球墨铸铁球化处理方法
球墨铸铁的球化与孕育处理工艺
( )。 5 S
c 强烈促进形成碳化物, r 稳定珠光体 。 r c 的 加 入能提 高强 度 和硬 度 , 加 入量 以不 出现 游离 但
碳 化物 为 限 , 于高 韧性铁 素 体球 墨铸 铁要 严 格 对
限 制 ( r 量 。对 于珠 光 体 球 墨 铸 铁 , C) 当加 入 ( r量 02 03 C ) .%~ . %时 , 即可起 到 显 著 的稳 定 珠
10 2 ) 10 2
摘要 : 综述 了球墨铸铁各种化学元素的作 用和成分 的控制范 围, 细介绍 了球墨铸铁 的球化与孕育处理工艺 。 详 分析 了单 加 纯 Mg R 或 E合金作为球化剂的缺点 , 明球化剂应 以 Mg为主 、 R 说 以 E为辅 的原 因 ; 对冲入法 、 盖包法 、 喂丝法等球化 处理工 艺的优缺点进行 了比较 。 出了孕育处理对球墨铸铁生产的重要性 , 指 列举 了球墨铸铁 常用孕育剂的成分范围, 并 介绍 了炉前一次孕育和多次孕育 、 瞬时孕育 、 随流孕育的特点 。 关键词 : 球墨铸铁 ; 球化处理工艺 ; 孕育处理工艺 中图分类号 :G 5 T 25 文献标 识码 : A 文章编号 :0 3 84 (0 2 0 — 0 7 0 10 — 3 5 2 1 )4 0 3 — 6
往需要 进行脱 S处理 ;感 应 电炉熔 炼 由于不用焦 炭, 原铁液 州 S量一般在 0 1% ̄ . %。 () . 5 0 3 不需要进 0 0
R E元 素 中和 , 则会 引起球 化不 良。 E与 s 否 R b并
用 还可 以改 善大 断面件 的球 化 。
( 1微量 干扰 元素 。 1) 球 墨铸 铁 中常存 在 一 些 非 特 意加 入 的微 量
球 墨 铸 铁
图1-11 球墨铸铁高温正火工艺曲线
2)低温正火
球墨铸铁
一般将铸件加热到820 ℃~860 ℃,保温1~4 h, 然后出炉空冷,获得珠光体 和分散铁素体的球墨铸铁。 低温正火后的铸件的塑性和 韧性提高了,但强度比高温 正火略低,其工艺曲线如图 1-12所示。
图1-12 球墨铸铁低温正火工艺曲线
球墨铸铁
球墨铸铁
图1-9 球墨铸铁低温石墨化退火工艺曲线
球墨铸铁
3)高温石墨化退火
由于球墨铸铁白口倾向较大,因而铸态组织中往往 出现自由渗碳体,为了获得铁素体球墨铸铁,需要进行 高温石墨化退火。
高温石墨化退火工艺是将铸件加热到900 ℃~950 ℃,保温2~4 h,使自由渗碳体石墨化,然后炉冷至 600 ℃,再出炉空冷,其工艺曲线如图1-10所示。
球墨铸铁
2)低温石墨化退火
当铸态基体组织为珠光体+铁素体而无自由渗 碳体存在时,为了获得塑性、韧性较高的铁素体球 墨铸铁,可进行低温石墨化退火。
低温石墨化退火工艺是将铸件加热到共析温度 范围附近,即720 ℃~760 ℃,保温2~8 h,使铸 件发生第三阶段石墨化,然后炉冷至600 ℃,再出 炉空冷,其工艺曲线如图1-9所示。
球墨铸铁的化学成分为ωC=3.6%~3.9%,ωSi=2.0% ~2.8%,ωMn=0.6%~0.8%,ωS<0.04%,ωP<0.1%, ωMg=0.03%~0.05%。与灰铸铁相比,球墨铸铁的碳、硅 含量较高,有利于石墨球化。
球墨铸铁
2. 球墨铸铁的显微组织
球墨铸铁按其基体组 织不同,可分为铁素体球 墨铸铁、铁素体+珠光体 球墨铸铁和珠光体球墨铸 铁三种,它们的显微组织 如图1-8所示。
球墨铸铁除了能采用上述热处理工艺外,还可以采用表面强化处 理,如表面淬火和渗氮等。
球墨铸铁的球化与孕育处理工艺
球墨铸铁的球化与孕育处理工艺摘要:中国的球墨铸铁产量占世界的三分之一以上,与美国相比,同一球墨铸铁件的抗拉强度相差不大,但延伸率和冲击值较低,力学性能达不到要求,已成为生产高强度、高韧性球墨铸铁的瓶颈。
本文通过严格控制材料化学成分、优化冶炼工艺和孕育工艺等措施,生产出了满足qt600-10性能要求的铸造状态铸件。
关键词:球墨铸铁;球化处理工艺;孕育处理工艺1前言中国的球墨铸铁产量占世界的三分之一以上。
与美国相比,同一牌号球墨铸铁的抗拉强度相差不大,但伸长率和冲击值均较低,说明我国球墨铸铁生产原液态铁的冶金质量还有待提高。
技术水平有待提高。
高强度、高韧性球墨铸铁已成为qt600-10、qt700-5等高性能球墨铸铁生产的瓶颈。
qt600-10铸态生铁具有成本优势大,抗拉强度和伸长率高,但不易控制,需要发展相对稳定的球化工艺和合金,以保证高强度和高伸长率。
2化学成分的选择Qt600-10具有高强度、高伸长率的特点。
考虑到最大的经济性,铸造工艺可以满足技术条件,但必须严格控制化学成分。
化学成分选择如下:1)碳当量选择碳当量主要是为了提高铸件性能,消除铸件缺陷,获得良好的铸件,提高力学性能。
一般来说,碳当量的选择接近共晶点。
2)球墨铸铁中的锰、硫和氧在球化过程中可以中和镁和铈,少量的锰可以起到合金化元素的作用。
为了保证高伸长率,欧姆(Mn)的控制范围为:0.4%~0.6%。
3)磷和磷不影响石墨的球化,但可溶于铁溶液中,降低了铁溶液的共晶温度和凝固起始温度。
容易发生偏析,(P)一般控制在0.05%以下。
4)硫硫是抗石墨球化元素,在稀土和镁中加入铁和硫化物部分,其余的球化,属于有害杂质,(S)一般控制在0.02%以下。
5)加入少量铜可以改善铸件截面结构的均匀性,对基体有固溶强化和沉淀硬化的作用。
铜的质量分数一般控制在0.3%~0.5%之间。
6)加入微量元素锡和质量分数0.04%~0.08%,基体中珠光体含量显著增加。
球墨铸铁管的生产工艺
球墨铸铁管的生产工艺
1. 材料准备:球墨铸铁管的原料是铸铁和球墨铸铁毛坯,需要进行配料和熔炼。
配料需要按照一定比例和质量要求将铸铁和球墨铸铁毛坯混合。
2. 熔炼:将配好的原料放入炉中加热熔化,熔炼过程需要加入一定量的稀土镁等元素来提高球墨铸铁的性能。
3. 球化处理:将熔化的铁水倒入球化炉中,通过加入球化剂,将熔体中的碳素球化,生成球墨铸铁毛坯。
4. 浇铸:将球墨铸铁毛坯倒入模型中进行铸造,这个过程需要注意保持炉温、模型温度等因素的控制。
5. 除毛刺:球墨铸铁管铸造完毕后,需要进行质量控制,包括对漏铁、毛刺等进行处理。
6. 机械加工和热处理:球墨铸铁管进行机械加工,包括车、铣、钻、打磨等工艺,并经过热处理使其获得一定的力学性能和耐腐蚀性。
7. 涂层处理:球墨铸铁管可以进行涂层处理,如环氧、沥青、聚氨酯等处理,提高其使用寿命和防腐能力。
8. 包装:球墨铸铁管加工完毕后,进行包装,直至出厂。
球墨铸铁铸造工艺流程
球墨铸铁铸造工艺流程球墨铸铁是一种重要的金属材料,具有高强度、耐磨、耐腐蚀的特点,并且具有良好的可加工性。
下面将介绍球墨铸铁的铸造工艺流程。
首先,准备原材料。
球墨铸铁的主要原料是废旧球墨铸铁零件、废钢铁和废铁水等。
这些原料需要经过回收、焙烧和筛分等工艺,以保证原材料的质量。
其次,进行材料预处理。
将经过预处理的原材料送入熔炉中进行熔化。
熔炉温度的控制非常重要,一般情况下,熔炉温度要保持在1400℃左右,以确保原材料能够完全熔化。
然后,进行球化处理。
在熔化的金属液中加入镁合金或铝合金等球化剂,通过搅拌和混合,使金属液中的碳以球状分布,从而形成球墨铸铁。
接着,进行浇注。
将球化后的金属液倒入预先准备好的铸型中。
铸型的选择非常关键,一般采用砂型或金属型。
在浇注过程中要注意控制浇注温度和速度,以保证铸件的质量。
再次,进行冷却。
将铸件从铸型中取出后,放入水槽中进行冷却。
冷却的目的是迅速使铸件表面和内部冷却固化,以确保铸件的结构和性能。
然后,进行脱模。
经过冷却后的铸件,需要进行脱模处理。
脱模可以采用人工敲打、冲击或使用特殊的脱模工具进行操作。
最后,进行后处理。
包括切割、磨削、修整、喷漆等工艺。
切割是将铸件切割成所需的形状和尺寸,磨削是为了提高表面光洁度和精度,修整是为了去除铸件上的缺陷,喷漆是为了保护铸件表面并提高外观质量。
综上所述,球墨铸铁的铸造工艺流程包括原材料准备、材料预处理、球化处理、浇注、冷却、脱模和后处理等环节。
每一个环节都需要经过严格的控制和操作,以确保最终得到优质的球墨铸铁铸件。
铸铁的球化处理
铸铁的球化处理球化处理是在浇注前向铁液中加入少量的某种添加物,以改变石墨的结晶特性,使其以球状析出,最终获得球墨铸铁的一种工艺。
本章着重介绍铸铁球化处理的理论基础及工艺方法。
第一节球化处理的理论基础在第二章第三节我们介绍了球墨铸铁的凝固过程及石墨球化的机理。
虽然对石墨球化机理的认识至今还很不一致,但是如果把这些理论归纳起来可以看出石墨球化的本质在于石墨与铁液界面能的变化。
这使我们认识到,对于界面控制生长的石墨析出过程而言,铸铁溶液中球状石墨的生长是一个非稳定生长,其生长过程除与其本身晶体结构特性有关外,主要受影响石墨与铁液界面行为的因素控制。
球化处理就是通过影响石墨与铁液的界面行为来改变石墨结晶过程,从而得到理想的石墨形态。
本节主要介绍影响石墨界面稳定性的因素及其与石墨结晶过程的关系。
一、强吸附元素的概念原子在界面上的吸附被认为是影响界面稳定性的最主要因素之一。
彻诺维(Chernov)使用原子在晶体界面上停留时间与台阶推进时间的关系来定义强吸附元素。
设台阶的距离为l,台阶推进的速度为V,原子在晶体界面上停留的时间为τ,如果τ<<1/V,则原子在界面上停留时间短;如果τ>>1/V,则原子停留时间长。
原子的停留时间可按下式计算τ=υ-1exp(U/kT)式中υ──原子的振动频率;υ≈1012s-1U──原子在晶体表面的吸附能例如某原子在晶体表面的吸附能U≈20J/mol,则可由上式计算出其室温下在晶体表面的停留时间τ≈10-8s,此时原子的吸附能是弱的,原子在晶体表面的停留时间很短,该原子被认为是弱吸附原子。
根据彻诺维的计算,强吸附原子的U值在50~60J/mol 之间。
二、强吸附元素引起的动力学过冷卡布雷拉(Cabrera)认为,强吸附元素吸附在晶体表面上时会在晶体表面形成一个网络,形成网络的原子之间的距离影响着晶体长大所要求的过冷度。
如图4-1所示,如果形成网络的原子之间的距离小于晶体中台阶在所处温度下的临界形核尺寸2ρc,则台阶向前推移受到网络的阻碍。
球墨铸铁管的工艺特点
球墨铸铁管的工艺特点
球墨铸铁管是一种由铸铁球墨化而成的管道材料,具有以下工艺特点:
1. 球墨化处理工艺:球墨铸铁管是通过将铸铁中的碳球化处理,使铸铁变成球状石墨微晶体的管道材料。
球墨化可以提高铸铁的韧性和强度,使其具有更好的抗拉伸能力。
2. 硫化镁球墨化:球墨化处理通常使用硫化镁作为球化剂,通过在铸铁中加入适量的硫化镁,经过一定的热处理过程,将碳变成球状石墨。
这种处理方法可以有效降低碳球化过程中的温度和时间要求,提高生产效率。
3. 球墨铸铁管的铸造工艺:球墨铸铁管的铸造工艺一般采用连续铸造法或者离心浇铸法。
连续铸造法是将炉中的熔融铁液连续注入球墨铸铁管模具中进行铸造,离心浇铸法是将铁液在高速旋转的模具中进行离心铸造。
这些铸造工艺都可以获得高质量的球墨铸铁管。
4. 其他特点:球墨铸铁管具有良好的耐腐蚀性、耐压性和耐磨性,适用于输送各种介质。
此外,球墨铸铁管具有较高的密度和硬度,可以防止管道内部的渗漏和裂纹。
总之,球墨铸铁管的工艺特点主要包括球墨化处理、硫化镁球墨化、铸造工艺的选择等,这些特点使得球墨铸铁管具有优异的性能和广泛的应用领域。
球墨铸铁球化处理方法
2.1 炉料选择
球铁球化剂的加入效果条件是:高碳、低硅、大孕育量。
为了稳定化学成分和有效地控制促进白口化元素和反球化元素,保证熔炼铁水的质量,选用张钢Z14生铁,其化学成分:C>3.3%,Si 1.25%~1.60%,P≤0.06%,
S≤0.04%。
2.2 球化剂的选择
球化剂的选用应根据熔炼设备的不同,即出铁温度及铁液的纯净度(如含硫量、氧化程度等)而定。
我国最常用的是稀土镁硅铁球化剂,采用这种球化剂处理时,由于合金中含硅量较高,可显著降低镁处理时反应的剧烈程度。
同时也能因增硅而有些孕育作用。
电炉生产时,因温度相对较高,所用球化剂的化学成分见表1。
表1 球化剂FeSiMg8Re7化学成分
项目
出铁温度
/℃S %
球化剂成分/%
Mg Re Si
电炉1420~1480≤0.047.0~9.0 6.0~8.0≤44.0
3 炉前控制
3.1 化学成分选择
球铁原铁液应高碳、低硅、低硫、低磷。
控制好硫的含量,是生产球铁的一个重要条件。
几种牌号的球铁的化学成分见表2。
3.2 球化和孕育处理
球化剂加入量应根据铁液成分、铸件壁厚、球化剂成分和球化处理过程的吸收率等因素分析比较确定。
一般为1.6%~2.0%,若球化剂放置时间较。
球墨铸铁的组织和性能
铁素体球墨铸铁
铁素体-珠光体球墨铸 铁
珠光体球墨铸铁
球墨铸铁的显微组织
球墨铸铁良好的机械性能是与其组织特点分不开的,在球铁中,石 墨结晶成球状,对基体的割裂作用大为减小,基体强度的利用率达(70~ 90)%,抗拉强度不仅高于铸铁,甚至还高于碳钢,σb=(400~600)MPa, σs=(300~400)MPa。屈强比σs/σb 为 0.7~0.8,比钢约高 40%左右。 塑性、韧性比灰口铸铁大大提高,δ=(1.5~10)%,经热处理最高可达
δ=(20~25)%。 球墨铸铁不仅具有远远超过灰铁的机械性能,而且同样也具有灰铁 的一系列优点。如良好的铸造性能、减摩性、切削加工性及低的缺口敏 感性等。甚至在某些性能方面可与锻钢相媲美,如疲劳强度大致与中碳 钢相似,耐磨性优于表面淬火钢等。此外,球铁还可适应各种热处理, 使其机械性能提高到更高的水平。因此。球铁一出现就得到迅速的发展。 它可代替部分钢作较重要的零件,对实现以铁代钢、以铸代锻起重要的 作用,具有较大的经济效益。例如,珠光体球铁常用于制造曲轴、连杆、 凸轮轴、机床主轴、水压机气缸、缸套、活塞等。铁素体球铁用于制造
盘铸件需进行退火处理。 2.正火
目的是增加基体组织中珠光体的含量,并使其细化,提高铸铁的强 度、硬度和耐磨性,如发动机的缸套、滑座和轴套等铸件均要进行正火。
此外,还能将铸态珠光体球铁进行调质和等温淬火,以获得高的强度和硬度,但是都只适宜 于小件。
并适合流水作业生产等优点。 因球化处理时铁水温度有所降低,为保证流动性,应使铁水的出炉
温度高些。 四、球墨铸铁的热处理 由于球铁基体组织与钢相同,球铁石墨又不易引起应力集中,因此 它具有较好的热处理工艺性能。凡是钢可以采用的热处理,在理论上对 球铁都适用。常用的热处理方法有以下几种:
铸造铁液球化处理常用方法介绍
据中国铸造协会统计,2018年,我国球墨铸铁(包括蠕墨铸铁)产量达1415万吨,占铸件总产量的28.7%,与往年同比增长2.9%。
对铁液进行球化处理是获得球墨铸铁件的关键工艺环节,直接影响球墨铸铁材料的内在质量和使用性能。
因此,深入系统地探索铁液球化工艺、技术及装备具有重要的实际意义。
目前,国际国内铸造行业生产中常用的球化处理方法有:压力加镁法、冲入法、转包法、型内球化法、喂丝球化法和盖包法。
1压力加镁法(Adding magnesium by pressure)压力加镁法是21世纪50年代开始采用的一种球化处理方法。
镁的沸点很低,球化处理时容易在铁液中发生剧烈的反应,镁的吸收率很低。
压力加镁法的原理是使镁周围介质的压力增加,镁的沸腾温度相应提高,镁的烧损减少,从而提高镁的吸收率。
加镁处理有两种建立压力的方法:即外加压式和自建压力式。
(1)早期使用的外压式,是将盛满铁液的铁液包放在密闭的压力罐内,通过压缩空气或氮气来建立所需的压力;(2)利用镁蒸气在铁液包内自建压力。
后者是把纯镁加入密封的铁液包内,镁在铁液包内迅速产生大量镁蒸气,镁蒸气通过铁液时一部分被铁液吸收,另一部分逸出并迅速在包内空间建立起与铁液温度相应的饱和蒸气压,这时镁就不再沸腾汽化而损失了。
■工艺优点使用纯镁进行球化处理,镁的吸收率高,可达70%~80%,处理过程中的劳动环境较好。
缺点是,设备费用比较高;操作复杂、严格;处理时间长,铁液降温多;球化处理时压力大,容易发生工伤事故。
2冲入法(Pour-over nodularizing treating process)冲入法是目前在国内外应用最广泛的球化处理方法,所使用的处理包通常是堤坝式浇包。
冲入法使用含镁量较低的合金球化剂,以减缓铁液和镁之间反应的激烈程度,减少镁蒸气的挥发速率。
球化处理时,首先将球化剂装入堤坝一侧,上面覆盖硅铁合金,稍加紧实,然后再覆盖无锈铁屑或草木灰、苏打等覆盖剂,铁液温度过高时可盖铁(钢)板。
球墨铸铁的工艺原理
球墨铸铁的工艺原理
球墨铸铁(Ductile Iron)是一种重要的铸铁材料,具有高强度、良好的韧性和耐用性。
其工艺原理主要包括球化处理和铸造工艺两个方面。
1. 球化处理:球墨铸铁的主要特点就是球状石墨(球墨)的存在,球墨可以增加材料的韧性和塑性,使其具有较高的拉伸强度和冲击韧性。
球状石墨的形成是通过在铸造过程中添加球化剂(一般为钆或镧等稀土元素)来达到的。
球化剂的作用是在铸造过程中形成碳化物核,在高温下将镁中的氧原子还原为氧化镁(MgO),释放出活泼的镁原子,与碳原子结合形成石墨球。
球化剂的添加量和方式会影响球墨铸铁的球状石墨形态和数量,因此需要精确控制球化剂的添加。
2. 铸造工艺:球墨铸铁的铸造工艺与普通铸铁类似,但需要更高的浇注温度和降温速率。
在铸造过程中,为了防止铁水中的氧气和其他杂质对球化剂的妨碍,通常会采用滑进式浇注法,即先浇注一部分铁水,再通过浇注剂将剩余的铁水顺滑地倒入模型中。
这样可以保持较高的浇注温度和较快的浇注速度,有利于球化剂发挥作用。
总体而言,球墨铸铁的工艺原理是通过控制球化剂的添加量和方式,以及优化铸造工艺参数,实现球状石墨的形成和分布,从而提高球墨铸铁的力学性能和耐用性。
球墨铸铁中石墨的球化率及球化级别
球墨铸铁中石墨的球化率及球化级别球化率及球化级别按照GB/T9441-1988《球墨铸铁金相检验》评定,该标准将球化级别分为 6 级。
首先观察整个受检面,之后,从最差的区域开始,连续观察 5 个视场,以其中3 个最差视场的多数对照级别图谱评定。
提高球化率的关键是球化处理和孕育处理。
球化处理方法:采用稀土镁合金的凹坑冲入法,简单易行,但烟尘较大。
采用低稀土镁合金盖包处理,镁的收得率可达50%以上,且可解决烟尘问题。
孕育处理可采用二次或三次孕育,球化包内孕育剂可用75 硅铁,浇包内可加抗衰退(例如含钡)孕育剂。
倘有必要,再用随流孕育或型内孕育。
5 级球化和6 级球化的石墨都是以蠕虫状石墨为主,5 级球化是蠕虫状石墨呈分散分布;6 级球化是蠕虫状石墨呈聚集分布。
两者主要区别如下:(1) 宏观组织聚集分布时,断口上出现稀疏的小黑点,蠕虫状石墨聚集程度增加时,黑点增大,数量也随之增加和密集;蠕虫状石墨分散分布时,其数量较聚集分布为少,断口不会出现小黑点。
(2) 微观特征蠕虫状石墨分散分布时,其长宽比较小,呈短而粗的棒状,端部圆钝,常与团状共存。
4~5 条蠕虫状石墨丛集一处者,称为聚集分布,此时蠕虫状石墨弯曲、扭转的趋势增加。
观察三维形貌,聚集分布的几条蠕虫状石墨往往是同一蠕虫状石墨的不同分枝,这种结构,比表面积较大,分枝与分枝间的距离较近,有利于碳的扩散,故铸态或热处理后,聚集分布的蠕虫状石墨周围容易形成铁素体。
(3) 化学成分蠕虫状石墨聚集分布时,宏观化学成分中残留镁量和稀土量都较低,含硅量较高。
图号:图号:光学放大倍数:100×光学放大倍数:100×浸蚀剂:未侵蚀浸蚀剂:未侵蚀材料及状态:球墨铸铁材料及状态:球墨铸铁处理:铸态处理:铸态组织及说明:图中石墨呈球状,少数团状,球化率为≥95%,球化级别为1 级。
组织及说明:图中石墨大部分呈球状,余为团状和极少量团絮状,球化率为90%~<95%,球化级别为 2 级。
球墨铸铁提高球化率的工艺方案
球墨铸铁提高球化率的工艺方案球墨铸铁提高球化率的工艺实用方案国内普通球墨铸铁铸件的球化级别要求达到4级以上,(即球化率70%,)一般铸造厂达到的球化率为85%左右.近年来,随着球墨铸铁生产的发展,尤其是在风电铸件生产和铸件质量要求较高的行业,要求球化级别达到2级,即球化率达到90%以上.笔者公司通过对QT4_-_原采用的球化.孕育处理工艺以及球化剂.孕育剂进行分析.改进,使球墨铸铁的球化率达到了90%以上.1.原生产工艺原生产工艺:熔炼设备采用2.0T中频炉和1.5T工频炉;QT4_-_原铁液成分为(C)=3.75%_3.95%.. (Si)=1.4%_1.7%. (Mn) 0.40%. (P) 0._%. (S) 0._5%;球化处理所用球化剂为 1.3%_l.5%的RE3Mg8SiFe合金;孕育处理所用孕育剂为0.7%_0.9%的75SiFe-C合金.球化处理采用两次出铁冲入法:先出铁55%_60%,进行球化处理,然后加入孕育剂,再补加其余铁液.由于球化.孕育采用传统的方式,用25 mm厚的单铸楔形试块检测得到的球化率一般在80%左右,即球化级别3级.2.提高球化率的试验方案为提高球化率,对原来的球化和孕育处理工艺进行了改进,主要措施是:增大球化剂和孕育剂加入量.净化铁液.脱硫处理等.球化率仍然采用25 mm的单铸楔形试块进行检测,具体方案如下:(1)分析原工艺球化率偏低的原因,曾认为是球化剂用量较少,故将球化剂加入量由1.3%_1.4%增加到1.7%,但球化率并未达到要求.(2)另一种猜测是认为球化率偏低可能是由于孕育不良或孕育衰退引起,因而试验加大孕育剂量,由0.7%_0.9%增加到1.1%,球化率亦未达到要求.(3)继续分析认为铁液夹杂较多.球化干扰元素偏高等可能是造成球化率偏低的原因,因而对铁液进行高温净化,高温净化温度一般控制在1 5_ _℃,但其球化率仍未突破90%.(4) (S)量高严重消耗球化剂量并加速球化衰退,因此增加脱硫处理,将原铁液(S)量从原来的0._5%降低到0._0%以下,但球化率也只达到86%.以上4种方案的试验结果如表1所示,楔形试块的组织和力学性能均未达到要求.3.最后采用的改进方案3.1具体改进措施原材料采用生铁.无锈或少锈的废钢和回炉料;对原铁液进行炉外加纯碱(Na2CO3)脱硫;采用福士科390预处理剂在包内进行预脱氧处理;采用福士科球化剂进行球化处理;采用碳化硅和硅铁联合孕育.新工艺原铁液成分控制: (C)=(3.70%_3.90%. (Si)=0.80%_1._%[铸件 (Si 终)=2.60%_3._%]. (Mn) 0.30%. (P) 0._%. (S) 0._%.当原铁液 (S)量超过0._%时,采用工业用纯碱进行炉前脱硫处理,因脱硫反应是吸热反应,要求脱硫温度控制在__℃左右,纯碱加入量根据炉前熔清时的 (S)量高低控制在 1.5 % _2.5 %.同时,球化处理包采用普通的堤坝式处理包,首先把福士科NODALLOY7RE牌号球化剂1.7%加入包底堤坝一侧,扒平压实,用0.2%的粉末状碳化硅和0.3%的小块状75SiFe先后覆盖一层,捣实后用压铁盖上,在铁液包的另一侧加入0.3%的福士科390孕育剂.出铁时首先冲入总铁液量的55%_60%,待球化反应完毕后,加入1.2%的75SiFe-C孕育剂后冲入剩余铁液,扒渣浇注.3.2试验结果原铁液脱硫前后的的成分见表2.表3,25mm单铸楔形试块对应的力学性能和金相组织见表4,金相组织中球化率的评定方法采用金相图像分析系统自动检测.4.结果分析4.1主要元素对球化率的影响C.Si:C能促进石墨化,减少白口倾向,但 (C)量高会使CE过高而容易产生石墨漂浮,一般控制在3.7%_3.9%.Si能加强石墨化能力,消除渗碳体.Si以孕育剂的方式加入时,可大大降低铁液的过冷能力.为了提高孕育效果,原铁液的 (Si)量从原来的1.3% _1.5%降到0.8%_1.2% , (Si终)量控制在2.60%_3._% .Mn:在结晶过程中,Mn增加铸铁的过冷倾向,促进形成碳化物(FeMn) 3C.在共析转变过程中,Mn降低共析转变温度,稳定并细化珠光体.Mn对球化率没有太大的影响.因受原材料的影响,一般控制 (Mn) 0.30%.P:当 (P) 0._%时固溶于Fe,难以形成磷共晶,对球铁的球化率影响不是很大.S:S是反球化元素,S在球化反应时消耗球化剂中的Mg和RE,阻碍石墨化,降低球化率.硫化物夹渣还会在铁液凝固之前回硫,再次消耗球化元素,加快球化衰退,进一步影响球化率.为了达到高的球化率,应该使原铁液的 (S)量降低到0._%以下.4.2脱硫处理当炉料熔清后,取样分析化学成分,当 (S)量高于0._%时要进行脱硫处理.纯碱脱硫的原理为:将一定量的纯碱置于浇包内,利用铁液流冲入而搅拌,纯碱在高温下分解,反应式为Na2CO3=Na2O+CO2 :生成的Na2O又与铁液中硫化合生成Na2S,(Na2O)+[FeS]=(Na2S) +(FeO).Na2CO3分解析出CO2引起铁液剧烈搅动,促进脱硫过程进行.纯碱渣极易流动.很快上浮,脱硫反应时间很短,脱硫后应及时扒渣,否则会回硫.4.3预脱氧处理.球化处理及孕育处理福士科390预处理剂在包内起到预脱氧处理的作用,同时增加石墨形核核心.增加单位面积石墨球数,还可以提高Mg的吸收率,大幅度提高抗衰退能力,提高球化率.福士科孕育剂含 (Si) =60%_70%. (Ca)=0.4%_2.0%. (Ba)=7%__%,其中Ba 可以延长有效孕育时间.选用福士科球化剂牌号为NODALLOY7RE,其 (Si)=40%_50%. (Mg)=7.0% _ 8.0%. (RE)=0.3%_1.0%. (Ca)=1.5%_2.5%. (Al) 1.0%.由于铁液经过了脱硫和预脱氧处理,铁液中消耗球化剂的元素大量减少,因此选用了 (RE)量低的球化剂,以减少RE对球状石墨形态的恶化;起球化作用的元素主要是Mg;Ca和Al可以起到加强孕育的作用.采用碳化硅和硅铁联合孕育处理,碳化硅的熔点在__℃左右,并在凝固时增加石墨结晶晶核,采用大剂量的硅铁孕育,可以防止球化衰退.5.结论生产铁素体球墨铸铁,要求球化率达到90%以上时,可以采用以下措施:(1)选用优质炉料,减少炉料中的反球化元素.(2)选用 (RE)量低的球化剂,减少RE对球状石墨形态的恶化影响.(3)原铁液的 (S)量应小于0._0%,这样可以减少球化剂的消耗量,特别是硫化渣二次回硫所消耗的球化元素.(4)对铁液进行预脱氧处理,增加单位面积石墨球数,提高球化率,大幅度提高抗衰退能力,延长有效孕育时间.(5)降低原铁液中 (Si)量,增加球化剂.孕育剂和各种预处理剂的加入量,强化孕育处理.。
球墨铸铁的炉前球化和孕育处理工艺
球墨铸铁的炉前球化和孕育处理工艺
1球墨铸铁炉料按配料单数量,先后加入到感应电炉内,熔清,升温到出炉温度(1520℃),准备出炉。
其间可用炉前快速分析仪测定原铁水成分。
2浇注用的铁水球化包,要提前修好,筑好堤坝,并用木柴烘干烘透。
3球墨铸铁所用的球化剂、孕育剂要按每炉要求数量分别称好,备用。
4将球化剂放入铁水包堤坝一侧,盖上孕育剂量的60%(一次孕育),再盖上干净无锈的球铁屑,并注意捣实。
5铁水出炉时,要冲入堤坝的另一侧,防止球化剂过早反应。
铁水出尽,等球化反应完毕,扒净渣子,防止回硫。
再在铁水表面撒上孕育剂量的30%(二次孕育),略加搅拌,盖上覆盖剂。
起吊浇注。
6浇注过程尽量平稳迅速,浇注时间不应超过10分钟,以防止球化衰退。
浇注过程中,特别注意做好随流孕育(三次孕育),用量是孕育剂量的10%。
7浇注完毕,把铁水包中的剩余铁水倒尽,扒净渣子,以备再用。
8检测所需的试样、试块所用铁水,应取于浇注后期。
铸造球铁件,球化过程常见问题及解决方案
提高球化效果的实用技术一.影响球化效果的因素:1.球化等级划分:球状石墨:国标ISO规定按石墨的面积率划分,面积率≥0.81为球状石墨。
石墨面积率计算方法:国标球化分级和评定:例如:某公司生产的QT450材质铸件金相检验中,根据金相视野中的球状和团状石墨个数所占石墨总数的百分比作为球化率,将球化率分为六级,具体如下:球化率计算时,视场直径为70mm,被视场周界切割的石墨不计数,放大100倍时,少量小于2mm的石墨不计数,若石墨大多数小于 2mm或大于12mm时,则可适当放大或缩小倍数,视场内的石墨数一般不少于20颗。
在抛光后检验石墨的球化分级,首先观察整个受检面,选三个球化差的视场对照评级图目视判定,放大倍数为100倍。
不同球化率的金相图像图号1 球化率:95% 图号2 球化率:90%图号3 球化率:80% 图号4 球化率:70%图号5 球化率:60% 图号6 球化率:50%2.球化可能会出现的问题及解决方案:(1)球化不良:此不良主要体现在炉后成品的残镁分析值低于0.030%(一般标准残镁规格值按照小于0.030%为下限规格值),金相石墨型态一般体现在球状石墨和蠕虫状石墨共存在,或球状石墨、蠕虫状石墨和片状石墨共存在,或蠕虫状石墨和片状石墨共存在,或全部为片状石墨。
控制球化不良的发生,特别注意以下几点:A.添加球化剂重量的核对或喂丝球化线的喂丝长度核对,确保实际加入量与标准规定的相符。
B.三明治球化温度或喂丝温度一般在1480-1530℃。
C.三明治球化反应时间一般控制大于55秒,喂丝球化速度一般控制19-22米/分钟。
D.三明治球化出炉过程确保电炉的先期铁水冲入到球化包的缓冲室,等缓冲室铁水满后,铁水再漫过球化室。
(有很多出炉铁水冲入不当,造成铁水直接冲到球化室的,造成球化反应提前进行,总的球化反应时间短,导致球化不良。
)E.三明治球化需要在球化包之球化室中的球化剂上侧放置覆盖剂,覆盖剂一般为矽钢片,厚度一般控制在0.3-1.0mm,直径或单边长度为10-30mm,要求无油无锈无杂质。
球墨铸铁球化机理
球墨铸铁球化机理
球墨铸铁球化机理是指球墨铸铁在生产中实现球化的过程和机制。
球墨铸铁相比于灰铸铁具有更好的塑性和韧性,主要是因为球墨铸铁中球状石墨的存在。
球化是指将铸造中的石墨颗粒由片状转变为球状,这是球墨铸铁具有优异性能的关键。
球化机理主要有两种,一种是铱铁球化机理,另一种是铝钛球化机理。
铱铁球化机理是指在铸造中加入铱铁合金,在高温下将石墨颗粒由片状转变为球状。
铝钛球化机理是指在铸造中加入铝和钛元素,在高温下与石墨颗粒反应,生成钛化合物和铝化合物,使石墨颗粒由片状转变为球状。
两种球化机理各有优缺点,工业生产中通常采用铝钛球化机理。
球墨铸铁的球化过程需要控制铁水温度、翻砂速度、时间等因素,以保证球化效果。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球墨铸铁球化处理方法
●●●
1.表面添加法 2.冲入法 3.柱塞法
4.压力添加法5.其它特殊处理方法
●冲入法所用的铁水包必须在铁水包内制作凹部,将球化剂装入其凹部。
●然后添加覆盖材料0.8-1.1%,;将球化剂盖严。
●当使用同一的铁水包连续处理时,要确认铁水包凹部无残留熔融金属及夹杂物后,方可投入球化剂。
●出炉方法:在往铁水包中冲入铁水时,要从凹部装有球化剂相反一侧冲入铁水,以免熔融金属直接冲
入凹部。
出铁速度要快。
球化剂
注:☆YCeSiFeMg3-8主要用于球铁件生产流水线上,球化处理后在保温浇注炉中存放30-60分钟场合;Ca、Ba与Re、Mg含量可按用户要求特殊加工。
产品料度与包装:通常粒度5-25mm,也可按用户要求特殊加工,包装25 Kg。