5.3应用二元一次方程组——鸡兔同笼课件ppt
合集下载
应用二元一次方程组——鸡兔同笼ppt
03
鸡兔同笼问题简介
鸡兔同笼问题的起源
源自中国古代的数学趣题,鸡兔同笼问题最早出现在《孙子 算经》中,当时是为了解决两个农夫的年龄问题。
随着时间的推移,该问题逐渐传播至世界各地,成为数学教 育中的经典问题之一。
鸡兔同笼问题的应用
鸡兔同笼问题可以应用于现实生活中,例如城市交通管理 、人口管理、物资调配等方面。
3
了解了鸡兔同笼问题的数学模型和求解方法
学习收获及感受
通过学习二元一次方程组,提 高了数学应用能力
学会了如何将实际问题转化为 数学问题,并使用数学方法解
决
掌握了解决鸡兔同笼问题的方 法,并能够解决类似问题
对未来学习的展望
希望进一步深入学习数学建模和算法相关的知识 加强实际应用能力的培养,提高解决实际问题的能力
求解方程
• 将第一个方程乘以2,得到 • 2x + 2y = 2n • 将第二个方程减去第一个方程,得到 • 2y = m - 2n • 解得 • y = (m - 2n) / 2 • 将解得的y的值代入第一个方程,解得 • x = n - y = n - (m - 2n) / 2 = (3n - m) / 2 • · 将第一个方程乘以2,得到 • · ``` • · 2x + 2y = 2n • · ``` • · 将第二个方程减去第一个方程,得到
交流沟通
团队成员之间需要交流沟通,分 享思路和方法,避免重复劳动, 节省时间。
团队协作
通过团队协作,能够更全面地分 析问题,提出更多解决方案,提 高解决问题的质量。同时培养团 队协作能力,增强团队凝聚力。
06
结论与反思
本课程总结
1
理解了二元一次方程组的基本概念和解题方法
5.3 应用二元一次方程组——鸡兔同笼 课件 2024-2025学年数学北师版八年级上册
1个小桶分别可以盛酒多少斛?请解答.
解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,
=
5 + = 3,
根据题意,得ቊ
解得൞
+ 5Байду номын сангаас = 2,
=
13
,
24
7
.
24
13
7
答:1个大桶可以盛酒 斛,1个小桶可以盛酒 斛.
24
24
列方程组解决和差倍分问题
4
某工厂第一车间的人数比第二车间人数的 少30,若从第
3 应用二元一次方程组
——鸡兔同笼
列二元一次方程组解决实际问题的一般步骤
(1)审:审题,弄清题意及题目中的数量关系;
(2)设:设未知数,可直接设元,也可间接设元;
(3)列:根据题目中能表示全部含义的相等关系,列出方
程组;
(4)解:解所列方程组,求出未知数的值;
(5)检:检验解是否是方程组的解,是否符合题意;
墙砖比2块竖放的墙砖矮40 cm,求每块墙砖的面积.
解:设墙砖的长为x cm,宽为y cm,
3 − = 10,
= 35,
根据题意,得ቊ
解得ቊ
= 15.
2 − 2 = 40,
∴每块墙砖的面积为35×15=525(cm2).
5.用若干个形状、大小完全相同的长方形纸片围成正方形,4
个长方形纸片围成如图1所示的正方形,其阴影部分的面积为
+ = 16,
2x+4y=44 .因此,可列方程组为 ቊ
.
2 + 4 = 44
列方程组解决“古代”问题
《九章算术》中有一道阐述“盈不足”的问题,原
文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.
解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,
=
5 + = 3,
根据题意,得ቊ
解得൞
+ 5Байду номын сангаас = 2,
=
13
,
24
7
.
24
13
7
答:1个大桶可以盛酒 斛,1个小桶可以盛酒 斛.
24
24
列方程组解决和差倍分问题
4
某工厂第一车间的人数比第二车间人数的 少30,若从第
3 应用二元一次方程组
——鸡兔同笼
列二元一次方程组解决实际问题的一般步骤
(1)审:审题,弄清题意及题目中的数量关系;
(2)设:设未知数,可直接设元,也可间接设元;
(3)列:根据题目中能表示全部含义的相等关系,列出方
程组;
(4)解:解所列方程组,求出未知数的值;
(5)检:检验解是否是方程组的解,是否符合题意;
墙砖比2块竖放的墙砖矮40 cm,求每块墙砖的面积.
解:设墙砖的长为x cm,宽为y cm,
3 − = 10,
= 35,
根据题意,得ቊ
解得ቊ
= 15.
2 − 2 = 40,
∴每块墙砖的面积为35×15=525(cm2).
5.用若干个形状、大小完全相同的长方形纸片围成正方形,4
个长方形纸片围成如图1所示的正方形,其阴影部分的面积为
+ = 16,
2x+4y=44 .因此,可列方程组为 ቊ
.
2 + 4 = 44
列方程组解决“古代”问题
《九章算术》中有一道阐述“盈不足”的问题,原
文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.
鸡兔同笼(共24张PPT)
5 3a 4b 7;
6 2x 10 0.
练一练:
2.如果方程 2 xm1 3 y 2mn 1 是二元一
次方程,那么m= 2 ,n= -3 .
方程 x+y=8 和 5x+3y=34中,x的含义相同吗?y呢?
x,y的含义分别相同,因而x,y必须同时满足方程 x+y=8 和
每张成人票5元,每 张儿童票3元.他们 到底去了几个成人、 几个儿童呢?
设他们中有 x个成人, y个儿童.由此你能得到 怎样的方程?
x y 8
和
5 x 3 y 34
想一想
x-y=2 x+y=8
x+1=2(y-1)
5x+ 3y=34
上面所列方程各含有几个未知数? 2个未知数 含有未知数的项的次数是多少? 次数是1
老牛驮的包裹数比小马驮的多2个,由此你能得到怎样的方程 呢? 老牛的包裹数-小马的包裹数=2个 x-y=2 若老牛从小马的背上拿来1个包裹,这时它们各有几个包裹?由 此你又能得到怎样的方程呢? 老牛的包裹+1=(小马驮的包裹数-1)×2 x+1=2(y-1)
昨天,我们8个人 去红山公园玩,买门 票花了34元.
解:设长为x厘米,宽为y厘米,则
{
解得
x-y=3 2(x+y)=14
x=5
{ y=2
当堂检测
1.在下列四组数值中,哪些是二元一次方程 的解?
x 3y 1
( A)
x 2, y 3;
(B)
(C)
x 10, y 3;
( D)
x 4, y 1; x 5, y 2.
{
x=6 y=2
x=5 ,y =3 是否为方程 x+y =8
北师版八上数学5.3 应用二元一次方程组——鸡兔同笼(课件)
子,共可装载32吨.
(1)每辆汽车可装载柠檬或柚子各多少吨?
(2)据调查,每吨柠檬可获利700元,每吨柚子可获利500元.
计划用20辆汽车运输,若有 x 辆汽车装载柚子,全部销售完
后,总利润为 y 元,请写出 y 与 x 的函数关系式.
返回目录
数学 八年级上册 BS版
【思路导航】(1)先找等量关系,再列出二元一次方程组,即
的年龄分别是 x 岁、 y 岁.根据题意,可列方程组
6=,
ቊ
4( + 10) − 8 = + 10 .
为
返回目录
数学 八年级上册 BS版
《孙子算经》是中国古代重要的数学著作,其中一段文字的大
意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,
2
3
那么甲共有钱48文;如果乙得到甲所有钱的 ,那么乙也共有
4 + 6=28,
C. ቊD. ቊ源自= − 2= − 2返回目录
数学 八年级上册 BS版
【思路导航】根据题目描述,找出等量关系,再将未知数代入
即可列出方程.
4 + 6 = 28.
【解析】根据题意,得ቊ
故选A.
= + 2.
【点拨】列方程(组)解决实际问题中,找出等量关系是关
键,其中“共……”“比……少(多)……”都是找等量关系
钱48文.甲、乙两人原来各有多少钱?
【思路导航】根据题意,找出题中的等量关系,列出二元一次
方程组,即可解答.
返回目录
数学 八年级上册 BS版
解:设甲原来有 x 文钱,乙原来有 y 文钱.
1
+ = 48,
2
根据题意,得൞2
解得ቊ
(1)每辆汽车可装载柠檬或柚子各多少吨?
(2)据调查,每吨柠檬可获利700元,每吨柚子可获利500元.
计划用20辆汽车运输,若有 x 辆汽车装载柚子,全部销售完
后,总利润为 y 元,请写出 y 与 x 的函数关系式.
返回目录
数学 八年级上册 BS版
【思路导航】(1)先找等量关系,再列出二元一次方程组,即
的年龄分别是 x 岁、 y 岁.根据题意,可列方程组
6=,
ቊ
4( + 10) − 8 = + 10 .
为
返回目录
数学 八年级上册 BS版
《孙子算经》是中国古代重要的数学著作,其中一段文字的大
意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,
2
3
那么甲共有钱48文;如果乙得到甲所有钱的 ,那么乙也共有
4 + 6=28,
C. ቊD. ቊ源自= − 2= − 2返回目录
数学 八年级上册 BS版
【思路导航】根据题目描述,找出等量关系,再将未知数代入
即可列出方程.
4 + 6 = 28.
【解析】根据题意,得ቊ
故选A.
= + 2.
【点拨】列方程(组)解决实际问题中,找出等量关系是关
键,其中“共……”“比……少(多)……”都是找等量关系
钱48文.甲、乙两人原来各有多少钱?
【思路导航】根据题意,找出题中的等量关系,列出二元一次
方程组,即可解答.
返回目录
数学 八年级上册 BS版
解:设甲原来有 x 文钱,乙原来有 y 文钱.
1
+ = 48,
2
根据题意,得൞2
解得ቊ
《应用二元一次方程组—鸡兔同笼》二元一次方程组PPT课件3
28、每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。 29、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要 在路上,就没有到不了的地方。
30、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者,也不要做安于现状的平凡人。 31、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 32、过自己喜欢的生活,成为自己喜欢的样子,其实很简单,就是把无数个“今天”过好,这就意味着不辜负不蹉跎时光,以饱满的热情迎 接每一件事,让生命的每一天都有滋有味。
3
3
10x 910 y 9 21a.
解得 {xy==01.09.a8.a,
所以24×10.8a+0.9a×24×18=18×za
z=36
答:第三块牧场可供36头牛吃18个星期.
返回
已知某电脑公司有A型,B型,C型三种 型号的电脑,其价格分别为A型每台6000 元,B型每台4000元,C型每台2500元,我 市东坡中学计划将100500元钱全部用于从
用绳子测量水井的深度.如果将绳子 折成三等份,一份绳长比井深多5尺; 如果将绳子折成四等份,一份绳长比 井深多1尺.绳长、井深各是多少尺?
题中有哪些等量关系?
关系一
关系二
考考你
古有一捕快,一天晚上他在野外的一个茅屋里, 听到外边来了一群人在吵闹,他隐隐约约地听到几个 声音,下面有这一古诗为证:
隔壁听到人分银, 不知人数不知银. 只知每人五两多六两, 每人六两少五两, 问你多少人数多少银?
4y=6x
北师大版八年级数学上册-5.3应用二元一次方程组——鸡兔同笼(共26张PPT)
智力提升
古有一捕快,一天晚上他在野外的一个茅屋里, 听到外边来了一群人在吵闹,他隐隐约约地听到几个 声音,下面有这一古诗为证:
隔壁听到人分银, 不知人数不知银. 只知每人五两多六两, 每人六两少五两, 问你多少人数多少银?
3.列出两个方程.
变式训练:
(1)今有鸡兔同笼,鸡比兔多10,下有九十四足,问
鸡兔各多少?
鸡头-兔头=10
鸡脚+兔脚=94
解:设鸡有
x只,兔有
y只,依题意得
x y 10 2x 4y
94
(2)今有鸡兔同笼,鸡是兔的2倍少1,下有九十四足, 问鸡兔各多少?
鸡头=兔头×2-1
鸡脚+兔脚=94
5.3 鸡兔同笼
民谣:
一队兔子一队鸡,两队合并在一起.数头 一共三十五,数脚一共九十四.问你兔 子有多少、有多少?
回顾
1.二元一次方程组的解法:
①加减消元法 ②代入消元法
2.列一元一次方程解应用题的步骤: (1)审 (2)设 (3)列(等量关系) (4)解 (5)验(合理性)、答
一队兔子一队鸡,两队合并在一起.数头 一共三十五,数脚一共九十四.问你兔 子有多少、有多少?
和为15 ,列出方程为 2x+3y=15
.
2.一只蛐蛐6条腿,一只蜘蛛8条腿,现有蛐蛐和蜘蛛 共10只,共有68条腿,若设蛐蛐有x只,蜘蛛有y只,则 列出方程组
X+y=10
为 6x+8y=68 .
3.小刚有5角硬币和一元硬币有8枚,币值共有6元5角, 设5角的有x枚,一元X的+y有=8y枚,
列出的方程组为 0.5x+y=6.5 .
当堂训练
4.甲、乙两人参加植树活动,两人共 植树20棵,已知甲植树数是乙的1.5倍。 如果设甲植树x棵,乙植树y棵,那么可 列方程组为( C )
2022年数学八上《应用二元一次方程组——鸡兔同笼》课件精品(新北师大版)
x+y=35
①
2x+4y=94
②
解法一: (加减消元法)
①×2 得: 2x+2y=70 ③ ②-③得:2y=24,y=12. 把 y=12 代入①,得:x=23 原方程组的解是 x=23
y=12 所以有鸡23只,兔12只.
探究新知 解:
5.3 应用二元一次方程组——鸡兔同笼/
x+y=35
①
2x+4y=94
积的4倍,那么应该撤除多少旧校舍,建造多少新校舍?〔单位为
m2 〕解:设应撤除旧校舍xm2,建造新校舍ym2 , 由题意得:2y00040x x y 20000(1 30%)
拆
解得:xy
2000 8000
20000m2
答:应该撤除2000m2旧校舍,
建造8000m2新校舍.
新建
课堂检测
5.3 应用二元一次方程组——鸡兔同笼/
探究新知
5.3 应用二元一次方程组——鸡兔同笼/
素养考点 2 列二元一次方程组解答几何问题
例2 据统计资料,甲、乙两种作物的单位面积产量的比1:2.现
要把一块长200m、宽100m的长方形土地,分为两块小长方形土
地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作
物的总产量的比是3:4? 转换成数学语言:
答:绳长48尺,井深11尺.
探究新知
5.3 应用二元一次方程组——鸡兔同笼/
等量关系:
〔井深+5〕× 3 = 绳长
解 法
〔井深+1〕× 4 = 绳长
二
解:设绳长x尺,井深y尺,那么
由题意得
解3 得(y:+5)x==x48 4 (y+1)y==x11
北师大版八年级数学上册3 应用二元一次方程组——鸡兔同笼 (习题课件)【新版】
(2)设20分的邮票买了x枚,50分的邮票买了y枚,由题意
x+y 16, 可得二元一次方程组:___2_0__x+__5_0__y___5_9_0____.
(3)设买20分的邮票花了x元,买50分的邮票花了y元,由
题意可得二元一次方程组:_____x_+__y___5_.9_,_______.
然后作答.
返回
2.小明买了50分和20分的邮票共16枚,花了5元9角钱, 20分和50分的邮票各买了多少枚?根据题意完成下 列各题:
(1)设20分的邮票买了x枚,则50分的邮票买了__(1_6_-__x_)__ 枚,由题意可得一元一次方程:2_0_x_+__(1_6_-__x_)_×__5_0_=.590
每间客房收费20钱,且每间客房最多入住4人,一次性 定客房18间以上(含18间),房费按8折优惠.若诗中“众 客”再次一起入住,他们如何定房更合算?
解:(1)设该店有客房x间,房客y人. 根解答据得:题该 xy意店= =,有68,3得 客. 房879间(xx+-,71房) 客y,y6.3人.
第五章 二元一次方程组
5.3 应用二元一次方程组——鸡兔同笼
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
知识点 1 列二元一次方程组解决实际问题的步骤
1.用方程组解应用题的一般步骤: (1)审题:弄清题意和题目中的___数__量__关__系____; (2)设元:用字母表示题目中的未知数,可___直__接___设未
假设文化衫全部售出,共获利1 860元,求黑白两种文化
衫各有多少件.
解:设黑色文化衫有x件,白色文化衫有y件.
x+y 16, 可得二元一次方程组:___2_0__x+__5_0__y___5_9_0____.
(3)设买20分的邮票花了x元,买50分的邮票花了y元,由
题意可得二元一次方程组:_____x_+__y___5_.9_,_______.
然后作答.
返回
2.小明买了50分和20分的邮票共16枚,花了5元9角钱, 20分和50分的邮票各买了多少枚?根据题意完成下 列各题:
(1)设20分的邮票买了x枚,则50分的邮票买了__(1_6_-__x_)__ 枚,由题意可得一元一次方程:2_0_x_+__(1_6_-__x_)_×__5_0_=.590
每间客房收费20钱,且每间客房最多入住4人,一次性 定客房18间以上(含18间),房费按8折优惠.若诗中“众 客”再次一起入住,他们如何定房更合算?
解:(1)设该店有客房x间,房客y人. 根解答据得:题该 xy意店= =,有68,3得 客. 房879间(xx+-,71房) 客y,y6.3人.
第五章 二元一次方程组
5.3 应用二元一次方程组——鸡兔同笼
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
知识点 1 列二元一次方程组解决实际问题的步骤
1.用方程组解应用题的一般步骤: (1)审题:弄清题意和题目中的___数__量__关__系____; (2)设元:用字母表示题目中的未知数,可___直__接___设未
假设文化衫全部售出,共获利1 860元,求黑白两种文化
衫各有多少件.
解:设黑色文化衫有x件,白色文化衫有y件.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 x 4 y 94 ②
①×2 得: 2x+2y=70,③
②-③ 得: 2y=24, y=12.
把 y=12 代入①,得:x=23. x=23, 原方程组的解是 y=12. 答:有鸡23只,兔、羊五, 直金八两.牛、羊各直金几何?
练一练
5头牛、2只羊共价值10两“金”; 2头牛、5只羊共价值8两“金”.问每头牛、 每只羊各价值多少“金”?
解:设绳长x尺,井深y尺,由题意,得
x 3 y 5 ① x y 1 ② 4 x 48 解得: y 11
答:绳长48尺,井深11尺.
思路总结
列二元一次方程组解应用题的步骤是什么? (1)审题; (2)设两个未知数,找两个等量关系; (3)根据等量关系列方程,联立方程组; (4)解方程组; (5)检验并作答.
巩固练习
4. 甲、乙两人赛跑,若乙先跑10米, 甲跑5秒即可追上乙;若乙先跑2秒,则甲跑 4秒就可追上乙.设甲速为x米/秒,乙速为y 米/秒,则可列方程组为( B ). { 5y+10=5x, (A 4y=6x ) (C { 5x+10=5y, 4x=6y ) { 5x=5y+10, (B) 4x=6y { 5y=5x+10, (D) 4y=6x
巩固练习
1.设甲数为x,乙数为y,则“甲数的 二倍与乙数的一半的和是15”,列出 1 2 x y 15 方程为____________. 2 2.小刚有5角硬币和1元硬币各若干枚,币值 共有六元五角,设5角有x枚,1元有y枚, 0.5 x y 6.5 列出方程为 _____________.
经过本节课的学习, 你有那些收获?
拓展练习
有三块牧场,草长得一样快,面积 1 分别为 3 公顷,10公顷和24公顷,第一 3 块12头牛可吃4星期,第二块21头可吃9星 期,第三块可供多少头牛吃18个星期?
解:设牧场每公顷原有草x吨,每周新生 草y吨,每头牛每周吃草a吨,第三块可供 z头牛吃18个星期,根据题意得:
巩固练习
3. 某车间有工人54人,每人平均每天加工 轴杆15个或轴承24个,一个轴杆与两个轴承 配成一套.若分配x个工人加工轴杆,y个工人 加工轴承,正好使每天加工的产品成套,则 可列方程组为( B ). { x+y=54, { x+y=54, (A) 15x=24y (B) 2×15x=24y { x+y=54, { 15x+24y=54, (C) (D) 15x=24y 15x=2×24y
2 x 4 y 94 ② 由 ①化为 x =35-y ③
把③代入②,得: 2 35 y 4y 94, 70 2y 4y 94,
2y 24,
y 12.
把y=12代入①,得x=23. 答:有鸡23只,有兔12只.
情景导入
解:设有鸡x只,有兔y只.由题意,得 x y 35 ①
10 10 x 4 y 4 12a 3 3 10 x 9 10 y 9 21a .
x 10.8a 解得 y 0.9a
所以24×10.8a+0.9a×24×18=18×za、 z=36 答:第三块牧场可供36头牛吃18个星期 .
第五章
二元一次方程组
3. 应用二元一次方程组 ——鸡兔同笼
情景导入 《孙子算经》是 我国古代一部较为 普及的算书,许多 问题浅显有趣,其 中下卷第31题”雉 兔同笼”流传尤为 广泛,飘洋过海流 传到了日本等国.
情景导入
“上有三十五头”的意思是什么?
“下有九十四足”的意思是什么?
“鸡兔同笼”题为:
今有鸡兔同笼,
上有三十五头,
下有九十四足,
问鸡兔各几何?
情景导入
你能找出问题中的等量关系吗?
等量关系:
鸡头+兔头=35, { 鸡脚+兔脚=94.
总数
头 x y 35 94
x y 35 2 x 4 y 94
足 2x
4x
情景导入
解:设有鸡x只,有兔y只.由题意,得 x y 35 ①
5x+2y=10, { 2x+5y=8.
设每头牛价值为x两, 每只羊价值y两.
练一练
解:设每头牛值”金”x两,每头羊值”金”y两, 由题意,得
5x+2y=10,
2x+5y=8.
34 答:羊值”金” 21
解得
{
34 x= 21 ,
y= 20 .
21
20 两,牛值”金” 21
两.
例题赏析 以绳测井 若将绳三折测之,绳多五尺; 若将绳四折测之,绳多一尺. 绳长、井深各几何?
(1)“将绳三折测之,绳多五尺”,什么意思? (2)“若将绳四折测之,绳多一尺”,又是什么意思?
例题赏析
用绳子测量水井的深度.如果将绳子 折成三等份,一份绳长比井深多5尺; 如果将绳子折成四等份,一份绳长比 井深多1尺.绳长、井深各是多少尺?
题中有哪些等量关系 ?
例题赏析
等量关系:
1 3 绳长 井深 5 1 绳长 井深 1 4