=4,故选:B.三、简答题(本大题共11小题,共81分)18.(8分)(1)计算(2)化简:(a﹣2)(a+3)﹣(a﹣1)2【解答】解:(1)原式=+1﹣=1;(2)原式=a2+3a﹣2a﹣6﹣(a2﹣2a+1)=a2+a﹣6﹣a2+2a﹣1=3a﹣7.19.(10分)(1)解方程:(2)解不等式组:【解答】解:(1)去分母得:x=2x﹣1+2,解得:x=﹣1,经检验x=﹣1为原方程的解;(2)分别解不等式,得到,所以不等式组解集为﹣1<x≤4.20.(6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?【解答】解:设甲种奖品买了x件,乙种奖品买了y件.根据题意得:,解得:.答:甲种奖品买了12件,乙种奖品买了18件.21.(6分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.【解答】解:(1)所选的学生性别为女生的概率==,故答案为:;(2)画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴这2名学生来自同一个班级的概率为=.22.(5分)为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<6020.0460≤x<7060.1270≤x<809b80≤x<90a0.3690≤x≤100150.30请根据所给信息,解答下列问题:(1)a=18,b=0.18;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?【解答】解:(1)抽取的总人数是2÷0.04=50(人),a=50×0.36=18,b==0.18;故答案是:18,0.18;(2);(3)中位数会落80≤x<90段,故答案是:80≤x<90;(4)该年级参加这次比赛的350名学生中成绩“优”等的人数约是:350×0.30=105(人).答:约有105人.23.(6分)如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.【解答】(1)证明:∵∠A=90°,CE⊥BD,∴∠A=∠BEC=90°.∵BC∥AD,∴∠ADB=∠EBC.∵将斜边BD绕点B顺时针方向旋转至BC,∴BD=BC.在△ABD和△ECB中,∴△ABD≌△ECB;(2)∵△ABD≌△ECB,∴AD=BE=3.∵∠A=90°,∠BAD=30°,∴BD=2AD=6,∵BC∥AD,∴∠A+∠ABC=180°,∴∠ABC=90°,∴∠DBC=60°,∴弧CD的长为=2π.24.(6分)如图,小山坡上有一根垂直于地面的电线杆CD,小明从地面上的A处测得电线杆顶端C点的仰角是45°,后他正对电线杆向前走6米到达B处,测得电线杆顶端C点和电线杆底端D点的仰角分别是60°和30°.求电线杆CD的高度(结果保留根号)【解答】解:延长CD交AB于点E.∵∠DBE=30°,∴设DE=x,则BE=,∵∠CBE=60°,∴CE=,∵∠CBE=45°则,解得:.∴CD=CE﹣DE=2.25.(8分)如图,在平面直角坐标系中,函数y=(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;(2)求证:=;(3)若AD∥BC,求点B的坐标.【解答】解:(1)∵函数y=(x>0,k是常数)的图象经过A(2,6),∴k=2×6=12,∵B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,∴mn=12①,BD=m,AE=6﹣n,∵△ABD的面积为3,∴BD•AE=3,∴m(6﹣n)=3②,联立①②得,m=3,n=4,∴B(3,4);设直线AB的解析式为y=kx+b(k≠0),则,∴,∴直线AB的解析式为y=﹣2x+10(2)∵A(2,6),B(m,n),∴BE=m﹣2,CE=n,DE=2,AE=6﹣n,∴DE•AE=2(6﹣n)=12﹣2n,BE•CE=n(m﹣2)=mn﹣2n=12﹣2n,∴DE•AE=BE•CE,∴(3)由(2)知,,∵∠AEB=∠DEC=90°,∴△DEC∽△BEA,∴∠CDE=∠ABE∴AB∥CD,∵AD∥BC,∴四边形ADCB是平行四边形.又∵AC⊥BD,∴四边形ADCB是菱形,∴DE=BE,CE=AE.∴B(4,3).26.(8分)如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.【解答】(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD.∵DE∥AB,∴∠ABD=∠BDE.∴∠CBD=∠BDE.∵ED=EF,∴∠EDF=∠EFD.∵∠EDF+∠EFD+∠EDB+∠EBD=180°,∴∠BDF=∠BDE+∠EDF=90°.∴OD⊥DF.∵OD是半径,∴DF是⊙O的切线.(2)解:连接DC,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°.∵∠ABD=∠CBD,BD=BD,∴△ABD≌△CBD.∴CD=AD=4,AB=BC.∵DE=5,∴,EF=DE=5.∵∠CBD=∠BDE,∴BE=DE=5.∴BF=BE+EF=10,BC=BE+EC=8.∴AB=8.∵DE∥AB,∴△ABF∽△MEF.∴.∴ME=4.∴DM=DE﹣EM=1.27.(8分)如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与A、C重合),连接PB,过点P作PE⊥PB,交射线DC于点E,已知AD=3,sin.设AP的长为x.(1)AB=4;当x=1时,=;(2)①试探究:否是定值?若是,请求出这个值;若不是,请说明理由;②连接BE,设△PBE的面积为S,求S的最小值.【解答】解:(1)作PM⊥AB于M交CD于N.如图1所示:∵四边形ABCD是矩形,∴BC=AD=3,∠ABC=90°,∴sin∠BAC==,∴AC=5,∴AB===4.在Rt△APM中,P A=1,PM=,AM=,∴BM=AB﹣AM=,∵MN=AD=3,∴PN=MN﹣PM=,∵∠PMB=∠PNE=∠BPE=90°,∴∠BPM+∠EPN=90°,∠EPN+∠PEN=90°,∴∠BPM=∠PEN,∴△BMP∽△PNE,∴===,故答案为4,;(2)①结论:的值为定值.理由如下:当点E在点C左侧时,如图1所示:由P A=x,可得PM=x.∴AM=x,BM=4﹣x,PN=3﹣x,∵△BMP∽△PNE,∴===.当点E在点C右侧时,如图2所示:同理得出=.综上所述:的值为定值.②在Rt△PBM中,PB2=BM2+PM2=(4﹣x)2+(x)2=x2﹣x+16,∵∴=.∴PE=PB,∴S=•PB•PE=PB2=(x2﹣x+16)=(x﹣)2+,∵0<x<5,∴x=时,S有最小值=.28.(10分)如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求a的值;(2)若PN:MN=1:3,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.【解答】解:(1)∵A(4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a=﹣;(2)由(1)可知抛物线解析式为y=﹣x2+x+2,令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4﹣m,∵PM⊥x轴,∴△OAB∽△P AN,∴=,即=,∴PN=(4﹣m),∵M在抛物线上,∴PM=﹣m2+m+2,∵PN:MN=1:3,∴PN:PM=1:4,∴﹣m2+m+2=4×(4﹣m),解得m=3或m=4(舍去);(3)在y轴上取一点Q,使=,如图,由(2)可知P1(3,0),且OB=2,∴==,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴=,∴当Q(0,)时QP2=BP2,∴AP2+BP2=AP2+QP2≥AQ,∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值为.。